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Abstract: Aiming at the robotization of the grinding process in the steel bar finishing process, the
steel bar grinding robot can achieve the goal of fast, efficient, and accurate online grinding operation,
a multi-layer forward propagating deep neural network (DNN) method is proposed to efficiently
predict the kinematic solution of grinding robot. The process and kinematics model of the grinding
robot are introduced. Based on the proposed method, simulations of the end position and orientation,
and joint angle of the grinding robot are given. Three different methods, including SGD + tanh,
Nadam + tanh, Nadam + ELU, are used to test the DNN calculation process results show that the
method combining Nadam with ELU function has the fastest solution speed and higher accuracy can
be obtained with the increase in iteration times. Finally, the Nadam optimizer is used to optimize the
calculation results of the example. The optimization results show that this method accelerates the
convergence rate of trajectory prediction error and improves the accuracy of trajectory prediction.
Thus, the proposed method in this paper is an effective method to predict the kinematic solution
when the grinding robot works online.

Keywords: grinding robot; kinematics; deep neural network; efficient prediction; precision

1. Introduction

Modern society is featured with the rapid advance of industrialization, the replacement
of manual labor by robots is accelerated due to the existence of heavy manual labor and
potential safety risks. More and more manipulators have assumed the responsibility of
assisting or even replacing human beings to complete tasks in industrial automation,
equipment manufacturing, medical assistance, aerospace, etc. [1,2].

As we all know, the steel industry is one of the process industries with a high degree
of automation. However, there are some problems in the finishing area of the special
steel bar, such as frequent operation, harsh environment, heavy labor, and high safety
risk, which have been a great threat and hidden danger to the life safety of workers for a
long time. In view of this, the traditional steel industry urgently needs to be promoted to
robotic operation, in order to meet the requirements of unmanned positions and finishing
processes of high quality and efficiency. The bar finishing process consists of straightening,
shot blasting, chamfering, polishing, and other processes (the finishing process is shown in
Figure 1), grinding as one of the most important processes is given more and more attention
by producers. In order to achieve the goal of fast, efficient, and accurate online grinding
operation of the grinding robot, it is very necessary to efficiently predict the kinematic
solution of the grinding robot before working [3–5].
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Figure 1. The steel bar finishing process.

Kinematics analysis of robots is an important field of robot studies. Kinematics
analysis of grinding robots (6-DOF articulated industrial robots) is actually the study of the
mapping relationship of position vector and orientation vector between the joint space of
the manipulator and Cartesian coordinate space [6–8]. Kinematics analysis can provide
some reference value for the motion control of the robot. In reference [9], the forward
kinematics of the 6-DOF parallel robot was solved based on BP neural network, and the
nonlinear vector mapping from joint space to workspace was realized by the L-M method.
In reference [10], linear interpolation and circular interpolation were used to optimize the
spatial interpolation points, and the trajectory optimization was solved. In reference [11],
the BP and RBF neural networks were applied to solve the inverse kinematics of the 6-DOF
manipulator, and the proposed algorithm was faster than the traditional method, with less
computation time. In reference [12], a sliding mode trajectory tracking control method based
on a convolution neural network was proposed, the convergence rate of trajectory tracking
error was accelerated, and the trajectory tracking accuracy was effectively improved. In
reference [13], a scale optimization GEMM optimization method was proposed to further
optimize convolution. In reference [14], a special acceleration structure for graph neural
network application is proposed. In reference [15], a robust zeroing neural network (RZNN)
model for real-time kinematic analysis of manipulators was proposed. In reference [16], a
new motion controller based on a recursive neural network (RNN) was proposed, which
had good model adaptive ability. In reference [17], a neural network method for residual
positioning and positioning error compensation was proposed. In reference [18], a visual
analysis tool for solving forward and inverse kinematics of 7-DOF robots based on artificial
neural networks was developed. In reference [19], an artificial neural network (ANN)
approach to the reliable calculation of direct kinematics problem (DKP) was presented. In
reference [20], BNN is proposed to establish a highly nonlinear kinematic and dynamic
model of a tendon-driven surgical robot to ensure the accuracy and safety of robotic surgery.
In reference [21], two novel loss functions are proposed to train the feed-forward artificial
neural network (ANN), and the differential relationship between position and velocity
mapping is incorporated into the forward kinematics model of the robot structure, the
study shows that the introduction of velocity mapping can improve the adaptability of the
learning model to the control task. In reference [22], a novel feed-forward artificial neural
network (ANN) structure is proposed to learn the complete pose of the robot in SE (3), and
the difference relation is introduced into the learning process. The research shows that the
proposed method can correctly model the pose of the robot. In reference [23], the authors
do not consider reinforcement learning or trial and error methods. Reinforcement learning
is to apply these mapped actions, get a series of feedback reward values, and then select the
action with the largest reward value. When the degree of freedom of the robot increases,
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the convergence performance of the controller will be significantly worse. As you get more
and more degrees of freedom, it takes longer and longer to converge. In reference [24],
the transfer learning method was applied to train neural networks, which greatly reduced
the number of training images required. In reference [25], a new robust return to zero
neural networks (RZNN) model was proposed to study the timing trajectory tracking
control of wheeled mobile robots in a noise pollution environment. Neural networks have
many other applications as well. In reference [26], The finite-time stabilization problem of
complex-valued neural networks with proportional delays and inertia terms is studied. In
reference [27], an improved convolutional neural network (CNN) was developed for fault
feature extraction and classification of hydraulic piston pumps. The DNN method proposed
in this paper is a deep learning method included in ANN. In this paper, literature [19] is
introduced to better understand the feasibility of the DNN method proposed. DNN is more
capable of modeling or abstracting things and can simulate more complex models. The
problem of inverse kinematics of grinding robots is characterized by high computational
complexity and time consumption. Hence, it is necessary to introduce DNN into the inverse
kinematics of grinding robots.

In order to more effectively control the trajectory of the grinding robot and correctly
solve the forward and inverse kinematics parameters of the robot, and to avoid the compli-
cated process of solving kinematics equations and the un-uniqueness of inverse kinematics
solutions, to achieve fast and efficient online grinding operation of bar grinding robot, in
this paper a method based on the multi-layer forward propagation deep neural network
is proposed. The proposed method is used to solve the forward and inverse kinematics
and realize the kinematics calculation and is compared with the traditional analytical calcu-
lation method. It is demonstrated that not only the complicated mathematical theoretical
derivation calculation process can be avoided, but results with higher accuracies can also
be achieved, it can achieve the goal of fast, efficient, and accurate online grinding operation
of bar grinding robot.

This paper takes KUKA KR series industrial robot (grinding robot) as the research
object, the main structure of the article is arranged as follows: in Section 2, the basic
concepts and related theories of the grinding robot process and kinematics are introduced.
A strategy for solving grinding robot kinematics equations based on a multi-layer forward
propagation deep neural network is proposed in Section 3. In Section 4, the experimental
scheme is stated, and the main simulation experiments and optimization are described in
detail. In Section 5 some conclusions are drawn.

2. Grinding Robot Process Introduction and Kinematics Model
2.1. Grinding Robot Process Introduction

Finishing is the last process of quality control of special steel products, and it is
animportant means to ensure the quality of steel products, improve the grade of products
and create fine products. It is through the special steel products shot blasting, straightening,
chamfering, flaw detection, grinding, labeling, baling, weighing, heat treatment, surface
peeling and other processing, to eliminate surface and internal defects of the special steel
bar, so that special steel products can meet the factory standards and user requirements,
but also can greatly improve the added value of products. The finishing process includes
online finishing and offline finishing. The online finishing process is shown in Figure 2.

Online finishing generally refers to the product in the rolling line completing the
relevant finishing process. The offline finishing is independent of the rolling production
line, which is a process route for the advanced finishing treatment of steel. There are
different offline processing processes according to different steel products. As an important
part of the finishing process, grinding is paid more and more attention by scientific and
technical workers. Grinding robots are mainly used for polishing sanitary porcelain, tables,
chairs, and body and deburring castings, these are floating flexible polish. Special steel
bar grinding belongs to rigid grinding, grinding material is hard, compared with manual
grinding existing problems of uncontrollable depth, and surface quality is not high, it is
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necessary to realize the special steel bar grinding robotization. Therefore, it is necessary to
efficiently predict the kinematic solution of the grinding robot before the online grinding of
the special steel bar.
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Figure 2. Online finishing process of the steel bar.

Before the grinding robot is used to grind the defects of the special steel bar, the robot
grinding system needs to recognize the bar defect data provided by the crack detection
device, then the program in the robot database is called to command the grinding robot to
realize the grinding of bar defects. According to the actual working conditions provided
parameters, the parameters of bar defect are depth greater than 0.2 mm and length greater
than 0.5 mm. The defect location and sample diagram of the bar are shown in Figure 3.
According to the requirements of the grinding compliance rate of the production line, the
compliance rate of the bar after the robot grinding should be greater than or equal to 95%.
The actual transfer speed of the special steel bar production line is 1~2 m per s.
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Special steel bar grinding belongs to rigid grinding, grinding material is hard, com-
pared with the traditional manual grinding, there are problems of uncontrollable depth,
and surface quality is not high. The kinematics control of the robot must be considered
to realize the robotic operation of the grinding process. The efficiency and accuracy of
the robot grinding steel bar depend on whether the robot can accurately reach the target
grinding point. The motion trajectory and drive control of the robot have a great influence
on the grinding, so it is necessary to effectively predict the robot’s kinematic solution in
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advance. In the process of robot grinding, there will be kinematic problems such as rotation
of each joint, trajectory planning, position, and attitude of the end-effector. Considering the
timeliness of robot motion control by the robot grinding strategy program, it is necessary
and effective to predict the robot kinematic solution to improve the grinding efficiency and
precision. In order to accurately control the robot to reach the grinding target point, it must
be able to accurately predict the actual state displacement of the robot in the moving space.

In this paper, the deep neural network proposed instead of the traditional D-H kine-
matics calculation method is aimed at the specific practical application field of robot
grinding special steel bar defects. When the robot is used to grind the steel bar, the grinding
wheel installed at the end of the robot will wear off its own abrasive particles with friction
contact with the steel bar, resulting in the reduction of the diameter of the grinding wheel.
Therefore, the diameter change in the grinding wheel becomes an uncertain parameter in
the actual robot grinding process. It is well known that the traditional D-H kinematics
calculation method can accurately obtain the parameter information of robot kinematics.
However, in view of the fact that the uncertainty caused by the change in grinding wheel
diameter in the actual grinding process will affect the efficiency and accuracy of robot
grinding. In this paper, the deep neural network is proposed to predict the robot kinematics
in advance, which can effectively avoid the above problems. The robot kinematics solution
of was predicted to eliminate the uncertainty of grinding caused by the change of grinding
wheel diameter in the actual grinding process. Some compensation and correction are
given to the robot before grinding so that the robot can adjust in real time when grinding
the steel bar, so as to complete the grinding task more efficiently and accurately.

As mentioned above, when the grinding wheel is grinding the steel bar, the abrasive
particles will be worn off and the diameter of the grinding wheel will become smaller.
Therefore, the uncertainty caused by the change of grinding wheel diameter becomes a
factor affecting the efficiency and precision of robot grinding. The reduction of grinding
precision and the change of surface morphology of steel bar defects, which leads to the
secondary inspection of the steel bar. As shown in Figure 2, bar finishing process flow
chart. It can be seen that if secondary inspection of steel bar defects is carried out, the
“detecting-distributing-grinding” cycle process will be re-implemented. As a result, steel
bar accumulation occurred in the storage area, and the efficiency of the whole finishing
operation will be significantly reduced, thus greatly reducing the overall grinding efficiency.
Therefore, it is necessary to predict the robot kinematics of the steel bar before the robot
grinding, which can fully ensure the efficiency and accuracy of the robot grinding.

To sum up, it is necessary to effectively predict the kinematic solution of the grinding
robot before the grinding robot is used to repair the defects of the special steel bar, in
order to achieve the fast, efficient and accurate online grinding operation goal of the
grinding robot.

2.2. Grinding Robot Kinematics Model

This paper takes the KUKA KR series robot (grinding robot) as the research object,
which is composed of a base frame, rotating column, link arm, in-line wrist, arm, and other
parts. The main purpose is to install a grinding wheel at the end of the robot manipulator to
grind the special steel bar with surface defects, the existing robot manipulator, and the steel
bar grinding system (the work of this paper is to provide motion support for the realization
of robot grinding steel bar) in the laboratory are shown in Figure 4.

The essence of the kinematic analysis of the grinding robot is the process of matrix
transformation between two adjacent coordinate systems, and then the transformed matri-
ces are multiplied successively, and finally, the kinematic equation of the robot is obtained.
The solution of the kinematics equation consists of two parts, forward kinematics solution,
and inverse kinematics solution. The forward kinematics solution is based on the known
angle of each joint variable to solve the position and orientation of the end-effector. The
inverse kinematics is based on the known position and orientation of the end-effector to
solve the angle of each joint variable [28]. The specific solution process is described in
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detail in the literature [8], which will not be described here. In order to obtain higher
calculation accuracy and simplify the calculation process, a method based on a multi-layer
forward propagation deep neural network was proposed to solve the kinematics equation
of the robot.
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According to D-H model parameter method, the coordinate system of each link of
grinding robot is established, as shown in Figure 5. The grinding robot is revolute joint,
the end is connected with an actuator. No matter how the revolute joint 0 connecting the
base frame and the rotating column rotates, its length has no influence on the movement of
grinding robot, so the reference coordinate system 0 and coordinate system 1 are coaxial.
According to the right-hand rule, the coordinate axes direction of remaining joints are
determined [28,29].
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When the coordinate system of grinding robot manipulator is established, the corre-
sponding kinematics analysis and calculation can be carried out according to the given
parameters of each link of grinding robot. The variation range of D-H model parameters
and related variables of each link is shown in Table 1.

Table 1. Basic parameters of grinding robot.

i ai−1 αi−1 di θi θi Scope

1 0 0 0 θ1 +/−185◦

2 a1 −90◦ 0 θ2 −5~−140◦

3 a2 0 0 θ3 +155~−120◦

4 a3 −90◦ d4 θ4 +/−350◦

5 0 90◦ 0 θ5 +/−122.5◦

6 0 −90◦ 0 θ6 +/−350◦

Where ai−1 is the length of the link and represents the common perpendicular of
two adjacent joints axes connecting link i− 1, αi−1 is the angle of the link and represents
the angle between two adjacent joints, di is the offset of the link and represents the distance
from the point where ai−1 intersects axis i to the point where ai intersects axis i, θi is
the angular displacement between adjacent joints and represents the angle between the
extension of ai−1 and the extension of ai.

The transformation matrix i−1
i T of coordinate system {i} with respect to coordinate

system {i− 1} is as follows.

i−1
i T = Rot(x, αi−1)Trans(x, ai−1)Rot(z, θi)Trans(z, di) (1)

i−1
i T = Screw(x, ai−1, αi−1)Screw(z, di, θi) (2)

where Screw(L, r, ϕ) is translating r along axis L and rotating ϕ around axis L.
The general expression of transformation matrix i−1

i T between links is as follows.

i−1
i T =


cos θi − sin θi 0 ai−1

sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 −di sin αi−1
sin θi sin αi−1 cos θi sin αi−1 cos αi−1 di cos αi−1

0 0 0 1

 (3)

The position vector P represents the position of the terminal link, the rotation matrix
R =

[
n o a

]
represents the orientation of the terminal link. The kinematics equation of

manipulator is as follows.

[0
nR 0

n p
0 1

]
=


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 = 0
1T(θ1)

1
2T(θ2) . . . n−1

n T(θn) (4)

where the equation represents the relationship between the position and orientation of the
terminal link (n, o, a, p) and the joint variables θ1, θ2, · · · , θn.

The robot kinematics model is the core technology of robot application, especially the
inverse kinematics model of series robots and the forward kinematics model of parallel
robots. The solution process is complicated, and most of them even do not have analytical
solutions. All these problems bring difficulties for the application of robots. The solution
of the robot kinematics model based on a neural network is the process of generating
data fitting the forward kinematics model according to the inverse kinematics model, or
generating data fitting the inverse kinematics model according to the forward kinematics
model. When solving the kinematics of the 6-DOF robot, selecting solutions and missing
solutions to problems will arise. Deep neural networks can deal with many complex
underfitting problems. It is possible to solve some complex problems by increasing the
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depth of the network and improving learning ability. In view of the deep learning algorithm
has the advantages of automatic learning, automatic optimization, and incremental learning
of advanced functions from data. Therefore, the deep neural net is introduced in this paper
to solve and predict the kinematics model of the robot.

The fast prediction method proposed in this paper is different from the traditional
robot kinematics analysis method. The deep neural network is applied to solve the robot
kinematics, and a large amount of data drive and mapping relationship between parameters
are used to solve and analyze the robot kinematics, so as to replace the traditional analytical
method to realize the application of the robot.

3. DNN Based Grinding Robot Kinematics Solution
3.1. DNN Overview

Deep neural network (DNN) is a technique in the field of machine learning, it refers to
a neural network containing multiple hidden layers. According to the position of different
levels, the neural network layer inside DNN can be divided into three categories, including
the input layer, hidden layer, and output layer, and the layers are fully connected [30,31].
By using DNN to make a prediction, the accuracy will get better as the number of training
sessions increases. The application of a deep learning model to grinding robots for trajectory
tracking and predictive control is the current research direction of the industry [32,33].

3.2. DNN Model

In this paper, a deep neural network (DNN) method is proposed to solve the kinematic
problems of grinding robot, the problem of solving robot kinematics is transformed into a
weight coefficient matrix, bias vector, and input vector of training a neural network, and a
series of linear operations and activation operations are carried out.

This paper takes the KUKA KR300 R2500 6-DOF series robot (grinding robot) as
an example. The essence of a forward kinematics solution is to solve the position and
orientation (X,Y,Z,A,B,C) of the end-effector of the manipulator under the condition of
known joint variables (θ1,θ2,θ3,θ4,θ5,θ6). Similarly, the inverse kinematic solution is to solve
the angle of each joint in the case of known terminal position and orientation. Therefore, the
six joint angles of the manipulator are taken as the input of the whole neural network, the
input vector is J = [θ1, θ2, θ3, θ4, θ5, θ6], the position and orientation of the end-effector are
taken as the output of the whole neural network, and the output is W = [X, Y, Z, A, B, C].
On the contrary, the inverse kinematics is solved by taking the terminal position and
orientation as input and the joint angle as output.

For the analysis of grinding robot kinematics, according to the topological structure
type of neural network [34,35], a forward propagation neural network structure with six
dimensions of input, six dimensions of output, and multiple hidden layers is established
(as shown in Figure 6) to realize the desired mapping vector relationship from input space
to output space.

According to the classification of DNN’s internal neural network layers, the layers are
fully connected, any neuron in layer i must be connected to any neuron in layer i + 1, it is a
linear relationship z = ∑ cixi + b plus an activation function σ(z).

If the activation function is σ(z) and the output value of the hidden layer and output
layer is w, then the output of the second layer is available. The expression is as follows:

w2
1 = σ(z2

1) = σ(c2
11x1 + c2

12x2 + · · ·+ c2
1kxk + b2

1)

w2
2 = σ(z2

2) = σ(c2
21x1 + c2

22x2 + · · ·+ c2
2kxk + b2

2)

...
...

...
w2

k = σ(z2
k) = σ(c2

k1x1 + c2
k2x2 + · · ·+ c2

kkxk + b2
k)

(5)

The output of the third layer is w3
1, the expression is as follows:

w3
1 = σ(z3

1) = σ(c3
11w2

1 + c3
12w2

2 + · · ·+ c3
1kw2

k + b3
1) (6)
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Assuming that layer i− 1 has a total of m neurons, then the output of the j neuron of
layer i is wi

j, the algebraic expression is as follows:

wi
j = σ(zi

j) = σ(
m

∑
k=1

ci
jkwi−1

k + bi
j) (7)

Assuming that the layer i − 1 has a total of m neurons, the layer i has a total of n
neurons, then the layer i has coefficient matrix Ci of the order n×m, the bias vector for
layer i has vector bi of the order n× 1, the output of layer i− 1 has vector wi−1 of the order
m× 1, the output of the inactive parameter at layer i has vector zi of the order n× 1, the
output of layer i has vector wi of the order n× 1, the matrix expression is as follows:

wi = σ(zi) = σ(Ciwi−1 + bi) (8)

where C refers to the matrix corresponding to the hidden layer and the output layer, b is
the bias vector, z refers to the parameters contained in the activation function, w refers to
the matrix corresponding to the output layer.

3.3. Complexity

In order to better prove the effectiveness of the method proposed in this paper, the
space complexity and time complexity of DNN method are explained, which meet the
conditions of increasing relationship between execution efficiency and data volume. Time
complexity refers to the number of operations of the model, which measures how fast or
slow the model runs. Time complexity refers to the number of operations of the model,
which is an indicator to measure hardware performance and determines the training
and prediction time of the model. If the complexity is too high, the model training and
prediction will consume a lot of time, which can neither verify the idea and improve the
model quickly nor make fast prediction. Space complexity refers to the number of model
parameters and determines the number of model parameters. Due to the limitation of
curse of dimensionality, the more parameters of the model, the greater the amount of data
required to train the model, while the data set in real life is usually not too large, which
will lead to the training of the model is easier to overfit.

The time complexity is calculated as follows: suppose the input sequence is of di-
mension n, each element has dimension d, and the number of neurons is x The big O is
used to simplify time complexity. The number of repetitions of the basic operation of the
algorithm is a function f (n) of module n. Therefore, the time complexity of the algorithm
is denoted as T(n) = O( f (n)). Less complexity means better code. Space complexity is
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a measure of the amount of storage space temporarily occupied by an algorithm during
its operation. The calculation rule of space complexity is basically similar to that of time
complexity, which can be denoted as S(n) = S( f (n)).

(1) Forward kinematics solution

Table 2 shows the calculation process of time complexity and space complexity of
forward kinematics.

Table 2. Forward kinematics complexity calculation.

i Layer Input
Dimension n

Element
Dimension d Neuron x Time

Complexity
Space

Complexity

1 Fully
Connected 6 1 64 O (n * d * x) S (n * d * x)

2 Activation 64 1 N/A O (n * d) S (n)

3 Fully
Connected 64 1 64 O (n * d * x) S (n * d * x)

4 Activation 64 1 N/A O (n * d) S (n)

5 Fully
Connected 64 1 64 O (n * d * x) S (n * d * x)

6 Activation 64 1 N/A O (n * d) S (n)

7 Fully
Connected 64 1 32 O (n * d * x) S (n * d * x)

8 Activation 32 1 N/A O (n * d) S (n)

9 Fully
Connected 32 1 16 O (n * d * x) S (n * d * x)

10 Activation 16 1 N/A O (n * d) S (n)

11 Fully
Connected 16 1 6 O (n * d * x) S (n * d * x)

The number of times a statement is executed in an algorithm is called the statement
frequency or time–frequency, which can be denoted as T(n). In the time–frequency T(n),
n is called the scale of the problem. When n keeps changing, the time–frequency T(n)
will also keep changing. Space complexity is a measure of the amount of storage space
temporarily occupied by an algorithm during its run, also reflecting a trend. The amount
of storage space required by an algorithm is expressed as f (n). In Table 2, T(n) = O( f (n))
indicates that with the increase of problem size n, the growth rate of algorithm execution
time is the same as that of f (n). S(n) = S( f (n)) indicates that when the space complexity
of an algorithm is linearly proportional to n, it can be expressed as S(n).

The layers of the deep neural network structure are connected in series, fully connected,
and gradually descend during deep learning. Space complexity is a measure of the amount
of storage space temporarily occupied by an algorithm during running, not the number of
bytes occupied by a program, so space complexity is the number of variables.

(2) Inverse kinematics solution

Table 3 shows the calculation process of time complexity and space complexity of
inverse kinematics.

The number of times a statement is executed in an algorithm is called the statement
frequency or time–frequency, which can be denoted as T(n). In the time–frequency T(n),
n is called the scale of the problem. When n keeps changing, the time–frequency T(n)
will also keep changing. Space complexity is a measure of the amount of storage space
temporarily occupied by an algorithm during its run, also reflecting a trend. The amount
of storage space required by an algorithm is expressed as f (n). In Table 2, T(n) = O( f (n))
indicates that with the increase of problem size n, the growth rate of algorithm execution
time is the same as that of f (n). S(n) = S( f (n)) indicates that when the space complexity
of an algorithm is linearly proportional to n, it can be expressed as S(n).



Appl. Sci. 2023, 13, 1212 11 of 21

Table 3. Inverse kinematics complexity calculation.

i Layer Input
Dimension n

Element
Dimension d Neuron x Time

Complexity
Space

Complexity

1 Fully
Connected 6 1 128 O (n * d * x) S (n * d * x)

2 Activation 128 1 N/A O (n * d) S (n)

3 Fully
Connected 128 1 128 O (n * d * x) S (n * d * x)

4 Activation 128 1 N/A O (n * d) S (n)

5 Fully
Connected 128 1 128 O (n * d * x) S (n * d * x)

6 Activation 128 1 N/A O (n * d) S (n)

7 Fully
Connected 128 1 128 O (n * d * x) S (n * d * x)

8 Activation 128 1 N/A O (n * d) S (n)

9 Fully
Connected 128 1 128 O (n * d * x) S (n * d * x)

10 Activation 128 1 N/A O (n * d) S (n)

11 Fully
Connected 128 1 128 O (n * d * x) S (n * d * x)

12 Activation 128 1 N/A O (n * d) S (n)

13 Fully
Connected 128 1 64 O (n * d * x) S (n * d * x)

14 Activation 64 1 N/A O (n * d) S (n)

15 Fully
Connected 64 1 32 O (n * d * x) S (n * d * x)

16 Activation 32 1 N/A O (n * d) S (n)

17 Fully
Connected 32 1 16 O (n * d * x) S (n * d * x)

18 Activation 16 1 N/A O (n * d) S (n)

19 Fully
Connected 16 1 6 O (n * d * x) S (n * d * x)

The layers of the deep neural network structure are connected in series, fully connected,
and gradually descend during deep learning. Space complexity is a measure of the amount
of storage space temporarily occupied by an algorithm during running, not the number of
bytes occupied by a program, so space complexity is the number of variables.

4. Simulation Experiments and Optimization
4.1. Experimental Scheme

This paper takes the KUKA KR300 R2500 6-DOF series robot (grinding robot) as an
example, the parameters are given as follows: a1 = 350 mm, a2 = 1150 mm, a3 = 41 mm,
d4 = 1000 mm.

Based on the above theories, 550 training samples are selected in this paper, the data
used to train the deep neural network in this paper are extracted from the existing Leica-
AT960-SR laser tracker in the laboratory, and the data acquisition platform is shown in
Figure 7. The KUKA robot model was selected in RoboDyn software, and parameters such
as the D-H parameter table and motion range of each joint were imported into the software,
and the operating workspace boundary was set. Multiple sets of data were automatically
generated by the software and then a simulation was carried out. The corresponding
inverse kinematic joint angle is derived by software, excluding the data generated by the
irregular running trajectory when coupling occurs. The simulation data were input into the
robot demonstrator, the software and the laser tracker were connected to the same subnet,
and the T-Mac sensor was installed at the end of the robot. After confirming the accuracy
of the calibration, the final data was obtained through the laser tracker. Joint angle sample
data are shown in Table 4.



Appl. Sci. 2023, 13, 1212 12 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 28 
 

4. Simulation Experiments and Optimization 

4.1. Experimental Scheme 

This paper takes the KUKA KR300 R2500 6-DOF series robot (grinding robot) as an 

example, the parameters are given as follows: a1 = 350 mm, a2 = 1150 mm, a3 = 41 mm, d4 = 

1000 mm. 

Based on the above theories, 550 training samples are selected in this paper, the data 

used to train the deep neural network in this paper are extracted from the existing Leica-

AT960-SR laser tracker in the laboratory, and the data acquisition platform is shown in 

Figure 7. The KUKA robot model was selected in RoboDyn software, and parameters such 

as the D-H parameter table and motion range of each joint were imported into the soft-

ware, and the operating workspace boundary was set. Multiple sets of data were auto-

matically generated by the software and then a simulation was carried out. The corre-

sponding inverse kinematic joint angle is derived by software, excluding the data gener-

ated by the irregular running trajectory when coupling occurs. The simulation data were 

input into the robot demonstrator, the software and the laser tracker were connected to 

the same subnet, and the T-Mac sensor was installed at the end of the robot. After con-

firming the accuracy of the calibration, the final data was obtained through the laser 

tracker. Joint angle sample data are shown in Table 4. 

 

Figure 7. The data acquisition platform. 

Table 4. Joint angles sample data. The row represents joint angles, the column represents the sample 

number. 

i θ1 θ2 θ3 θ4 θ5 θ6 

1 169.152 −74.474 100.077 −250.680 −19.168 291.015 

2 108.117 −10.469 60.329 −325.002 85.537 303.795 

3 66.132 −37.705 84.361 −75.441 38.092 −230.169 

4 76.237 −135.703 −43.846 −317.680 −98.703 226.420 

5 −140.971 −72.721 143.930 −111.730 20.891 −193.332 

6 −92.969 −105.562 19.138 139.354 95.771 321.504 

7 17.470 −121.286 −78.944 −169.744 83.476 −172.002 

8 116.285 −107.124 135.547 −105.011 −74.334 −174.241 

9 42.937 −76.106 −23.294 231.580 20.890 34.807 

10 154.362 −101.412 88.230 177.610 −29.291 47.475 

       

The training method of DNN is adopted to set the network structure as 6-128-128-…-

128-128-64-32-16-6, let every 100 iterations be an epoch, batch size for each iteration is set 

Figure 7. The data acquisition platform.

Table 4. Joint angles sample data. The row represents joint angles, the column represents the sample number.

i θ1 θ2 θ3 θ4 θ5 θ6

1 169.152 −74.474 100.077 −250.680 −19.168 291.015
2 108.117 −10.469 60.329 −325.002 85.537 303.795
3 66.132 −37.705 84.361 −75.441 38.092 −230.169
4 76.237 −135.703 −43.846 −317.680 −98.703 226.420
5 −140.971 −72.721 143.930 −111.730 20.891 −193.332
6 −92.969 −105.562 19.138 139.354 95.771 321.504
7 17.470 −121.286 −78.944 −169.744 83.476 −172.002
8 116.285 −107.124 135.547 −105.011 −74.334 −174.241
9 42.937 −76.106 −23.294 231.580 20.890 34.807

10 154.362 −101.412 88.230 177.610 −29.291 47.475
...

...
...

...
...

...
...

The training method of DNN is adopted to set the network structure as 6-128-128- . . .
-128-128-64-32-16-6, let every 100 iterations be an epoch, batch size for each iteration is set
to 550, so one epoch is equivalent to 55,000 training samples, represented by the number of
sessions per hour on the server as the number of training epochs. Use Python to execute
code programs.

4.2. Simulation Experiments

(1) Conventional stochastic gradient optimization is solved by using an activation func-
tion combining stochastic gradient descent (SGD) and hyperbolic tangent (tanh). The
curves of the Sigmoid function and tanh function are shown in Figure 8. The ad-
vantage is that it is smooth and easy to derivate and can map a real number to the
interval [0, 1]. The disadvantage is that the exponential operation has a large amount
of calculation, slow descent speed, and there is division in the derivation when the
backpropagation is solving the error gradient. In the process of backpropagation,
saturated neurons will lead to the disappearance of the gradient, so that the training
of the deep network cannot be completed. The fitting situation of SGD plus tanh
solution is shown in Figures 9 and 10.

(2) The activation function combining Nesterov adaptive moment estimation (Nadam)
and hyperbolic tangent (tanh) is used to complete the experiment. Nadam has a
stronger constraint on the learning rate and a more direct influence on the gradient
update. In this case, the gradient disappearance still exists. The main advantage of
Nadam over Adam is better performance in the case of disappearing gradients. In
general, where you want to use RMSprop or Adaptive Moment Estimation (Adam),
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most can use Nadam for better results. The fitting situation of the Nadam plus tanh
solution is shown in Figures 11 and 12.
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(3) The activation function combining Nesterov adaptive moment estimation (Nadam)
and improved ReLU function (ELU) is used to complete the experiment. The curve of
the ELU function is shown in Figure 13. Compared with the ReLU function, there is a
certain number of outputs in the case of negative input, and this part of the output
has a certain anti-interference ability, which can eliminate the problem of ReLU dying.
However, there are still problems with gradient saturation and exponential operation,
and the calculation intensity is high. The fitting situation of the Nadam plus ELU
solution is shown in Figures 14 and 15.
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The loss function used in this paper is mean_squared_error function, which is the
mean square error loss function. This function can accurately describe the angle difference
when calculating the joint angles, which is equivalent to the accuracy difference of the FK.

The experiment results of the above three solution methods are shown in Figure 16
and Table 5. According to the analysis of data results, the Nadam solver plus ELU function
has the fastest solution speed. A higher accuracy is obtained with the increasing number
of iterations.
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Table 5. The partial test results of three solution methods.

Method +
Iteration 2000 10,000 100,000 400,000

SGD + Tanh 80.9% 80.9% 80.9% 80.9%
Nadam + Tanh 87.1% 88.3% 88.3% 88.3%
Nadam + ELU 90.9% 93.4% 97.8% 98.5%

Different methods consume different times when reaching different iteration times.
With the increase in iteration times, different methods consume more and more time. The
time consumed by different methods during iteration is shown in Table 6.

Table 6. The time consumed by different methods during iteration.

Method + Iteration
+ Consumption Time SGD + Tanh Nadam +

Tanh Nadam + ELU

2000 80.9% 87.1% 90.9%
Single iteration time consumption 20 ms 22 ms 22 ms

Total time consumption 40 s 45 s 45 s

10,000 80.9% 88.3% 93.4%
Single iteration time consumption 20 ms 22 ms 22 ms

Total time consumption 3 min 21 s 3 min 47 s 3 min 44 s

100,000 80.9% 88.3% 97.8%
Single iteration time consumption 20 ms 22 ms 22 ms

Total time consumption 33 min 16 s 33 min 51 s 33 min 57 s

400,000 80.9% 88.3% 98.5%
Single iteration time consumption 20 ms 22 ms 22 ms

Total time consumption 2 h 14 min 26 s 2 h 27 min 06 s 2 h 28 min 25 s

4.3. Nadam Optimization

Nadam optimizer is used to optimize the processing results of DNN. The optimization
strategy for Nadam (Nesterov accelerated adaptive moment estimation) is to update model
parameters according to the following formula [36,37].

gt = ∇θt−1 f (θt−1) (9)

∧
gt =

gt

1−∏t
i=1 αi

(10)

mt = αtmt−1 + (1− αt)gt (11)

∧
mt =

mt

1−∏t+1
i=1 αi

(12)

nt = βnt−1 + (1− β)g2
t (13)

∧
nt =

nt

1− βt (14)

_
mt = (1− αt)

∧
gt + αt+1

∧
mt (15)

θt − θt−1 = ∆θt = −η

_
mt√
∧
nt + ε

(16)

where gt refers to gradient, θ refers to Initial parameters, α refers to momentum factor, mt
refers to first order moment estimation, nt refers to second order moment estimation, β
refers to gradient cumulant factor, η refers to learning rate, ε refers to learning speed rate
and make sure the denominator is not 0.
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The obtained experimental results after optimization of the Nadam optimizer, the
training time required by the corresponding method to achieve the corresponding accuracy
is significantly reduced compared with that before optimization. The results show that the
proposed method can greatly improve the accuracy and efficiency of the robot kinematics
solution. The optimized time results and efficiency are shown in Table 7.

Table 7. The optimized time results and efficiency.

Method
+ Accuracy

Time Required for 80%
Accuracy

Time Required for
85% Accuracy

Time Required for
90% Accuracy

Time Required for
95% Accuracy

SGD + Tanh About 30 s N/A N/A N/A
Nadam + Tanh About 20 s About 30 s N/A N/A
Nadam + ELU About 20 s About 30 s About 45 s About 10 min

(1) The relationship between joint angle and terminal position and orientation can be
understood as nonlinear regression of x and y, the nonlinear fitting is carried out
by the full connection of layer to layer of DNN, represented as y = f (x). After
running the program, the predicted result of terminal position and orientation can be
obtained, and then compared with the theoretical analytical value, the absolute mean
error of orientation forward kinematics solution is about 0.02◦, the absolute mean
error of position forward kinematics solution is about 0.3 mm, they are all within the
margin of error. It shows that there is little difference between the predicted value
and the analytical solution, which can meet the precision requirement of engineering
applications. The comparison curves between the analytic solution and the predicted
solution of forward kinematics are shown in Figure 17, the selected sample data is
shown in Table 8.
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Figure 17. Comparison curves of analytic and predictive solutions of forward kinematics.

(2) Similarly, the relationship between terminal position and orientation and joint angle
can be understood as nonlinear regression of y and x. The deep neural network
is combined with the inverse kinematics solving program, and the unique inverse
kinematics solution of the robot is determined by filtering and limiting conditions.
After running the program, the predicted result of joint angle can be obtained and then
compared with the theoretical analytical value, the absolute mean error of orientation
inverse kinematics solution is about 10−5, and it is almost close to 0. It shows that
there is little difference between the predicted value and the analytical solution
(negligible), which can meet the precision requirement of engineering applications.
The comparison curves between the analytic solution and the predicted solution of
inverse kinematics are shown in Figure 18, the selected sample data is shown in
Table 9.
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Table 8. Comparison of analytic and predictive solutions of forward kinematics.

1
Joint angle actual value 103.157 −82.834 −95.024 −163.470 −84.854 −153.296
Position and orientation

actual value 51.512 519.156 2124.172 −130.236 4.834 16.073

Position and orientation predicted value 52.048 519.625 2124.669 −130.266 4.825 16.080

2
Joint angle actual value 88.812 −108.298 82.113 329.419 89.898 −289.636
Position and orientation

actual value 142.725 −993.218 1986.104 174.860 35.362 −161.150

Position and orientation predicted value 143.089 −993.617 1986.581 174.353 35.718 −161.664

3
Joint angle actual value −69.850 −68.648 −74.447 71.387 −58.072 107.855369
Position and orientation

actual value −231.802 −71.347 2403.578 −87.774 66.774 75.165

Position and orientation predicted value −232.019 −71.836 2403.117 −88.013 66.384 75.881

4
Joint angle actual value −155.081 −35.073 128.912 23.640 −95.757 228.066
Position and orientation

actual value −278.397 −988.946 2562.402 171.416 12.991 −55.852

Position and orientation predicted value −278.662 −989.034 2562.831 171.956 12.448 −55.725
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Table 9. Comparison of analytic and predictive solutions of inverse kinematics.

1

Position and
orientation actual value 1131.414 −7.778 124.19 −11.456 −55.673 −93.113

Joint angle actual value 12.630900 −20.476474 127.226347 88.156338 −88.722097 −197.538884
Joint angle predicted value 12.630894 −20.476461 127.226353 88.156347 −88.722106 −197.538896

2

Position and
orientation actual value 835.82 −16.01 614.392 −47.505 −11.666 −170.864

Joint angle actual value 0.474678 −81.717642 154.329096 218.121807 −3.515341 276.113429
Joint angle predicted value 0.474703 −81.717651 154.329104 218.121796 −3.515348 276.113437

3

Position and
orientation actual value −380.804 −2003.691 815.821 −76.990 −10.079 −87.533

Joint angle actual value 106.601969 −34.660064 63.840859 −256.547298 −117.218808 41.888494
Joint angle predicted value 106.602017 −34.660035 63.840873 −256.547304 −117.218824 41.888486

4

Position and
orientation actual value −1613.768 −765.244 2298.126 48.712 20.206 −90.383

Joint angle actual value 147.210303 −59.896149 18.556023 78.966712 78.258449 22.322419
Joint angle predicted value 147.210309 −59.896154 18.556041 78.966708 78.258453 22.322422
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Table 8 shows the prediction results of forward kinematics, reflecting the terminal pose
obtained by giving six joint angles, which is represented as [θ1, θ2, θ3, θ4, θ5, θ6]→ [X,Y, Z, A, B, C] .
Table 9 shows the prediction results of inverse kinematics, reflecting the six joint angles obtained by
the given position and orientation, which is represented as [X,Y, Z, A, B, C]→ [θ1, θ2, θ3, θ4, θ5, θ6] ,
where [X,Y, Z] represents position (first three columns) and [A, B, C] represents orientation (last
three columns).

The Nesterov momentum included in the Nadam optimizer is capable of producing
a better gradient update than classical momentum (Adam). Take advantage of this and
train the model with RMSProp (Root Mean Square Prop algorithm, which can adjust the
running distance of the model in this direction according to each parameter to accommodate
different depths.) containing Nesterov momentum. It can produce a significant effect of
consistent dimensions in the training process along the gradient direction, the next accuracy
is predicted in advance and accelerating gradient descent learning.

As can be seen from the results in Figures 17 and 18, Tables 8 and 9, the Nadam
optimizer is used to optimize the processing results of DNN, and more accurate solutions
can be obtained. It can be shown that this method can accelerate the convergence rate of
trajectory prediction error, improve the accuracy of trajectory prediction, and realize the
process of deep learning.

DNN can be used to enhance robots’ ability to carry out human commands, it is
particularly good at acquiring representations of linguistic expressions, often requiring
training them on large data sets that include robot movements, verbal descriptions, and
information about different environments. Therefore, efficient prediction and real-time
motion control of robot kinematics can be realized.

5. Conclusions

In this paper, a method based on a multi-layer forward propagation deep neural
network is proposed to solve the kinematics equation of a grinding robot, to achieve the
goal of fast, efficient, and accurate online grinding operation. The working process and
kinematics model of grinding robots are introduced. Based on the proposed method,
simulations of the end position and orientation, and joint angle of the grinding robot are
given. The calculation examples and simulation shows that the proposed method can meet
the requirements of trajectory predictive control and efficient grinding. Compared with the
traditional method, the proposed method can obtain higher computational efficiency when
solving the end-effector pose of the grinding robot. Finally, the Nadam optimizer is used to
optimize the processing results of DNN. The results show that the mean absolute errors
of forward and inverse kinematics are in a reasonable range. The optimization results
show that this method can accelerate the convergence rate of trajectory prediction error
and improve the trajectory prediction accuracy. Compared with the traditional analytical
method, this method has a shorter training time, stronger replaceable ability, and shorter
response time to solve faults. If the hardware configuration of the computer is higher, the
processing speed of this method is faster, and the advantage is more obvious. The actual
response time of this method is much shorter than the decision time of mechanical motion.
The method proposed in this paper can achieve the goal of fast, efficient, and accurate
online grinding operation of the grinding robot. In the future, the author will use DNN
to conduct in-depth research on real-time trajectory tracking and visual recognition of
grinding robots.
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