
Article

An Improved Model for Analyzing Textual Sentiment Based on
a Deep Neural Network Using Multi-Head
Attention Mechanism

Hashem Saleh Sharaf Al-deen, Zhiwen Zeng *, Raeed Al-sabri and Arash Hekmat

����������
�������

Citation: Sharaf Al-deen, H.S.; Zeng,

Z.; Al-sabri, R.; Hekmat, A. An

Improved Model for Analyzing

Textual Sentiment Based on a Deep

Neural Network Using Multi-Head

Attention Mechanism. Appl. Syst.

Innov. 2021, 4, 85. https://doi.org/

10.3390/asi4040085

Academic Editor: Andrey Chernov

Received: 17 September 2021

Accepted: 20 October 2021

Published: 31 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Central South University, Changsha 410083, China;
hashem@csu.edu.cn (H.S.S.A.-d.); alsabriraeed@tu.edu.ye (R.A.-s.); arash_hekmat@csu.edu.cn (A.H.)
* Correspondence: zengzhiwen@csu.edu.cn

Abstract: Due to the increasing growth of social media content on websites such as Twitter and
Facebook, analyzing textual sentiment has become a challenging task. Therefore, many studies have
focused on textual sentiment analysis. Recently, deep learning models, such as convolutional neural
networks and long short-term memory, have achieved promising performance in sentiment analysis.
These models have proven their ability to cope with the arbitrary length of sequences. However,
when they are used in the feature extraction layer, the feature distance is highly dimensional, the text
data are sparse, and they assign equal importance to various features. To address these issues, we
propose a hybrid model that combines a deep neural network with a multi-head attention mechanism
(DNN–MHAT). In the DNN–MHAT model, we first design an improved deep neural network to
capture the text’s actual context and extract the local features of position invariants by combining
recurrent bidirectional long short-term memory units (Bi-LSTM) with a convolutional neural network
(CNN). Second, we present a multi-head attention mechanism to capture the words in the text that
are significantly related to long space and encoding dependencies, which adds a different focus
to the information outputted from the hidden layers of BiLSTM. Finally, a global average pooling
is applied for transforming the vector into a high-level sentiment representation to avoid model
overfitting, and a sigmoid classifier is applied to carry out the sentiment polarity classification of
texts. The DNN–MHAT model is tested on four reviews and two Twitter datasets. The results of
the experiments illustrate the effectiveness of the DNN–MHAT model, which achieved excellent
performance compared to the state-of-the-art baseline methods based on short tweets and long
reviews.

Keywords: deep learning; analyzing textual sentiment; recurrent bidirectional long short-term
memory unit; convolutional neural network; multi-head attention mechanism

1. Introduction

Sentiment analysis (SA) of text aims to extract and analyze knowledge from the
personal information posted on the internet. Due to its wide range of industrial and
academic applications, as well as the increasing growth of social networks, SA has become
a hot topic in the field of natural language processing (NLP) in recent years [1]. Thus,
different tools and techniques have been proposed to identify the polarity of documents.
Polarity detection is a binary categorization task that plays a significant role in most SA
applications [2]. Most of the previous approaches for SA have trained shallow techniques
on carefully developed efficient features for obtaining satisfactory polarity categorization
performances [3]. These models occasionally apply traditional classification approaches
involving Naïve Bayes, support vector machines (SVM), and latent Dirichlet allocation
(LDA) to linguistic properties, such as lexical features, part-of-speech (POS) tags, and
n-grams. However, these approaches have two major drawbacks: (1) the feature distance
on which the model must be trained is highly dimensional and scattered and thus affects
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the model performance; (2) the feature engineering operation is time intensive and an
uphill task.

Several current works have suggested learning word embedding [4–6] to tackle the
above limitations. Word embedding is a dense real-valued vector generated by a neural
language model that considers various lexical associations [4,5]. Thus, this makes the
employment of word embedding as the input of deep neural networks (DNN) highly
common in existing NLP works [4]. In recent years, DNNs have gained increasing attention
from many researchers in varied domains, such as medical informatics [6], finance [7],
computer vision [8], and multimedia sentiment analysis [9].

DNNs have been suggested for analyzing text data that primarily focus on the perfor-
mance of machine learning tasks or learning word embedding, such as categorization and
clustering. Among the wide range of deep networks, recurrent neural networks (RNNs)
and convolutional neural networks (CNNs) are more popular in research related to text
processing [10]. The cause of this popularity is due to the fact that the CNN models can
learn the local patterns, while the power of RNNs is demonstrated in sequential modelling.
Although RNNs are used in several text processing applications, they cannot handle van-
ishing and exploding gradients, especially if the input data have long dependencies [4].
These dependencies are highly popular in most NLP approaches, especially in the domain
of SA.

To deal with the above problem, long short-term memory (LSTM) was introduced [11],
which has the ability to capture long dependencies. Due to the potential of LSTM to address
the problems of RNNs, it has attracted the attention of many researchers in the field of
NLP [12]. Considering both the previous and subsequent contexts, the bidirectional LSTM
(Bi-LSTM) model was proposed to combine the forward hidden layers and backward
hidden layers. This model can cope with the sequential modelling issue. Bi-LSTM is
widely employed in many NLP applications. However, there are two major drawbacks
to this model: (1) the high-dimensional input distance popular in the applications of text
processing makes the model more complex and thus difficult to improve; (2) the model
cannot focus on the significant parts of the context information of the text. To tackle
these problems, many studies in the literature have been suggested. For instance, CNNs
have been employed to extract meaningful patterns from text and reduce the dimensional
feature distance [12]. The attention mechanism assigns various weights for focusing on the
significant parts of context [4].

The current deep learning models for SA occasionally handle a few issues and dis-
regard others. For instance, Chatterjee et al. [13] used LSTM and two pre-trained word
embeddings for extracting both semantics and sentiments for feeling recognition, but did
not address the differences between the importance of various parts of sentences. A study
by Liu et al. [14] combined Bi-LSTM with CNN and the benefited attention mechanism, but
this study did not consider the co-occurrence of long and short dependencies. Rezaeinia
et al. [15] used CNNs and improved pre-trained word embeddings, but they did not take
account of the different importance values of words and long dependencies.

The Google machine translation team presented a new concept of multi-head attention
mechanism MHAT in 2017 to capture related information in various sub-distances via mul-
tiple distributed computations [16]. In our study, we employed the attention mechanism to
select the most important contextual information, considered both forward and backward
context dependencies, and assigned approximate attention to various words in comments.

In this work, we propose a new deep learning model that combines a deep neural
network with a multi-head attention mechanism (DNN–MHAT) for classifying textual
sentiment. We first applied a global vector for word representation (GloVe) [5] to create
word vectors automatically as the weights in the embedding layer. We also designed an
improved deep neural network to capture the text’s actual context and extract the local
features of position invariants by combining recurrent Bi-LSTM memory units with a
CNN. Then, we devised a multi-head attention mechanism to capture the words in the
text that are significantly related to long space and encoding dependencies, which adds
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effective weights to the different contextual features. Finally, the global average pooling
layer was applied to obtain a multi-level pattern representation of the text sequences.
A Softmax classifier was applied for classifying the processed context information. The
DNN–MHAT model was tested on four reviews and two Twitter datasets. The results of
the experiments illustrate the effectiveness of the DNN–MHAT model, which achieved
excellent performance compared to the state-of-the-art baseline methods based on short
tweets and long reviews. The experiments compared the DNN–MHAT model with five
state-of-the-art DNN baseline methods based on SA and text classification datasets. DNN–
MHAT outperformed the other five methods in terms of popular performance standards in
NLP and the domains of SA. Our contributions are summarized as follows:

1. We propose a new deep learning model, namely, DNN–MHAT, for text classification
and SA tasks. First, we design an improved deep neural network to capture the text’s
actual context and extract the local features of position invariants using Bi-LSTM and
CNN. Then, we present a multi-head attention mechanism to capture the words in the
text that are significantly related to long space and encoding dependencies, assigning
weighted importance to different information, efficiently enhancing the sentiment
polarity of words and detecting the significant information in the text.

2. We investigate the effectiveness of the DNN–MHAT model on two types of datasets:
long reviews and short tweets on social media. Compared to five existing deep
structures, the DNN–MHAT achieved better performance on two types of datasets.

The rest of this paper is structured as follows: Section 2 contains the Literature Review.
Section 3 contains the Materials and Methods. Section 4 contains Experiments and Results.
Finally, Section 5 contains the Conclusions and Future Work.

2. Literature Review
2.1. Sentiment Analysis

Most traditional SA research works have utilized supervised machine learning ap-
proaches as their clustering module or main classification [17]. These approaches exploited
n-gram features and bag-of-words (BOW) techniques to classify and present user-created
texts that bear sentiment [18]. These features are presented to cope with the issues of
simple BOW techniques, such as overlooking the order of the word and the syntactic
structures [19]. The major drawback of utilizing n-gram features, especially when n ≥ 3, is
that the result of the feature space is highly dimensional. To handle this drawback, feature
selection techniques have been widely applied in recent studies [20,21].

SVM, Naïve Bayes (NB) and artificial neural networks (ANN) are among the common
methods employed to extract the meanings of users from their text, and have achieved good
performance [22–24]. One of the problems that the supervised methods suffer from is that
they are sometimes slow and require a large amount of time during training. To solve these
problems, many methods based on unsupervised lexicons have been proposed [18,25].
These approaches are scalable, fast, and simple. However, they significantly rely on
the lexicon, making them less accurate than their supervised counterparts [25,26]. Field
dependency is another issue of lexicon-based approaches, making them less applicable for
fields that do not contain specific lexicons.

Due to the advantages of both lexicon- and supervised-based methods, few researchers
have taken these advantages and then combined them in various ways [27,28]. For instance,
for SA, Zhang et al. [29] proposed a method that consists of two steps for the entity level of
tweets. The first step is a high recall based on the supervised method. The second step is a
high precision based on the lexicon method. A hybrid model for concept-based sentiment
analysis combines machine learning methods and lexicon-based proposed by Mudians
et al. [30]. Their method provided a more accurate and justified explanation than purely
statistical methods and outperformed lexicon-based methods in detecting the strength of
sentiment and polarity.
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2.2. DNN for Sentiment Analysis

In the sentiment analysis domain, most existing DNN-based works have been oriented
towards learning word embedding or exploiting various types of DNNs for clustering
or classification tasks. Word embeddings are generated for capturing word similarities
and lexical relationships [31]. Unsupervised methods are usually used to generate such
embeddings. These methods are generated according to words with similar contexts and
meanings, so they must have similar vectors. The drawback of this supposition is that
the vectors of some words are similar, especially those occurring in a small neighborhood,
but they are linguistically different. For instance, some words that carry feelings and
have the opposite meaning (e.g., bad and good) have similar vectors since they some-
times co-occur in similar contexts. To cope with this problem, few studies have suggested
sentiment-aware word vectors generated based on supervised approaches and large sen-
timent lexicons [4,32–34]. A study by Petrucci and Dragoni [35] suggested a new neural
word embedding approach for multi-field SA. The authors solvedthe major limitations of
former approaches, which did not perform well when used in different fields from the one
they were trained on. Their new approach performed better.

In SA applications, the LSTM and its variants [36] are widely utilized due to their
ability to handle long-term dependencies. For instance, a novel model using LSTM and a
recurrent neural network called P-LSTM was suggested by Chi Lu et al. [37]. The P-LSTM
model used three-word phrase embedding rather than single word embedding. To extract
accurate data from the text, the P-LSTM model presented the factor mechanism of the
phrase that combines the feature vectors of the phrase embed layer and the hidden layer of
LSTM. Ju et al. [38] presented a Cached LSTM model (CLSTM) that captured the semantic
information of long texts. In recent years, Chatterjee et al. [13] introduced a multi-channel
LSTM called SS-BED to detect sentiments in tweets. In the SS-BED model, Sentiment-
Specific Word Embedding (SSWE) [39] and GloVe are employed in parallel for pre-trained
word embedding. Three LSTM models are implemented sequentially for handling the long
dependencies of texts. Finally, the two outputs of the feature vectors are sequenced as
inputs in the fully connected layer. The SS-BED model does not address the differences in
the importance of various parts of sentences.

CNNs are applied in applications of SA for extracting local features. These models are
beneficial when the text is long and specific local features, such as n-grams, are significant.
For instance, Rezaeinia et al. proposed a model based on CNN, which availed optimized
word embedding to analyze the sentiment at the document level [15]. Their model opti-
mized pre-trained GloVe and Word2Vec embedding [40] with positional, syntactical, and
lexical features, but this study did not consider the different importance of words and
long dependencies.

In recent years, the attention mechanism has been applied to optimize models of
DNNs by allowing them to identify where to concentrate for learning. For instance, for
binary sentiment classification, one BiLSTM layer and a global pooling mechanism model
were suggested by Zabit et al. [14]. For text classification and question answering, Liu
and Guo [41] proposed a hybrid model that combines Bi-LSTM, CNN and the attention
mechanism, AC-BiLSTM. Their model used a one-dimensional CNN layer on the word
embedding layer to extract local features, BiLSTM for extracting long dependencies, and an
attention mechanism for focusing on significant text domains. The AC-BiLSTM model did
not consider the co-occurrence of both long and short dependencies. Zhou et al. proposed
a BiLSTM model with an attention mechanism to identify the significant features [42]. For
text classification, a new attention model-based network called the hierarchical attention
network (HAN) was proposed by Yang et al. [43]. The HAN model utilized two attention
models at the sentence and words levels. They stacked the attention models on the outputs
of gated recurrent unit GRU-based sequence encoders. The Google machine translation
team presented a new concept of MHAT in 2017 [16] to capture related information in
various sub-distances via multiple distributed computations.
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Recently, few researchers have proposed hybrid DNNs for SA. For instance, Mo-
hammad et al. [44] suggested an attention-based bidirectional CNN-RNN deep model for
sentiment analysis (ABCDM), which combines an attention mechanism and a bidirectional
CNN–RNN deep model. This model first uses GloVe embedding as the weights to the em-
bedding layer, then two bidirectional GRU and LSTM layers for extracting past and future
contexts and an attention mechanism for focusing on different words. Convolution and
pooling mechanisms are applied to extract local features static position and reduce feature
dimensions. A study that combines CNN and GRU with an attention mechanism, named
ARC, proposed by Wen and Li [45] to classify reviews and tweets. They employed three
various CNN modules for extracting local n-gram and global patterns and bidirectional
GRU units. However, these models do not accurately determine the various degrees of
importance of forward and backward directions.

The major difference between our model and the DNN baseline models is that our
proposed model considers the following significant features simultaneously: (i) short and
long context dependencies utilizing Bi-LSTM; (ii) identifying most significant features
strong to positional changes utilizing CNNs with various kernels, filter sizes, and pooling
mechanisms; (iii) capturing the words in the text that are significantly related to long space
and encoding dependencies utilizing a multi-head attention mechanism.

3. Materials and Methods

This section describes the overall structure of the DNN–MHAT model, which com-
prises six fundamental components: the input layer, convolutional neural network, long
short-term memory, global average pooling layer, multi-head attention mechanism, and
Softmax layer. The overall structure of the DNN–MHAT model is shown in Figure 1.
The key goal of the DNN–MHAT model is to detect the polarity of sentiment for the
given sentences.
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Figure 1. The structure of the DNN–MHAT model.

In our method, first, we preprocessed the input data by tokenizing the input text,
removing stop words, and dealing with the capitalization of words. Then, the tokenized
texts were fed into the word embedding module. After that, the obtained word embedding
vectors were fed into a CNN layer. The output of the CNN layer was fed into a Bi-LSTM
layer. The output of the Bi-LSTM layer was fed into a multi-head attention module. After
that, a global average pooling was applied to obtain the final representation. Finally, the
final representation was fed into the Softmax classifier layer. Figure 2 shows the flowchart
of the DNN–MHAT model.
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3.1. Input Layer

A pre-trained GloVe embedding matrix was utilized to create the input comment
matrix Wg ∈ Rn×e where e and n refer to the embedding dimension and the total number
of words, respectively. For embedding a comment vector, c ∈ Rm , m represents the
maximum number of words wt or the padding length, t ∈ [1, m] deemed in the comment
as shown below:

wt = Wgwt, t ∈ [1, m] (1)

3.2. Convolutional Neural Network

CNNs contain many convolution layers employed in the applications of NLP for
extracting local features. In CNNs, linear filters are used to perform the convolution process
on the features of the input data. Initially, an embedding vector of size e is generated to
apply the CNN to a sentence S containing a set of s words. Then, the filter f of the size
e× h is frequently used in sub-matrices as the input feature matrix. The results in a feature
map M = m0, m1, . . . , ms−h are shown below:

mi = f ·Si:j+h−1 (2)

where i = 0, 1, 2, . . . , s − h and Si:j represent a sub-matrix of S from row i to j. The
sub-sampling layer or pooling layer is a popular practice in which feature maps are fed
to reduce dimensions. Max-pooling is a common pooling strategy that determines the
essential feature b of the feature map, as shown in the following equation:

b = max
0≤i≤s−h

{mi} (3)

The outputs of the pooling layer are used as the input to the fully connected layer,
where these outputs are a pooled feature vector or concatenated (see Figure 1).

3.3. Long Short-Term Memory

RNNs are a type of feed-forward neural network. RNNs possess a recurrent hidden
state activated by using the previous states and can deal with the variable-length sequences
and automatically model the contextual information. LSTM is an improved type of RNN
(see Figure 3a) designed to solve the exploding/vanishing issues faced by RNNs. The LSTM
model contains a chain of recurrent memory units, and each of these chains implicates
three “gates” with various functions. An LSTM unit contains three gates: input gate it,
forget gate ft, and output gate ot, and memory cell ct to maintain its state over random
time intervals. These gates have been generated to organize the flow of data entering and
leaving the memory cell. Suppose tanh (.), σ(.), and � are the hyperbolic tangent function,
the sigmoid function and product, respectively. ht is the hidden state vector at time t, and
xt is the input vector at time t. W and U illustrate cells for input xt or the weight matrices
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of gates. The hidden state ht and b indicate the bias vectors. In the forget gate ft, it defines
what information to ignore from the cell state, as indicated by the following equation [41]:

ft = σ
(

W f ht−1 + U f xt + b f

)
(4)
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The input gate it defines what must be stored by calculating c̃t and it and combining
them based on the following equations [41]:

it = σ(Wiht−1 + Uixt + bi) (5)

c̃t = tanh(Wcht−1 + Ucxt + bc) (6)

ct = ft � ct−1 + it �+c̃t (7)

The output gate ot defines what information is outputted according to the state of the
cell state based on the following equations [41]:

ot = σ(Woht−1 + Uoxt + bo) (8)

ht = ot � tanh(ct) (9)

The LSTM model is based on serial information, but it is not beneficial, especially if
you can reach the following information based on the previous model. Therefore, this is
highly useful for sequencing tasks.

The Bi-LSTM model comprises a forward
→
h t and a backward

←
h t LSTM layer (see

Figure 3b). The core goal of the Bi-LSTM structure is that the forward layer
→
h t captures the

previous sequential information, and the backward
←
h t captures the subsequent sequential

information; both layers are connected to the same output layer. The most important
feature of the BiLSTM architecture is that sequence contextual information is considered.
Suppose that the input of time t is the word embedding wt, at time t− 1, the output of

the forward layer is
→
h t−1 and the output of the forward hidden layer and the backward

hidden layer is
→
h t−1,

←
h t+1, respectively. The output of the backward and the hidden layer

at time t is listed below [46]:

→
h t = L

(
Wt,

→
h t−1, ct−1

)
(10)
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←
h t = L

(
Wt,

←
h t+1, ct+1

)
(11)

where L(.) indicates the hidden layer process of the LSTM hidden layer. The forward
→
h t and

backward output vector
←
h t are ∈ R1×H , and they must be combined to obtain the text

feature, where H indicates the number of hidden layer cells:

Ht =
→
h t \\

←
h t (12)

3.4. Multi-Head Attention Mechanism

Attention is a key component of the MHAT mechanism, but there is a fundamental
difference in that the MAHT model can perform multiple distributed computations that
handle complex information.

3.4.1. Scaled Dot-Product Attention

Scaled dot-product attention is a set of key-value pairs to an output and mapping a
query. There are four steps for computing the attention as follows [46]:

- Each key and query weight are computed by considering similarity. The proposed
model is used as the dot product to determine the similarity.

- The scaling operation is the next step to calculate the attention, where the factor
√

dk
is used as a moderator so that the dot-product is not too big.

- The Softmax function is used to normalize the obtained weights.
- The weighted sum is equal to the sum of the corresponding principal value V and

similarity.

According to the steps mentioned above, we obtained the following formula:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (13)

3.4.2. Multi-Head Attention

MHAT is the improvement of the traditional attention mechanism, and it has excellent
performance. Figure 4 shows the architecture of the MHAT mechanism. Initially, by a linear
transformation, Q, K, and V are the input of the scaled dot-product attention. Therefore,
this operation computes one head at a time. Thus, it should be carried out h, which is called
multi-head. The parameters W for each linear transformation of Q, K, and V are different.
Each scaled dot-product attention output of m time is concatenated, and the value obtained
through a linear transformation is utilized as the output of the MHAT [47]. The formula
can be expressed as shown below:

headi = attention
(

QWQ
i , KWK

i , VWQ
i

)
(14)

Multihead(Q, K, V) = concat(headi, . . . , headm)Wo (15)
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3.4.3. Self-Attention

In this approach, we employed a self-attention for extracting the inner relations of
sentences in (K = V = Q ) [48]. For instance, every word that has been entered should
carry out the attention computation with each other word of the sentence. Thus, the MHAT
mechanism produces a weight matrix α and a feature representation v.

ut = tanh(Ws Ht + bs) (16)

v = Multihead(U, U, U) (17)

3.5. Global Average Pooling Layer

The fully connected network is the main architecture of the classification network,
which contains an activation function, Softmax, for performing classification. The fully
connected network function represents multiplying the vector, stretching the feature map
into a vector, and eventually reducing its dimension. To obtain the corresponding result of
every category, this vector is entered into a Softmax layer. The fully connected network
has two major drawbacks: (i) the number of parameters is very large and thus reduces the
training speed; (ii) it is easy to carry out overfitting. Based on the two problems mentioned
above, the global average pooling can avoid the shortcomings to achieve the same effect
and thus adds the sequences of input features to the averaging [49]. After presenting the
MHAT mechanism to the sentence, the feature matrix of the corresponding output is v ,
and the feature vector of every word in the sentence is v1, v2, . . . , vn. The global average
pooling of the input sentence is shown below:

vgap = Global(v1, v2, . . . , vn) (18)

3.6. Softmax Layer

To predict sentiment analysis, we fed the output of vector vgap immediately into the
Softmax layer, as shown in the equation below:

ŷ = softmax
(
WVgap + b

)
(19)

To evaluate the proposed model, the purpose of cross-entropy was presented to reflect
the gap among the predicted sentimental categories ŷ and the real sentimental categories y.

Loss = −∑
i

yi log ŷi (20)

where i represents the index number of the sentence.
The Bi-LSTM layer can determine the context to arrange the information of sequences.

MHAT can learn information from the representation of sub-distances and various di-
mensions and fully capture long-space textual features, which can play a critical role in
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effectively improving the sentimental analysis capability of the model straightway. The
pseudo-code of DNN–MHAT is shown in Algorithm 1.

Algorithm 1: Pseudo-code of DNN–MHAT
1: Build word embedding table using pre-trained word vectors with Equation (1);
2: Use the convolutional layer to obtain the feature sequences, using Equation (3);

3: Use BiLSTM to obtain the preceding contextual features
→
ht and the succeeding

contextual features
←
ht from the feature sequences, using Equations (10)–(12);

4: Use multi-head attention layers to obtain the future context representation from the
preceding and succeeding contextual features, using Equations (16) and (17);
5: Feed the output of multi-head attention into global average pooling, using
Equation (18);
6: Feed the comprehensive context representations outputted from global average
pooling into the Softmax function to obtain the class labels, using Equation (19);
7: Update parameters of the model using the loss function Equation (20) with the
Adam method.

4. Experiments and Results

In this section, experiments conducted to assess the performance of the DNN–MHAT
model for SA and text classification on different benchmarking datasets are described.
The baseline methods and experimental setup, followed by a discussion of the results, are
included in the following.

4.1. Experimental Setup
4.1.1. Datasets

Our study conducted sentiment analysis and text classification tasks utilizing long
and short datasets. The details of the datasets are as follows:

APP: This dataset for Android applications [44] comprises 752,937 metadata and
product reviews from Amazon.

Kindle: This dataset for Kindle Store [44] comprises 982,619 metadata and product
reviews from Amazon.

Electronics: This dataset for Electronics [44] comprises 1,689,188 metadata and product
reviews from Amazon.

CDs: This dataset for CDs and Vinyl [44] comprises 1,097,592 product metadata and
product reviews from Amazon.

Airline Twitter: Airline Twitter sentiment dataset [44]. This dataset comprises
14,641 tweets about major U.S. airline problems from February 2015.

Sentiment140: This dataset was generated at Stanford University [44] by computer
science graduate students, comprising 1,600,000 tweets classified into positive and negative
categories. Table 1 demonstrates the statistics of the datasets used in the proposed model
and describes more details.

Table 1. Details of the datasets utilized in our work.

Type Dataset Total Positive Negative

Review

APP 752,937 123,098 123,098
Kindle 982,619 57,148 57,148

Electronic 1,689,188 190,864 190,864
CDs 1,097,592 92,766 92,766

Tweet
Airline Twitter 14,641 2363 2363
Sentiment140 1,600,000 800,000 800,000
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4.1.2. Data Pre-Processing

Data preprocessing considers an essential step in machine learning and data min-
ing [50–54]. The reviews contain incomplete sentences; a large amount of noise; and weak
wording, such as words without application, high repetition, imperfect words and incorrect
grammar. Unstructured data also have an impact on sentiment classification results. Pre-
processing the reviews is needed to maintain a regular structure and reduce such problems.
Cleaning data with filters, splitting the data into parts for training and testing, and building
data sets with favorite words are a few of the steps employed in our research. Without
going into too much depth, we used the following techniques to prepare the data.

Tokenization

We divided the text into phrases, words, symbols, or other meaningful elements, thus
forming a list of individual words per comment. In each comment, we then used each
word as a feature for our training classifier.

Removing Stop Words

Comment contains some stop words that have no meaning, such as prepositions, and
words that add no emotion value (or, also, able, etc.). The Natural Language Toolkit (NLTK)
library provides a stop words dictionary, including words with neutral meaning neutral
that are not suitable for sentiment analysis. To remove the stop words from the comment’s
text, we checked each word in the list against the dictionary and excluded them.

Capitalization

Documents and texts containing many sentences and diverse capitalization can be a
big problem when classifying big documents. The best approach to deal with inconsistent
capitalization is to decapitalize each letter. This technique shows all words in the same fea-
ture distance to the text and document, but it poses a significant issue in the interpretation
of some words (e.g., “US” (United States of America) to “us” (pronoun)).

4.1.3. Parameter Settings

The DNN–MHAT model was applied using the Tensorflow1.13.1 with Keras2.24
libraries written in Python 3.7.1 Language and an Ubuntu16.04 system with a CPU of Core
Tetranuclear i7-7700k and a GPU of GTX1080 Ti GAMING X 11GB. To construct the input
comment matrix C , the Tokenizer method uses 100,000 words. We assumed the 45 and
100 first words of comments in the tweet and review datasets by setting the padding sizes
to 45 and 100, respectively. In the current study, the pre-trained and publicly available
GloVe was utilized as the weights in the embedding layer. The “Gigaword 5 + Wikipedia
2014” version of GloVe was utilized, comprising six billion tokens and a vocabulary size of
400,000. For the embedding layer, the embedding size of 300 was used. Other parameter
settings used in the proposed model are shown in Table 2.
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Table 2. Parameter settings.

Parameters Value

Dimension (d) 100
Hidden unites Bi-LSTM 128

Word of comments for reviews 100
Word of comments for tweets 45

Convolutional layer 64
Window_size 7

Head (m) 8
Dropout (ρ) 0.5

Regularization coefficient (η) 0.001
Batch_size 64

Activation function Relu
Patience 10

Kernel-size 4
Pool 2

Optimizer Adam
Loss function Binary cross-entropy

4.1.4. Evaluation Metrics

Four evaluation standards, Accuracy (Acc), Recall (Re), Precision (Pr), and F1 measure
(F1), were employed for evaluating the performance of the proposed model. These stan-
dards are widely utilized in SA and text classification tasks. These standards are computed
as follows [18]:

Pr = TP/TP + FP, (21)

Re = TP/TP + FN, (22)

F1 = 2PrRe/Pr + Re, (23)

Acc = TP + TN/TP + TN + FP + FN, (24)

TN, FP, TP, and FN are true negative, false positive, true positive, and false negative,
respectively [18].

4.2. Baseline Methods

In this work, we compared the DNN–MHAT model with five state-of-the-art DNN
models that have been developed to detect the polarity of sentiment classification as listed
below:

• IWV [15]: This model has been proposed for sentiment analysis, which comprises
three convolution layers, a max-pooling layer, and a fully connected layer.

• SS-BED [13]: This model uses two equal LSTM layers on two various word embedding
matrices for learning emotions and representations of semantic features. Then, LSTM
output layers are fed as the input of a fully connected layer with one hidden layer for
predicting sentiment categories.

• ARC [45]: This model applies a bidirectional GRU layer to the word vectors, and the
outputs are fed into the attention layer. The attention Layer outputs are fed into a
CNN layer followed by a max-pooling process and a fully connected layer.

• AC-BiLSTM [41]: This model uses a one-dimension CNN layer on the word em-
bedding layer to extract local features, BiLSTM to extract long dependencies and an
attention mechanism to focus on significant text domains.

• ABCDM [44]: This model first uses GloVe embedding as the weights to the embedding
layer, then two bidirectional GRU and LSTM layers for extracting past and future
contexts and an attention mechanism to focus on various words. Finally, convolution
and pooling mechanisms are applied to extract local features’ static positions and
reduce feature dimensions.
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4.3. Results

In this section, the proposed model is compared with five baseline methods men-
tioned above for sentiment analysis with two types of datasets, four long reviews and two
short tweets.

4.3.1. Long Review Analysis Results

Tables 3–6 show the results obtained for four long review datasets.

Table 3. Results obtained for the Kindle dataset.

Methods Class Recall Precision F1 Accuracy

SS-BED
Pos 0.8308 0.9461 0.8827

0.8910Neg 0.9514 0.8521 0.8979

ARC
Pos 0.8718 0.9422 0.9254

0.9091Neg 0.9463 0.8811 0.9124

IWV
Pos 0.8779 0.9354 0.9046

0.9080Neg 0.9380 0.8870 0.9106

AC-Bi-LSTM
Pos 0.8553 0.9555 0.9018

0.9074Neg 0.9595 0.8705 0.9122

ABCDM
Pos 0.9088 0.9570 0.9322

0.9340Neg 0.9591 0.9134 0.9356
DNN–
MHAT

Pos 0.9123 0.9612 0.9377
0.9372Neg 0.9614 0.9193 0.9394

Table 4. Results obtained for the APP dataset.

Methods Class Recall Precision F1 Accuracy

SS-BED
Pos 0.8937 0.9273 0.8994

0.9024Neg 0.9310 0.8814 0.9052

ARC
Pos 0.8618 0.9372 0.8977

0.9019Neg 0.9420 0.8724 0.9057

IWV
Pos 0.8720 0.9254 0.8977

0.9007Neg 0.9294 0.8793 0.9053

AC-Bi-LSTM
Pos 0.8558 0.9463 0.8983

0.9033Neg 0.9509 0.8692 0.9079

ABCDM
Pos 0.8945 0.9461 0.9196

0.9218Neg 0.9491 0.9000 0.9239
DNN–
MHAT

Pos 0.9006 0.9505 0.9244
0.9256Neg 0.9523 0.9063 0.9304

Table 5. Results obtained for the CD dataset.

Methods Class Recall Precision F1 Accuracy

SS-BED
Pos 0.6997 0.8937 0.8747

0.8082Neg 0.9165 0.7535 0.8269

ARC
Pos 0.7699 0.8994 0.8288

0.8507Neg 0.9133 0.7999 0.8524

IWV
Pos 0.8021 0.8756 0.8362

0.8434Neg 0.8846 0.8189 0.8497

AC-Bi-LSTM
Pos 0.7524 0.9171 0.8254

0.8419Neg 0.9314 0.7917 0.8553

ABCDM
Pos 0.8522 0.9162 0.8829

0.8870Neg 0.9218 0.8622 0.8909
DNN–
MHAT

Pos 0.8578 0.9188 0.8906
0.8913Neg 0.9306 0.8692 0.8959
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Table 6. Results obtained for the Electronic dataset.

Methods Class Recall Precision F1 Accuracy

SS-BED
Pos 0.8351 0.8964 0.8633

0.8684Neg 0.9017 0.8476 0.8728

ARC
Pos 0.8184 0.9115 0.8615

0.8689Neg 0.9194 0.8365 0.8754

IWV
Pos 0.8292 0.9092 0.8664

0.8725Neg 0.9159 0.8443 0.8779

AC-Bi-LSTM
Pos 0.8280 0.9253 0.8736

0.8804Neg 0.9327 0.8449 0.8864

ABCDM
Pos 0.8701 0.9387 0.9029

0.9065Neg 0.9428 0.8791 0.9097
DNN–
MHAT

Pos 0.8777 0.9411 0.9092
0.9112Neg 0.9482 0.8821 0.9127

In Tables 3–6, DNN–MHAT achieved good performance in terms of accuracy, as 0.32%,
0.47%, 0.43%, and 0.38% on Kindle, Electronics, CD, and App datasets, respectively. For
the F1 scale, the improvements are 0.55%, 0.63%, 0.77%, and 0.48% for the positive class
and 0.38%, 0.30%, 0.50%, and 0.65% for the negative class on Kindle, Electronics, CD, and
App datasets, respectively. As indicated above for accuracy and F1 scale, our DNN–MHAT
outperformed the other five methods. It can be seen that these improvements were mainly
derived from (i) handling long dependencies in text utilizing bidirectional LSTM layers, (ii)
employing local features of varying lengths by applying CNN layers of different sizes, and
(iii) assigning weights to words in the review according to their significance achieved from
the multi-head attention (MHAT) mechanism layer.

4.3.2. Short Tweet Analysis Results

Tables 7 and 8 show the results obtained for two short tweet datasets.

Table 7. Results obtained for the Airline Twitter dataset.

Methods Class Recall Precision F1 Accuracy

SS-BED
Pos 0.9470 0.9403 0.9436

0.9100Neg 0.7658 0.7913 0.7772

ARC
Pos 0.9578 0.9460 0.9518

0.9229Neg 0.7870 0.8309 0.8070

IWV
Pos 0.9369 0.9367 0.9355

0.8985Neg 0.7489 0.7861 0.7542

AC-Bi-LSTM
Pos 0.9503 0.9459 0.9480

0.9172Neg 0.7888 0.8061 0.7693

ABCDM
Pos 0.9574 0.9520 0.9545

0.9275Neg 0.8112 0.8369 0.8209
DNN–
MHAT

Pos 0.9608 0.9588 0.9603
0.9302Neg 0.8167 0.8411 0.8261
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Table 8. Results obtained for the Sentiment140 dataset.

Methods Class Recall Precision F1 Accuracy

SS-BED
Pos 0.8883 0.7601 0.8191 0.8083
Neg 0.7192 0.8657 0.7855

ARC
Pos 0.9085 0.7314 0.8103 0.7873
Neg 0.6660 0.8795 0.7577

IWV
Pos 0.8954 0.7588 0.8213 0.8052
Neg 0.7149 0.8727 0.7857

AC-Bi-LSTM
Pos 0.8871 0.7766 0.8280 0.8157
Neg 0.7443 0.8686 0.8014

ABCDM
Pos 0.9019 0.7729 0.8323 0.8182
Neg 0.7444 0.8825 0.8076

DNN–
MHAT

Pos 0.9085 0.7782 0.8392 0.8217
Neg 0.7478 0.8896 0.8112

As shown in Tables 7 and 8, DNN–MHAT achieved good performance in terms of
accuracy, 0.35% and 0.27% on Sentiment140 and Airline Twitter datasets, respectively. For
the F1 scale, the improvements are 0.69% and 0.58% for the positive class and 0.36% and
0.52% for the negative class on Sentiment140 and Airline Twitter datasets, respectively. As
indicated above for accuracy and F1 scale, our DNN–MHAT outperformed the other five
methods. As shown in the results in Tables 7 and 8 for accuracy and F1 scales, DNN–MHAT
outperformed the other five models in short tweets of Twitter datasets.

4.3.3. Ablation Study

To test the effectiveness of our model, we report the verification loss value, accuracy
rate, training loss value, and training accuracy rate for two datasets, including the CD
dataset and the Airline tweet dataset, as shown in Figures 5–8.
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We also evaluated our DNN–MHAT model using a dataset from a different language.
We ran the DNN–MHAT model on the ASTD [55] dataset in the Arabic language. For a fair
comparison, we embedded sentences using AraBERT. Table 9 shows the performance of
our model, which achieved a better result.

Table 9. The accuracy of AraBERT DNN–MHAT for ASTD Arabic dataset.

Model Accuracy%

Arabic-BERT Base [56] 71.4
AraBERT [57] 92.6

Arabic BERT [58] 91
Our model 92.8

To illustrate the performance of our proposed DNN–MHAT model, we executed our
model using different embedding layer sizes, namely, 50,100, 200, and 300, as shown in
Figures 9 and 10.
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The various embedding sizes have a certain effect on the proposed model’s perfor-
mance, so the DNN–MHAT model’s accuracy was evaluated on two datasets when the
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number of epochs is equal to 5, 6, 7, 8, 9, and 10. As we can see in Figures 9 and 10, the
embedding size of 300 performs better than the other embedding sizes in both CD and
Airline datasets.

The experiments illustrate that the GloVe pre-trained embedding, especially when the
embedding size is set to 300, can achieve better results than other embedding sizes.

4.3.4. Discussion

The results show that the DNN–MHAT model outperformed the other five models in
terms of both F1 measures and accuracy with Twitter datasets. However, the improvements
are less compared to utilizing the review datasets. The main reason for this is that the
Twitter datasets contain a small number of words. As mentioned above, the DNN–MHAT
model does not provide important improvements when utilizing short comments. The
first feature extraction layer in this model is an RNN-based network, which is evolved to
capture long dependencies.

Due to the ability of BiLSTM to access both the previous and the following context,
the information obtained by BiLSTM can be considered two different representations of the
text. Moreover, employing a multi-head attention mechanism for each text representation
can better focus on the significant related information and avoid the reciprocal intervention
in the various representations. Thus, the multi-head attention mechanism in our model
makes the determination of text semantics more accurate. Hence, our model effectually
improves the accuracy of text classification and sentiment analysis.

However, our study was limited to document-level sentiment analysis. In this study,
we did not consider the aspect-level sentiment. We leave this part for future work.

5. Conclusions and Future Work

For sentiment analysis, we propose a hybrid model that combines a deep neural
network with a multi-head attention (DNN–MHAT) mechanism to tackle text data sparsity
and high dimensionality problems. First, DNN–MHAT exploits pre-trained GloVe word
embedding vectors as the primary weights into the embedding layer. Second, the CNN
layer was used for extracting the local features of position invariants. Third, a recurrent
Bi-LSTM unit was used for capturing the actual context of the text. After that, a multi-head
attention mechanism was applied to the outputs of Bi-LSTM to capture the words in a
text that are significantly related to long space and encode dependencies. The purpose of
this is to add effect weights to the generated text concatenation. The MHAT provides an
emphasis on variant words in a comment and hence makes the semantic representations
more informative. Finally, a global average pooling with a sigmoid classifier is applied
to transform the vector into a high-level sentiment representation while avoiding model
overfitting and implementing the sentiment polarity classification of comments.

This study focused on detecting the polarity of sentiment analysis at the document
level. In future work, we propose the verification of the effectiveness of our DNN–MHAT
model for other levels, such as sentence-level and aspect-level sentiment analysis, and
other sentiment analysis tasks, such as helpfulness and rating prediction.
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