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Abstract: The rapidly growing number of space activities is generating numerous space debris, which
greatly threatens the safety of space operations. Therefore, space-based space debris surveillance
is crucial for the early avoidance of spacecraft emergencies. With the progress in computer vision
technology, space debris detection using optical sensors has become a promising solution. However,
detecting space debris at far ranges is challenging due to its limited imaging size and unknown
movement characteristics. In this paper, we propose a space debris saliency detection algorithm
called SDebrisNet. The algorithm utilizes a convolutional neural network (CNN) to take into account
both spatial and temporal data from sequential video images, which aim to assist in detecting
small and moving space debris. Firstly, taking into account the limited resource of the space-based
computational platform, a MobileNet-based space debris feature extraction structure was constructed
to make the overall model more lightweight. In particular, an enhanced spatial feature module is
introduced to strengthen the spatial details of small objects. Secondly, based on attention mechanisms,
a constrained self-attention (CSA) module is applied to learn the spatiotemporal data from the
sequential images. Finally, a space debris dataset was constructed for algorithm evaluation. The
experimental results demonstrate that the method proposed in this paper is robust for detecting
moving space debris with a low signal-to-noise ratio in the video. Compared to the NODAMI method,
SDebrisNet shows improvements of 3.5% and 1.7% in terms of detection probability and the false
alarm rate, respectively.

Keywords: space debris detection; space-based surveillance; lightweight neural network; small object
detection; video salient object detection

1. Introduction

With the advancements in space technology, the increasing number of operational
spacecraft is facing a severe threat from space debris, which is caused by frequent space
launch activities [1,2]. According to the U.S. As of March 2022, the Space Surveillance
Network (SSN) has cataloged up to 25,000 space debris, defunct spacecraft, and active
spacecraft, with numbers expected to increase continuously in the future [3]. Collisions with
large space debris could destroy an entire spacecraft, while small-sized space debris could
cause irreversible damage to spacecraft due to their high velocities, such as performance
degradation or dysfunction. Therefore, it is vital to observe space debris in the distance to
avoid latent collisions with spacecraft. One crucial step involves space debris detection,
which could be further used for space debris tracking and cataloging.

There are currently two main categories of space debris surveillance systems: space-
based systems and ground-based systems. Ground-based systems rely on large telescopes
or radar installed on the ground for space debris detection and recognition. In contrast,
space-based systems use onboard sensing devices to detect space debris. The advantages
of space-based systems over ground-based systems can be described as follows. (1) They
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are not affected by weather or the circadian rhythm. (2) They could avoid the limits of
stationary observation sites. (3) They could detect millimeter-sized small objects; the latter
is aimed at centimeter-sized objects [4]. Therefore, space-based surveillance systems are
effective measures for enhancing the safety levels of spacecraft. For the application of space
debris surveillance, onboard sensing devices generally contain visible sensors, infrared
sensors, and radars. Among the sensing devices, visible sensors are promising solutions
due to their superior autonomous levels and highly accurate observation data [5].

The typical procedure for detecting space debris involves object extraction and cen-
troid computation [6,7]. The centroid can then be used for astrometry by matching the
observed star field with the star catalog [8]. However, the main focus of this paper is
object extraction; a simple centroid computational method was adopted to evaluate the
proposed object extraction method. This paper does not cover the astrometry problem.
Based on different operational modes of the surveillance system, commonly used visible
sensor-based space debris detection strategies can be divided into streak-like object detec-
tion and point-like object detection. When the orientation of the surveillance platform is
continuously fixed to stars, the space objects appear as streak-like regions; this operational
mode is called sidereal tracking. When the surveillance platform is continuously reoriented
to be fixed at the space objects, the objects appear as point-like regions; this mode is called
object tracking [9]. Afterward, space debris and stars could be distinguished by their
shape characteristics in both operation modes using only single-frame images. Typical
single-frame image-based methods for space debris detection include the Hough transform
method [10], feature-based methods using image moments [7], point spread function (PSF)
fitting techniques [11,12], mathematical morphological methods [13,14], etc. However,
faint space debris could not be detected by single-frame images due to the tiny observable
magnitude limited by charge-coupled device (CCD) sensors [15]. To deal with this problem,
multi-frame image-based methods have been proposed using the space object’s motion
information, which can be divided into two categories: track-before-detect (TBD) methods
and optical flow methods. The main idea of TBD is to improve the signal-to-noise ratio
(SNR) of faint space objects according to accumulating measurements to produce more
confident detections. The representative TBD-based space debris detection methods include
the stacking method [16,17], line-identifying technique [18], particle filter (PF) [19,20], and
multistage hypothesis testing (MHT)-based methods [21–23]. However, there are many
limitations to these methods. The stacking method needs to presume a number of likely
movement paths and requires time to analyze the observation data for the uncatalogued
space debris. The line-identifying technique assumes the space debris moving with a
constant velocity and the analysis time will rise exponentially with the number of candi-
date detections in each frame. PF-based methods need to carefully design the likelihood
function to confirm the trade-off between particle convergence and final tracks under the
computational restrictions. For MHT-based methods, candidate trajectories will increase
rapidly with the number of space objects and noise, resulting in high computational costs.
The optical flow-based methods [24–26] can be performed without prior information but
they are also limited by their high computational complexity.

With the progress in satellite imaging technology, video satellite image data have
been introduced to detect space objects in recent years [27,28]. Different from multi-frame
image sequences taken with long exposure times and long interval times, video image
data can capture spatial information as well as more compact temporal information with
the continuous movement state of space objects, which is vital for the immediate orbital
anomaly detection and continuous monitoring. Typical video satellites and their key
parameters are listed in Table 1.
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Table 1. Typical video satellites and key parameters.

Satellite Name Field of View Resolution Frame Rate
(◦) (Pixel × Pixel) (Frames/s)

UrtheCast [29] - 1920 × 1080 3
TUBSAT [30] 0.28 × 0.21 752 × 582 -
SkySat [31] - 1920 × 1080 30
Tiantuo-2 [28] 2.5 × 2.5 960 × 576 25
Jilin-1 [29,32] - 3840 × 2160 25

Zhang et al. [28] proposed a space object detection algorithm based on motion informa-
tion using the Tiantuo-2 video satellite. The author removed the image background based
on local image properties for a single-frame first. The space object trajectories are associated
with the Kalman filter for all frames. Finally, the trajectory is considered a space object if the
mean velocity of the object in all frames is larger than a given threshold. The algorithm can
detect moving space objects with brightness changes from satellite videos, but it is not a
straightforward process. Moreover, many parameters should be set up through empiricism
or experiment in advance. The advantages and disadvantages of the above three methods
are summarized in Table 2.

Table 2. The advantages and disadvantages of different space debris detection methods.

Methods Advantages Disadvantages

Single-frame-based method It is straightforward.
(1) It needs a priori information and many
predefined templates. (2) The faint and moving
objects could not be detected.

Multi-frame-based method The faint and moving objects could
be detected.

(1) It is time-consuming. (2) It needs a
priori information.

Video-based method
(1) The faint and moving objects could
be detected. (2) It does not need a
priori information.

The video data have low signal-to-noise ratios
due to the short exposure times.

Over the past decade, deep learning has made great advancements in computer vision [33],
and deep convolutional neural networks have shown significant competence for video
salient object detection (VSOD) [34–36]. The central principle of the VSOD involves learning
temporal dynamic cues related to moving objects. based on the fact that long-range
dependencies exist in the space and time of consecutive frames [37,38]. Yan [39] proposed a
non-locally enhanced temporal module to construct the spatiotemporal connection between
the features of input video frames. Chen [34] developed a nonlocal self-attention scheme
to capture the global information in the video frame. The intra-frame contrastive loss
helps separate the foreground and background features and inter-frame contrastive loss
improves temporal consistency. Su [37] introduced the transformer block to capture the
long-range dependencies among group-based images through the self-attention mechanism
and designed an intra-MLP learning module to avoid partial activation to further enhance
the network. However, using VSOD directly for space debris detection is questionable. The
reasons can be concluded as follows: (1) The large distances involved in detecting space
debris can make the images appear very small, and they are often referred to as “small
objects”. Therefore, it is difficult to extract spatial features of space debris in videos by
deep neural networks. (2) The cluttered backgrounds generated by large numbers of stars
appearing as point source objects can make it difficult to distinguish space debris from star
backgrounds. (3) Various noises exist in space surveillance platforms, such as thermal noise,
shot noise, dark current noise, and stray light. Therefore, space debris energy is very faint
compared to the noise background, which also brings challenges to space debris detection.

To solve these difficulties, we propose a novel spatial–temporal saliency method called
SDebrisNet for detecting space debris in satellite videos; it uses lightweight atrous spatial
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pyramid pooling and scale-enhanced structures to enhance context-aware and scale-aware
features, while constrained self-attention helps capture local temporal features. First of all,
a spatial feature extraction module (SFM) is proposed to improve the feature extraction
performance for small objects. We added a high-resolution feature detector to the multi-
scale feature extraction network to extract more specific features from the low-level feature
map. Then, the spatial data of small objects were further strengthened by a spatial feature
enhancement module (SFEM). Next, the spatial–temporal coherence was enhanced by a
temporal feature extraction module (TFM). Finally, the saliency map of space debris can be
obtained by a spatial–temporal feature fusion module (STFM). The main contributions of
this paper can be summarized as follows.

(1) In order to account for the unique characteristics of moving space debris in
satellite videos, a spatial–temporal saliency framework was developed. This frame-
work enables end-to-end space debris detection without the need for preprocessing or
post-processing steps.

(2) SFM extracts the spatial features using a lightweight neural network, which is
well-suited for space-based computational platforms with limited storage and computa-
tional resources.

(3) To deal with the small object detection problem, SFEM enhances both the context-
aware features and the scale-aware features, which could significantly improve object
detection precision in different scales, including small objects.

(4) TFM connects both the spatial features and temporal features from the consecutive
frames. Even if space debris data possess a low signal-to-noise ratio, our method could
effectively output the saliency maps. The novelty of this paper can be summarized as
follows: (1) A new space debris detection method based on spatial–temporal saliency is
proposed. (2) A new saliency detection neural network based on the constrained self-
attention is proposed. (3) A new small object feature extraction network, including a spatial
feature extraction network and spatial feature enhancement network, is proposed. The rest
of the paper is organized as follows. Section 2 describes the proposed spatial–temporal
saliency network architecture for space debris detection. The centroid computational
method is introduced in Section 3. Section 4 presents the experimental setup. Section 5
presents experimental studies for verifying the proposed space debris detection method,
including the comparison results with the current space object detection algorithms. Finally,
we conclude our research in Section 6.

2. Space Debris Detection
2.1. Overview of the Proposed Detection Method

Figure 1 shows the flow chart of the proposed space debris detection method, which
mainly includes saliency detection and centroid computation. Saliency detection uses video
clips as input and output corresponding saliency maps, from which centroid coordinates of
space debris for each frame can be computed.

Spatial feature 
extraction

Spatial feature 
enhancement

Temporal 
feature 

extraction

Spatial -
temporal 

feature fusion

Centroid 
computation

Input video clip Output centroid coordinate

Saliency detection

Figure 1. Flow chart of the proposed space debris detection method.

Figure 2 shows the overall structure of the proposed spatial–temporal method for
space debris detection in satellite videos, which contains four major modules: SFM, SFEM,
TFM and STFM. First, the video clip contains several consecutive frames {Ii}N

i=1, where
N is the number of frames, which are fed into the SFM, which is aimed at extracting the
spatial features {Ci}N

i=1 from the raw input frames and outputting five different resolutions
of feature maps {Cj}5

j=1 for each frame. Second, SFEM consists of four spatial feature
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enhancement (SFE) networks designed to enhance the spatial features outputted by SFM
and the five enhanced features {CEj}5

j=1 with the same shape of {Cj}5
j=1. Meanwhile, each

high-level feature map C5
i of each frame is combined as CS ∈ RC×N×H×W for a video clip

by a concatenation operation, where C, H, W denote the channels, height, and width of
the feature maps, respectively. Then, CS is sent to the TFM to learn the spatiotemporal
coherence of the consecutive frames based on the self-attention method and outputs the
temporal salient high-level features CT . Finally, the resulting saliency images {Si}N

i=1 with
values in the range [0, 1] of the video clip, were obtained through STFM, composed of
the residual connected refinement network, by fusing the enhanced spatial features and
temporal features from high to low levels, progressively.

Block 2Block 1 Block 3 Block 4 Block 5

CSA

R 1R 2R 3Mask

Input video clip
{I1, I2, … , IN}

Output saliency maps
{S1, S2, … , SN}

STFM

SFE

SFEM

R 4

R Refinement blockUpsample

SFM

SFE SFE SFE

CSA CSA

LR-ASPP

CSA
Constrained 
self-attention

S

C

S Channel split C Channel concatenate

TFM

最终方案

CSA

Figure 2. Detailed illustration of the proposed saliency detection network, which consists of the
spatial feature extraction module, spatial feature enhancement module, temporal feature extraction
module, and saliency prediction module.

2.2. Spatial Feature Extraction

Many high-performance feature extractors, such as ResNet [40], Xception [41], etc.,
have been proposed in recent years. However, these models possess massive model
parameters (typically tens of millions) and high floating-point operations (FLOPs), which
are not well-suited to be deployed on current space-based platforms with limited memory
and computational resources [42]. Accordingly, MobileNetV3 [43], one of the most popular
lightweight backbones, is modified as the spatial features extraction module. MobileNetV3
has fewer parameters, lower FLOPs, and faster inference speeds. Moreover, it is well-
matched for low resource-use cases and achieves a high accuracy-latency trade-off with
mobile devices. The proposed spatial feature extraction network is shown in Figure 3.
It mainly consists of a convolutional layer with a kernel size of 3 × 3 and a series of
bottleneck structures [43]. The bottleneck structure is a resource-efficient block composed
of an inverted residual structure and linear bottleneck layers with squeeze and excitation
modules [44]. The inverted residual structure could improve the ability of a gradient
to propagate across multiplier layers as well as allow for considerable memory-efficient
implementation. The linear bottleneck layers could prevent the information loss caused
by non-linear transformations, such as rectified linear unit (ReLU) activation. The squeeze
and excitation module is a channel-wise attention module applied in the linear bottleneck
layers to focus on the most important feature representations.
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1×16×224×224
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batch norm
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5 × 5 bneck

3 × 3 bneck

3 × 3 bneck

3 × 3 bneck

3 × 3 bneck

3 × 3 bneck

5 × 5 bneck
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Block 2

Block 3

Block 4

Block 5

16

32

64

128

256

C 1:

C 2:

C 3:

C 4:

C 5:

Input frame

Figure 3. Spatial feature extraction module. The black squares on each line denote the first five
outputted feature maps of each block. The number at the end of each line means the number of
extracted feature maps.

Compared to the original MobileNetV3 model, three modifications were performed to
make it applicable for space debris feature extraction.

1. Some layers of the original model are tailored to further reduce the model param-
eters to adapt to space-based applications. Specifically, the last three bottleneck blocks
were removed. This is because the space debris in the satellite video frame had a simple
structure and small size, which did not need a deeper network to extract complex semantic
features or a larger receptive field to detect the small objects.

2. The SFM was divided into five blocks and five different resolutions of feature
maps were outputted correspondingly. The feature maps from shallow layers with higher
resolutions preserved detailed features, such as position and intensity, which are beneficial
for small object feature extraction. The high-level features with large receptive fields contain
rich semantic features such as contours, which are important for learning temporal cues
and distinguishing salient objects [45]. Based on the above facts, we used the first four
blocks to extract multi-scale spatial features and the last block to learn temporal features.

3. A lightweight atrous spatial pyramid pooling (LR-ASPP) [43] module was added to
the last block, which could capture the image-level global context features and improve the
inference speed.

Figure 3 shows the first five outputted feature maps of each block, which have half
the input resolution of the previous block. We can see that the first two blocks respond to
detailed corners and color conjunctions. Block 3 only outputs more coarse color and position
information. The last two blocks almost don’t extract any semantic features. Therefore,
high-level features should be strengthened for spatial–temporal feature learning.

2.3. Spatial Feature Enhancement

As contextual information is crucial for finding small objects [46], the context-aware
features were obtained first. The light-weight atrous spatial pyramid pooling [43] module
(LR-ASPP), with a large pooling kernel and a 1 × 1 convolution, was employed to generate
context features. Thus, four LR-ASPP modules were connected to the first four blocks of the
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backbone, respectively, to capture the image-level global context. Inspired by the scale en-
hancement structure in [47], we delivered the outputted context-aware features to the scale
enhancement module to further strengthen the scale cues of small objects. The generated
scale-aware features Fo

k of the given context-aware features Fi
k can be computed as:

Fo
k = (1 + Fi

k)� Ck (1)

where Ck are the feature maps outputted by SFM at different blocks, as shown in Figure 3.
‘�’ and ‘+’ refer to element-wise multiplication and element-wise addition, respectively.
Since the spatial features are also vital to saliency detection, the skip connection structure
was adopted to mitigate the feature degradation around the objects caused by model
singularities. Lastly, we attached the residual skip connection layer [40] to each SFEM to
enable the connection between the extracted spatial features and the saliency prediction
model. The residual skip connection layer here is different from the above skip connection
structure, which only skips the element-wise multiplication operation. The residual skip
connection layer consists of three convolutional layers, which could downsample the
channels of feature maps at different layers to the same channels as well as share powerful
target information with the spatial–temporal feature fusion module.

Figure 4 shows the enhanced spatial features of space debris. Compared to the spatial
features generated by SFM, more spatial features are obtained through SFEM. For example,
many colors and corners are revealed in column 2 and column 5 of block 2 in Figure 4,
while no features are extracted by SFM in Figure 3. The higher layers can extract high-level
features, such as the shapes and contours of objects (e.g., row 4 in Figure 4) and more
complex textures (e.g., row 5 in Figure 4), while the SFM cannot, as shown in Figure 3.

C 1

C 2

C 3

C 4

CE 1

CE 2

CE 3

CE 4

CE 5

SFE

SFE

SFE

SFE

SFEC 5

Skip

LR-ASPP

C j

CE j

SFE

16

32

64

128

256

Figure 4. Spatial feature enhancement module.

2.4. Temporal Feature Extraction

The mainstream temporal feature extraction approaches mainly include 3D- con-
volution [48], recurrent neural network [39,49], optical flow [35,50] and attention-based
mechanisms [34,37,51]. However, the computational cost of the 3D convolution operation
is usually expensive, which is not fit for the space-based platform with limited compu-
tational resources. For the recurrent network, the convolutional memory units, such as
convolutional long short-term memory (ConvLSTM) and convolutional gated recurrent
unit (ConvGRU) lead to high computational costs and high memory costs. The optical
flow method requires an additional network branch to obtain optical flow information,
which means it is not a real end-to-end network. Moreover, when the camera moves due
to the incident jitter of the satellite video, the movement of space debris may be too small
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compared to the background, resulting in a weak correlation between salient objects and
movement information contained in optical flow. Recently, non-local self-attention-based
methods [34,39,52] have been widely applied to the video salient object detection to model
the temporal features. They can capture long-range dependencies in videos by establishing
pair-wise relationships among feature elements in consecutive frames. However, they
cannot be applied in space debris detection in videos (directly) for the following reasons.
Firstly, they focus on capturing motion-independent global contexts instead of motion cues,
which are not suitable for detecting moving space debris because the moving objects tend
to be salient and are more attractive to human attention [53]. Secondly, the computational
and memory costs are expensive because the FLOPs (floating point operations) and mem-
ory consumption are quadratic functions with respect to the number of frames and the
feature resolution, which are not fit for the limited computations and storage resources
of space-based applications. Motivated by the constrained self-attention (CSA) operation
in [51], which can model motion cues more efficiently, a parallel structure composed of
four CSA operations was designed as the TFM to extract the temporal features.

Given the high-level spatial features CS ∈ RC×N×H×W generated by SFM, they are
split into four groups, i.e., CS′ ∈ R C

4 ×N×H×W . Each CS′ is fed into a CSA network with
different dilations and window sizes. The four resulting features CT′ are concatenated as
temporal features CT . The structure of the CSA network can be found in Figure 5. The CS′

is projected into three subspaces, i.e., query space Q, key space K, and value space V, using
1× 1× 1 convolution as the linear function. Based on the objects sharing similar positions in
adjacent frames, when a feature element q ∈ R C

4 ×1×1×1 is queried in the position (n, h, w)
of Q, where 1 ≤ n ≤ N, 1 ≤ h ≤ H, 1 ≤ w ≤ W, the constrained neighborhood Sq
surrounding q in K is selected to compute affinity by the dot-product operation. Sq can be
formulated as

Sq = {K(n′, h′, w′)}N,h+dr,w+dr
n′=1,h′=h−dr,w′=w−dr (2)

where Sq ∈ RN(2r+1)2× C
4 . K(n′, h′, w′) ∈ R C

4 ×1×1×1, 1 ≤ n′ ≤ N, 1 ≤ h′ ≤ H, 1 ≤ w′ ≤ W.
r and d are the size and dilation of the sliding window, respectively. Thus, the size of the
constrained neighborhood can be determined by different sliding window sizes r, dilation
d, and the number of video frames N. The affinity function f between feature elements q
and Sq can be computed by

wq = f (q, Sq) =
N,h+dr,w+dr

∑
n′=1,h′=h−dr,w′=w−dr

qK(n′, h′, w′)T (3)

where wq ∈ RN(2r+1)2×1×1×1. Then the augmented feature q′ in CT′ can be calculated as a
weighted sum of the embedding feature V(n′′, h′′, w′′) ∈ RN(2r+1)2×1×1×1 with weight wq:

q′ = wqV(n′′, h′′, w′′) (4)

where q′ ∈ R C
4 ×1×1×1. 1 ≤ n′′ ≤ N, 1 ≤ h′′ ≤ H, 1 ≤ w′′ ≤W.

The parallel CSA structure with different window sizes and dilations can capture the
multiple scales and various speed cues simultaneously. Obviously, the sliding window size
should be larger than the space debris size (but not too large to reduce computational costs).
With regard to the speed, a higher value means the object will cross a wider space in the
same interval as shown in Figure 6. Based on the space debris size analyzed in Section 4.1,
both the window size r and dilation are set to {1, 2}.
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Figure 5. Illustration of the constrained self-attention (CSA) network. The video clip includes four
frames as examples in this figure.
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Figure 6. The space positions of space debris at different motion speeds. The space debris cross three
consecutive frames at two different speeds, where v2 > v1.

2.5. Spatial–Temporal Feature Fusion

The STFM is used for outputting the resulting saliency map by fusing the spatial
features and temporal features obtained by SFEM and TFM, respectively. The STFM
consists of four stacked refinement blocks, each of which takes as input the output feature
map Fi

td of the previous refinement block in the top-down stream and the output feature
map Fi

bu from SFEM in the bottom-up stream. This design can mitigate the effects of the loss
of spatial details caused by a series of convolutional layers and downsampling operations
from SFM. The main workflow of STFM includes three steps: (1) concatenating Fi

td and
Fi

bu, (2) feeding them to a convolutional layer with a 3× 3 kernel size and 16 channels,
(3) up-sampling the output to ensure that Fi

td and Fi
bu have the same spatial resolution by a

bilinear interpolation operation and that Fi+1
td can be obtained. Note that F1

td is the same as
the output feature CT from TFM. Lastly, a probability map with the same resolution as the
input image by a decoder composed of two convolutional layers can be generated.

3. Centroid Computation

Once the salient region is acquired, the centroid of space debris in the CCD focal plane
can be obtained by a simple energy-weighted average method. The overall aim of space
debris detection is to compute the pixel coordinate of the centroid of space debris, which
can be further used to evaluate the performance of the proposed object region extraction
method. The principle of centroid computation is to assign different weights to the point-
source pixels of the extracted salient region depending on the intensity. The weighted
centroid algorithm is summarized as follows:
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xo =

m2,n2
∑

x=m1,y=n1

xI(x, y)

m2,n2
∑

x=m1,y=n1

I(x, y)
(5)

yo =

m2,n2
∑

x=m1,y=n1

yI(x, y)

m2,n2
∑

x=m1,y=n1

I(x, y)
(6)

where (xo, yo) is the weighted centroid coordinate of the pixel location (x, y). x and y are
the pixel locations of the salient region. I(x, y) is the pixel intensity value at the pixel
location (x, y). m1, m2, n1, n2 denote the pixel ranges of the salient region. The accuracy of
the centroid computational method is sensitive to background noise [7]. However, this
effect can be neglected because the saliency detection method outputs a segmentation mask
from the background without any noise.

4. Experimental Setup
4.1. SDD Dataset

There is no publicly available space debris dataset for the use of space debris detection
in videos at present. Therefore, we created a space debris video saliency detection dataset
named SDD (https://github.com/taojianggit/SDD (accessed on 27 July 2022)), which
includes 45 synthetic video sequences and 2 real video sequences, to assess the quantitative
and qualitative performances of the space debris detection algorithm. Each synthetic
sequence contains 250 images and 2 real video sequences contain 1551 images. Finally,
SDD includes 47 video sequences; 33 synthetic sequences are used for training and the
remaining 14 sequences are used for testing. All synthetic video sequences are created by
using the same video satellite sensor properties of Tiantuo-2 [28]. The specific parameters
of video satellite sensors are provided in Table 3.

Table 3. Video satellite sensor parameters.

Parameter Value

Resolution 960 pixels × 576 pixels
Focal length 1000
Field of view 2.5 × 2.5
Pixel dimensions 8.33 × 8.33
Frame rate 25 frame/s

The SDD dataset covers different SNRs, space debris diameters, space debris motion
directions, and motion speeds. Here, the SNR value is defined as SNR = S−B

σ , where S is
the mean pixel value of the object region, B is the mean pixel value of the background region,
and σ is the standard deviation of the background region. In general, the background
region is three times the size of the object region. We simulated both the high SNR space
debris and low SNR space debris with SNR = 10, 5, 1, 0.8, 0.6, 0.4, 0.2, and 0.1. The space
debris with diameters = 0.01 m, 0.05 m, 0.1 m, and 0.5 m were simulated. The motion
directions of space debris were changed with an interval of 20◦ from 0◦ to 340◦. The space
debris with motion speeds (pixel/frame) = 0.16, 0.20, 0.27, 0.40, 0.44, 1.00, 1.33, 2.00, and
4.00 are defined in the dataset. The examples of synthetic video sequence images of space
debris are shown in Figure 7.

https://github.com/taojianggit/SDD
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Figure 7. Example of a video sequence with SNR = 0.2, diameter = 0.1 m, speed = 4 pixel/frame,
direction = 10 ◦ in SDD dataset (top row). Close-up of space debris marked by a green circle in the
image sequence (bottom row).

4.2. Metrics

We adopted three groups of metrics to evaluate the proposed method. The maximum
F-measure (Fβ) [54] and mean absolute error (MAE) were used for evaluating the proposed
saliency detection method, as seen in Section 2. The centroid error (CE) was adopted
to evaluate the pixel error of the computed centroid coordination based on the saliency
detection results. The detection probability Pd and false alarm rate Pf were introduced to
compare them with different space debris detection methods. The F-measure is defined as

Fβ = (1+β2)×precision×recall
β2×precision+recall , which denotes a harmonic average of precision and recall. Preci-

sion and recall were obtained by comparing the predicted saliency maps (binarized at every
integer threshold in the range of [0, 255]) with their ground truth. β2 is empirically set to
0.3 as suggested in [55]. The mean absolute error is computed by MAE = 1

N ∑N
k=1|sk − gk|,

where sk ∈ S and gk ∈ G denote the predicted saliency maps and the corresponding ground
truth, respectively. k and N refer to the pixel position and pixel number of a saliency map.
MAE represents the averaging pixel-wise error between the predicted saliency map and
ground truth. S-measure [56] is another popular saliency detection metric that reflects the
structural similarity between the predicted salient objects and the ground truth. However,
since space debris appears as blobs without distinct structures, S-measure is not utilized in
this work. The centroid error is calculated by comparing the ground truth and the com-
puted pixel coordinate obtained by the centroid algorithm. The detection probability Pd and

false alarm rate Pf are defined by Pd = Nd
Nall

and Pf =
N f

Nall+N f
, respectively. Nd represents

the number of correctly identified space debris. The object would be considered as space
debris when the computed centroid pixel coordinate falls within the radius of 5 pixels from
the center coordinate of ground truth. N f represents the number of background stars and
noise that are incorrectly identified as space debris, while Nall represents the total number
of space debris. A large assessment score indicates good performance for Fβ and Pd, and
the reverse for MAE, CE, and Pf .

4.3. Methods for Comparison

The proposed method is compared with three state-of-the-art space object detection
methods, which are the channel and space attention U-net (CSAU-Net) [57], the topological
sweep (TS) method [58], and the new object detection algorithm using motion information
(NODAMI) method [28]. CSAU-Net is a single-frame-based space object detection method
that adds attention modules in the traditional encoder and decoder structure to enhance
features and better use original feature layers. TS is a multi-frame space object detection
method that exploits the geometric duality to find GEO objects from short sequences of
optical images. NODAMI is a video-based space object detection method using motion
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information from video satellites. CSAU-Net is a recent deep learning-based method aiming
to achieve state-of-the-art performance. The related parameters are set to their default
values as described in the original publications. With regard to the deep learning-based
methods, the pretrained models provided by the corresponding authors were adopted.

4.4. Training Setup

We implemented the proposed SDebrisNet in PyTorch 1.10. The network is trained on
the Debian 10 system with a single A100 40 GB GPU, Intel Cascade Lake CPU. The network
is initialized by PyTorch default setting and is not pretrained with any dataset. During the
training, the batch size was set as 1. We adopted the Adam optimizer with a learning rate
of 1× 10−4. The input images or video frames were resized to 448 × 448 before being fed
into the network in both the training and inference phases. The sigmoid cross-entropy loss
was used as the loss function to compute the loss between each input video frame and the
corresponding ground truth saliency map. Moreover, the video clip length was set to 4 in
both the training and test stages.

5. Experimental Results and Analysis

This section describes the experimental results of the SDD dataset. Section 5.1 de-
scribes the quantitative comparison results with other space debris detection methods.
Section 5.2 analyzes the sensitivity of the proposed method to the video clip length.
Section 5.3 describes the ablation study. The robustness of the proposed method is as-
sessed in Section 5.4. Section 5.5 provides the test results on the real space object video
sequences. All of the test experiments were performed using a computer equipped with an
Intel Xeon W-2123 CPU and NVIDIA RTX2080TI GPU.

5.1. Comparison with Other Space Object Detection Methods

We compare the proposed SDebrisNet with some representative space object detec-
tion methods, as mentioned in Section 4. However, they are not saliency-based object
detection methods, so the saliency detection metrics cannot be used for comparing these
methods. The detection probability Pd and false alarm rate Pf as described in Section 4.2
are introduced to evaluate the different space debris detection methods. Table 4 presents
the detection results of all the space debris detection methods in the proposed SDD dataset.
In Table 4, the bold denotes the best result under the current metric. It can be seen from
Table 4 that the multi-frame-based method outperforms the single-frame-based method
because it can utilize the interframe motion information. The video-based methods achieve
better detection results than both the single-frame-based and multi-frame-based methods.
This is because satellite video images have strong interframe correlations and their mo-
tionless backgrounds have great redundancy under the sidereal tracking mode. However,
the multi-frame satellite images have weak correlations due to the long exposure times
between two adjacent frames. As a whole, the proposed SDebrisNet achieves the best
performance. Compared with the NODAMI method, SDebrisNet improves by 3.5% and
1.7% in terms of Pd and Pf , respectively.

The computational efficiencies of different space debris detection methods over the
image size of 960 × 576 pixels are also listed in Table 4. On average, our method requires
a processing time of 0.013 seconds/frame, which is less than the other three methods.
The proposed method could process a frame for the video satellite with a frame rate of
25 frame/s.

5.2. Sensitivity Analysis to the Video Clip 0

The video clip length T is a hyperparameter that affects the space debris detection
performance of SDebrisNet. It denotes the number of video frames that are fed into the
spatial–temporal saliency network for each batch during the training stage. First, a subset of
the training set is divided and then it is trained without the pretrained model for each video
clip length. The performance of SDebrisNet trained with different T is shown in Table 5. As
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shown in the table, SDebrisNet achieves better detection performance from the increase in
the video clip length. However, when the value of T is too large, the detection performance
will decrease. This is because SDebrisNet cannot sufficiently learn the spatial–temporal
information when the value of T is too small. However, a large value of T may cause objects
to disappear from the reference window, which can be detrimental to the PCSA’s ability to
learn motion cues. In addition, the computational cost will increase with longer video clip
lengths. T = 4 is the most suitable choice for spatial-temporal information propagation.

Table 4. Detection results of different space debris detection methods on the SDD dataset.

Method Pd ↑ Pf ↓ Running Time

singleframe-based method
CSAU-Net [57] 0.912 0.021 0.021 s
multiframe-based method
TS [58] 0.933 0.035 0.074 s
video-based method
NODAMI [28] 0.961 0.028 0.195 s
SDebrisNet 0.996 0.011 0.013 s

Table 5. The detection performance of SDebrisNet for different hyperparameters T.

T Precision ↑ Recall ↑ Fβ ↑ MAE ↓

2 0.733 0.805 0.982 0.014
4 0.802 0.796 0.984 0.014
6 0.771 0.821 0.963 0.015
8 0.707 0.798 0.976 0.016
10 0.716 0.788 0.920 0.016
15 0.754 0.750 0.920 0.017
20 0.733 0.644 0.821 0.025

5.3. Ablation Study

To investigate the effectiveness of SFM, SFEM, and TFM modules in SDebrisNet, the
ablation experiment is conducted in this section. To analyze the contributions of individual
modules, the saliency detection results of SDebrisNet without different components are
shown in Figure 8 and the corresponding quantitative results are recorded in Table 6. As
shown in Figure 8, ground truth displays the clearest and strongest streak among all of the
detection results. SFM reveals a sparse streak; this is because SFM cannot extract sufficient
spatial features due to the tailored feature extraction network. SFEM performs better than
SFM due to the more enriched spatial features learned by SFEM. Since the temporal feature
extraction module is added on the basis of the original feature extraction network, TFM
also performs better than SFM. The performances of (f) and (g) are slightly better than (d)
but significantly better than (e). It is because the spatial features and the temporal features
are captured by the network. Moreover, the SDebrisNet performs better than (f) and (g) and
the best in the ablation study. The reason is that the SFM+SFEM extract the strong spatial
features while the TFM learns the motion cues simultaneously. In Table 6, the first row
represents the detection results of the baseline composed of original MobileNetV3+SPM,
which achieves poor detection results in terms of both Fβ and CE due to insufficient spatial–
temporal features extracted from the baseline network. The performance is degraded when
MobileNetV3 is replaced by SFM due to the tailoring of the original network structure.
After adding SFEM, it can create a certain level of performance improvement, which is
consistent with the results shown in Figure 8. On the basis of SFM or SFEM, adding the
TFM can significantly increase by 15.5% and 16.6% w.r.t Fβ, respectively.

The model size is a key metric that is limited by the onboard computers with restricted
storage resources. As shown in Table 6, compared to the original model, the outcome
of the designed SFM reduced the model size by 5.4 MB with almost no loss of accuracy.
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Besides, the memory overheads of all the models are no more than 100 MB, which fits
within the supported maximum synchronous dynamic random-access memory (SDRAM)
of 512 MB for the current onboard computers [42]. This shows our model’s superiority
to state-of-the-art saliency detection models with several hundreds of megabytes [34,45]
when deployed on SDRAM-limited devices.

(a) Ground truth (b) SFM (c) SFEM (d) TFM

(e) SFM+SFEM (f) SFM+TFM (g) SFEM+TFM (h) SDebrisNet

Figure 8. Saliency detection results of SDebrisNet without different components: all of the frames are
collapsed by a max operator.

Table 6. The ablation study of SDebrisNet on the SDD dataset.

SFM SFEM TFM Model Size (MB) Fβ ↑ MAE ↓ CE ↓

48.44 0.724 0.143 1.316
X 43.04 0.711 0.158 1.407

X 74.32 0.729 0.138 0.946
X 69.00 0.871 0.057 0.615

X X 68.92 0.763 0.065 1.082
X X 63.60 0.979 0.036 0.387

X X 94.88 0.989 0.035 0.383
X X X 89.48 0.988 0.035 0.384

We compared the proposed method with the recent saliency detection models in terms
of model size and computational efficiency. The results are listed in Table 7. We can see that
the current saliency detection models mainly take the ResNet as the backbone to extract the
spatial features. The model size of the proposed method is no more than 90 M and achieves
a good inference speed among state-of-the-art saliency detection models.

Table 7. Comparison of the recent saliency detection methods.

Methods Backbone Model Size (MB) Inference Speed (FPS) GPU

MGA [59] ResNet-101 350 14 RTX 1080TI
DCF [60] ResNet-101 274 28 RTX 2080TI
STM [45] ResNet-101 194 100 RTX 2080TI
Ours MobileNetV3 89 77 RTX 2080TI

5.4. Robustness Analysis

To assess the robustness of the proposed method, SDebrisNet was tested on the SDD
dataset with different SNRs. The noise in a space surveillance platform mainly includes
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thermal noise, shot noise, dark current noise, and stray light noise, which could affect
the accuracy of space debris saliency detection. The first three noises are caused by the
statistical nature of photodetection or photodiode in sensor systems [61], which can be
represented as the Gaussian white noise model generally. The stray light noise results from
accidental perturbations of diffuse reflection from the Earth, Moon, and other nebulae [62].
It also can be modeled using two Gaussian function dimensions. The detection results of
SDebrisNet on the SDD dataset with different SNRs are shown in Table 8. Based on the
test results, it can be observed that the centroid error increases as the SNR decreases in this
experiment, and the false alarm rate also increases accordingly. The centroid error obtained
by our method does not exceed 0.9 pixels in this experiment.

Table 8. Detection results of SDebrisNet on the SDD dataset with different SNRs.

SNR CE ↓ Pd ↑ Pf ↓

10 0.312 1.000 0.000
5 0.312 1.000 0.000
1 0.359 1.000 0.009
0.8 0.361 1.000 0.011
0.6 0.371 1.000 0.015
0.4 0.477 0.991 0.022
0.2 0.749 0.982 0.027
0.1 0.896 0.969 0.036

5.5. Test on Real Video Sequences

To further investigate the applicability of the proposed method, it was also tested
on two real video sequences. The first video was acquired by a Newtonian telescope. It
included two space debris named Iridium-33 and Cosmos-2251. The second video was
obtained by the TJO telescope at the Observatorio Astronómico del Montsec (OAdM). Both
videos were taken with the sidereal tracking mode. The tracks of the space objects are
shown in Figure 9. The details of the observed space objects and optical sensors are shown
in Table 9. In a practical circumstance, there is significantly more noise, intensity variations,
and imaging artifacts in the real video, which increases the difficulty of the problem. Sub-
frames were selected from the original frame size to show the above challenges, as shown
in Figure 10. Since there are no known ground truth pixel coordinates of the space objects,
only the qualitative test results are presented in this section. Part of the centroid coordinate
detection results are shown in Figure 10. We can see that the intensity of Iridium-33 varies
significantly in the continuous 3 frames (frame 340–frame 342). However, the space debris
could still be detected by SDebrisNet. The second space debris Cosmos-33 is undetected in
frame 435 due to the extremely low intensity caused by the tumbling characteristics. Frame
74 contains a striped white bright line called the smear-tailing phenomenon. It forms as the
CCD is capturing a high-brightness point light source, which may affect the accuracy of
detecting space debris in video images. Frame 320 has a lower SNR than frame 74, while
frame 545 contains even more serious stray light noise compared to frame 320. The space
object shows as a streak in frame 695. It is because the observation platform jitters in the
horizon direction. Nevertheless, our method could work well in all of the difficulties in
video 2.



Appl. Sci. 2023, 13, 4955 16 of 20

(a) Video 1 (b) Video 2

Figure 9. Two real video datasets: All of the frames are collapsed by a max operator. Video 1 includes
two space debris with linear tracks. Video 2 includes one space object with a curved track.

Figure 10. Example of the detected centroid on real video sequence 1 (top row) and video sequence 2
(bottom row). The detected centroid coordinates and missed detections are marked in green circles
and red circles, respectively.

Table 9. Details of the real video sequences of the space objects.

Video Number Video 1 Video 2

Object name Iridium-33 and Cosmos-2251 debris Gaia spacecraft
Object size 36–64 pixels 6–64 pixels
Object speed 1.48 pixels/frame 0.16 pixels/frame
Tracks type line curve
Noise type Gaussian Gaussian and stray light
Frame rate 30 frame/s 25 frame/s
Frame number 763 788
Frame size 720 pixels × 480 pixels 360 pixels × 360 pixels

6. Conclusions

In this paper, a novel spatial–temporal saliency-based approach was proposed for
space debris detection. The proposed approach uses deep learning techniques to output



Appl. Sci. 2023, 13, 4955 17 of 20

the saliency maps and compute the centroid coordinates of the space debris from satellite
video sequences. The approach achieves end-to-end saliency detection of space debris
without multiple steps of traditional methods. Moreover, as the model can generalize
well to unseen space debris, due to the self-contained training samples, it does not require
motion information from the space debris to be known a priori.

First, a lightweight spatial feature network was established to enable the inference
model suitable for deployment on onboard devices with limited storage space. Based on
the lightweight backbone, a spatial feature enhancement network was created by capturing
both the image-level global context and the multi-scale spatial context. The experiment re-
sults show that the spatial feature enhancement network can extract more complex semantic
features and complete shape features of small objects. Most importantly, a temporal feature
extraction network was introduced by establishing the pair-wise relationships among fea-
ture elements in consecutive frames. This enables our method to detect space debris with a
curved motion track due to the highly correlated temporal information existing in consecu-
tive frames of satellite video. In addition, a public satellite video dataset for space debris
detection was created to evaluate the proposed method. The motion speed and direction of
space debris and the diameter of space debris and SNR are considered in the dataset. The
results of the detection performance experiments show that both the detection probability
and the false alarm rate of the space debris extracted by our method are much greater than
those of both the single-frame-based method and the multi-frame-based method. In the
sensitivity analysis experiment, the best video clip length used for each batch in the training
stage is recommended as 4. The ablation study demonstrates that the model size of our
method is largely reduced compared to the current saliency detection models. Moreover,
we also tested the robustness of the proposed method on the SDD dataset with different
SNRs. When the SNR of space debris is approximately 0.1, the centroid error of the space
debris extracted by our method does not exceed 0.9 pixels. Finally, we tested our method
on two real video datasets with more challenges. It showed that our method can work well
in the space background with significant intensity variations, curved motion tracks, and
stray light noise. The advantages of the proposed method can be summarized as follows.
(1) The proposed method could achieve end-to-end space debris detection without multiple
preprocessing steps. (2) It can detect both the linear and curved movements of space debris
without a priori information. (3) It can detect space debris with a low SNR of 0.1. The main
disadvantage of the proposed method is that it needs to create a video dataset containing
different SNR and space debris movements.

The next step in our research will involve testing our method on an embedded platform
with the same computational efficiency and storage capacity as the onboard computers.
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