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Abstract: Due to the low storage cost and high computation efficiency of hashing, cross-modal
hashing has been attracting widespread attention in recent years. In this paper, we investigate how
supervised cross-modal hashing (CMH) benefits from multi-label and contrastive learning (CL) by
overcoming the following two challenges: (i) how to combine multi-label and supervised contrastive
learning to consider diverse relationships among cross-modal instances, and (ii) how to reduce the
sparsity of multi-label representation so as to improve the similarity measurement accuracy. To this
end, we propose a novel cross-modal hashing framework, dubbed Multi-Label Weighted Contrastive
Hashing (MLWCH). This framework involves compact consistent similarity representation, a new
designed multi-label similarity calculation method that efficiently reduces the sparsity of multi-label
by reducing redundant zero elements. Furthermore, a novel multi-label weighted contrastive learning
strategy is developed to significantly improve hashing learning by assigning similarity weight to
positive samples under both linear and non-linear similarities. Extensive experiments and ablation
analysis over three benchmark datasets validate the superiority of our MLWCH method, especially
over several outstanding baselines.

Keywords: cross-modal hashing; contrastive learning; multi-label; compact consistent similarity;
similarity weight assigning

1. Introduction

With the prosperity of multimedia technology and smart devices, a tremendous num-
ber of multi-modal data (e.g., text, image, video, and audio) have been pouring into the
Internet [1–5]. Despite differences in structures, various types of data are usually semanti-
cally related to each other. These semantic relationships could be used for data retrieval or
sharing. Naturally, cross-modal retrieval technology [6–9] has become a desiderata since
it efficiently returns one modality as a result to queries of other modalities by effectively
mining the intrinsic semantic relationships.

The primary issue of cross-modal retrieval is to reduce the heterogeneity gap between
modalities. Most existing approaches try to address this issue by projecting the original
features of data into a common real-valued subspace in which the semantic similarity
can be easily measured [10–19]. Unfortunately, due to the explosive growth of data, the
computational complexity of real-valued cross-modal retrieval has become an unavoidable
challenge. A viable solution is cross-modal hashing [20–30], which maps high-dimensional
multi-modal features into compact binary codes and the cross-modal similarity can be
calculated by XOR operation efficiently.

Depending on whether category information is used during the training stage, existing
cross-modal hashing methods are mainly classified into unsupervised and supervised man-
ners. Generally, without category information, it is difficult for unsupervised cross-modal
hashing [31–38] to generate cross-modal hash codes with strong semantic discrimination
even though they endeavor to learn latent similarity structures among different modal-
ities. Supervised cross-modal hashing [39–45], in contrast, is able to use category labels
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to enhance cross-modal semantic discrimination so as to obtain high-quality hash codes.
As a special case of supervised hashing learning, multi-label cross-modal hashing meth-
ods [29,46–50] aim to efficiently handle the instances associated with multiple labels [51–53].
Unlike traditional single-label hashing methods that focus on binary similarity for individ-
ual instances, they use multiple labels to construct a semantic similarity matrix so as to
learn more accurate similaritiy relationships (e.g., each similarity is defined as a real value
between −1 and 1). Meanwhile, motivated by the remarkable achievements in contrastive
learning, some contrastive learning methods [30,54] for cross-modal hashing are introduced
which aim to capture cross-modal similarities more effectively by comparing samples across
modalities.

Motivation. Recently, some great progress has been made in cross-modal hashing
with contrastive learning, such as [30,54]. UCCH [54] represents the initial endeavor in
employing contrastive learning within unsupervised cross-modal hashing. It introduces a
cross-modal ranking learning loss (CRL) to alleviate the influence of false-negative pairs.
Conversely, Unihash [30] leverages a contrastive label correlation learning (CLC) loss to
establish connections between diverse modalities through category labels. However, they
simply apply InfoNCE [55,56] in cross-modal hashing, which treats an image–text pair as a
positive sample; otherwise, it is a negative sample. This contrastive learning strategy gives
rise to the false-negative problem, where samples belonging to the same class are incorrectly
regarded as negative samples, resulting in the learning of erroneous relationships among
cross-modal instances. Hence, a widely adopted approach in supervised contrastive
learning [57] is to consider instances as similar if they share at least one common category.
Taking Figure 1 as an intuitive example, all the semantic similarities between image–text
pairs (v1, t1), (v2, t2), (v3, t3) and (v4, t4) are considered as 1 due to at least one shared
category, i.e., “tree”. However, as v2, v3, and v4 share one, three, and four labels with v1,
respectively, the semantic similarity between v1 and other instances should be ordered
as S12 < S13 < S14, rather than S12 = S13 = S14 = 1, where S denotes the semantic
similarity matrix. Indisputably, a supervised contrastive learning strategy is not suitable
for multi-label scenarios because this naive binary similarity cannot accurately reflect the
complex semantic relationships between cross-modal instances. Thus, the first challenge we
have to face is how to combine multi-label and supervised contrastive learning to consider diverse
relationships among cross-modal instances.
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Figure 1. The demonstration of semantic similarities between four multi-label image–text instances
{(vi, ti)}4

i=1, where S12, S13, S14 are the semantic similarities between (v1, t1) and (v2, t2), (v3, t3), and
(v4, t4), respectively. Depending on the number of labels they share, there should be S12 < S13 < S14.
These four image–text pairs are selected from MIRFLICKR-25K. The labels in red represent the
shared labels.

More than that, this problem occurs in the similarity matrix construction of most
supervised cross-modal methods, i.e., instances are considered similar if they share at least
one common category and dissimilar otherwise. Several studies, as pioneers, try to subtly
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use shared labels to accurately describe the semantic relationships. For example, ref. [29]
uses bi-direction relation reasoning to calculate multi-label similarity in two directions so
as to improve semantic similarity matrix construction, where bi-direction relation includes
consistent direction relation and inconsistent direction relation. The consistent direction
relation is the similarity between two similar instances that share at least one common
category, while the inconsistent direction relation refers to the degree of dissimilarity of
two instances that do not share any category. However, this method has a glaring flaw; due
to the sparsity of multi-labels, as shown in Figure 2a, too many zeros are shared during
semantic similarity matrix construction in the consistent direction relation, which makes
the method unable to accurately represent the semantic similarity between instances. Thus,
the second challenge we need to overcome is how to efficiently reduce the sparsity of multi-label
representation during semantic similarity measurement.

Category:{Animal Baby Bird Car Clouds Dog Female Flower Food Indoor Lake Male     Night People Plant_life Portrait River Sea Sky Structure Sunset Transport Tree Water}

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0

（a）Bi_NCMH （b）MLWCH

14
4 / 5S =

14
23 / 24S =

13
21/ 24S =

13
3 / 6S =

12
1/ 7S =

12
18 / 24S =

Figure 2. Difference between (a) Bi_NCMH and (b) our method (MLWCH) in multi-label-based
consistent direction relation reasoning, where 1 and 0 separately represent the relevant and irrelevant
categories. S12, S13, and S14 are the semantic similarities between v1 and v2, v3, and v4 respectively.

Our Method. To defeat the above challenges, this paper proposes a novel Multi-Label
Weighted Contrastive Cross-modal Hashing (MLWCH) method. As shown in Figure 3, on
one hand, a novel multi-label similarity measurement, termed compact consistent similarity
representation, is proposed to improve the accuracy of semantic similarity calculation by
producing more compact label vectors. As illustrated in Figure 2b, this technique is capable
of reducing the dimensionality of the label vectors by eliminating redundant zero elements,
thereby mitigating the potential impact of excessive zeros so as to result in a more compact
similarity representation. On the other hand, we extend supervised contrastive learning
into multi-label scenarios via a new designed multi-label weighted contrastive learning strategy.
With the engagement of compact consistent similarity representation, this novel learning
strategy assigns different weights to positive samples according to both linear and non-
linear similarity relationships.

Contributions. The main contributions of this paper are fourfold:

• We develop a novel multi-label cross-modal hashing framework called MLWCH to
learn high-quality hash codes. To the best of our knowledge, MLWCH acts as a pioneer
in attempting to enhance cross-modal hashing via multi-label contrastive learning
supported by more precise semantic similarity representation.

• We propose a novel multi-label similarity measurement, called compact consistent
similarity representation, to construct a high-quality semantic similarity matrix. By
reducing the sparsity of label vectors through eliminating redundant zero elements, it
achieves a more compact similarity calculation and focuses on informative and crucial
non-zero elements.

• We design a novel multi-label weighted contrastive learning strategy by marrying
supervised contrastive learning with compact consistent similarity representation,
which assigns different weights to different positive samples by considering both
linear and non-linear similarities.

• We conducted extensive experiments, including performance comparison, ablation
study, and hyperparameter sensitivity analysis, on three well-known benchmark
datasets. The remarkable results demonstrate the superiority of our method.
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Roadmap. The rest of the paper is organized as follows. Section 2 reviews the related
works. Section 3 presents the details of our multi-label weighted contrastive cross-modal
hashing (MLWCH) framework and its optimization. Section 4 shows the evaluation of
MLWCH as well as comparison experimental results on three datasets. Section 5 concludes
this paper.
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Figure 3. The framework of MLWCH. It mainly contains four modules: (i) the compact consistent
similarity representation module uses multiple labels to accurately construct the similarity matrix; (ii)
the multi-label weighted contrastive learning module realizes a novel contrastive learning strategy in
which different positive samples are assigned with different weights based on label sharing; (iii) the
hash representation learning module aims to learn high-quality cross-modal hash representations
by combining cross-modal semantic similarity learning and weighted contrastive learning; and (iv)
the hash function learning module treats the learned hash representation as a supervised signal to
preserve semantic consistency. Best view in color.

2. Related Work

In this section, we briefly review some related works in terms of supervised cross-
modal hashing, unsupervised cross-modal hashing, and contrastive learning.

2.1. Supervised Cross-Modal Hashing

By exploiting the discriminative information of labels, almost all supervised cross-
modal methods learn modality-specific hash functions to project multi-modal data (such
as image–text pairs) into a common Hamming space. For example, DCMH [43] combines
hash code learning and feature learning into a unified deep framework. SSAH [44] is a
multi-modal semantic learning network that aims to integrate adversarial learning into
cross-modal hashing in a self-supervised manner. CMHH [45] utilizes a pairwise focus loss
based on an exponential distribution to penalize similar cross-modal pairs whose Hamming
distance is greater than a Hamming radius threshold. Bi_NCMH [29] is a bi-directional
relational reasoning-based deep cross-modal hashing method, which generates a similarity
matrix from multiple labels so as to fully capture the relationship between instances. Due to
the semantic information from annotations, the supervised cross-modal hashing methods
are able to embed more discriminative semantics into hash codes to achieve promising
retrieval performance.
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2.2. Unsupervised Cross-Modal Hashing

Without any data annotation, unsupervised cross-modal hashing methods learn a
unified binary code by minimizing the correlation of cross-modal pairs. Thus, this group of
techniques has attracted extensive attention from researchers in both academia and industry.
UDCMH [36] combines deep learning and matrix decomposition with binary latent factor
models to perform multi-modal data retrieval. DJSRH [58] learns a hash network by
utilizing a unified affinity matrix as guidance information, which is generated by combining
different forms of semantic similarity. As this combination cannot describe the semantic
relationship between instances sufficiently, JDSH [59] is proposed, which is a cross-modal
joint training method to maintain cross-modal semantic correlation by constructing a joint-
modal similarity matrix. DGCPN [60] utilizes the coherence of neighbors to construct a
similarity matrix and guide hashing learning by exploring the relationship between data
and neighbors.

2.3. Contrastive Learning

Contrastive learning is a type of self-supervised learning method that aims to learn a
model to differentiate between similar and dissimilar instances within a dataset. It works
by encouraging the model to map similar instances closer together in a learned feature
space while pushing dissimilar items farther apart. Recently, contrastive learning [57,61,62]
has attracted much attention from the community. For example, ref. [61] observed that
apparent similarities can be learned from the data themselves without explicit guidance.
Therefore, instead of learning from label-level discrimination, contrastive learning is pro-
posed to learn instance-level discrimination. Supervised contrastive learning [57] proposes
a new extension of the contrastive loss function that allows multiple positive samples per
anchor, extending contrastive learning to supervised settings. To understand the behavior
of contrastive loss, ref. [62] analyzes the relationship between model performance and
temperature τ in contrastive learning, and models with small or large temperatures achieve
sub-optimal performance. Inspired by the great success of contrastive learning, some
contrastive hashing methods [30,54] have been proposed to learn binary representations
from multi-modal data and achieved promising performance. UCCH [54] is the first at-
tempt to use contrastive learning in unsupervised cross-modal hashing, which proposes
a cross-modal ranking learning loss (CRL) to mitigate the impact of false-negative pairs.
Unihash [30] uses a contrastive label correlation learning (CLC) loss to bridge different
modalities by using category labels.

3. The Proposed Methodology

In this section, we present our approach, MLWCH, which integrates compact consis-
tent similarity representation and multi-label weighted contrastive learning to generate
high-quality cross-modal hash codes. Firstly, we lay out the notational groundwork and
give the problem a definition formally, then proceed to our proposed method, including
the framework, hash learning strategy, and optimization algorithm.

3.1. Notations and Problem Definition

Notations. Without loss of generality, sets are denoted as Euler script uppercase letters
(e.g., O). Matrices, vectors, and scalars are denoted by bold uppercase letters (e.g., A), bold
lowercase (e.g., a), and uppercase/lowercase (e.g., N or n). Aij denotes the ij-th element of
matrix A. The transposition of matrix A is denoted as AT. Vector space with dimensions
n×m is presented as blackboard bold uppercase (e.g., Rn×m). ‖ · ‖1, ‖ · ‖2 and ‖ · ‖F denotes
L1, L2, and Frobenius norm, respectively. Functions or models are denoted as calligraphy
uppercase letters (e.g.,H). To facilitate reading, the frequently used mathematical notations
are summarized in Table 1.
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Table 1. The summary of frequently used notations.

Notation Definition

O a multi-label cross-modal dataset
N the number of training instances
k length of hash codes
C the number of categories
S semantic similarity matrix of instances
vi the original feature vector of the ith image
ti the original feature vector of the ith text
xvi the ith image hash representation
xti the ith text hash representation
x̄vi normalized hash representation of xvi

x̄ti normalized hash representation of xti

w the similarity weight
Hv(·, θv) hash model for images
Ht(·, θt) hash model for texts
Bi the binary hash code of the ith instance

Problem Definition. This study considers two commonly used modalities, i.e., image
and text. Suppose that there is a multi-label cross-modal dataset O = {oi}N

i=1 containing
N instances, where oi = {vi, ti, li}, i ∈ {1, 2, . . . , N} refers to the i-th instance; vi ∈ R1×dv ,
ti ∈ R1×dt , and li ∈ {0, 1}C are the original image features, text features, and label vec-
tors corresponding to instance oi, respectively. C indicates the number of categories. In
particular, if instance oi is labeled with the j-th category, then lij = 1; otherwise, lij = 0.
Furthermore, the label vectors can be used to construct an N×N semantic similarity matrix
S ∈ RN×N , where Sij ∈ [−1, 1] indicates the semantic similarity between li and lj.

The goal of our work is to learn two hash models Hv(·, θv) and Ht(·, θt) (one per
modality) on a training dataset O to generate hash representations from original in-
stances. The element-wise sign function sgn(·) is used to obtain the uniform binary
hash code B ∈ {−1, 1}N×k from continuous hash representations, where k is the code
length. In order to conduct cross-modal hashing retrieval, the Hamming distance is in-
volved to measure similarities between instances. Putting it formally, ∀vi, tj, tk ∈ O ,
if Sij ≥ Sik, DstH

(
Bi, Bj

)
≤ DstH(Bi, Bk) and vice versa, where Bi = sgn(Hv(vi, θv)),

Bj = sgn
(
Ht(tj, θt)), Bk = sgn

(
Ht(tk, θt)). DstH(·, ·) denotes the Hamming distance be-

tween two binary vectors; θv and θt are the model parameters. In this work, the proposed
learning framework includes two groups of hash models: one for hash representation
learning, denoted as Hv

1
(
·; θv

1
)

and Ht
1
(
·; θt

1
)
, and the other for hash function learning,

denoted asHv
2(·; θv

2) andHt
2
(
·; θt

2
)
.

3.2. Overview of MLWCH Framework

As shown in Figure 3, the framework of MLWCH mainly consists of four modules:
(i) the compact consistent similarity representation module, (ii) the multi-label weighted contrastive
learning module, (iii) the hash representation learning module, and (iv) the hash function learning
module.

3.3. Compact Consistent Similarity Representation

The prevailing solutions of supervised cross-modal hashing typically define a binary
semantic similarity relationship. That is, the value of similarity is “0” or “1”. This naive
manner is unable to accurately measure the complex semantic similarity between two
instances. Although it is an advanced similarity calculation, similarity representation in
the consistent direction calculated by bi-directional relational reasoning [29] shares too
many zeros due to the sparsity of label vectors, which unfortunately hinders accurate
similarity measurement between instances. To this end, we propose a novel multi-label
semantic similarity measurement called compact consistent similarity representation. As a
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refined version of bi-direction relation reasoning, this semantic similarity representation
method modifies the similarity calculation in the consistent direction. Specifically, two
cases are considered: (i) If two instances oi and oj share at least one label, i.e., li · lj > 0,
their semantic similarity Sij is defined as

Sij =
li · lj

‖li‖1 +
∥∥lj
∥∥

1 − li · lj
, (1)

where the · symbol denotes a vector inner product. In Equation (1), the numerator is the
number of the shared categories of the i-th and j-th instances, and the denominator is
the number of all categories contained by the i-th or j-th instance. Therefore, Sij ∈ (0, 1]
can measure the similarity between oi and oj more accurately than bi-direction relation
reasoning since the labels that do not belong to either instance are excluded, which makes
similarity measurement intensively focus on semantic relationships caused by shared labels.
(ii) If oi and oj have no shared label, i.e., li · lj = 0, their similarity is defined as

Sij = −
li ⊕ lj

C
, (2)

where ⊕ is the XOR operation and C is the number of categories. Thus, Sij ∈ [−1, 0]
represents the dissimilarity between oi and oj.

3.4. Multi-Label Weighted Contrastive Learning

The core idea of contrastive learning is maximizing mutual information (MI) between
similar instances. MI measures the correlation between two variables and quantifies the
amount of information they share. However, in practical applications, the joint distribution
and marginal distribution between two variables are often unknown, which is troublesome
for MI calculation. Therefore, contrastive learning typically employs some approximate
calculation methods. For example, InfoNCE [55,56] provides a low-variance estimate of
MI for high-dimensional data. However, InfoNCE is not a supervised learning strategy
since it is essentially unable to involve category information. To effectively adapt this
learning strategy to multi-label cross-modal hashing, we start with the design of cross-
modal supervised contrastive loss, then extend it into a multi-label learning task; as a result,
we develop multi-label weighted contrastive loss.

Cross-Modal Supervised Contrastive Loss. Inspired by [57], we attempt to extend
InfoNCE to a cross-modal supervised learning scenario. Firstly, we select instance pairs
that share some categories as positive pairs, and then construct intra-modality InfoNCE
loss for both image and text modalities, shown as follows:

Lintra-v =
1
n

n

∑
i=1

1
nli − 1

n

∑
j=1
Ii 6=j · Ili ·lj>0 · L

ij
intra-v,

Lij
intra-v = − log

exp
(

x̄vi · x̄vj /τ
)

∑n
k=1 Ii 6=k · exp

(
x̄vi · x̄vk /τ

) ,

(3)

Lintra-t =
1
n

n

∑
i=1

1
nli − 1

n

∑
j=1
Ii 6=j · Ili ·lj>0 · L

ij
intra-t,

Lij
intra-t = − log

exp
(

x̄ti · x̄tj /τ
)

∑n
k=1 Ii 6=k · exp

(
x̄ti · x̄tk /τ

) ,

(4)
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where nli is the total number of samples that share some common labels with li, Ic is a
function indicating that if the condition c is true, Ic = 1; otherwise, Ic = 0. Combining the
above two loss functions, the intra-modality InfoNCE loss is defined as:

Lintra = Lintra-v + Lintra-t. (5)

In an analogous manner, the inter-modality infoNCE losses for image and text are
defined as:

Linter-v =
1
n

n

∑
i=1

1
nli

n

∑
j=1
Ili ·lj>0 · L

ij
inter-v,

Lij
inter-v = − log

exp
(

x̄vi · x̄tj /τ
)

∑n
k=1 exp

(
x̄vi · x̄tk /τ

) ,

(6)

Linter-t =
1
n

n

∑
i=1

1
nli

n

∑
j=1
Ili ·lj>0 · L

ij
inter-t,

Lij
inter-t = − log

exp
(

x̄ti · x̄vj /τ
)

∑n
k=1 exp

(
x̄ti · x̄vk /τ

) .

(7)

Accordingly, the inter-modality InfoNCE for multi-label cross-modal hashing learning
is defined as:

Linter = Linter-v + Linter-t. (8)

Combining Equations (5) and (8), we obtain the cross-modal supervised contrastive
loss as follows:

Lcon = γLintra + (1− γ)Linter, (9)

where γ ∈ [0, 1] is a trade-off factor of two InfoNCE losses.
Multi-Label Weighted Contrastive Loss. Obviously, the above supervised contrastive

loss regards all positive samples as equally important. As discussed in Section 1, however,
it is not suitable for multi-label scenarios. To break through this limitation, we suppose that
different positive samples (i.e., li · lj > 0) should be assigned different weights according to
shared labels. To this end, a novel multi-label weighted contrastive loss is developed. In
particular, two different weights, i.e., linear and non-linear weights, are defined to represent
multi-label semantic similarities, shown as follows:

wlin
ij = Sij, li · lj > 0. (10)

wnon
ij = cos

(
li, lj

)
. (11)

The linear weight wlin
ij is to directly capture the relationship between positive samples

by counting the shared labels, while the non-linear weight wnon
ij , as a form of complemen-

tarity, measures more complex similarity. In addition to the quantity relationship of shared
labels, for example, cosine similarity considers the angle and direction relationship be-
tween different feature representations as well. Therefore, to comprehensively consider the
similarity relationship between instances, we obtain the overall weight wij via combining
Equations (10) and (11) as follows:

wij = λwlin
ij + (1− λ)wnon

ij , (12)

where λ ∈ [0, 1] is a trade-off factor to balance the two weights. Then, we normalize the
weight as follows:

w̄ij =
wij

∑j wij
. (13)
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By introducing the overall weight w̄ij, the multi-label weighted contrastive loss func-
tions are defined as follows. For intra-modality:

Lweight
intra-v =

1
n

n

∑
i=1

1
nli − 1

n

∑
j=1
Ii 6=j · w̄ij · L

ij
intra-v, (14)

Lweight
intra-t =

1
n

n

∑
i=1

1
nli − 1

n

∑
j=1
Ii 6=j · w̄ij · L

ij
intra-t. (15)

For inter-modality:

Lweight
inter-v =

1
n

n

∑
i=1

1
nli

n

∑
j=1

w̄ij · L
ij
inter-v, (16)

Lweight
inter-t =

1
n

n

∑
i=1

1
nli

n

∑
j=1

w̄ij · L
ij
inter-t. (17)

Compared with traditional supervised contrastive loss, the multi-label weighted
contrastive loss assigns a weight to positive samples, which makes the significance of
positive samples proportional to their number of shared labels with the anchor sample.
Similar to Equations (5) and (8), the intra- and inter-modal weighted contrastive losses are
presented as:

Lweight
intra = Lweight

intra-v + L
weight
intra-t , (18)

Lweight
inter = Lweight

inter-v + L
weight
inter-t . (19)

Finally, combining Equations (18) and (19), we obtain the multi-label weighted con-
trastive loss as follows:

Lweight
con = γLweight

intra + (1− γ)Lweight
inter , (20)

where γ ∈ [0, 1] is a trade-off factor to balance the two weighted InfoNCE losses.

3.5. Hash Representation Learning

Beyond all doubt, preserving semantic consistency between original instances and
their hash representations is a key factor of high-quality hash code generation. In other
words, the more similar semantically the instance pair (oi and oj) is, the smaller the
Hamming distance between their hash codes should be, and vice versa. To this end, we
construct the hash representation learning objective function by integrating the following
three losses: (i) an intra-modal semantic similarity loss, (ii) an inter-modal semantic similarity
loss, and (iii) a multi-label weighted contrastive loss.

Similarity Matrices. To construct intra- and inter-modal semantic similarity loss,
the cross-modal semantic similarities should be represented firstly. Specifically, three
similarity matrices, i.e., Svv, Stt, Svt ∈ RN×N , are constructed by the inner product between
normalized hash representations: Svv

ij = x̄T
vi

x̄vj , Stt
ij = x̄T

ti
x̄tj , and Svt

ij = x̄T
vi

x̄tj , where Svv
ij , Svt

ij
and Svt

ij are the semantic similarity between vi and vj, and ti and tj, as well as vi and tj,
respectively.

Intra-Modal Semantic Similarity Loss. According to the above similarity matrices,
we define the intra-modal semantic similarity loss for both modalities to preserve intra-
modal semantic consistency:

Lsim
intra-v =

N

∑
i,j=1

∥∥∥Sij − Svv
ij

∥∥∥2

F
, (21)
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Lsim
intra-t =

N

∑
i,j=1

∥∥∥Sij − Stt
ij

∥∥∥2

F
. (22)

Inter-Modal Semantic Similarity Loss. To preserve inter-modal semantic consistency,
we use the inter-modal semantic similarity loss to effectively capture the heterogeneous
similarities across different modalities:

Lsim
inter =

N

∑
i,j=1

∥∥∥Sij − Svt
ij

∥∥∥2

F
. (23)

Combining Equations (21) and (22), we obtain the intra-modal semantic similarity loss
as follows:

Lsim
intra = Lsim

intra-v + Lsim
intra-t. (24)

Combining Equations (23) and (24), we obtain the total semantic similarity loss as
follows:

Lsim
total = L

sim
inter + Lsim

intra. (25)

Finally, we construct the hash representation learning objective function Lrep that
consists of the above two losses, shown as follows:

Lrep = Lweight
con + αLsim

total , (26)

where α ∈ [0, 1] is a trade-off factor.

3.6. Hash Function Learning

We learn another two modality-specific hash models, i.e.,Hv
2(·, θv

2) andHt
2
(
·, θt

2
)
, to

generate a binary hash code from each instance oi ∈ O in the following manner:

Bi = sgn

(
Hv

2(vi, θv
2) +Ht

2
(
ti, θt

2
)

2

)
, (27)

where sgn(·) is the sign function; Bi denotes the binary hash codes of instance oi. Then,
we treat the learned hash representation as a supervised signal to guide the hash function
learning:

Lsup =
N

∑
i=1
‖Hv

2(vi, θv
2)− xvi‖

2
2 +

∥∥Ht
2
(
ti, θt

2
)
− xti

∥∥2
2. (28)

To reduce quantization error, the following quantization loss is involved:

Lquan =
N

∑
i=1
‖Bi −Hv

2(vi, θv
2)‖

2
2 +

∥∥Bi −Ht
2
(
ti, θt

2
)∥∥2

2. (29)

Combining Equations (28) and (29), we obtain the total loss for hash function learning
as follows:

L f unc = Lsup + Lquan. (30)

3.7. Optimization

The learning process of the proposed MLWCH consists of two stages: (i) the hash
representation learning stage and (ii) the hashing function learning stage. We adopt the
Adam adaptive algorithm [63] for optimization. In the hash representation learning stage,
we minimize Equation (26) to optimize the hash representation learning modelHv

1
(
·, θv

1
)

andHt
1
(
·, θt

1
)

as follows:
(θ̂v

1, θ̂t
1) = arg min

θv
1,θt

1

Lrep. (31)
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In the hash function learning stage, we minimize Equation (30) to optimize the hash
function learning modelHv

2(·, θv
2) andHt

2
(
·, θt

2
)

as follows:

(θ̂v
2, θ̂t

2) = arg min
θv

2,θt
2

L f unc. (32)

Overall, the entire optimization procedure of MLWCH is presented in Algorithm 1.

Algorithm 1 Optimization procedure for MLWCH.

Input: Number of training image–text pairs N; number of epochs e; hash code length k;
batch size b; learning rate of the network η1 and η2; hyperparameter α, λ, γ, τ;

Output: Optimized parameters θ̂v
1, θ̂t

1, θ̂v
2, θ̂t

2.
1: Construct a semantic similarity matrix S from multi-label set {li}N

i=1;
2: repeat
3: Iterative training e times;
4: // Hash representation learning stage: optimizing objective function Equation (31)
5: for each i ∈ [1,

⌈
N
b

⌉
] do

6: Randomly select b training image–text pairs;
7: Generate continuous hash representation xv, xt throughHv

1
(
·, θv

1
)
,Hv

1
(
·, θt

1
)
;

8: Calculate the loss Lrep by Equation (26) and update the parameters θv
1, θt

1 through
back propagation as follows:
θv

1 ←− θv
1 − η1 × ∂

∂θv
1

(
Lweight

con + αLsim
total

)
θt

1 ←− θt
1 − η1 × ∂

∂θt
1

(
Lweight

con + αLsim
total

)
9: end for

10: // Hash function learning stage: optimizing objective function Equation (32)
11: for each i ∈ [1,

⌈
N
b

⌉
] do

12: select b training image–text pairs and hash representation xv, xt;
13: Map the original feature v and t into a hash code throughHv

2(·, θv
2),Ht

2
(
·, θt

2
)
;

14: Calculate the loss L f unc by Equation (30), and update the parameter θv
2, θt

2 through
back propagation as follows:
θv

2 ←− θv
2 − η2 × ∂

∂θv
2

(
Lsup + Lquan

)
θt

2 ←− θt
2 − η2 × ∂

∂θt
2

(
Lsup + Lquan

)
15: end for
16: until epoch == e

4. Experiment

To evaluate the performance of the proposed method holistically, extensive experi-
ments are carried out on three widely used cross-modal retrieval datasets: MIRFLICKR-
25K [64], NUS-WIDE [65], and MS COCO [66]. This section firstly introduces the exper-
imental settings, including datasets, evaluation metrics, baselines, and implementation
details. Then, we delve into the performance comparison of MLWCH with the baselines,
the ablation study, and the hyperparameter sensitivity analysis.

4.1. Datasets

MIRFLICKR-25K. The original MIRFLICKR-25K is made up of 25,000 image–text
pairs from the Flickr website. In our experiment, we remove those pairs that have fewer
than 20 tags, and finally obtain 20,015 image–tag pairs. Then, we extract 4096-dimensional
CNN (AlexNet [67]) features to represent each image, and 1386-dimensional Bag-of-Words
(BoW) [68] features to represent each text.

NUS-WIDE. The original NUS-WIDE dataset contains 269,468 image–text pairs. We
first abandon the data without categories, then choose data classified by the 10 most
frequent categories to construct a subset which has 186,577 image–text pairs. For our
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experiments, we encode each image into a 4096-dimensional feature by AlexNet and each
textual tag into a 1000-dimensional BoW feature.

MS COCO. This dataset contains 123,287 image–text pairs in 80 independent cate-
gories in total. Similar to the above datasets, a 4096-dimensional feature vector is generated
by AlexNet for each image, and a BoW model is adopted to represent its corresponding
text with 2000 dimensions.

4.2. Evaluation Metrics

To objectively evaluate the performance of our proposed method and compare it with
the baseline methods, two frequently used cross-modal hashing evaluation protocols, i.e.,
Hamming ranking and hash lookup [69], are utilized in our experiments. The former
ranks samples in the retrieval set by their Hamming distance to the query in ascending
order, while the latter retrieves samples within a certain Hamming radius from the query
[43]. The mean average precision (MAP) is used to measure the accuracy of the Hamming
ranking protocol, while precision-recall curves (PR curves) are commonly used to measure
the accuracy of the hash lookup protocol. Given a query qk, the AP score of top n results is
calculated by

AP(qk) =
n

∑
i=1

I(i)
N

i

∑
j=1

I(j)
i

, (33)

where I(i) is an indicator function; if the ith retrieved sample is similar to the query, i.e.,
sharing at least one common category with the query, I(i) = 1; otherwise, I(i) = 0. N
denotes the number of relevant samples in the returned top n samples. MAP is the average
of APs for all queries:

MAP =
1
K

K

∑
k=1

AP(qk), (34)

where K is the size of the query set.
Moreover, during evaluation, an image vi and a text tj will be treated as a similar pair

if they share at least one common label.

4.3. Baselines and Implementation Details

Baselines. We compare the proposed MLWCH method with nine classical or state-
of-the-art cross-modal hashing methods, including three shallow model-based methods,
(CVH [40], SCM [41], and CCA-ITQ [70]), and six deep model-based methods, (DCMH
[43], SSAH [44], DCHUC [26], SCCGDH [27]), MMACH [28], and Bi_NCMH [29]. A brief
introduction of each is presented below:

• CVH aims to learn a hash function to efficiently find similar data items in the hash
space by mapping data from different views to hash codes.

• SCM introduces a large-scale supervised multi-modal hashing approach that em-
phasizes the idea of semantic relevance maximization for efficient similarity search
between different modal data.

• CCA-ITQ introduces an iterative quantization method to gradually improve the
quality of binary codes through multiple iterations.

• DCMH is the first attempt to integrate deep learning and hash learning into a unified
framework for end-to-end learning.

• SSAH is a self-supervised adversarial hashing method which treats labels as a sin-
gle modality to supervise the learning process of semantic features and integrates
adversarial learning into cross-modal hashing in a self-supervised manner.

• DCHUC utilizes an iterative learning optimization algorithm to jointly learn hash
codes and hash functions, where the learned hash codes and functions can supervise
each other during the optimization process.
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• SCCGDH is a class-specific center-guided deep hashing method which makes use of
hash codes of labels generated from labeled networks for class-specific centers and
efficiently guides hash learning for image and text modalities.

• MMACH integrates a new multi-label modality augmented attention module with
self-supervised learning to supervise the training of hash functions for image and text
modalities based on augmented multi-labels.

• Bi_NCMH is a bi-directional relational reasoning-based deep cross-modal hashing
method that builds a multi-label semantic similarity matrix through consistent and
inconsistent relationships between instances.

For a fair comparison, following [27], we utilize AlexNet pre-trained on ImageNet for
extracting image features, and employ the Bag-of-Words (BoW) model for extracting text
features. For MMACH and Bi_NCMH, as their source code was not available, we carefully
implemented these methods.

Implementation Details. As shown in Figure 3, each of our hash models is composed
of a two-layer multi-layer perceptron with tanh(·), formally represented as: Hv(·, θv) is
(dv → 512→ k) andHt(·, θt) is (dt → 512→ k).

Three hyperparameters, λ, γ, and τ, are involved in multi-label weighted contrastive
learning. As introduced above, λ is the trade-off factor between linear and non-linear
weight, γ plays the trade-off between intra- and inter-modality weighted contrastive
loss, and τ is the temperature coefficient in contrastive learning. For hash representation
learning, we use α to adjust the importance of Lweight

con and Lsim
total . In our experiments, for the

parameter λ, we assign values of 0.3, 0.6, and 0.2 for MIRFlickr-25K, NUS-WIDE, and MS
COCO, respectively. Regarding the parameter γ, we set it to 0.1 for all datasets. Similarly,
for the parameter τ, we set it to 0.4, 0.46, and 0.26 for MIRFlickr-25K, NUS-WIDE, and MS
COCO, respectively. Furthermore, for the parameter α, we assign values of 0.4, 0.2, and
0.1 for MIRFlickr-25K, NUS-WIDE, and MS COCO, respectively. The Adam optimization
algorithm [63] is adopted for model training, and we set the learning rate of the hash
representation learning η1 and hash function learning η2 to 0.001 and 0.0001, respectively,
on MIR Flickr-25K; 0.001 and 0.0001, respectively, on NUS-WIDE; and 0.0015 and 0.0005,
respectively, on MS COCO. The batch size is set to 512. For all experiments, two cross-
modal retrieval tasks are considered: I2T and T2I, where I2T represents the cases when
using a querying image while returning text, and T2I represents the cases when using a
querying text while returning an image.

Experimental Environment. All experiments were implemented using Python 3.8
on PyTorch 1.12.1 framework, running on a deep learning workstation with Intel(R) Core
i9-12900K 3.9 GHz, 128 GB RAM, 1 TB SSD and 2 TB HDD storage, and 2 NVIDIA GeForce
RTX 3090Ti GPUs with Ubuntu-22.04.1 operating system.

4.4. Performance Comparisons and Discussion

We investigate the retrieval performance of the proposed method MLWCH by com-
paring it with several state-of-the-art baselines on the MIRFLICKR-25K, NUS-WIDE, and
MS COCO datasets. In the following, we discuss the comparison via Hamming ranking
and hash lookup.

Hamming Ranking. The MAP@50 of MLWCH and baseline methods under distinct
hash code lengths 16 bits, 32 bits, and 64 bits are listed in Tables 2–4. From the experimental
results, we have the following findings:

• The proposed method MLWCH has shown remarkable performance on all benchmark
datasets: it beats both the hand-crafted methods and the deep neural network-based
methods in all cases. Particularly, our method outperforms SCCGDH, the strongest
competitors, by a significant margin. For the I2T task, the results were 0.0339 (16 bits),
0.0392 (32 bits), and 0.0524 (64 bits) on MIRFLICKR-25K; 0.0335 (16 bits), 0.0174 (32
bits), and 0.0364 (64 bits) on NUS-WIDE; and 0.0755 (16 bits), 0.0499 (32 bits), and
0.0495 (64 bits) on MS COCO. For the T2I task, the results were 0.0708 (16 bits), 0.0425
(32 bits), and 0.0386 (64 bits) on MIRFLICKR-25K; 0.0217 (16 bits), 0.0231 (32 bits), and
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0.0268 (64 bits) on NUS-WIDE; and 0.0609 (16 bits), 0.0801 (32 bits), and 0.0609 (64 bits)
on MS COCO. These outstanding results verify that integrating compact consistent
similarity representation with multi-label weighted contrastive learning can effectively
enhance the performance of cross-modal hashing retrieval.

• It is clear to see that the deep hashing methods achieve superior retrieval performances
than traditional shallow hashing methods in most cases on the three datasets. The
main reason may be that deep learning methods can extract more essential high-level
features than traditional shallow methods, which effectively reduces the semantic gap
between modalities.

• It can be found that other than the proposed method, all these baselines also achieve
relatively lower results on MS COCO than the other two datasets. This observation is
mainly due to the fact that the MS COCO dataset provides more label categories than
the two other datasets, which in other words brings greater challenges to cross-modal
hash learning. Nevertheless, MLWCH still achieves the best results, which corrob-
orates that the proposed technique could efficiently capture cross-modal semantic
consistency in complex semantic conditions.

• Compared to deep cross-modal hashing methods utilizing multi-labels, our proposed
method MLWCH still obtains the highest performance. Particularly, it in all cases
greatly defeats Bi_NCMH, which uses bi-direction relation reasoning. The superiority
of MLWCH is partly due to the fact that the proposed technique realizes a more
accurate multi-label similarity consistency reasoning to calculate the semantic rele-
vance of original instances. In addition, the combination of multi-label learning with
supervised contrastive learning can effectively minimize the heterogeneity gap of
original instances, which delivers superior hash learning performance.

Hash Lookup. By varying the Hamming radius from 0 to k, we plot the PR curves for
hash code lengths of 16 bits, 32 bits, and 64 bits on the MIRFLICKR-25K, NUS-WIDE, and
MS COCO datasets, respectively. These curves are depicted in Figures 4–6. It is obvious
that, in all cases, the PR curves of the proposed method are evidently higher than those
of all baselines, which verifies that MLWCH can learn cross-modal semantic relationships
more efficaciously than the prevailing solutions.

Table 2. The MAP@50 results of our method and baselines varied with different hash code lengths on
MIRFLICKR-25K. The best results are bold-font.

Methods

MIRFLICKR-25K

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

CVH 0.5981 0.5988 0.6190 0.6151 0.6263 0.6311
CCA-ITQ 0.7814 0.7939 0.8043 0.7509 0.7594 0.7708
SCM 0.6800 0.6903 0.6972 0.6853 0.6909 0.7433
DCMH 0.7911 0.8128 0.8288 0.8092 0.8355 0.8293
SSAH 0.8409 0.8607 0.8781 0.8081 0.8314 0.8413
DCHUC 0.8190 0.8236 0.8299 0.8177 0.8296 0.8417
Bi_NCMH 0.8521 0.8704 0.8895 0.8192 0.8464 0.8541
MMACH 0.8652 0.8808 0.8923 0.8112 0.8395 0.8672
SCCGDH 0.8817 0.8918 0.8926 0.8204 0.8562 0.8716
MLWCH (Ours) 0.9216 0.9310 0.9450 0.8912 0.8987 0.9102
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Table 3. The MAP@50 results of our method and baselines varied with different hash code lengths on
NUS-WIDE. The best results are bold-font.

Methods

NUS-WIDE

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

CVH 0.6202 0.6360 0.6358 0.6174 0.6265 0.6352
CCA-ITQ 0.5955 0.6823 0.7303 0.6523 0.6584 0.6745
SCM 0.6587 0.6913 0.7072 0.6556 0.6898 0.7015
DCMH 0.7076 0.7248 0.7272 0.6835 0.6982 0.7130
SSAH 0.7103 0.7240 0.7794 0.6894 0.6858 0.6869
DCHUC 0.7432 0.7626 0.7678 0.6816 0.6726 0.6968
Bi_NCMH 0.7417 0.7593 0.7963 0.7120 0.7212 0.7303
MMACH 0.7426 0.7645 0.8054 0.7074 0.7135 0.7274
SCCGDH 0.8124 0.8372 0.8401 0.7669 0.7734 0.7722
MLWCH (Ours) 0.8459 0.8546 0.8765 0.7886 0.7965 0.7990

Table 4. The MAP@50 results of our method and baselines varied with different hash code lengths on
MS COCO. The best results are bold-font.

Methods

MS COCO

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

CVH 0.3611 0.3497 0.3587 0.4267 0.4340 0.4262
CCA-ITQ 0.3504 0.3931 0.4120 0.4006 0.4124 0.4106
SCM 0.3697 0.3803 0.4161 0.4296 0.4383 0.4614
DCMH 0.5549 0.6053 0.6085 0.5723 0.5916 0.5986
SSAH 0.6203 0.6231 0.6390 0.5839 0.6203 0.6323
DCHUC 0.6138 0.6454 0.6595 0.5608 0.5903 0.6284
Bi_NCMH 0.6857 0.7174 0.7442 0.6454 0.6836 0.7229
MMACH 0.7013 0.7345 0.7564 0.6761 0.7058 0.7323
SCCGDH 0.7317 0.7772 0.8084 0.7741 0.7813 0.8315
MLWCH (Ours) 0.8072 0.8271 0.8579 0.8350 0.8614 0.8924
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Figure 4. Precision-recall curves on MIRFLICKR-25K, NUS-WIDE, and MS COCO datasets. The code
length is 16 bits.
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Figure 5. Precision-recall curves on MIRFLICKR-25K, NUS-WIDE, and MS COCO datasets. The code
length is 32 bits.
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Figure 6. Precision-recall curves on MIRFLICKR-25K, NUS-WIDE, and MS COCO datasets. The code
length is 64 bits.

4.5. Ablation Study

As mentioned above, compact consistent similarity representation and multi-label
weighted contrastive learning are two instrumental components of MLWCH. To fully
evaluate the effectiveness of MLWCH, we conducted a thorough ablation study to analyze
the effectiveness of these two techniques, respectively.

4.5.1. Effectiveness of Compact Consistent Similarity Representation

We evaluate the effectiveness of the compact consistent similarity representation mod-
ule. Before experiment, we vary MLWCH method by the following two ways. Firstly, we
replace the multi-label similarity measurement with a naive manner that is commonly used
by prevailing solutions: If the cross-modal samples share at least one label, the similarity is
1; otherwise, it is 0. For the sake of discussion, this variation is named SLWCH. Secondly,
we replace the multi-label similarity matrix in MLWCH with the multi-label similarity
matrix in Bi_NCMH [29] and keep other parts unchanged. This variation is termed MLBRH.
Afterward, we compare the hashing performance of MLWCH with SLWCH and MLBRCH
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on MIRFLICKR-25K, NUS-WIDE, and MS COCO. The corresponding MAP@50 values for
hash code lengths of 16, 32, and 64 on the three datasets are presented in Tables 5, 6, and 7,
respectively.

Table 5. Performance of MLWCH compared with SLWCH and MLBRCH in terms of MAP@50 on
MIRFLICKR-25K. The best results are bold-font.

Methods

MIRFLICKR-25K

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

SLWCH 0.8993 0.9074 0.9160 0.8681 0.8721 0.8763
MLBRH 0.9042 0.9183 0.9331 0.8817 0.8860 0.8904
MLWCH 0.9216 0.9310 0.9450 0.8912 0.8987 0.9102

Table 6. Performance of MLWCH compared with SLWCH and MLBRCH in terms of MAP@50 on
NUS-WIDE. The best results are bold-font.

Methods

NUS-WIDE

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

SLWCH 0.8303 0.8452 0.8655 0.7764 0.7852 0.7879
MLBRH 0.8384 0.8508 0.8717 0.7808 0.7898 0.7924
MLWCH 0.8459 0.8546 0.8765 0.7886 0.7965 0.7990

Table 7. Performance of MLWCH compared with SLWCH and MLBRCH in terms of MAP@50 on MS
COCO. The best results are bold-font.

Methods

MS COCO

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

SLWCH 0.7984 0.8184 0.8496 0.8262 0.8521 0.8834
MLBRH 0.8036 0.8233 0.8538 0.8307 0.8579 0.8880
MLWCH 0.8072 0.8271 0.8579 0.8350 0.8614 0.8924

As can be seen from Tables 5–7, on one hand, the MAP@50 of MLBRH and MLWCH
are higher than that of SLWCH in all cases, which indicates that compared with single-
label semantic similarity, the complex semantic relationships between instances are more
accurately captured by multi-label semantic similarity. On the other hand, the performance
of MLWCH is overall superior to MLBRH on three datasets, which confirms that the
proposed compact consistent similarity representation module efficaciously improves the
accuracy of cross-modal hashing retrieval. This is mainly because the proposed technique
is instrumental in modeling sparse multi-labels so as to capture the semantic similarities
between instances more accurately, which is a characteristic not possessed by Bi_NCMH
[29], in contrast.

4.5.2. Effectiveness of Multi-Label Weighted Contrastive Learning

To verify the effectiveness of the proposed multi-label weighted contrastive learn-
ing, we make a variation of MLWCH, named MLSCH, by replacing multi-label weighted
contrastive loss in Equation (20) with the loss in Equation (9). To compare MLSCH with ML-
WCH, we also consider the MAP@50 metrics of them under the different hash code lengths.
The results on MIRFLICKR-25K, NUS-WIDE, and MS COCO are given in Tables 8, 9, and 10,
respectively.

For both I2T and T2I tasks, as manifested in Tables 8–10, the retrieval accuracy of
MLWCH is higher than that of MLSCH, which confirms that, guided by the proposed
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loss Lweight
con , the quality of cross-modal hash code learning can be improved noticeably.

The main reason behind this phenomenon is that this novel contrastive learning strategy
enables the model to perceive more precise similarity relationships by assigning different
weights to different positive instances.

Table 8. Performance of MLWCH compared with MLSCH in terms of MAP@50 on MIRFLICKR-25K.
The best results are bold-font.

Methods

MIRFLICKR-25K

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

MLSCH 0.9079 0.9234 0.9377 0.8756 0.8916 0.8992
MLWCH 0.9216 0.9310 0.9450 0.8912 0.8987 0.9102

Table 9. Performance of MLWCH compared with MLSCH in terms of MAP@50 on NUS-WIDE. The
best results are bold-font.

Methods

NUS-WIDE

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

MLSCH 0.8365 0.8457 0.8634 0.7803 0.7894 0.7934
MLWCH 0.8459 0.8546 0.8765 0.7886 0.7965 0.7990

Table 10. Performance of MLWCH compared with MLSCH in terms of MAP@50 on MS COCO. The
best results are bold-font.

Methods

MS COCO

I2T T2I

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

MLSCH 0.7990 0.8212 0.8509 0.8298 0.8567 0.8861
MLWCH 0.8072 0.8271 0.8579 0.8350 0.8614 0.8924

4.6. Hyperparameter Sensitivity Analysis

This section sheds light on the sensitivity of λ, γ, τ, and α on the MIRFLICKR, NUS-
WIDE, and MS COCO datasets. To explore the comprehensive impact of them on hashing
learning, the average accuracy of I2T and T2I tasks is used to visualize the trend of cross-
modal hashing performance. All these analyses are conducted with hash code length
16.

4.6.1. Trade-Off Parameter λ

As shown in Equation (12), the hyperparameter λ is a trade-off factor of linear and
non-linear weights. We observe the performance change of MLWCH by varying λ. From
Figure 7, when we set λ to 0.3, 0.6, and 0.2 on MIRFLICKR-25K, NUS-WIDE, and MS
COCO, respectively, our method obtains the best performance. Under this circumstance,
the cross-modal hashing model focuses almost equally on linear and non-linear semantic
similarity between instances. Undoubtedly, this manner is essential for comprehensively
expressing complex cross-modal semantic relationships.
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Figure 7. Sensitivity analysis of λ on MIRFLICKR-25K, NUS-WIDE and MS COCO.

4.6.2. Trade-Off Parameter γ

As presented in Equation (20), hyperparameter γ is to balance the two components
of multi-label weighted contrastive loss, i.e., intra- and inter-modal weighted InfoNCE
losses Lweight

intra and Lweight
inter . To analyze the effect by Lweight

intra and Lweight
inter , we recorded the

performance change by varying the value of γ on MIRFLICKR-25K, NUS-WIDE and MS
COCO datasets. Figure 8 reports that our method MLWCH achieves the best MAP score
when γ is set to 0.1. Albeit Lweight

intra can constrain the intra-modality semantic structure,
the performance gain is relatively minor for the cross-modal hashing task. In contrast,
inter-modal weighted InfoNEC loss has a relatively greater effect on hashing learning.
We conjecture that this result is mainly because inter-modal contrastive strategy is more
important for eliminating cross-modal heterogeneity. The above results also clarify that by
selecting an appropriate value of γ, our model can achieve impressive performance.
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Figure 8. Sensitivity analysis of γ on MIRFLICKR-25K, NUS-WIDE, and MS COCO.

4.6.3. Temperature Parameter τ

As mentioned in previous work [62], the temperature hyperparameter τ can obviously
affect the model performance in contrastive learning. To test and verify this viewpoint on
the proposed multi-label weighted contrastive learning, we analyze the hyperparameter
τ of sensitivity on the MIRFLICKR-25K, NUS-WIDE, and MS COCO datasets. Figure 9
illustrates the effect of τ in MLWCH on these datasets, respectively, making it easy to see
that the comprehensive retrieval accuracy varies significantly with the change of τ, and
MLWCH achieves the best MAP scores when τ is set to 0.4, 0.46, and 0.26 on MIRFLICKR-
25K, NUS-WIDE, and MS COCO, respectively. This supports the claim that by selecting an
appropriate value of τ, our method can achieve the best performance.
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Figure 9. Sensitivity analysis of τ on MIRFLICKR-25K, NUS-WIDE, and MS COCO.
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4.6.4. Trade-Off Parameter α

As depicted in Equation (26), the hyperparameter α serves as a trade-off factor be-
tween the multi-label weighted contrastive loss and the semantic similarity loss. From
the observations in Figure 10, it is evident that by setting α to 0.4, 0.2, and 0.1 on the
MIRFLICKR-25K, NUS-WIDE, and MS COCO datasets, respectively, our method attains
the optimal performance. This result demonstrates the effectiveness of incorporating both
the semantic similarity loss and the multi-label weighted contrastive learning loss. By
carefully selecting an appropriate value for α, the proposed method can achieve superior
performance.
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Figure 10. Sensitivity analysis of α on MIRFLICKR-25K, NUS-WIDE, and MS COCO.

5. Conclusions and Future Work

In this paper, we proposed an effective approach called the multi-label weighted
contrastive cross-modal hashing (MLWCH) method for high-quality cross-modal hash code
generation. A novel compact consistent similarity representation module is designed to
accurately preserve the multi-label semantic similarity of original instances. Furthermore,
a multi-label weighted contrastive learning strategy is introduced to minimize the gap of
the semantic similarity of original instances and more accurately preserve the semantic
relevance of the learned hash representations. Extensive experiments on three well-known
cross-modal datasets show that the proposed method significantly outperforms other
baselines and achieves state-of-the-art performance.

Moving forward, we will endeavor to extend the contrast learning strategy of assigning
different weights to different positive samples to unsupervised cross-modal hashing. As an
exploratory work, we will investigate the allocation of distinct weights to positive samples
through unsupervised learning in scenarios where label information is unavailable.
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