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Featured Application: The proposed algorithms could be integrated into mobile router platforms 

installed in public transportation vehicles which can provide high-speed internet connectivity to 

the passengers and the equipment of the vehicles. The proposed algorithms also could be inte-

grated into Access Points (APs) serving (possibly temporarily installed) small cells, APs that do 

not have dedicated backhaul connections, and the wireless links of some macro cells being used 

as backhaul connections. 

Abstract: 5G wireless networks have as one of the main characteristics the large-scale deployment 

of small cells (microcells, picocells, etc.), which is expected to bring several advantages in what con-

cerns the high speed and low latency connectivity of the users. This large-scale deployment of small 

cells also raises several technical challenges, provisioning the backhaul connectivity being one of 

them. The paper considers the situations when small cells are deployed temporarily or are deployed 

in a vehicle transporting many passengers, situations when the traditional wired or wireless back-

haul solutions could be too costly to be used. The paper proposes, as an alternative solution, the use 

as backhaul connections of the wireless links set up in the macro cells which cover the location of 

the small cell. The paper proposes several Game Theory (GT)-based Load-Balancing (LB) algorithms 

for distributing the traffic of the small cell users over the macro cell links. The proposed LB algo-

rithms are evaluated by computer simulations and are compared with “classical” LB algorithms 

considered as references. The performed computer simulations show that the auction-based algo-

rithms have the best performance in terms of delay suffered by the transmitted data packets, while 

the selfish routing type algorithm has weaker performance, even behaving poorly than some of the 

reference non-GT-based algorithms. The paper also considers the situation when several small cell 

APs are deployed in a limited area or a vehicle and the user groups that attach to different APs 

should be identified. The paper proposes two GT-based user clustering algorithms, and the perfor-

mance of these algorithms are evaluated by computer simulations. These simulations show that 

even simple clustering algorithms could improve the distribution of the traffic over the neighbor 

small cell APs and reduce the delay experienced by the data packets in the transmission system. 
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1. Introduction 

Significant increases in mobile broadband speed, connectivity for a massive number 

of smart devices, low latency and high reliability wireless transmissions, energy effi-

ciency, etc., are some of the improvements brought by the 5G networks [1,2]. To fulfill the 

requirements mentioned above, the designers of the 5G networks propose, besides the 

development of new Radio Access Technologies (RATs), a new network architecture that 

allows the integration of heterogenous RATs and the large-scale deployment of small cells 

[2,3]. The deployment of many small cells raises several challenges, one of them being the 
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provisioning of backhaul connections with large data rates, low latency, and high-relia-

bility requirements [2]. Optical fiber links, the best solution for backhaul connections in 

4G and 5G networks, might be too expensive or even impossible to be deployed in a vast 

number of locations and, as a viable alternative, the use of wireless backhaul is proposed 

[2,4]. The cost incurred by the deployment of the backhaul connections is a limiting factor 

of the “network densification” [5], having a significant influence on the number of small 

cells which can be deployed. In [6] it is presented a solution for optimization of the small 

cells’ deployment process according to the type and characteristics of the backhaul con-

nections. In some circumstances, such as small cells deployed in rural areas or small cells 

with low traffic or offering free access, wireless mesh networks are proposed to be used 

as backhaul technology, or even self-backhauling in mobile frequency bands. Due to the 

scarcity of the spectrum used for mobile access the last solution is useful only in particular 

circumstances. An analysis of the usage of mesh WiFi 802.11n networks for provisioning 

the backhaul connections for picocells is presented in [7], and a self-optimizing partial 

mesh wireless backhaul solution is proposed in [8]. 

The architecture of the 5G networks is a complex one organized on several functional 

layers and is based to a large extent on technologies such as Software Defined Networks 

(SDN) and network function virtualization [2,9]. This could allow the use of more complex 

data transmission mechanisms, such as LB over several heterogeneous communication 

links. LB allows more efficient usage of the available resources in a heterogeneous net-

works scenario and this concept has already been extensively studied in the context of 

WiFi-3G/WiMAX/4G heterogeneous wireless networks. In [10] the authors investigate the 

issue of parallel transmissions over multiple RATs, focusing their attention on the Quality 

of Service (QoS) perceived by the final users. A simple but efficient LB algorithm is pro-

posed and evaluated in WiFi-UMTS and mobile WiMAX systems scenarios. In [11] an 

improved mechanism for routing the Internet traffic over several communication paths in 

heterogeneous networks is proposed. The heterogeneous network is represented as a 

combination of multiple single technology networks available simultaneously, and each 

network is modeled as a single server queue. The number of jobs in each queue is mini-

mized subject to constraints using the Lagrange multiplier. A soft LB mechanism that di-

vides the traffic of the users into sub-flows and routes these sub-flows through different 

wireless access networks is presented in [12]. Soft LB involves the combined use of load 

distribution and vertical handover techniques. In [13] the authors adopt a fuzzy neural 

network approach to determine the optimal load sharing of the traffic among the hetero-

geneous networks and in [14] heterogeneous wireless networks are mapped to distributed 

grids. The authors of [14] present a hierarchical semi-centralized architecture for balanc-

ing the traffic among heterogeneous wireless networks and the proposed solution is based 

on the grid concept in data transmission networks. The LB mechanisms in networks in-

volving the WiMAX and WLAN technologies are investigated in [15]. The authors con-

sider the different service characteristics of these two networks and the QoS requirements 

of real-time and best effort applications and distribute all streaming flows to WiMAX net-

works, the remaining capacities of WiMAX and the entire capacity of WLAN being used 

for transmission of flows associated with non-real-time services. 

The advantages of LB over heterogeneous wireless links in what concerns the re-

source utilization, system capacity, and fulfillment of QoS requirements is proved in [16]. 

The authors propose a LB algorithm that is acting based on the scheduling mechanism 

used and the wireless link quality information. The proposed solution is more time effec-

tive and can operate in a distributed way. In [17] a new approach is proposed to compute 

a metric expressing the network load. The new metric computation hides the heterogene-

ity of network technologies from the LB module and can be applied to any packet injected 

into the system. In [18] a utility function-based approach, which can support multiple cli-

ent classes is introduced. A bandwidth sharing policy in heterogeneous networks and a 

“controlled unfairness” scheme are achieved by using logarithmic utility functions that 

characterize the bandwidth allocated to different users. 
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In [19] a Markov decision process is proposed for LB operations in heterogeneous 

cellular networks using multiple carriers, and the LB solution proposed is based on the 

usage of the Sarsa algorithm of online learning. The authors of [20] jointly address the 

network LB and the server LB and propose a two-phase algorithm that concurrently deals 

with the two LB problems in the context of new network architectures integrating virtu-

alized network functions. In [21] the authors present a LB algorithm that selects a suitable 

network interface for each data flow in a dynamic way. The paper considers the growing 

importance and the heterogeneity of Local Area Networks (LAN) and the increasing re-

quirements of the services in terms of latency and throughput. The interface selection is 

based on service requirements and the LB operations are modeled as a mixed integer lin-

ear program. 

In [22] the LB technique is proposed to be implemented among collocated BSs for 

better usage of the transmission resources and increased energy efficiency in the context 

of sustainable green wireless networks. In [23] the authors propose solutions to solve the 

problem of resource allocation optimization in heterogeneous 5G networks while satisfy-

ing the QoS requirements of the users. A multi-agent system is embedded into the stand-

ard cuckoo algorithm and the multi-agent cuckoo algorithm is obtained and used to solve 

the considered resource allocation problem. In [24] the authors analyze, using computer 

simulation, different scheduling schemes for radio resources in heterogeneous networks 

that integrate 5G, 4G, Wi-Fi, and other wireless technologies. The goal of the study is to 

determine how to improve the throughput in heterogeneous 5G networks. 

Game theory and genetic algorithm-based LB mechanisms were also proposed in 

several papers. In [25] the authors study the bandwidth aggregation on backhaul connec-

tions in the context of wireless LANs composed of APs with spare backhaul capacity and 

APs with a shortage of backhaul capacity. The transfer of transmission capacity between 

the two categories of backhaul connection is modeled as a matching game with the many-

to-one setting. In [26], considering the high demand for computation and communication 

resources and the heterogeneity of these resources in distributed computer systems, the 

authors propose a new method for solving the LB problem using game theory and a ge-

netic algorithm. The LB problem is modeled as a non-cooperative game of the system’s 

users, and a genetic algorithm is used to solve the formulated LB game. In [27] the authors 

consider the problem of mobile users’ access to cloud services. To ensure high perfor-

mance and reliability the integration of centralized cloud computing and distributed edge 

computing is considered. To meet the latency requirements of some computation-inten-

sive applications the authors propose to divert some of the incoming job requests from 

overloaded cloudlets to under-loaded neighbor cloudlets and this LB process is modeled 

as a non-cooperative game. The problem of LB in data centers in the context of cloud com-

puting is considered in [28]. The increase in the number of IoT devices and the increasing 

interest in real-time analytics services could generate significant imbalances in the load of 

cloud data centers. The paper proposes a Stackelberg (leader-follower) game model for 

selecting in a balanced way the physical host for executing each task arriving at the data 

center. A similar problem of LB in data centers in the context of cloud computing is also 

considered in [29]. The authors propose two solutions for the LB problem, considered a 

non-cooperative game among users, based on game theory and metaheuristic algorithms. 

The authors of [30] consider the problem of LB in distributed systems at a more general 

level. The LB problem defined has two conflicting objectives: minimize the users’ expected 

response time and minimize the total cost incurred by the users. The authors model the 

LB problem as a non-cooperative game and propose an algorithm to solve the defined 

game. Offloading traffic from crowded base stations to APs in a 5G environment is con-

sidered in [31]. The authors propose a scheme using game theory and the Stackelberg ap-

proach for taking the decisions of traffic offloading of crowded networks. The proposed 

solution can achieve a more efficient QoS in a networking environment involving various 

types of data with different QoS requirements. The use of GT concepts in LB algorithms 

over virtual communications tunnels established between an AP node, which receives the 
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user flows, and an Advanced Gateway node is considered in [32]. The paper proposes 

several GT-based LB algorithms and compares the performance of these algorithms with 

that of “classical” LB algorithms, being demonstrated that some of the GT-based algo-

rithms can manage most efficiently the transmission resources available in the virtual 

communication tunnels. The short state of the art presented above shows the use at large 

scale of GT-based algorithms in solving various load balancing and traffic offloading 

problems. This is mainly due to the flexibility of GT in modeling various optimization 

problems and the ability of this class of algorithms to solve efficiently the mentioned op-

timization problems. 

This paper considers the situation of small cells deployment in an evolved wireless 

network when due to different technical and economic reasons the backhaul connection 

of the evolved small cell is implemented using the shared links of the macro cells covering 

the small cell (i.e., in-band and/or out-band self-backhauling). To provide the backhaul 

capacity required by the evolved small cell in discussion the aggregation of several macro 

cell links is considered, a process that requires splitting the traffic over the available links 

modeled as communication tunnels, which is a resource usage optimization problem, 

while specific constraints are imposed. Considering the ability of the GT-based algorithms 

of solving optimization problems the paper proposes several GT-based LB algorithms 

over the macro cell links providing the backhaul connectivity. The proposed algorithms 

are adapted to the specific case of LB over virtual communication tunnels with specific 

definitions of the games and specific QoS parameters which should be ensured. The per-

formance of the proposed GT-based LB algorithms and of some reference LB algorithms 

are assessed by extensive computer simulations. The obtained results show the superior-

ity of LB algorithms which model the LB process as a multiplayer game based on a sealed-

bid auction process compared to non-GT-based algorithms and non-cooperative GT-

based algorithms. The paper also considers scenarios when several small cell APs are de-

ployed and proposes GT-based solutions for user clustering, i.e., the selection of the user 

groups that connect to each AP. The goal is the LB between the deployed APs to ensure 

the QoS requirements on the AP–user links, and of course to ensure the global end-to-end 

QoS. 

2. Materials and Methods 

2.1. Problem Formulation and System Model 

The considered networking scenario is presented in Figure 1. The AP of the small cell 

offers high bit rate communications to its active users, using some access technology such 

as LTE, WiFi, etc., and connects to the core network using the wireless links of several 

macro Radio Access Networks (RANs) (LTE, 3G+, WiMAX, 5G, etc.) which cover the area 

of the small cell. 

 

Figure 1. The considered networking scenario. 

T4

T3

T2

eNB2

eNB4            

eNB3

eNB1           

T
1

f5

AP

f4

f1

f2

f3



Appl. Sci. 2023, 13, 1485 5 of 37 
 

A particular case is represented by the deployment of a small cell inside a public 

transportation vehicle (bus, train, etc.) to provide ubiquitous and high bit-rate communi-

cations to the passengers and the equipment of the vehicles (video surveillance system, 

infotainment system, etc.). In this situation, depicted in Figure 2, one of the most cost-

effective solutions for providing backhaul connectivity for the AP is to use the wireless 

links of the macro cells which cover the route of the vehicle as backhaul links. The AP is 

represented in this case by an Advanced Mobile Router which works together with a ded-

icated advanced gateway, the Service Continuity Gateway (see Figure 2), to provide ubiq-

uitous connectivity. 

 

Figure 2. Heterogeneous network architecture that provides ubiquitous connectivity to public 

transportation vehicles. 

A single shared macro cell link might not be able to provide the needed backhaul 

capacity, at least not in circumstances when the number of small cell users is large and 

bandwidth-demanding services are accessed. The solution is to use several macro cell 

links established in different macro cells covering the small cell and aggregate the band-

width offered by these macro cell links. The problem which must be solved is how to 

distribute/route in an efficient way the service flows of the users connected to the small 

cell AP over the macro cells shared links while fulfilling the QoS requirements of the user’s 

service flows. 

The considered system model for the uplink transmission is depicted in Figure 3 and 

includes the AP node, which receives the services flows, fi, generated by the users, and is 

connected to an Advanced Gateway node (AG) by several parallel virtual tunnels. Both 

nodes have LB capabilities over the virtual tunnels connecting them. Such an advanced 

gateway node could be part of a virtualized infrastructure layer [1,2], and its functionali-

ties can be defined and implemented using SDN technologies [9]. As in most communi-

cation systems, e.g., LTE and WiMAX, each duplex communication channel is formed of 

two independent simplex communication channels. The modeling of the downlink trans-

mission is like that of the uplink transmission, only the direction of the flows is different. 

Each flow fi, i = 1,…,K, is characterized by a distribution function i(t) which describes the 

packets’ arrival rate, and a function Θi(x) which describes the distribution of the packets’ 

size, x. The average bit rate av

i
R of the i-th flow is given by: 

( ) ( )=   
av

i i i
R t x dxdt  (1) 

It is assumed that there are also several output flows and there is a one-to-one corre-

spondence between the i-th input flow and i-th output flow. 
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Figure 3. The system model of the considered networking scenario. 

2.1.1. Virtual Tunnel Modeling 

Each tunnel between the AP and AGN nodes is modeled as a First-In-First-Out 

(FIFO) queue with a single server whose service time depends on the instantaneous phys-

ical channel conditions in the wireless network where the tunnel is passing. To each tun-

nel, j, is associated a convex function Tj(nj, Cj(t)), which returns the expected waiting time 

for a newly arrived packet, if, after queuing the packet there are nj packets waiting in the 

queue, and the instantaneous capacity of the physical link is Cj(t). 

Because the data flow fed to the input of a tunnel is a mixture of different types of 

traffic, real-time and non-real-time traffic with different packet sizes and packet interarri-

val times, it can be considered that the packets arrive according to a Poisson process [33]. 

It should be mentioned that the Poisson traffic model is not the most realistic model for 

many traffic types, but it is widely accepted and provides mathematical tractability. Some 

more complex modeling involving a mixture of Poisson distributions is given in [33]. The 

data packets’ interarrival times on different tunnels are independent random variables 

exponentially distributed with parameter  jA
[34]. The interarrival time,  jA

, with param-

eter  jA
 has the probability distribution function: 

( ) j jA A
j jA A

P e
 

 
− 

=   (2) 

The expectation of the number of packets fed to the input of tunnel j is: 

( ) =j jA A
 (3) 

It is considered that the times necessary to transmit the packets, i.e., the service times 

on different tunnels, are independent and identically distributed with probability distri-

bution function ( )
jB

F  and probability density ( )
jB

f . To ensure the stability of the 

queue the users’ service flows must be combined, i.e., distributed on the available tunnels, 

so that the occupation rate j is less than one [34] on each tunnel. 

( )




−
=

1
1
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j
B

 
(4) 

where ( )
−1

j
B represents the expectation of the packet rate on tunnel j. 

The state of the j-th tunnel can be described at a time moment by the tuple (nj, τj) 

where nj is the number of packets stored in the queue of the tunnel in discussion and τj is 

the delay experienced by a packet in the transmission chain. The first parameter of the 

tunnel’s state is discrete, while the second one is continuous, and this could complicate 

the analysis. However, if we consider only the queuing process of the tunnel, then the 

tunnel’s state description can be simplified to nj only, τj being 0 for the new packets stored 

in the queue. We denote by ,

d

j k
L  the number of packets remaining in the queue after the 
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transmission of the k-th packet, and by 
jn

d  the fraction of packets that leave in the queue 

nj packets after their transmission [34]. 

( ),
lim

j

d

n j k jk
d P L n

→
= =  (5) 

The number of packets remaining in the queue after the k+1-th packet is sent, , 1

d

j k
L

+

, is equal to the number of packets present when the k-th packet was sent minus one plus 

the number of packets that are stored in the queue during the transmission time of the 

k+1-th packet, i.e., during the service time of packet k+1. This last number of packets is 

denoted by 
+, 1j k

A  and we have [34]: 

, 1 , , 1 ,

, 1 , 1 ,

0;

0

1

;

d d d

j k j k j k j k

d d

j k j k j k

L L A if L

L A if L

+ +

+ +

= − +

=



=
 (6) 

From the equations above result that the sequence  , 0

d

j k k
L



=
can be represented as a 

Markov chain, the transition probabilities between the states of this chain being given by: 

( )+
= = =

, , 1 ,
|d d

i l j k j k
p P L l L i  (7) 

By 
jn we denote the probability that during the transmission of a packet exactly nj 

packets arrive. Considering that during the service time, t, of a packet the number of new 

packets that are stored in the queue is Poisson distributed with parameter jA
t   we can 

express 
jn as: 

( )
( )




 − 

=
=  0 !

j

j
jA

j j

n

tA

n Bt
j

t
e f t dt

n
 (8) 

The limiting probability 
jn

d , defined according to (5), satisfies the equilibrium equa-

tions of the Markov chain attached to the queuing process [34]: 

  

1 0 1 1 0

1 0
0

, 0,1,

j j j j j

j

j j

n n n n n

n

n k k n j
k

d d d d d

d d n

   

 

+

+ −
=

= + + + + =

= + = 
 (9) 

If the queue is in equilibrium the maximum value of nj will be limited because the 

fraction of the packets leaving behind in the queue nj packets, after their transmission, is 

decreasing with the value of nj and will approach zero for nj large. 

We denote the total time spent in the system by a packet with the random variable S 

having a probability distribution function ( )
jS

F  and probability density function 

( )
jS

f . It is considered that the system is in equilibrium when a new packet arrives in the 

queue. The distribution of the number of packets stored in the buffer after the transmis-

sion of this (new) packet is equal to 


=0
{ }

j jn n
d . Considering a FIFO system we have, similar 

to Equation (8): 

( )
( )

 − 

=
=  0 !

j

j
jA

j j

n

tA

n St
j

t
d e f t dt

n
 (10) 
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The time spent in the system by a packet (also called sojourn time), is the sum of W 

(its waiting time in the queue) and B (its transmission time on the channel), where W and 

B are independent random variables. More precisely a newly arriving packet in the queue 

first must wait for the service time of the packet that is in the transmission chain (residual 

service time), and then it continues to wait for the transmission of all packets which were 

already in the queue on its arrival. Based on PASTA (Poisson Arrivals See Time Averages) 

the server of the queue is busy on the arrival of a new packet with probability j, which 

in our case is the occupation rate of the tunnel. We denote by the random variable Rj the 

residual service time, and according to [34] we have the following relation between the 

waiting time in the queue, service time (transmission time in the tunnel), residual service 

time, and the number of packets waiting in the queue: 

( ) ( ) ( ) ( )= +
j j j jj

W Bn R  (11) 

and according to Little’s law, we have: 

( ) ( )= j jAj
Wn  (12) 

and finally, we obtain: 

( )
( )

1

j j

j

j

R
W




=

−
 (13) 

The value of the mean residual service time may be written in the form [34]: 

( )
( )
( )

( )
( )

( ) ( )
2

22

21
1

22 2

jB jj

j B j

j j

BB
R c B

B B

 +
= = = +  (14) 

An important observation resulting from (13) and (14) is that the mean waiting time 

only depends on the mean and standard deviation of the transmission time random vari-

able and not on the distribution function of this variable. It results that, in practice, it is 

enough to compute the mean and standard deviation of the service time to estimate the 

mean waiting time. Based on the previous relations the mean value of the system’s re-

sponse time (the so-called sojourn time) can be expressed as: 

( ) ( ) ( ) ( )



= + +

−

21
1

1 2

j

B j j

j

j
c B BS  (15) 

If the service time has a finite expectation ( ) 1
jjB  −= and a finite standard deviation, 

1

j jB  −= then the expected sojourn time with Poisson arrivals with rate λj (obeying con-

dition (4)) is the following: 

( )
( )

( )

  

  

+
= +

−

2 21 1

2

j j j

jj j j

j
S  (16) 

2.1.2. User Clustering in Multi-AP Scenarios 

In some circumstances, there could be available several small cells to which the users 

can connect. For example, several small cells could be deployed in a building, or several 

APs could be installed in a train to which the users can connect. In this case, the users’ 

access also should be controlled, i.e., should be identified the user groups/clusters that 

will connect to each AP. This problem involves several theoretical and practical issues: 
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• the user-AP link should fulfill some QoS requirements, and the simplest solution is 

to connect the user terminal to the closest AP or to the AP with the largest transmis-

sion power; 

• the users should connect with higher priority to the AP having more available trans-

mission resources on the communications tunnels established over the cellular wire-

less links. This is necessary to avoid the overloading of some APs, with effect over 

the global QoS, and for efficient usage of the resources available on the tunnels; 

• the selection process of the users who connect to one of the APs should avoid the 

need to install supplementary software modules on the user terminals, which would 

complicate the control of the users’ access process. 

The transmission scenario envisioned is depicted in Figure 4a. All the users are in the 

coverage area of AP-A and if no other AP is installed all users will connect to this AP. A 

second AP, AP-B, is installed, the users also being in the coverage area of this AP. The 

access protocol should select the users which connect to each AP, the selection being a 

dynamic one based on the transmission power of the APs and the available transmission 

resources on the communication tunnels used as backhaul connections. The available re-

sources depend on the virtual tunnels’ instantaneous capacities and the instantaneous 

packet and bit rates of the users’ data flows. This scenario could be extended to more 

complex ones with more APs. For example, the train deployment scenario could include 

a third AP, AP-C (see Figure 4b), with only some of the users being located in the over-

lapping coverage areas, i.e., the AP-A: AP-B respectively the AP-A : AP-C coverage area, 

while all the users are located in the coverage area of AP-A. The building deployment 

scenario could include more APs, installed on the same or ifferent floors of the building, 

and the users located in the overlapping coverage areas of several APs. 

 
 

(a) (b) 

Figure 4. Networking scenario with several APs deployment: (a) 2 AP deployment; (b) 3 AP de-

ployment. 

The users’ clustering algorithm could be a decentralized one, when no central control 

unit is employed, or could be a centralized one when an AP Controller module is used. 

The presence of this module does not raise significant technical issues, the APs being part 

of an infrastructure network, of a building, or of a vehicle, that could integrate such a 

control module. The AP Controller module also could be one of the APs acting as a master. 

It should be noted that, if several APs are used the available communication tunnels 

will be divided between the APs, each AP selecting several users that can be served with 

the resources available on the allocated virtual tunnels. The number of communication 

tunnels is fixed, the tunnels being leased from the macro cell operators by the train or 

building operator, and this fixed number of tunnels should be divided between the in-

stalled APs, the users being also split between the installed APs. 

2.2. Modeling the Load Balancing on a Set of Tunnels as a Multiplayer Game 
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We consider that our communication system must transmit K input flows and there 

are available N tunnels. We denote by ( )= , ,...,
1 2 N

s K K K  the surjective mapping of the K 

flows on the tunnels. Kj denotes the set of input flows mapped to tunnel j, and we have 

the conditions: ...   =
1 2 N

K K K K  and  =   ; i j
i j

K K . We denote by S the set of 

all flow-tunnel mapping possibilities and the system response function → : ;r S s S  

gives the system’s efficiency if mapping s is used. The objective of the LB algorithm is to 

identify a mapping that maximizes the system efficiency [35], which can be defined as: 

( ) ( ) ( ) =   max : | :
s

arg r x r x rs s S s  (17) 

The LB problem defined above can be modeled as a game in which players are agents 

representing the flows and the tunnels [36]. The strategies of the flow agents consist of the 

selection of the tunnels established through the heterogeneous network. The objectives of 

the flow agents are the maximization of the flows’ throughput which is equivalent with 

the minimization of the delay suffered in the system by the packets of the flows (private 

objective). The strategies of the tunnel agents consist of the selection of a mapping s, so 

that the total rate of the flows mapped on a tunnel should be equal to or less than the 

instantaneous capacity ( )i
C t of the tunnel represented by the agent. 

2.2.1. Selfish Routing Load Balancing 

In this game, each flow agent chooses the route (tunnel) which minimizes the transit 

time of the flows’ packets (private objective of the game). The social goal of the game is to 

find an arrangement which minimizes the average delay. Following [37], the notion of 

“selfishly defined traffic flow” is formalized in the next theorem. In this case, it is expected 

that each packet of a flow is transmitted along the path inserting the minimum latency, 

the latency being measured with respect to the rest of the flow’s packets. If this condition 

can’t be fulfilled for some packets, those packets will be routed on the path with the small-

est possible delay. The latency ( )
j iT

f  introduced by the tunnel Tj on the packets of flow 

fi, i.e., 
i j

f K , is defined by the sojourn time. 

Theorem 1. A flow fi in a graph G representing the network is at Nash equilibrium if and only if 

for every {1,..., }i K  
i j

f K  ( ) ( )    ; {1, , },
j zi iT T

z Nf zf j . 

Briefly, Theorem 1 state that, in a flow at Nash equilibrium, all packets travel on the 

minimum latency paths. If fi is at Nash equilibrium, then all flows mapped to that tunnel 

have equal latency let say ( )j j
L K . Therefore, the social cost ( )s  of an arrangement can 

be expressed as [36]: 

( ) ( ) 
=

= 
1

N

j j j
j

Ls K  (18) 

where λj denotes the average packet rate through tunnel j. 

If the stability condition is fulfilled (i.e., the global input rate is less than or equal to 

the total capacity of the tunnels) the Nash equilibrium always exists and is inherently 

unique. 

Definition of the game: 

• the {1,...,, }
i

f i K  flow-agents, i.e., the players; 

• =
1

{ ,..., }
i N

A T T  is the finite set of the actions of player i, i.e., each player (flow) should 

choose one tunnel. It is defined an action profile =
1 2

( , ,..., )
K

a a aa , where each element 
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ai of the vector represents one action for each player of the game, and this profile 

corresponds to an arrangement s; 

• the payoff or the utility function ui of a player (flow) in this case is ( )=
j ii T

u f , i.e., 

the expected latency if the agent i chooses tunnel j. 

Algorithm 1 presented below gives the  operations involved by the Selfish Routing 

LB algorithm. 

Algorithm 1 Selfish Routing-based LB algorithm 

Compute the expected latency for each packet of the flow fi on every tunnel. 

1: for j = 1 to N do 

2:       compute ( )
jT i

f  based on (16). 

3: end for 

Select for flow fi the tunnel which ensures the minimum latency. 

4: ( )( )
=

=
1, ,

arg min
j ij N T

fz  

Associate flow fi to tunnel z. 

5:  = 
z z i

fK K  

6: Generate the signaling traffic for flow routing and send it on default tunnel j = 1 

 

In the previous sections it was mentioned that the mixture of flows applied to each 

tunnel is supposed to be Poisson distributed, and in consequence the packets interarrival 

times are exponentially distributed with parameter 
jA

 . This parameter is necessary to 

estimate the expected latency ( )
jT i

f  on each tunnel. The 
jA

 parameter can be obtained 

by fitting the measured distribution of the interpacket delays with the pdf curve of the 

exponential distribution. By using the method of moments results  = 1 ( )jA j
mean p , 

where pj are the packets interarrival times of the flow mix applied to tunnel j. In this 

simple case, we have only one parameter of the distribution which should be computed. 

Even if this algorithm has low complexity, ( )N , the social cost of the Nash equi-

librium (NE) is worse than the optimal solution, i.e., due to the lack of coordination among 

the players the solution obtained at Nash Equilibrium is not the optimal one, and the cost 

of this lack of coordination between players is called the price of anarchy and is defined as 

[37]: 

( )
( )

=max price of anarchy
NE

NE

opt
 (19) 

Using a set of N tunnels with an expected total transfer rate at least μmin, the price of 

anarchy for situations when the latency functions are defined by (16) and the sum of all 

flow rates transmitted over each tunnel is at most 
max min

R , is given by [38]: 

 

( )

( )( )( )

  

      

  + −
 = +
 − + + − − − 

2 2

max

2 21,..., max
max max

2 1
max sup 1

4 1

j j jj

NE
j N j

j j j j j j

R

R R R

 
(20) 

where μj and σj denotes the expectation respectively the standard deviation of the packet 

transfer rate distribution associated with tunnel j. 

The algorithm involves a high signaling overhead required to change the tunnel as-

sociated with the flow, change of tunnel which could happen with each new packet arriv-

ing at the AP. To reduce the amount of computation and signaling required by the algo-

rithm a timer can be defined for each flow, and the algorithm is executed only when the 
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timer expires and not when a new packet arrives at the AP node. The LB solution remains 

unchanged until the timer expires, i.e., during the timer period. Changing the tunnel at 

each packet could generate a large amount of jitter which might not be compensated by 

the buffering operations performed at the receiver. The amount of jitter generated will be 

reduced if the algorithm is executed only when a timer expires. 

2.2.2. Auction-Based Load Balancing 

To describe the LB process as a first price sealed-bid auction [39], the LB module could 

be considered a contractor who has =| |K K  goods (the K flows) to deliver and let the N 

tunnel agents represent the N available deliverers. Each tunnel agent j submits simultane-

ous “sealed bids” ( )j i
b f which represent the price for transferring the packets of flow fi, 

the bidder with the lowest offer wins the contract for transferring flow fi, and the LB mod-

ule pays the price for the transfer of the flow fi. The goal of the tunnel agents is to maximize 

their payoff represented by the difference between the price paid by the LB module, 

( )j i
b f , and the true cost of transferring the flow fi through the tunnel j, denoted by ( )j i

v f

. If ( )j i
b f  is not the winning bid, then the payoff to tunnel agent j is 0. If ( )j i

b f  is the 

winning bid, then the payoff to tunnel agent j is ( ) ( )−
j i j i

fb v f . It can be noticed that the 

true-value bidding in this game cannot be the dominant strategy. By bidding for the true 

value, a bidder receives a payoff of 0 if it loses and it will also receive a payoff of 0 if it 

wins, since he receives the same value as its costs. As a result, the optimal way to bid in 

the first price auction is to “shade” the bid slightly upward, so that if a bidder wins, it 

receives a positive payoff. Finding out how much to increase the bid involves a trade-off 

between two opposite forces. If the bid is close to the true value, then the payoff will be 

small if the bidder wins. However, if the asked price is too large compared to the true 

costs, this increases the potential payoff of the bidder in the event of winning, but it re-

duces the chance of being the lowest bid and in consequence the chance of winning. Find-

ing the optimal value of the bid is a complex problem that depends on the knowledge of 

the other bidders and their way of acting. 

In the case of our optimization problem, we consider that the real cost of carrying the 

flow fi through the tunnel j would be: 

( )  ( ) ( ) =  +
j i j j ji i

f fv L K  (21) 

which represents the expected latency (relative to the interpacket delay) inserted by tun-

nel j if it wins the delivery contract of flow i. The submitted bid is proportional to the 

communication resources, i.e., the bandwidth used to ensure the requested delays when 

the packet rates have some values, and the used bandwidth can be considered the cost 

necessary to carry the packets. 

For simplicity it can be considered that the submitted bid by the tunnel is: 

( )  ( ) ( )  ( )  =  + + +  = + + 
, ,j i j j j i j i j j i ji i j

b L n nf f v fK  (22) 

It can be noticed that the bid submitted by the agent j, is shaded by the number of 

packets waiting in the queue nj, while 
,i j

j represents the amount of penalty which the 

contractor (the LB module) must pay if it changes the beneficiary of a contract: 

,

;

0 ;

i i j
z j

i j

i j

n f

f

→

 


 = 


K

K
 (23) 
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where 
i

z j

n
→

 represents the amount of signaling traffic (number of signaling packets) re-

quired to move the flow i from the tunnel z to tunnel j. 

The number of packets waiting in the queue nj will influence the evolution of the 

delay in the next time periods, and to keep the desired value of the delay it is possible to 

be needed more bandwidth if nj increases, i.e., the cost for carrying the packets is influ-

enced by nj.  

Algorithm 2 presented below  gives the operations  involved by the Auction-Based 

LB mechanism. 

Algorithm 2 Auction-based load-balancing algorithm 

Each new traffic initially is associated with default tunnel j = 1. 

At each arriving packet  

1: for j = 1 to N do 

2:       estimate ( )j i
v f  based on (21). 

3:       compute ( )j i
b f  based on (22) and (23). 

4: end for 

Select for flow fi the tunnel which submitted the lowest bid. 

5: ( )( )
1, ,

arg min
j ij N

fz b
=

=   

Associate flow i to tunnel z   

6:  = 
z z i

fK K  

Update the tunnel total revenue after sending the packet. 

 

The difference between this algorithm and the previous one is that here all packets 

belonging to one flow are carried by the winning tunnel. A flow remains attached to a 

tunnel until its global quality degrades so much that it is more beneficial to that flow to 

change the tunnel (even “paying” the penalty). The algorithm’s complexity is ( )N  for 

each arriving packet. As in the situation of the Selfish Routing LB algorithm, the amount 

of computation required can be decreased by defining some timers attached to each flow 

and executing the algorithm only when the timer expires and not for each new packet 

arriving at the AP. The downside of such a solution is the slower response of the system 

to the changes in the input parameters. 

2.2.3. Combinatorial Auction-Based Load Balancing 

It is considered that the contractor from the previous algorithm could receive quotes 

for one single flow at a time. However, this may not be very effective because the auction 

should be repeated with each arriving packet. The combinatorial auction allows players 

to bid on a subset 
z

K K . These are most useful if there are compliments, i.e., a set of items 

might be worth more than the sum of the parts [37]. In this case, the bidders submit bids 

( )j z
b K  on each 

z
K K . The auctioneer chooses an allocation ( )= * * *

1 2
, ,...,

N
s K K K  that 

minimizes ( )
=


1

N

j
j

j
b K  over all feasible allocations. Considering all possible arrangements 

each player submits an exponential number of bids, and the allocation problem becomes 

NP-hard [36]. 

To reduce the dimension of the optimization space, the flow agents are endorsed with 

a potential function ϕi. These potential functions describe the time evolution of the bene-

ficiary’s satisfaction with the deliverer [40], i.e., the variation in time of the key perfor-

mance indicators (bit rate and latency) of the flows. If the potential functions of the flows 

mapped on a tunnel decrease, the contractor decides to revise the contracts for that tunnel. 
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It generates a set of allocations redistributing a subset of the flows mapped on that tunnel. 

Considering that the tunnel agents are single-minded bidders, i.e., player j only cares 

about one subset Kj, the computation complexity is reduced to polynomial time. 

In the case of delay-sensitive flows, the time spent by a packet in the transmission 

chain is the primary parameter that influences the QoS of the transmission. In this case, 

the potential function should express the delays experienced by the packets of the flow and 

the degree of user satisfaction in the condition of the experienced delays, which decreases 

rapidly as the delay is increasing. Denoting by τi the maximum value of the expected de-

lay, we define the utility function for the delay-sensitive data streams as: 




−

= 10
i

ic

i  (24) 

where ci is a constant value associated with each flow which allows differentiating the 

same type of real-time service flows. The maximum value of the proposed utility function 

is one. Figure 5a presents the variation of the utility function given in (24) with the delay 

inserted by the tunnel when the coefficient ci has different values. The used potential func-

tion allows a good separation between real-time flows with different maximum delay con-

straints. 

For non-real-time traffic the main parameter of interest is the average throughput. 

The experienced delay, and the possible variations of this delay, have significantly lower 

importance, even if the delay inserted by the transmission chain cannot be neglected. The 

proposed potential function expresses the satisfaction of the user according to the Average 

Call Throughput associated with the flow and the target is, of course, the maximization 

of the user’s satisfaction. The Average Call Throughput Ri can be defined as the total num-

ber of transmitted bits divided by the duration of the transmission process. Let call

i
R  de-

note the number of bits sent by the user generating flow i during the current call and call

i
t  

the time elapsed from the beginning of the current call. If the number of bits that can be 

transferred through the tunnel j in a single time unit (for ex. one millisecond) is Lj, the 

instantaneous value of the average call throughput, computed on a finite length window, 

will be: 

+
=

call

i j

i call

i

R L
R

t
 (25) 

The Lj parameter results from the instantaneous capacity of the wireless link Cj(t). 

We define the potential function associated with the delay tolerant traffic as: 


  −

= =  
 

+

2

2

1
tanh

1

i

av
i

i

av
i

R

R
i

i av R

i R

R e

R
e

 (26) 

where av

i
R  is the expected value of the average bit rate and can be computed according to 

(1). This parameter allows the differentiation between different non-real-time flows. The 

maximum value of this potential function is also 1. The potential function was defined in 

such a way as to express user satisfaction with the increasing values of the throughput. 

Figure 5b shows the variation of the proposed utility function with the instantaneous bit 

rate, Lj, when the expected average bit rate av

i
R  has different values. The hyperbolic tan-

gent function is a good choice for representing the progressive transition between two 

extreme states in our situation: not satisfied at all and totally satisfied with the throughput 

provided by the system. It also allows a good separation between non-real-time services 

with different average rate constraints. The operations involved by the Combinatorial 

Auction-Based LB mechanism are described in Algorithm 3, presented below. 
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(a) (b) 

Figure 5. Potential functions for delay sensitive and best effort traffic types: (a) Variation of the 

potential function for delay sensitive traffic with latency τi when coefficient ci has different values; 

(b) Variation of the potential function for best effort traffic with the instantaneous bit rate of the 

tunnel, Li, for different values of the expected average bit rate av

i
R . 

Algorithm 3 Combinatorial Auction-based load-balancing algorithm 

Each new traffic initially is associated with default tunnel j = 1. 

At each arriving packet update the flows’ potential function 
if
. 

In each moment ; 0, 1, 2,...mT m = ; T–interpacket delay or timer period, perform the fol-

lowing steps: 

1: for j = 1 to N do 

2:       compute 




 =


i

i jf
f

m

j

j

K

K
 

3:       compute
− =  − 1m m m

j j j    

4:       while  m

j
imposed treshold do // the QoS decreases considerably 

Select the flow with the lowest potential. 

5:       ( )


= arg min
i

i jf f
i

K
            

Create a new arrangement: 

6:               ( )=   , ,.. ,., ,
i i j i i

f f f f
1 2 N

s K K K K           

7:                each bidder z  j submits a bid ( )z z
b K for the new subset Kz 

Route flow fi through the tunnel which submitted the lowest bid. 

8:        ( )( )
=



=
1, ,

arg min
z N

z

z

j

zt b K           

Associate flow i to tunnel t. 

9:         = 
t t i

fK K          

10:       recompute 




 =


i

i jf
f

m

j

j

K

K
  

11:       recompute 
− =  − 1m m m

j j j  

12:       end while 

13: end for 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1


i


i(


i)

Potential Functions for Delay Sensitive Traffic Types

 

 

c=1ms

c=10ms

c=25ms

c=50ms

 
 

[ms] 
0 2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
i
 [bps/1000]

 i(L
i)

Variation of 
i
() with the instantaneous bitrate

 

 

R
i

av=0.1Mbps

R
i

av
=1Mbps

R
i

av=1.5Mbps

R
i

av
=5Mbps

   

0             2000          4000           6000         8000        10,000 

  

1 
 

0.9 
 

0.8 
 

0.7 
 

0.6 
 

0.5 
 

0.4 
 

0.3 
 

0.2 
 

0.1 
 

0 

  



Appl. Sci. 2023, 13, 1485 16 of 37 
 

2.3. Reference Load-Balancing Algorithms 

To assess the performances of the proposed GT-based LB algorithms two simpler and 

less complex algorithms were considered as references. 

2.3.1. The Round Robin Reference Load-Balancing Algorithm 

This algorithm represents the simplest scheduling algorithm used in packet switched 

networks. In this case, it was converted into a LB algorithm over parallel tunnels as it is 

described below by Algorithm 4. 

Algorithm 4 Round Robin Load-Balancing Algorithm 

Each new data flow initially is associated with default tunnel j = 1  

1: if fi is a new flow 

2: identify the last used tunnel z ≤ N  

3: select the next tunnel: ( )= +1 modz z N  and send flow fi on tunnel z   

4: end if 

This algorithm does not consider either the capacity of the tunnels or the character-

istics of the flows, i.e., type of flow, bit rate, etc. The transfer rate on a given tunnel neces-

sary to transmit all the packets routed on that tunnel could be significantly larger than the 

capacity of the tunnel, which will have consequently low performance. 

2.3.2. The Multiple Knapsack Reference Load-Balancing Algorithm 

The Multiple Knapsack algorithm tries to distribute a set of items on a set of contain-

ers, called knapsacks. Each knapsack is characterized by its capacity, and the knapsacks 

represent the tunnels in our scenario. Each item is characterized by a weight parameter 

and a value or utility. The items are representing in our scenario the flows, characterized 

by an average rate (weight) and a priority (utility). The algorithm tries to distribute the 

items on the knapsacks in such a way as to maximize the total utility while fulfilling the 

capacity limitations of the knapsacks [41,42]. 

The variant of this algorithm which was implemented and simulated is described by 

Algorithm 5 blows 

Algorithm 5 Multiple Knapsack load-balancing algorithm 

Each new data flow initially is associated with default tunnel j = 1. 

1: do 

2: compute the priority of the new data flows. 

3: sort the flows in descending order of their priorities. 

4.      if flows 
1 2
, ,

k
f f f  have the same priority 

5.          sort flows 
1 2
, ,

k
f f f  in ascending order of their average bit rate. 

6:      end if 

7: route the sorted flows on the available tunnels while fulfilling the conditions: 

a. the sum rate of the flows routed on a tunnel is lower than the average capacity of the 

tunnel and 

b. the sum of the priority of the flows routed through a tunnel is as high as possible. 

8:    while each flow is associated with a tunnel, or no tunnels are available 

9:           if flow fi does not fit on one of the tunnels 

10:             check if it fits into one of the other available tunnels. 

11:          end if 

12:          if flow fi cannot be routed over either of the tunnels 

13:              flow fi will be routed over the default tunnel or will be rejected. 

14:          end if 

15:   end while 

14: end do 
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In what concerns the priorities of the flows, five classes were considered: class 1-

gaming, video conferences, class 2-video streaming, class 3-voice over IP, class 4-web 

browsing using HTTP, and class 5-best effort FTP. In a simpler approach, the flows can be 

classified into only two classes, i.e., real-time with high priority and non-real-time with 

low priority. This algorithm works at flow level (not at packet level), and it is executed 

when a new flow is generated, or when a predefined timer expires, or the parameters of 

the networks (e.g., the quality of the wireless links) change significantly. 

2.4. Modeling the User Clustering Process as a Game 

The user clustering problem aims to associate each user terminal to one and only one 

AP in such a way as to maximize the use of the available resources while fulfilling the 

flows’ end-to-end QoS requirement. For this, each user should be connected to the nearest 

AP (to maximize the user-AP link’s quality), and the difference between the load and ca-

pacity of the APs should be minimized. To model the clustering problem, let’s denote by 

( )i
D t  the demand formulated by the user i, and by ( )j

C t the sum of the capacity of the 

tunnels starting from APs j. Let xi,j be a binary variable which is xi,j = 1 if the user i is con-

nected to APs j and 0 otherwise, then the load ( )j
L t  of the j -th AP is: 

( ) ( )=   ,j i j i
i

L t x D t j  (27) 

The clustering problem can be formulated as a liner programming problem in the 

following way: 

( ) ( )( )

 

 −



= 









, ,

,

,

min

min

. .

0

, 0,1

j j jj
j

i j i jj
i j

i j
j

i j j

y L t C t

x d

s t

x i

x y

 (28) 

where yj = 1 if ( ) ( )
j j

L t C t  and 0 otherwise and di,j is the distance between the i-th user 

terminal and the j-th AP. 

To solve the user clustering problem a simple non-cooperative and a cooperative 

game is proposed. In each case, the AP is represented by a “user broker” (player) api, 

which allows more users to connect to the AP if the AP’s load is less than the instantane-

ous capacity. In the non-cooperative game, each AP agent chooses the action that mini-

mizes the gap between the load and backhaul capacity of the represented AP. 

Definition of the game: 

• the api,  i{1,…,K} AP agents are the players; 

• Ai = {P1,...,PN} is the finite set of the actions of player i, i.e., each player should choose 

a transmit power that influences the user terminals to connect or not to the specific 

AP. It is defined an action profile a = (a1, a2, …,aK), where each element ai of the vector 

represents one action for each player of the game, and each action profile corresponds 

to an arrangement s of APs and users. 

• the payoff or the utility function ui of a player in this case is ( ) ( )= −
i i i

u C t L t , i.e., the 

expected difference between the load and the capacity of APi. 

The steps necessary to implement the non cooperative clustering process are de-

scribed by Algorithm 6. 

Algorithm 6 Non cooperative user clustering mechanism 

estimate the difference between the demand and capacity for each AP. 
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1: for j = 1 to N do 

2:      estimate ( ) ( )−
i i

C t L t  using the average packet delay or the lengths of the trans-

mit queues.  

Check if the AP has free capacity. 

3:     if ( ) ( )−  0
i i

C t L t  

Increase the transmit power of APi and by this increase the coverage area and the number 

of users connected to APi.  

4:     else 

Reduce the transmit power of APi and by this reduce the coverage area and the number of 

users connected to APi. 

5:     end if 

6: end for   

7: Each user checks the strengths of the received signal from each AP and chooses the AP 

from which the received signal has the highest power. 

In the case of the cooperative game each AP agent, api, collaborates with the agents 

of the neighboring APs to choose the strategy that might minimize the gap between their 

load and the backhaul capacity. 

Definition of the game: 

• the api,  i{1,…,K} AP agents are the players; 

• ( ) ( ) ( ) =
, 1 1 1 2

, , , ,..., ,
i j N N

A P P P P P P is the finite set of the actions of the tuple of players 

(api, apj), i.e., each group of neighbor player should adjust their transmit power that 

influences the user terminals to connect or not to the specific AP. An action profile a 

= (a1, a2, …,aK) is defined, where each element ai of the vector represents one action for 

each tuple of players, and each action profile corresponds to an arrangement s of APs 

and users; 

• the payoff or the utility function ui,j of a group of players in this case is 

( ) ( ) ( ) ( ) = − + −
 ,i j i i j j

u L t C t L t C t , i.e., the expected difference between the total 

load and the sum of APs’ capacity. 

The steps necessary to implement the cooperative clustering process are described 

by Algorithm 7. 

Algorithm 7 Cooperative user clustering mechanism 

estimate the difference between the demand and capacity for each group of two neighbor 

Aps. 

1: for i = 1 to N do 

2:       for j = i+1 to N do 

3:       estimate 
( ) ( )

( )
i i

i

L t C t

C t

−
 and 

( ) ( )
( )

j j

j

L t C t

C t

−
 using the average packet delay or 

the lengths of the transmit queues.  

Check if the APs are load balanced. 

4:         if 
( ) ( )

( )
( ) ( )

( )
j ji i

i j

L t C tL t C t

C t C t

−−
   

Increase the transmit power Pi of APi and decrease the transmit power Pj of APj.  

5:         else 

Decrease the transmit power Pi of APi and increase the transmit power Pj of APj. 

6:         end if   

7:       end for j 

8: end for i 

9: Each user checks the strengths of the received signal from each AP and chooses the AP 

from which the received signal has the highest power. 
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3. Results 

3.1. The Architecture of the Simulation Platform Used for the Evaluation of the LB Algorithms 

The architecture of the simulation platform used to assess the performance of the 

proposed LB algorithms is depicted in Figure 6. 

The Traffic Generator module generates the data flows for each user according to the 

specified traffic mixture and statistical characterization of each traffic type [43]. The gen-

erated data flows are routed through the tunnels based on the decisions taken by the LB 

module. The Wireless Channel Simulator module simulates the wireless links instantiated 

in the cellular networks according to the considered channel models. To each simulated 

wireless link a Channel Estimator module is associated, these modules perform a short-

term prediction of the channel parameters based on the latest simulated/computed values. 

In this way, it is possible to make a short-term prediction of the tunnels’ instantaneous 

capacity. The LB module receives the statistical data characterizing the generated data 

flows, the Queue State Information (QSI) associated with each tunnel, and the Channel 

State Information (CSI) generated by the Wireless Channel Simulator module. Using all 

this information, for each input flow, the LB module tries to choose the tunnel which en-

sures the smallest delay accumulated through the system. At the output of the tunnels, 

the accumulated delay and other performance indicators are evaluated for each packet, 

and statistical data are collected for each flow. These results together with the data de-

scribing the status of the system can be stored in a database for further evaluation. The 

following subsections describe each constituent block and the considered algorithms. 

 

Figure 6. The block diagram of the simulation platform used for the evaluation of the LB algo-

rithms. 

3.1.1. The Traffic Generator Module 

This module generates the data packets which constitute the input traffic for the sim-

ulation chain. The packets are generated based on statistical models used for system level 

evaluation of the cellular wireless systems [43–45]. The traffic types considered are: Best 

Effort Traffic (FTP), Interactive Traffic (Web-browsing using HTTP), VoIP, Video Stream-

ing, and Interactive Real-Time Services (Gaming). All the traffic flows are generated ac-

cording to the specifications of [43–45], the most relevant parameters being considered for 

each traffic flow. See Appendix A for the mathematical modeling of the mentioned traffic 

types. 

3.1.2. The Wireless Channel Simulator Module 
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The cellular network scenario considered in the design of the wireless channel simu-

lator is presented in Figure 1. The scenario is a realistic one that supposes the overlapping 

of the coverage area of several base stations using the same or different wireless access 

technologies. A device, i.e., a mobile router or a mobile AP, equipped with N cellular net-

work interfaces is moving in an area covered by N independent wireless networks. The 

device follows a random walk motion pattern, and when the device arrives at the border 

of the cell, the position of the new serving base station is generated randomly so that the 

radius of the cells follows a Gaussian distribution with predefined parameters. In this 

case, we obtain a realistic network topology where the position of the base stations differs 

from one operator to another as well as the size of the cells the user passes through while 

moving on his route. It is also assumed that all networks serving the device have approx-

imately the same load, which is less than their capacity, and each network uses a propor-

tional fair radio resource management algorithm. In this case, the average transfer rate 

obtained by the device is highly related to the radio channel characteristics experienced 

by that device. In this simulator, it is considered that the instantaneous transfer rate is 

proportional with the effective instantaneous Signal to Noise Ratio (SNR) observed at the 

input of the considered receiver. The considered effective SNR–transfer rate mapping 

model is depicted in Figure 7. A modified ITU Vehicular B [46] channel model was con-

sidered, with mean mutual information per coded bit (MMIB)-based link to the system 

mapping technique. 

As an example, a particular situation regarding the capacity variation of the virtual 

tunnels established between the AP and the four base stations depicted in Figure 1 is pre-

sented in Figure 8. In Table 1 are presented the max./min. values and the mean, median, 

and standard deviation values of the transfer rates of the 4 considered tunnels. Can be 

noticed that some of the tunnels provide relatively constant transfer rates (tunnels 2 and 

4), while on other tunnels the transfer rates variers significantly in time (tunnels 1 and 3). 

 

Figure 7. Effective SNR –bitrate mapping. 

Table 1. Statistical parameters of the considered 4 virtual tunnels. 

Tunnel Max/Min  Mean Median Std. 

1–red 24/14.5 Mbps 20.15 Mbps 21.25 Mbps 2.85 Mbps 

2–blue 18.5/14.25 Mbps 16.5 Mbps 16.5 Mbps 1.15 Mbps 

3–cyan 14.75/1.5 Mbps 6.5 Mbps 5.75 Mbps 4 Mbps 

4–green  8.5/5.25 Mbps 6.75 Mbps 6.75 Mbps 0.925 Mbps 
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Figure 8. Variation in time of the capacity of the tunnels established over the macro cell wireless 

links. 

3.2. The Architecture of the Simulation Platform Used for the Evaluation of the User Clustering 

Algorithms 

To test the proposed user clustering algorithms another simulation platform, de-

picted in Figure 9, was developed. The integration of the users’ clustering algorithms in 

the complex simulation platform used for the evaluation of the presented LB algorithms 

is relatively difficult to perform. The developed platform includes the data flows genera-

tion module (User Cluster Traffic Generator), based on the considered traffic models (see 

Tables A1–A5) and traffic mixture specified in Table 2. To simplify the simulation a single 

output tunnel is considered, and this could be an aggregated tunnel. This aggregated tun-

nel is simulated by the Wireless Channel Simulator module. An AP Controller module is 

integrated into the simulation platform. This module receives the aggregated tunnel 

queues’ status information and the data flows’ characteristics and controls the transmis-

sion power of the APs according to the used clustering algorithm. Based on the selected 

transmission power the user clusters connected to different APs are generated, more users 

connecting to the APs with larger power. This approach has the target to simplify the 

users’ access to the APs, only the power of the APs being manipulated. The APs with more 

available resources increase their transmission power on the AP-user links, while the APs 

with fewer available resources maintain or reduce their transmission power. AP selection 

or handover based on the received power level is one of the most common and simplest 

ways of selecting an attachment point to a wireless network and this solution is used on 

large scale also in cellular networks. 

Table 2. Simulated traffic flows parameters. 

Traffic Type Traffic Mixture LB Parameter 

VoIP 20% 
= 5msic  Video streaming 20% 

Online gaming 10% 

Web browsing-HTTP  30% 
= 10Mbpsav

iR  
File transfer-FTP 20% 



Appl. Sci. 2023, 13, 1485 22 of 37 
 

 

Figure 9. The block diagram of the simulation platform used for the evaluation of the user cluster-

ing algorithms. 

The users are randomly distributed between the deployed APs and the distances be-

tween the users and each AP are computed. Based on the distances the attenuation on the 

user-AP links and the power received by the users are computed according to Equation 

(29). 
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where d0 is the reference distance and is considered 1 m (it depends on the size of the cell), 

n gives the slope of the attenuation characteristic and is considered 2.5, but it depends on 

the simulated wireless propagation scenario and λ is the wavelength–the carrier fre-

quency was considered 2.4 GHz. 

The estimation of the transmission resources available on the virtual tunnels can be 

made based on the sojourn time S, i.e., the delays suffered by the source data packets in 

the transmission system. To take into account the variation of the sojourn time on a larger 

time scale, a moving average is computed on each tunnel considering a large number of 

packets N, i.e., several thousands of packets: 
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where Sav_i is the average delay at moment i. 

Other indicators related to the available resources in the system are the number of 

packets stored in each buffer and the number of bytes (or bits) stored in the same buffers. 

These parameters combined with the sojourn time could give a more detailed picture of 

the available resources and allow a better clustering of the users. 

The clustering process of the users should be performed with a relatively low fre-

quency to avoid frequent disconnection and reconnection of the users (the so-called ‘ping-

pong’ effect) which could generate interruption in the transmission process and increase 

the signaling overhead. However, at the same time the clustering process should be per-

formed frequently enough to take into account the variability of the capacities of the tun-

nels and the users’ data flows rates. In the simulations performed the clustering process 

was performed at a time interval of tens of seconds, but less than 1 min. The signaling 

overhead on the user-AP link was not considered. 

3.3. Simulation Results and Discussions 

3.3.1. Evaluation of the Proposed LB Algorithm over Parallel Virtual Tunnels 

Four tunnels are set up in four different cellular networks in the evaluation scenario 

considered (see Figure 1), and 50 data flows are generated by the users connected to the 

small cell AP. We consider that the cellular networks belong to different operators, and 

they are independent and assign uncorrelated transfer rates to the tunnels. The considered 

channel and shadowing model is the urban environment model defined in [46]. The con-

sidered traffic mixture [44] of the data flows is defined in Table 2. The performance indi-

cator which is monitored is the evolution in time of the delays suffered by the packets of 

the transmitted flows when different LB algorithms are used, i.e., the proposed LB algo-

rithms and the considered reference LB algorithms. The used traffic mixture is a relevant 

and balanced one with 50% percent real-time traffic and 50% best effort traffic. A high 

percentage of real-time traffic will not be relevant for the assessment of the developed LB 

algorithm due to the relatively low bit rates of these traffic types, which will generate an 

underuse of the tunnels’ transfer capacities and the delay requirements will be fulfilled 

without any problems. A high percentage of best effort traffic, with a relatively large ex-

pected average rate av
iR , will generate an overload of the tunnels and an increase in the 

delays inserted by the transmission system, no matter which LB algorithm is used. 

Figure 10 presents the Probability Density Functions (pdf) (Figure 10a) and the Cu-

mulative Density Functions (cdf) (Figure 10b) of the delays suffered by the transmitted 

packets in the simulated transmission system when the proposed, GT-based LB algo-

rithms, respectively when the reference LB algorithms are used. 

As expected, the delays experienced by the transmitted packets are the largest in the 

case of the Round Robin LB algorithm. This algorithm does not consider the statistics of 

the data flows and the quality of the transmission links over which the tunnels are instan-

tiated. Due to this, the requested transfer rate on a given tunnel could become larger than 

the instantaneous capacity with a high probability, and this will lead to large delays of the 

packets waiting in the queues. 

Using the Selfish Routing LB algorithm each packet should choose a tunnel where 

the expected delay is minimal but the frequent tunnel changes generate a high amount of 

signaling traffic. In this case, the number of the generated signaling packets was compa-

rable with the number of payload packets, and this high overhead overloads the tunnels 

leading to significant delays. In the scenario when the signaling overhead is neglected (or 

at least significantly reduced) the experienced packet delays are much lower than in the 

previous case when the signaling overhead is considered. Even in this case, the social cost 

of the Nash equilibrium is higher than that of the optimal solution due to the lack of co-

ordination (the price of anarchy). This loss in performance relative to the optimal solution 

is because in each time instance more packets could choose a given tunnel where appar-

ently the delay conditions are the best, overloading the tunnel, thus generating temporary 
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congestion on it, while other tunnels have free capacity. Reducing the signaling overhead 

can be achieved by routing several consecutive packets on the same tunnel, i.e., dealing 

with flows instead of individual packets. 

The Auction-based LB algorithms ensure the best performance because they dynam-

ically adapt the traffic on the tunnels according to the changes in the transmission links 

parameters. The Combinatorial Auction based LB algorithm over-performs the other con-

sidered algorithms because it permanently monitors the QoS performance and the sys-

tem’s changes, and it maximizes both the user’s and the system’s revenue (measured by 

the level of satisfaction or the cost function). The Auction-based LB algorithm also has 

good performance, the difference between the two GT-based algorithms not being signif-

icant, at least at low packet delays. 

The reference Multiple Knapsack algorithm has lower performance than the auction-

based algorithms and ensures comparable performance with the ideal Selfish Routing LB 

algorithm with no or low overhead. 

  

(a) (b) 

Figure 10. Statistical characterization of the packet delays inserted by the considered LB algo-

rithms: (a) The pdfs of the packet delays; (b) The cdfs of the packet delays. 

Figure 11 presents separately the pdfs and the cdfs of the delays suffered by the trans-

mitted packets in the simulated transmission system when the Auction-based LB algo-

rithm, the Combinatorial Auction-based LB algorithm and the Selfish Routing LB algo-

rithm with no penalty are used, respectively when the reference Multiple Knapsack LB 

algorithm is used (these are the best algorithms identified in Figure 10). The presented 

results show clearly that the Combinatorial Auction algorithm has the best performance, 

i.e., it inserts the smallest delays with the highest probabilities, and the Auction-based LB 

algorithm also has good performance. Both algorithms have significantly better perfor-

mance, i.e., smaller delays with higher probabilities and larger delays with lower proba-

bilities, compared to the Multiple Knapsack algorithm and the Selfish Routing LB algo-

rithm with no signaling penalty. Even if all algorithms have polynomial complexity, the 

highest processing resources are requested by the Combinatorial Auction-based algo-

rithm followed by the Multiple Knapsack and the Auction-based LB algorithms. The Com-

binatorial Auction-based algorithm has the highest computational complexity due to the 

continuous monitoring of the potential functions and the instantaneous call throughput, 

while the other two algorithms (mentioned above) must evaluate only the instantaneous 

call throughput. 

Another important issue that must be considered is how well can handle the pro-

posed and tested LB algorithms the real-time flows. The distributions of the packet delays 

presented in Figures 10 and 11 do not make any difference between the different traffic 
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types, being characterized the entire traffic mix. In the case of the real-time type data flows 

(see Appendix A) the interpacket delays are typically situated between 0 and 40–60 ms. 

In the case of VoIP flows the interpacket delay is 20 ms, the maximum allowed value of 

interpacket delays for video traffic is 12.5 ms and for gaming the interpacket delays are 

requested to be smaller than 40 ms, a 60 ms delay being considered an outage. The values 

of the packet delay cdfs of the algorithms considered in Figure 11 are presented in Table 

3, for a better comparison of these values. 

  

(a) (b) 

Figure 11. Statistical characterization of the packet delays inserted by the bests of the considered 

LB algorithms: (a) The pdfs of the packet delays; (b) The cdfs of the packet delays. 
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Table 3. Values of the packet delay cdfs for the LB algorithms considered in Figure 11. 

LB Algorithm cdf Function/Packet Delay (ms) 

Combinatorial Auction 0.23/20 ms 0.58/40 ms 0.8/60 ms 0.95/80 ms 

Auction 0.08/20 ms 0.22/40 ms 0.36/60 ms 0.54/80 ms 

Selfish routing no sig-

naling penalty 
0.01/20 ms 0.09/40 ms 0.21/60 ms 0.28/80 ms 

Multiple Knapsack  0.025/20 ms 0.1/40 ms 0.21/60 ms 0.38/80 ms 

The results presented in Table 3 show clearly that only the Combinatorial Auction-

based LB algorithm can ensure with high probability (in the considered scenario) the de-

lays requested by the considered real-time applications. The Combinatorial Auction-

based LB algorithm computes the potential functions for each traffic flow and checks con-

tinuously if the QoS parameters can be ensured on each tunnel and if not, the data flows 

are redistributed. The Selfish Routing and the Auction-based LB algorithms do not con-

sider separately the different types of flows and do not check the fulfillment of the QoS 

requirements after the routing decision is taken. The Multiple Knapsack LB algorithm as-

signs different priorities for different types of flows and routes first the flows with higher 

priority, but it takes the routing decisions only based on average flow rates and average 

tunnel capacities. The results presented in Figure 8 and Table 1 show that the wireless 

tunnels’ capacities could change significantly in time having as consequence the possible 

(significant) increase of the sojourn time. 

The results presented above are valid in the situation when the total transfer rate of 

the users’ flows is less than the total capacity of the communication tunnels, but the dif-

ference between the requested rate and the offered capacity is relatively small when it is 

important to fill each tunnel as close to capacity as possible. The selected flow mixture 

represents such a situation. If this difference is large, it does not matter which LB algo-

rithm is used, the tunnels being capable of accommodating the source flows. 

The analysis presented above shows that if the tunnels are congested and real-time 

applications are used by many users the Combinatorial Auction algorithm is the best so-

lution, this algorithm being capable to fulfill with high probability the latency require-

ments of real-time applications. If the level of congestion on the tunnels is reduced the 

simple Auction-based algorithm is the best choice having better performance than the 

Multiple Knapsack algorithm but lower implementation complexity. Due to the lack of 

control, the Selfish Routing algorithm is not a practical option, the Multiple Knapsack al-

gorithm being the best solution if the auction-based GT algorithms cannot be used. 

Figure 12 presents the price of anarchy, maxNE (20), for the four tunnels considered in 

the performed experiment. Figure 12a presents the evolution of the price of the anarchy 

with the absolute value of the total rate Rmax < Rav-tunnel, for each tunnel, while in Figure 12b 

the variation of the price of anarchy with the relative value of the total rate Rmax/Rav-tunnel is 

presented. 
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(a) (b) 

Figure 12. Price of anarchy, maxNE, for the simulated virtual tunnels. (a) maxNE versus the absolute 

total rate Rmax; (b) maxNE versus the relative total rate Rmax/Rav-tunnel. 

The price of anarchy increases abruptly when the total rate Rmax approaches the aver-

age transfer rate of the tunnel, but for values of Rmax smaller than Rav-tunnel the variation of 

the price of anarchy is relatively slow with the increase of Rmax (see Figure 12a). Further-

more, we can see that as the total rate Rmax approaches the Rav-tunnel value of the tunnel 

transfer rate significant gains in system transfer rate can be obtained by using more effi-

cient LB algorithms than the relatively simple selfish routing. 

If we compare the variation of the price of anarchy for the considered tunnels with 

the values of the Rmax/Rav-tunnel ratio (the relative total rate) results that the variation of the 

price of anarchy has (approximately) the same behavior no matter the average rate/std 

rate ratio, Rav-tunnel /Rstd-tunnel, of the tunnel (see Figure 12b). 

3.3.2. Practical Implementation Issues 

The proposed and discussed GT-based and reference LB algorithms act on 

packet/flow level which makes possible a network layer implementation. This is a signif-

icantly simpler solution than a MAC/Physical layer implementation, even if the latter one 

has the potential of a more efficient implementation. To implement the LB algorithms at 

the network layer access is required to various packet queues embedded in the Operating 

System (OS) kernel. Packet queues are basic components of any network stack. Queues 

allow communication between asynchronous modules, and can increase the performance 

of inter-module communication, but have the side effect of impacting latency. In Figure 

13 is depicted the enqueuing of the IP packets on the transmit path of the Linux OS net-

work stack, being highlighted also some of the used latency-reducing features [47]. 

Between the IP stack and the Network Interface Controller (NIC) is located the NIC’s 

driver queue (see Figure 13), typically implemented as a FIFO buffer. The driver queue 

does not necessarily store the packet data. An alternative is to store some descriptors that 

point to other packet queues called socket kernel buffers (SKBs), where the packets of the 

service flows are stored. The NIC’s driver queue acquires packets from the IP stack. These 

packets may be generated locally by various services running on the platform or may be 

received on one NIC and routed to another one when the device is functioning as an IP 

router. The use of the driver queue ensures that if the system has data packets to transmit 

these packets will be sent on the channel at the moment when the NIC becomes ready for 

transmission. By employing this design, the NIC does not have to ask the IP stack for data 

packets when transmission opportunities occur, resulting in a higher transfer rate. 
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Figure 13. A simplified high-level overview of the queues on the transmit path of the Linux OS 

network stack. 

The discussed LB algorithms could be integrated into the Queuing Discipline mod-

ule, which sets the order in which different services can access the driver queues of the 

NIC. The Queuing Discipline module has access to the IP stack queues and can acquire 

information about the data flows. This module also has access to the NIC’s driver queues 

and can acquire information about the delay inserted by each tunnel (each tunnel is at-

tached to a separate NIC) and the number of packets waiting in the NIC’s queues. The LB 

algorithms discussed can also be run in the user space but will be necessary to use func-

tions that allow access from the user space to the mentioned queues. It should also be 

mentioned that the GT-based LB algorithms proposed can obtain all the parameters nec-

essary for performing the LB operations by analyzing the evolution in time of the queues 

mentioned above. The identification of the service flows and the measurement of packet 

rates or the interpacket delays can be carried out by analyzing the content and evolution 

in time of the IP stack queue. The measurement of the delays suffered by various packets 

and the congestion level on the communication tunnels implementing the backhaul con-

nections can be achieved by analyzing the evolution in time of the NICs’ transmit queues. 

No other measurement of the macro cell wireless links parameters is necessary, which 

simplifies the system, not being necessary to use specific measurement techniques for dif-

ferent macro cell links technologies. Moreover, the change of the macro cell wireless links 

characteristics and/or parameters will not require changes in the LB algorithms. 

3.3.3. Evaluation of the Proposed User Clustering Algorithms 

The evaluation of the user clustering algorithms was performed in the same condi-

tions as the evaluation of the LB algorithms, meaning that the number of users and the 

traffic mix considered is the same. The scenarios considered are those presented in Figure 

4, i.e., the scenario with the deployment of 2 APs and the scenario with the deployment of 

3 APs. The APs are located at fixed distances D, D = 100 m in the simulations performed, 

and the users are spread uniformly between the 2 or the 3 APs. The traffic types are ran-

domly distributed among the users, but the imposed traffic mix is maintained (see Table 

2). To simplify the simulations, it is considered that to each AP it is attached a single vir-

tual tunnel, which could be the aggregation of several separate virtual tunnels. The trans-

fer rate of these aggregated tunnels originating in the APs was simulated as in the case of 

the evaluation of the LB algorithms, the same traffic models being used. The parameters 

of the channel models were selected to obtain approximately the same average transfer 

rate on each aggregated tunnel (approximately 20 Mbps). The step used to adjust the 

power of the APs was set to 1 dB in some experiments and 2 dB in other experiments, but 

no significant difference can be identified between the results obtained in these two cases. 

In all scenarios, the statistics of the delays suffered by the transmitted packets are 
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evaluated. Figure 14 presents the pdf of the packet delays in the system (the sojourn time) 

in the scenario with two APs and the following cases: 

• the two APs work separately, and no user clustering algorithm is used. The clustering 

of the users is performed only at the beginning of the simulation by attaching each 

user to the AP from which it receives the largest power–see Figure 14a. 

• a non-cooperative type of user clustering is used, each AP adjusting its transmission 

power only based on its local QSI and CSI–see Figure 14b. 

• a cooperative user clustering algorithm is used, each AP having access to the QSI and 

CSI of other APs or being controlled by an AP Controller who has access to all APs’ 

QSI and CSI. If the controller is used this module implements the AP cooperation 

process and sets the transmission power of each APs–see Figure 14c. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Statistical characterization of the packet delays on the aggregated virtual tunnels when 2 

APs and different user clustering algorithms are used: (a) The pdfs of the packet delays when no 

user clustering algorithm is used; (b) The pdfs of the packet delays when the non-cooperative user 

clustering algorithm is used; (c) The pdfs of the packet delays when the cooperative user clustering 

algorithm is used. 

Figure 14 presents separately the pdf of the delay suffered by the transmitted packets 

on the two tunnels and the pdf of the delays suffered by all the packets transmitted by the 

system, meaning the pdf on the combined tunnel used by the system. 

The results presented in Figure 14 show the effects of the LB performed by the clus-

tering algorithms among the APs. If no clustering is used most of the users might be at-

tached to one of the APs, one of the outgoing aggregated tunnels being heavily loaded 

(red curve in Figure 14a) while the other tunnel (the blue curve in Figure 14a) is un-

derused. If any of the clustering algorithms are used the difference in the traffic loads on 

the two aggregated tunnels becomes significantly smaller. To better assess the statistics of 

the delays suffered by the data packets on the two aggregated tunnels in the considered 

situations the cdf of the packet’s delays is presented in Figure 15. 
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(a) 

 
(b) 

  
(c) 

Figure 15. The Cumulative Density Functions of the packet delays on the aggregated virtual tunnels 

when 2 APs and different user clustering algorithms are used: (a) The cdfs of the packet delays when 

no user clustering algorithm is used; (b) The cdfs of the packet delays when the non-cooperative 

user clustering algorithm is used; (c) The cdfs of the packet delays when the cooperative user clus-

tering algorithm is used. 

The results presented in Figure 15 show clearly the huge difference in performance, 

in what concerns the packet delays, of the systems with no users clustering (Figure 15a) 

and with user clustering (Figure 15b,c). Comparing Figure 15b,c we can see the difference 

between the non-cooperative and the cooperative clustering algorithms. In Figure 15c the 

curves converge around 500 ms while in Figure 15b the curves converge around 1500 ms. 

Still, should be noticed that the differences in the performance depicted in Figure 15b,c, 

i.e., the distribution of the packet’s delays, are small. 

Figure 16 presents the pdf of the packet delays in the system (the sojourn time) in the 

scenario with three APs and the following cases: 

• the three APs work separately, and no user clustering algorithm is used. The cluster-

ing of the users is performed only at the beginning of the simulation by attaching 

each user to the AP from which it receives the largest power–see Figure 16a. 

• a cooperative user clustering algorithm is used, and the APs power adjustment step 

is set to 1 dB–see Figure 16b. 

• a cooperative user clustering algorithm is used, and the APs power adjustment step 

is set to 2 dB–see Figure 16c. 

A cooperative user clustering algorithm with separate a power adjustment step for 

the central AP (1 dB) and for the side APs (0.5 dB) was also tested in the same conditions, 

but the results are very similar to those presented in Figure 16b, i.e., 1 dB power adjust-

ment step. In Figure 16 are presented the pdfs of the packet delays on each tunnel and the 

combined tunnel used by the simulated system. 
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Figure 16. Statistical characterization of the packet delays on the aggregated virtual tunnels when 3 

APs and different user clustering algorithms are used: (a) The pdfs of the packet delays when no 

user clustering algorithm is used; (b) The pdfs of the packet delays when the cooperative user clus-

tering algorithm with 1 dB power adjustment step is used; (c) The pdfs of the packet delays when 

the cooperative user clustering algorithm with 2 dB power adjustment step is used. 

In Figure 16a, when no clustering algorithm is used, there is a significant difference 

between the load of tunnel 2 (red curve) and tunnels 1 and 3 (blue and magenta curves), 

these two last tunnels being more loaded, especially tunnel 1 (blue curve). If the clustering 

algorithms are used, the load of the APs and the outgoing tunnels attached to the APs will 

change, and the load of tunnel 1 will decrease significantly, its load being distributed be-

tween tunnel 2 and 3 which will become more loaded, especially tunnel 3. Should be no-

ticed that the performance of the clustering algorithm depends significantly on the posi-

tion of the users and the characteristics of the service flows generated by the users and an 

optimal (more exactly close to optimal) distribution of the traffic between APs is not pos-

sible without using more complex clustering algorithms with more complex interaction 

between the APs and the users. The difference between the load of the APs in the 3 situa-

tions mentioned above is more visible if we analyze the cdfs of the packet delays depicted 

in Figure 17. In Figure 17a all curves converge around 3500 ms, while in Figure 17b,c all 

curves converge around 1500 ms. The performance of LB among the APs for power ad-

justment step 1 dB and 2 dB are very close. 

 
(a) 

 
(b) 

 
(c) 

Figure 17. The Cumulative Density Functions of the packet delays on the aggregated virtual tunnels 

when 3APs and different user clustering algorithms are used: (a) The cdfs of the packet delays when 

no user clustering algorithm is used; (b) The cdfs of the packet delays when the cooperative user 

clustering algorithm with 1 dB power adjustment step is used; (c) The cdfs of the packet delays 

when the cooperative user clustering algorithm with 2 dB power adjustment step is used. 

It should be noticed that the clustering algorithms, like the LB algorithms acting on 

the backhaul communication tunnels, require access only to the queue of the IP stack and 

the driver of the NIC that provides the AP-user connectivity. Identification of the data 

flows and the measurement of the parameters of these flows can be achieved by analyzing 

the content of the IP stack queue while the load of the AP-users connection can be assessed 

by analyzing the evolution in time of the length of the NIC’s driver queue. 

4. Conclusions 

The paper considers the issue of LB over several wireless links set up in a heteroge-

neous cellular system, wireless links which are used as backhaul connections for the AP 

of a small cell. The paper proposes game theory-based algorithms for distributing the data 

flows generated by the users connected to the AP of the small cell over the wireless links 

of several macro cells, possibly owned by different operators, which cover the small cell. 

More precisely the Selfish Routing LB algorithm, the Auction-based LB, and the 
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Combinatorial Auction-based LB algorithms are proposed. As references, the classical 

Round Robin algorithm and an algorithm based on the Multiple Knapsack problem were 

considered. Computer simulations performed in a complex scenario involving four macro 

cells and a mobile AP, i.e., installed in a vehicle, and in the condition of a congested net-

work show that the Auction-based LB and the Combinatorial Auction-based LB algo-

rithms have the best performance, while the performance of the Selfish Routing LB algo-

rithm is weaker than that of the reference Multiple Knapsack LB algorithm, or is similar 

with the performance of this reference algorithm if the signaling penalty is not considered. 

The simulations show that in the condition of congested networks the Combinatorial 

Auction-based LB algorithm and the Auction-based LB algorithm are capable to manage 

efficiently the available resources, i.e., to distribute efficiently the flows on the available 

tunnels, and the packets’ delays can be kept below some limits. The Multiple Knapsack 

LB algorithm can manage well the LB operations for some reduced traffic values, and 

reduced packet delays are ensured with probabilities close to that obtained with the Auc-

tion-based LB algorithm. In the situation of larger (instantaneous) traffic values the per-

formance of the Multiple Knapsack LB algorithm decreases, and larger delays appear with 

large probabilities, meaning that the LB operations are performed less efficiently com-

pared to the GT-based LB algorithms. The Round Robin LB algorithm has, as expected, 

poor performance, large (even very large) packet delays appearing with high probabili-

ties. 

The proposed GT-based LB algorithms are not constrained only to the data commu-

nication scenario considered by this paper. The algorithms are general enough to be 

adapted to other communication scenarios, involving both wireless and wired connection, 

when LB operations are necessary to distribute data flows over parallel communication 

channels/tunnels. 

The paper also proposes two game theory-based algorithms for user clustering when 

several small cell APs are deployed. These algorithms select the users who connect to each 

AP, the goal being to avoid the overloading of some APs while other neighbor APs have 

available resources. The proposed algorithms use a simple power adjustment-based user 

clustering to avoid more complex interaction and signaling between the users and the 

APs. The performed simulations show that even in the case of simple clustering mecha-

nisms the load could be distributed relatively well between the deployed APs and there-

fore a noticeable decrease in the packets’ delays on the virtual tunnels attached to the APs 

is visible. 
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Appendix A Data Traffic Modeling 

Appendix A.1. Best Effort Traffic: FTP 

An FTP session is composed of a succession of file transfers separated by some time 

intervals, the so-called reading time. The main FTP session parameters are (see Table A1): 

• The size S of a file to be transferred; 
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• The reading time D, i.e., the time interval between the end of the download of the 

previous file and the beginning of the next file transfer. 

Based on experimental evaluation of the FTP sessions was observed that for each file 

transfer a separate TCP connection is used and that around 76% of the files were trans-

ferred using a Maximum Transmission Unit (MTU) of 1500 bytes and around 24% of the 

files were transferred using an MTU of 576 bytes. 

Table A1. FTP traffic parameters. 

Parameter Statistical Characterization 

File Size S 

Truncated Lognormal Distribution 

Mean = 2 Mbytes, Standard Deviation = 0.722 Mbytes, Maximum = 5 Mbytes (before truncation)  

pdf: ( )
( )





− −

=

2

2

ln

21
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x

f x e
x

, x > 0, σ = 0.35, μ = 14.45  

Reading Time D 

Exponential Distribution 

Mean = 180 s 

pdf: ( ) xf x e  −=  x ≥ 0, λ = 0.006     

Appendix A.2. Interactive Traffic: Web Browsing Using HTTP 

A web page is formed of a main object and a set of embedded objects (e.g., pictures, 

advertisements, etc.). After the main page is received, the web browser parses the embed-

ded objects. The main parameters that characterize the HTTP web browsing are (see Table 

A2): 

• The main size of an object SM; 

• The size of an embedded object in a page SE; 

• The number of embedded objects ND; 

• Reading time D; 

• Parsing Time for the embedded page TP; 

Table A2. Web-browsing traffic parameters. 

Parameter Statistical Characterization 

Main Object Size 

SM 

Truncated Lognormal distribution. Mean = 25,032 bytes, Standard Deviation = 10,710 bytes, 

Minimum = 100 bytes, Maximum = 2 Mbytes (before truncation) 

pdf: ( )
( )
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, x > 0, σ = 1.37, μ = 8.37  

Embedded Object 

Size SE 

Truncated Lognormal distribution 

Mean = 126,168 bytes, Standard Deviation = 7758 bytes, Minimum = 50 bytes, Maximum = 2 Mbytes 

(before truncation). 
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Number of Em-
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per Page = ND 

Truncated Pareto distribution 

Mean = 5.64, Maximum = 53 (Before Truncation) 
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, α = 1.1, k = 2, m = 55 

Reading Time D 
Exponential Distribution, Mean = 30 s 

pdf: ( )  −= , 0xf x e x , λ = 0.033 

Parsing Time TP Exponential distribution, Mean = 0.13 s 
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pdf: ( )  −= , 0xf x e x , λ = 7.69 

Appendix A.3. VoIP Traffic 

Table A3 presents the most important parameters that characterize the VoIP traffic 

and that were used in the performed simulations. A simple 2-state voice activity model is 

considered, and the state of the model coder is updated at the speech encoder frame rate 

R = 1/T, where T is the encoder frame period (typically 20 ms). 

Table A3. VoIP traffic parameters. 

Parameter Statistical Characterization 

Codec RTP AMR 12.2, Source rate 12.2 kbps 

Encoder frame length 20 ms 

Voice activity factor  50% 

SID (Silence Insertion Descriptor) payload 
Modelled: 15 bytes (5 bytes + header) 

SID packet every 160 ms during silence 

Protocol overhead with compressed header 
10 bits + padding (RTP-pre-header) 

4 bytes (RTP/UDP/IP), 2 bytes (RLC/security), 16 bits (CRC) 

Total voice payload on the air interface 40 bytes (AMR 12.2) 

Appendix A.4. Video Streaming Traffic 

The frames of a video stream arrive at regular time interval T correlated with the 

number of frames per second. Each frame is composed of a fixed number of slices, each 

slice transmitted as a single packet. The sizes of the slices are modeled by a Truncated 

Pareto distribution. The video encoder introduces delays between the packets of a frame. 

These delays are also modeled by a truncated Pareto distribution. The following distribu-

tions assume a source video rate of 64 kbps. The video streaming traffic parameters are 

given in Table A4. 

Table A4. Video streaming traffic parameters. 

Parameter Statistical Characterization 

Inter-arrival time between 

the beginning of each frame 

Deterministic 

100 ms (based on 10 frames per second) 

Number of packets (slices) 

in a frame 
Deterministic, 8 packets per frame 

Packet (slice) size 
Truncated Pareto distribution 

Mean = m = 20 bytes, Maximum = 250 bytes (before truncation) 

 pdf: ( )
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, α = 1.2, k = 10 bytes  

Inter-arrival time between 

packets (slices) in a frame 

Truncated Pareto distribution 

Mean = m = 6 ms, Maximum = 12.5 ms (before truncation) 
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Appendix A.5. Interactive Real-Time Services: Online Gaming 

It is supposed that the starting time of an online gaming session is uniformly distrib-

uted within [0, 40 ms]. This is necessary for the simulation of the random timing relation-

ship between packet arrival and uplink frame boundary. A maximum delay of 160 ms is 

allowed for all uplink packets, and a packet is dropped if this maximum delay is not ful-

filled. The delay of a dropped packet is counted as 180 ms. 
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If the average packet delay is greater than 60 ms the gaming session is considered to 

be in outage. The online gaming traffic parameters are given in Table A5. 

Table A5. Online gaming traffic parameters. 

Parameter Statistical Characterization 

Initial packet arrival 

Uniform Distribution 

pdf: ( )
1

,f x a x b
b a

=  
−

 a = 0, b = 40 ms  

Packet arrival 

uplink: deterministic, 40 ms 

downlink: Largest Extreme Value distribution 

pdf: ( )
1

x a

b
x a

ebf x e e
b

−
−

−
−

−= , a = 55 ms, b = 6 ms 

Packet size 

Largest Extreme Value distribution 

pdf: ( )
1

x a

b
x a

ebf x e e
b

−
−

−
−

−=  

uplink: a = 45 bytes, b = 5.7 bytes 

downlink: a = 120 bytes, b = 36 bytes 

UDP header Deterministic (2 bytes).  
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