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Abstract: Homomorphic encryption is a powerful mechanism that allows sensitive data, such as
biometric data, to be compared in a protected way, revealing only the comparison result when the
private key is known. This is very useful for non-device-centric authentication architectures with
clients that provide protected data and external servers that authenticate them. While many reported
solutions do not follow standards and are not resistant to quantum computer attacks, this work
proposes a secure biometric authentication scheme that applies homomorphic encryption based on
the Classic McEliece public-key encryption algorithm, which is a round 4 candidate of the NIST
post-quantum standardization process. The scheme applies specific steps to transform the features
extracted from biometric samples. Its use is proposed in a non-device-centric biometric authentication
architecture that ensures user privacy. Irreversibility, revocability and unlinkability are satisfied and
the scheme is robust to stolen-device, False-Acceptance Rate (FAR) and similarity-based attacks as
well as to honest-but-curious servers. In addition to the security achieved by the McEliece system,
which remains stable over 40 years of attacks, the proposal allows for very reduced storage and
communication overheads as well as low computational cost. A practical implementation of a non-
device-centric facial authentication system is illustrated based on the generation and comparison of
protected FaceNet embeddings. Experimental results with public databases show that the proposed
scheme improves the accuracy and the False-Acceptance Rate of the unprotected scheme, maintaining
the False-Rejection Rate, allows real-time execution in clients and servers for Classic McEliece
security parameter sets of 128 and 256 bits (mceliece348864 and mceliece6688128, respectively), and
reduces storage requirements in more than 90.5% compared to the most reduced-size homomorphic
encryption-based schemes with post-quantum security reported in the literature.

Keywords: biometric template protection; homomorphic encryption; post-quantum security

1. Introduction

In electronic transactions, people must be able to prove who they are online. Typically,
the person proves that they: (a) know a unique secret (‘what the person knows’), (b) have a
unique possession (‘what the person has’) and/or (c) are a physical entity (‘who the person
is’). The physical entity of a person is defined by his/her biometric characteristics [1],
which provide an intrinsic link between the person and the electronic entity without having
to know or remember secrets and without the need for possessing a device or card (which
can be stolen).

A biometric recognition scheme usually includes an enrollment phase and a verifica-
tion phase [2]. At the enrollment phase, biometric characteristics of a person are acquired
and discriminative features are extracted and stored as a reference. At the verification
phase, features are extracted from biometric queries, which are matched to the stored
reference. If during matching, the comparison result (typically a distance measurement)
satisfies a threshold, the recognition decision determines that the person is successfully
authenticated.
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1.1. Biometric Authentication Architectures

In a device-centric authentication architecture (Figure 1a), all the phases (enrollment
and verification) and, thus, all the operations (acquisition, feature extraction, storage,
comparison and decision) of the recognition scheme are carried out locally in the same client
device. The client device authenticates the user and, then, an external server authenticates
the client device on behalf of the user. Advantages of the device-centric authentication
architecture are that the security perimeter is very reduced (it is constrained to the device)
and user’s biometric data, which are sensitive data, as established by the data-protection
regulations from several countries, do not go out of that perimeter. The drawback is that
many applications require external evidence about the authenticity of the user and this
architecture requires additional secure hardware.

Appl. Sci. 2023, 13, x FOR PEER REVIEW  2  of  19 
 

satisfies a threshold, the recognition decision determines that the person is successfully 

authenticated. 

1.1. Biometric Authentication Architectures 

In a device‐centric authentication architecture (Figure 1a), all the phases (enrollment 

and  verification)  and,  thus,  all  the  operations  (acquisition,  feature  extraction,  storage, 

comparison and decision) of the recognition scheme are carried out locally in the same 

client device. The client device authenticates the user and, then, an external server authen‐

ticates the client device on behalf of the user. Advantages of the device‐centric authenti‐

cation architecture are that the security perimeter is very reduced (it is constrained to the 

device) and user’s biometric data, which are sensitive data, as established by the data‐

protection regulations from several countries, do not go out of that perimeter. The draw‐

back is that many applications require external evidence about the authenticity of the user 

and this architecture requires additional secure hardware. 

 

(a)  (b) 

Figure 1. Biometric authentication architectures: (a) device‐centric, (b) protected and non‐device‐

centric. 

In a non‐device‐centric authentication architecture, acquisition and feature extraction 

are performed on the client device, and storage, comparison and decision are performed 

on external servers. In addition to the user and the device, several authors model a generic 

non‐device‐centric biometric system with three entities, which act as database, computa‐

tion and authentication servers [3]. At the enrollment and verification phases, the device 

captures and extracts the biometric features from its user and sends them to the external 

servers. At the enrollment phase, the database server stores the reference (template). At 

the verification phase, the client device provides the biometric queries and the database 

server provides the stored reference. The computation server compares the stored refer‐

ence and the biometric queries. Then, the authentication server applies a threshold value 

to the comparison result to authenticate the user. In this case, there is an external authen‐

tication of the user’s physical entity. However, since communication, storage and authen‐

tication are performed on the cloud, biometric features should be protected. Homomor‐

phic encryption not only allows for features to be protected at communication and stor‐

age, but also whenever they are compared [4–10]. Only the comparison result is obtained 

in the unprotected domain by the authentication server (as illustrated in Figure 1b). 

1.2. Biometric Data Protection 

According to the ISO/IEC 24745 standard [11], the requirements of biometric protec‐

tion schemes are irreversibility (or non‐invertibility), unlinkability and revocability (or re‐

newability). Irreversibility ensures that no sensitive information about biometric data is 

leaked from protected biometric features. Therefore, protected biometric features can be 

communicated and stored on an external server without revealing sensitive information. 

Revocability  refers  to  obtaining  different  protected  biometric  features  from  the  same 
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centric.

In a non-device-centric authentication architecture, acquisition and feature extraction
are performed on the client device, and storage, comparison and decision are performed on
external servers. In addition to the user and the device, several authors model a generic non-
device-centric biometric system with three entities, which act as database, computation and
authentication servers [3]. At the enrollment and verification phases, the device captures
and extracts the biometric features from its user and sends them to the external servers. At
the enrollment phase, the database server stores the reference (template). At the verification
phase, the client device provides the biometric queries and the database server provides the
stored reference. The computation server compares the stored reference and the biometric
queries. Then, the authentication server applies a threshold value to the comparison result
to authenticate the user. In this case, there is an external authentication of the user’s
physical entity. However, since communication, storage and authentication are performed
on the cloud, biometric features should be protected. Homomorphic encryption not only
allows for features to be protected at communication and storage, but also whenever they
are compared [4–10]. Only the comparison result is obtained in the unprotected domain by
the authentication server (as illustrated in Figure 1b).

1.2. Biometric Data Protection

According to the ISO/IEC 24745 standard [11], the requirements of biometric pro-
tection schemes are irreversibility (or non-invertibility), unlinkability and revocability (or
renewability). Irreversibility ensures that no sensitive information about biometric data
is leaked from protected biometric features. Therefore, protected biometric features can
be communicated and stored on an external server without revealing sensitive informa-
tion. Revocability refers to obtaining different protected biometric features from the same
biometric sample when the same biometric sample has been employed to enroll the user
in different biometric systems with different databases. Unlinkability refers to obtaining
different protected biometric features from different biometric samples from the same
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instance. If protected features are compromised, an adversary cannot recover any sensitive
information or know the owner of the protected features. Consequently, the compromised
protected features can be destroyed without affecting other parallel or new enrollments.
Another issue to consider is that the distances between protected biometric features should
not preserve the distances between unprotected features in order to avoid the success of
similarity-based attacks based on the use of machine learning techniques [12].

In addition to security requirements, the recognition performance, the size of the
protected features as well as the execution times of the authentication steps have to be
evaluated [13]. The recognition performance of the unprotected scheme should be pre-
served or even improved, the verification phase should be carried out at real time and
the size of the protected features should be minimized to reduce the storage and transfer
operations. Storage and transfer of enrollment data are only performed once to enroll the
user. In contrast, since the verification phase is performed many times, the transfer of
protected features between the database, computation and authentication servers is higher.
Nowadays, this issue is a challenge in reported non-device-centric architectures because, in
general, the size of protected features is bigger than unprotected ones.

1.3. Post-Quantum Security

With the availability of large-scale quantum computers in the future, many of the cur-
rent proposed biometric protection schemes will be broken. In order to provide long-term
security, post-quantum cryptography should be considered. Currently, several quantum-
resistant biometric protection schemes have been proposed based on lattice cryptogra-
phy [6–10,14,15]. However, further research is needed to improve the performance and
employ standard solutions.

In 2016, the National Institute of Standards and Technology (NIST) began a pro-
cess with multiple evaluation rounds to develop standards for post-quantum cryptog-
raphy. In July 2022, selected algorithms for standardization and round 4 candidates
were announced [16]. Among public-key encryption and key-establishment algorithms,
CRYSTALS- Kyber based on lattice-based cryptography using Module Learning with Er-
rors (Module-LWE) was selected for standardization and Classic McEliece, which employs
Goppa code-based cryptography, was selected as a candidate of the round 4. In the Third
Round Status Report [17], NIST showed its interest to know specific use cases for which
Classic McEliece would be a good solution. Although Classic McEliece requires higher key
sizes and generation times than other proposals, this may not be a drawback for biometric
recognition systems because keys only need to be generated and transmitted at the enroll-
ment phase. On the other side, Classic McEliece provides the smallest protected data size
of any of the NIST post-quantum cryptography candidates, which is interesting to reduce
biometric data storage and transmission. These reasons motivated us to analyze Classic
McEliece for biometric authentication in non-device-centric architectures.

1.4. Main Contributions

The main contributions of this paper are illustrated in Figure 2 and summarized
as follows:

• We propose a new biometric authentication scheme with post-quantum security that
conveniently adapts the Classic McEliece algorithm to a non-device-centric architecture
with honest-but-curious servers.

• Taking advantage of a homomorphic property of Classic McEliece, the proposal is suit-
able for privacy-preserving non-device-centric architectures where the communication,
storage and comparison of biometric features are performed in the protected domain.

• The recognition performance is greater than or equal to the authentication obtained
with unprotected features and provides irreversibility, unlinkability, revocability and
resistance to FAR and similarity-based attacks.
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• The proposal provides protected biometric data with much smaller size than other
solutions with similar security properties, which reduces storage and communica-
tion overheads.

• A practical implementation of the proposal in a facial authentication system based on
an Android App (for smartphones that act as client devices), Python code (for com-
puters that act as computation and authentication servers) and MySQL (for database
servers) demonstrates that authentication is performed in real time.
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The paper is structured as follows. Section 2 includes a review of the proposals in the
literature for post-quantum-secure biometric schemes. Section 3 presents our proposal of a
secure biometric scheme and a security analysis. Section 4 presents a practical realization of
the proposed scheme for facial recognition using FaceNet [18]. Finally, Section 5 concludes
the work.

2. Related Work

Traditionally, biometric protection schemes have been based on cancelable biomet-
rics and biometric cryptosystems [13]. In cancelable biometrics, feature transformation
techniques employ a transformation function ft to modify the biometric features extracted
at the enrollment phase bR and at the verification phase bV . Therefore, transformed fea-
tures ft

(
bR) and ft

(
bV), respectively, are compared in the transformed domain. Generally,

transformed features contain less information than the original ones, which degrades the
recognition performance compared to the unprotected scheme. In salting techniques, the
recognition performance is increased due to the combination of the biometric information
and a user-specific secret key. However, the secret key is usually stored in the user device
so that the security does not increase in the stolen-device scenario.

In biometric cryptosystems, secure sketches are employed as public data that al-
low for recovering enrolled biometric data by providing enough similar biometric data
at verification. One of the most widely used secure sketches is the fuzzy commitment
proposed in [19], which is based on error-correcting codes. In a fuzzy commitment, the
public data fc

(
bR, Kc) bind the biometric features bR with a random secret Kc. The ran-

dom secret is encoded with the encoding function of the error-correcting code and the
result is XORed with the biometric features bR, fc

(
bR, Kc) = bR ⊕ encode(Kc). The result

is stored as a template at the enrollment phase. At the verification phase, the operation
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decode
(

fc
(
bR, Kc)⊕ bV) = decode

(
bR ⊕ encode(Kc)⊕ bV) is performed. If the differences

between the enrollment and verification biometric features (bR ⊕ bV) are small enough for
the error-correcting code to recover the random secret Kc, the authentication is successful.
In the case of a non-device-centric architecture, if the authentication server recovers the
random secret Kc from the public data, it is also able to recover the biometric data bR,
which is a problem with honest-but-curious servers. The recognition performance of the
biometric cryptosystems depends on the correction capability of the error-correcting codes.
Consequently, it can be worse than the recognition performance of the unprotected system.
Another problem of fuzzy commitments is to achieve unlinkability. Since any linear combi-
nation of codewords is also a codeword if using linear error-correcting codes, two fuzzy
commitments derived from the same biometric features using different codewords can be
linked. This is known as the decodability-based cross-matching attack [20] and limits the
binding property. In addition, the low entropy in biometric characteristics (they are not
quite random) limits the hiding property and, hence, irreversibility of the fuzzy commit-
ments. Moreover, considering brute-force attacks, also known as FAR (False-Acceptance
Rate) attacks when FAR is not 0, unimodal systems usually provide a security from 17 to
24 bits (for FAR values from 10−5 to 10−7), which is very low compared to the security in a
cryptographic system [21].

In the PQFC (Post-Quantum Fuzzy Commitment) scheme proposed in [14], a matrix
A generated randomly and a vector Kc chosen randomly are multiplied. The resulting
vector, random(Kc), is added to the biometric data, fc

(
bR, Kc) = bR + random(Kc), at the

enrollment phase. The random(Kc) is stored in a smart card for the user and fc
(
bR, Kc)

is stored in a database server. At the verification phase, fc
(
bV , Kc) is computed using

the random(Kc) provided by the smart card and it is compared with the stored fc
(
bR, Kc).

If the matching score resulting from the comparison falls within the system threshold,
then the user is authenticated. Otherwise, authentication fails. The proposal in [22] is
equivalent since the random(Kc) can be seen as the result of applying a key derivation
function to a knowledge-based (Kc is related to a password) or a possession-based factor.
In [23], the random(Kc) can be seen as provided by a possession-based factor, in partic-
ular by a Physically Unclonable Function (PUF) in the user’s device. These proposals
increase the unlinkability and irreversibility of fuzzy commitments but remain vulnerable
to FAR attacks.

The proposal based on LPN (Learning Parity with Noise) commitments in [15] avoids
the problems of fuzzy commitments. In this proposal, the accuracy of the unprotected
system is preserved, providing irreversibility, revocability and unlinkability with a security
level comparable to a cryptographic system, even with unimodal biometric systems. In this
proposal, the privacy of the users is also preserved. In LPN commitments, the biometric
data are encoded by using a random linear code, with some noise added to the codeword,
fc
(
bR, Kc) = Kc ⊕ encode

(
bR). The unknown noise, Kc, should be a low-weight uniformly

random vector. At the verification phase, the operation decode
(

fc
(
bR, Kc)⊕ fc

(
bV , Kc)) is

performed. A decoding failure detects that Kc at enrollment and verification are not the
same, avoiding FAR attacks. The disadvantage of LPN commitments is the slow execution
of the decoding algorithm (4.44 and 50.13 s for a security of 128 and 256 bits, respectively,
are reported in [15], although no optimization is applied).

More recently, homomorphic encryption has been applied to biometric
recognition [4–10,13]. Several solutions are not resistant to attacks from quantum comput-
ers [4,5]. Most of the quantum-resistant solutions are based on lattice cryptography [6–10].
Many of them employ a device-centric architecture, where the biometric features bR and bV

are encrypted at the client site with the public key of the client pkC, resulting in E(bR, pkC)
and E(bV , pkC), respectively. The comparison is performed by the server in the encrypted
domain E(bR, pkC) � E(bV , pkC) by applying an evaluation operator �. According to the
homomorphic properties, E(bR ◦ bV , pkC) = E(bR, pkC) � E(bV , pkC), where ◦ is another
or the same evaluation operator. From D

(
E(bR ◦ bV , pkC), skC), bR ◦ bV is decrypted at

the client site by using the private key of the client, skC. The server, which stores the
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encrypted templates and calculates the encrypted distance between protected data, cannot
obtain information about biometric data because the private key to decrypt is in the client
site [5–7]. However, as commented in the Introduction, we are interested in non-device-
centric architectures, which are required by many applications. Other quantum-resistant
solutions employ a non-device-centric architecture with two servers (authentication and
computation servers) in addition to the database and the client [8–10]. The biometric
features are encrypted at the client site with the public key of the authentication server. The
computation server calculates the encrypted distance between protected data and sends
the result to the authentication server. The computation server cannot obtain information
about biometric data because the private key to decrypt is in the authentication site and
the authentication server only decrypts the distance between the data. The limitation is
that both servers cannot collude to avoid the leakage of biometric data, which may not be
very realistic.

Among the quantum-resistant solutions commented above, only the proposal in [10]
employs CRYSTALS-Kyber, which is the public-key encryption and key-establishment
algorithm standardized by the NIST post-quantum standardization process [24]. Classic
McEliece, BIKE and HQC are the round 4 candidate algorithms of the contest [16] and can
be standardized in the future, after further analysis. Classic McEliece provides, for each
security level, the lowest ciphertext size and, thus, the lowest ratio (ciphertext size/plaintext
size). This motivated the work presented in this paper because such an advantage is very
interesting for biometric applications.

The first McEliece cryptosystem was proposed in 1978 [25], specifically employing
Goppa codes. Several proposals for biometric protection schemes are based on the ap-
plication of the original McEliece cryptosystem to construct secure sketches by using the
cryptosystem as the coding method [26–28]. The drawback of the original McEliece cryp-
tosystem is that the size of the keys is large. In order to reduce the key sizes, several
proposals employed variants [29]. However, structural attacks were successful for Reed
Müller, Reed-Solomon, BCH, Low-Density Parity Check (LDPC) and Moderate-Density Par-
ity Check (MDPC) codes. For variants that employed hyperelliptic curves, convolutional,
quasi-cyclic and quasi-dyadic Goppa codes, algebraic attacks were reported. Another
variant that applies Goppa codes based on structured error vectors with larger Hamming
weights was attacked in [30]. The only variant that has remained stable together with the
original McEliece cryptosystem is the Niederreiter cryptosystem proposed in 1994 [31] that
also employed Goppa codes and is employed in Classic McEliece [32], as commented, re-
cently proposed as a round 4 candidate of the NIST post-quantum standardization process.

3. Proposed Scheme Based on Homomorphic Encryption and Classic McEliece
3.1. Non-Device-Centric Biometric Authentication Context and Threat Model

We consider a non-device-centric authentication architecture composed of client de-
vices, a database server, an authentication server and a computation server, as in [3]. It is
assumed that each user employs his/her client device, such as a smartphone, that acquires
the biometric characteristics and implements all the steps of the proposed scheme to protect
the biometric data before sending them to the database server at enrollment and to the
computation server at verification. The user provides his/her unique identifier ID to the
client device. If the ID is sensitive, it is mapped to a public index, as proposed in [33]. At
the enrollment phase, the client device maps the user ID to a non-sensitive index x that is
stored in the database server. At the verification phase, the client device again provides
the index x and the computation server uses a Private Information Retrieval (PIR) [34] to
retrieve data from the database without revealing to the database which data are retrieved.

It is assumed that all the operations executed in the client device are carried out in
a trusted way, for example, by using a Trusted Execution Environment (TEE). It is also
assumed that no attacks can be carried out at the enrollment phase. All the servers are
honest at the enrollment phase. If an attacker gains access to the client device at the verifica-
tion phase, which is known as a stolen-device scenario, the attacker cannot manipulate the
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client device to carry out unauthorized operations or change the processed data because
the client device is tamper-resistant. What the attacker can do is to provide impostor or
synthetic biometric characteristics to the client device, known as presentation attacks.

The communication channels between the parties are assumed to be secure so that the
messages are confidential and their integrity can be checked. Thus, an external adversary
cannot extract or employ the information transmitted by the communication channels.
Further, the servers are assumed to be authenticated so that an attacker cannot impersonate
the servers.

The servers can be honest-but-curious, that is, they carry out their steps as expected
but can try to obtain information about the users’ biometric data from the protected data
they process or store. It is assumed that this curiosity can lead the servers to collusion to
try to obtain information.

3.2. Generation and Matching of Protected Biometric Features

Our proposal for biometric protection adapts the Classic McEliece NIST proposal [32]
to the context of the non-device-centric biometric authentication scheme described above.
The definition of Classic McEliece, which is based on the Niederreiter cryptosystem, is
composed of three main algorithms: key generation (KeyGen), encoding (ENCODE) and
decoding (DECODE). The parameter set specifies: q = 2m, n ≤ q and k = n− tm. KeyGen
has no inputs and generates the public and private keys. The public key T is the (n− k)× k
random matrix over a finite field of order 2, F2, such that In−k | T is the (n− k)× n parity-
check matrix H for the Goppa code where I is a (n− k)× (n− k) identity matrix. The
private key is Γ = (g, α1, α2, . . . , αn), where g is a monic irreducible polynomial in Fq[x] of
degree t and (α1, α2, . . . , αn) are distinct elements of a finite field of order q, Fq, generated
from a uniform random string. ENCODE receives, as inputs, the public key T and a vector
e ∈ Fn

2 of Hamming weight t. The output of the algorithm is the vector c ∈ Fn−k
2 computed

as c = H·e with H = In−k | T . DECODE receives, as inputs, the private key Γ and a vector
c ∈ Fn−k

2 . The first step of DECODE is to extend c to v = (c, 0, . . . , 0) ∈ Fn
2 by appending

k zeros. The second step is to find the unique codeword cod in the Goppa code defined by
Γ, which is at a distance t from v. An advantage of Classic McEliece is that there are fast
algorithms to decode these codes, for example, the Berlekamp algorithm. The third step is
to set e = v + cod. If the Hamming weight of e is t and c = H·e, then e is returned.

3.2.1. Generation of Protected Biometric Features

The ENCODE algorithm is applied at enrollment and verification to obtain the vec-
tors cbR and cbV . The pseudocode to generate protected biometric features is shown in
Algorithm 1 and works as follows:

1. If biometric features b f are not binary, a binarization process, which preserves dis-
tances, is applied, such as Linearly Separable Subcode (LSSC) [35], thus, obtaining a
binary biometric feature string b.

2. The binary string b is divided into N substrings, b = (b1, . . . , bN), with, respectively,
z1, . . . , zN bits, where zi is greater than or equal to t, with i = 1, . . . , N.

3. Each substring ebi, with length n, is composed of (n− k) random bits from the posi-
tion 1 to (n− k), concatenated by the zi bits of bi and by (k− zi) random bits from
the position (n− k + zi + 1) to n. Figure 3 shows the transformation of the binary
biometric features bR

i (Figure 3a) and bV
i (Figure 3b).

3.1. The (n− zi) random bits that perform as a padding come from a secret sub-
string pi. The secret string p = (p1, . . . , pN) is chosen randomly at enrollment
to ensure that the Hamming weights of eb1, . . . , ebN are greater than t.

• Depending on the realization, string p can be stored in the client device
or reconstructed in some way whenever required (from what the user
knows or from a seed the device reconstructs with a Physical Unclonable
Function [23]).
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3.2. The bits from position (n− k + 1) to n can be randomly permuted, as illus-
trated in Figure 3a. The permutation is the same at enrollment and verification,
as illustrated in Figure 3b.

3.3. The client device checks that the Hamming weights of the substrings bi are
neither zero nor have a low value.

4. ENCODE algorithm is applied to the enrollment and verification substrings ebR
i and ebV

i ,
respectively, obtaining the ciphertexts cbR =

(
cbR

1 , . . . , cbR
N
)

and cbV =
(
cbV

1 , . . . , cbV
N
)
,

with cbR
i = H·ebR

i and cbV
i = H·ebV

i .
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Figure 3. Biometric Feature Transformation: (a) at the enrollment phase and (b) at the verification
phase. (c) shows the application of the XOR operation to the biometric features transformed in (a)
and (b).

Algorithm 1: Pseudocode to generate protected biometric features.

Inputs: bf, t, N, T, n, k, p = (p1, . . . , pN), seed
Output: cb

IF bf is not binary THEN
b← Apply preserving distances binarization algorithm to bf
END IF
b1, . . . , bN ← Divide b into N substrings with length ≥ t
FOR i = 1 to N DO
zi ← Length of bi
ebi’← Concatenate (pi[1:n − k], bi, pi[n − k + 1:n − zi])
ebi ← Concatenate (ebi’ [1:n − k], Permutation of ebi’[n − k + 1:n] with seed)
cbi ← ENCODE(ebi, T)
END FOR
RETURN the set cb= (cb1, . . . , cbN) of protected biometric features

3.2.2. Matching of Protected Biometric Features

The DECODE algorithm is applied at verification to obtain the recognition decision.
We propose the following procedure:
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1. The XOR operation of the encoded substrings is obtained, that is, cbR
i ⊕ cbV

i = H·ebR
i ⊕

H·ebV
i .

2. ebR
i ⊕ ebV

i is recovered by the DECODE algorithm. Figure 3c shows the result of the
application of the XOR operation to the transformed biometric features ebR

i and ebV
i .

• By the homomorphic property of Classic McEliece, ENCODE
(
ebR

i ⊕ ebV
i
)
= EN-

CODE
(
ebR

i
)
⊕ ENCODE

(
ebV

i
)
. Hence, cbR

i ⊕ cbV
i = H·ebR

i ⊕ H·ebV
i = H·(

ebR
i ⊕ ebV

i
)
.

• It is ensured that ebR
i ⊕ ebV

i has Hamming weight smaller than or equal to t. The
same transformation is applied at the enrollment and verification phases for each
individual. Therefore, the application of the DECODE algorithm to cbR

i ⊕ cbV
i can

recover ebR
i ⊕ ebV

i because the padding bits from position 1 to (n− k) and from
(n− k + zi + 1) to n are 0 s after the XOR application and the Hamming weight
of the bits from (n− k + 1) to (n− k + zi), which correspond to bR

i ⊕ bV
i , has a

Hamming weight smaller than or equal to t. The simplest solution is to make
zi equal to t because, in this way, the Hamming weight of bR

i ⊕ bV
i is always

smaller than or equal to t. However, biometric features allow for making zi
greater than t, ensuring the substrings bi meet such a requirement. The latter
solution is preferred to reduce the size of communicated and stored data.

• Given that the substrings ebR
i and ebV

i are constructed with a Hamming weight
greater than t, DECODE algorithm cannot recover ebR

i and ebV
i , from cbR

i and
cbV

i , even with the knowledge of the private key Γ.

3. A distance measurement is applied to ebR
i ⊕ ebV

i , for example, the Hamming distance,
by computing the Hamming weight.

4. The sum of the partial distances when all the substrings ebR
i ⊕ ebV

i are decoded
generates the final distance result by computing:

HD = ∑N
i=1 Hamming weight(ebR

i ⊕ ebV
i ) (1)

The resulting Hamming Distance can be normalized by the number of bits of the
binary string b.

5. The final result is compared to a threshold value to determine the recognition decision.

3.3. Proposed Non-Device-Centric Authentication Scheme

We employ the protection proposal described above in a non-device-centric authenti-
cation architecture, which considers the phases of setup, enrollment and verification, and,
as entities, client devices and database, comparison and authentication servers.

3.3.1. Setup and Enrollment Phases

1. The authentication server A generates its pair of public and private keys (TA, ΓA) by
means of the Classic McEliece KeyGen algorithm. They are stored in a secure way.

2. The authentication server A sends the public key to the client device U and it is stored.
3. A threshold value th is set to determine the recognition decision.
4. The client device U acquires the user identifier IDU and the biometric samples SUR.
5. Binary biometric features bUR ∈ Fl

2 that preserve the distances are extracted from SUR.
6. The transformation of the enrollment binary features is applied to bUR, thus, obtaining

the substrings ebUR
i ∈ Fn

2 with Hamming weight greater than t.
7. The ENCODE algorithm is employed to encode the substrings ebUR

i by using the
authentication server public key TA, resulting the encoded substrings cbUR

i ∈ Fn−k
2 .

8. The IDU is mapped to an index xU in a way that is only known by the client device.
9. The substrings cbUR

i and the index xU are sent to the database server to be stored.

The setup and enrollment phases are illustrated in Figure 4.
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Figure 4. Setup and enrollment phases of the distributed authentication protocol based on the Classic
McEliece protection proposed.

3.3.2. Verification Phase

1. The user identifier IDU and the biometric samples SUV are acquired by the client
device U.

2. Binary biometric features bUV ∈ Fl
2, which preserve the distances, are extracted

from SUV .
3. The substrings ebUV

i with Hamming weight greater than t are obtained by applying
the same transformation as in the enrollment phase.

4. The ENCODE algorithm is employed to encode the substrings ebUV
i by using the

authentication server public key TA, resulting the encoded substrings cbUV
i ∈ Fn−k

2 .
5. The client device U generates the nonce mUi ∈ Fn−k

2 .
6. The authentication server A generates the nonce mAi ∈ Fn−k

2 .
7. The encoded substrings are XORed with the nonces generated, obtaining cbnUV

i
∈ Fn−k

2 as cbUV
i ⊕mUi ⊕mAi.

8. The client device U maps the IDU to the index xU .
9. The index xU and cbnUV

i are sent to the computation server C.
10. The computation server C retrieves the protected template cbUR

i from the database
server by using a PIR protocol with xU as input, that is, PIR

(
xU)

.
11. The computation server C applies a XOR operation to obtain cbUR

i ⊕ cbnUV
i .

12. This result is sent to the authentication server A.
13. The authentication server performs the XOR operation cbUR

i ⊕ cbnUV
i ⊕ mUi ⊕ mAi

to obtain cbUR
i ⊕ cbUV

i .
14. ebUR

i ⊕ ebUV
i is decoded by using the private key ΓA.

15. The final distance result is computed as in Equation (1).
16. The result is compared with the threshold value th to generate the recognition decision.

Figure 5 illustrates the verification phase.
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Figure 5. Verification phase of the distributed authentication protocol based on the Classic McEliece
protection proposed.

3.4. Security Analysis
3.4.1. Biometric Security Requirements

Our proposal satisfies the security requirements (irreversibility, revocability and un-
linkability) established in the ISO/IEC 24745 standard on biometric information protec-
tion [11].

Irreversibility of the protected templates cbUR
i is satisfied since Classic McEliece is

based on the NP problem of decoding random linear codes, Goppa codes able to correct up
to t errors are employed and the number of errors in the ebUR

i is larger than t. Hence, the
protected templates cannot be decoded either by the authentication server, which knows
the private key associated to the public key, employed in the encryption.

Revocability is ensured because a user can remove his/her protected template asso-
ciated with an authentication server and later create a new one that is different from the
previous one. The user can generate different protected templates from the same biometric
sample SUR by changing the secret padding p = (p1, . . . , pN). Due to the security provided
by the ENCODE algorithm of Classic McEliece, the protected templates generated cannot
be linked.

Unlinkability of the protected templates associated with several authentication servers,
i.e., several services, is also ensured because different public keys of the authentication
servers are employed. Therefore, if there was information leakage from the database
server(s), it is not possible to distinguish the protected templates that are associated with
the same user.

3.4.2. System Attacks

Replay attacks, where an attacker tries to achieve a successful authentication using a
previous string, are avoided by including the nonces.

Regarding privacy, if the curiosity of the servers makes them exchange information,
the authentication and database servers would only obtain the link between the protected
biometric features and the index xU . The authentication and database servers know if the
same or a different user is being authenticated. Anyway, the security of biometric data
remains, since the Hamming weight of the protected features is greater than t, so that they
cannot be decoded. In addition, they do not know the user identifier IDU , so that they do
not know which particular user is being authenticated.
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Similarity-based attacks [12] are possible if the distances between unprotected features
are nearly the same as the distances between protected features. A search algorithm is
applied to randomly generate first guesses, transform them into protected features, compute
the distances with the protected features obtained, use the information to improve the
probability of success with new guesses and repeat the process until a successful guess is
reached. In order to carry out similarity-based attacks in the proposed scheme, the attacker
should steal the client device to be able to generate the secret padding. In addition, the
attacker should discover how the bits associated with the biometric data could be modified
with the biometric sample provided SIV , which is difficult since the client device is assumed
to be resistant to manipulations. In addition, the attacker should break the security of the
authentication server to be able to decode, if possible, the distance between plaintexts. Even
in that case, since the bits from biometric features can be permuted by the client device,
the ordered vector b with the biometric features would be more difficult to extract. In this
sense, we consider that our proposal shows enough robustness to similarity-based attacks.

3.4.3. Stolen-Device Scenario

In the stolen-device scenario, an attacker can provide impostor samples SIV at ver-
ification. Then, the client device generates the vector ebIV

i from the impostor individual
substrings bIV

i , using the padding pU
i of the genuine user. By using the authentication server

public key, the vector cbIV
i is obtained. Nonces mAi and mUi are applied and the vector

cbnIV
i is generated. The computation server obtains cbUR

i ⊕ cbnIV
i and the authentication

server obtains cbUR
i ⊕ cbIV

i from cbUR
i ⊕ cbnIV

i ⊕mAi ⊕mUi. Since the same padding pU
i

of enrollment is applied, when ebUR
i ⊕ ebIV

i is computed, the padding bits are 0. If the
Hamming weight of bUR

i ⊕ bIV
i is greater than t for some i, bUR

i ⊕ bIV
i cannot be decoded

and the impostor is rejected. If the Hamming weights of bUR
i ⊕ bIV

i for all the i are smaller
than or equal to t, the comparison result is the same as in the unprotected scenario, so the
attacker is rejected as in the unprotected scenario. The security of the scheme will be the
same as the security of the unprotected biometric scheme.

Further, in the stolen-token scenario, the attacker could try to generate synthetic
samples SIV at verification to make the client device generate fake bIV

i , such as null vectors
or vectors with very low Hamming weight. Then, the attacker should also attack the
authentication server to try decoding bUR

i ⊕ bIV
i and obtain information about bUR

i because
bIV

i is almost null. However, this cannot be performed because the client device checks that
the Hamming weights of the substrings bIV

i are neither zero nor have a low value.

4. Practical Realization of the Proposed Biometric Protection Scheme for
Facial Recognition
4.1. Implementation of a Non-Device-Centric Facial Authentication

A OnePlus5T smartphone was considered as the client device, which executes an
Android App developed in Java. For the computation, authentication and database servers,
an Intel Core i5-9400F was considered, which executes Python code in version 3.6.14 for
the computation and authentication servers and MySQL for the database server to store
the protected templates.

The client device uses the front camera to capture user faces. Then, BlazeFace [36], a
convolutional neural network, was applied to detect faces and crop the input image. Subse-
quently, FaceNet [18], a convolutional neural network to extract floating-point embeddings,
was employed as a feature extractor. The load and inference of BlazeFace and FaceNet pre-
trained models [37] and [38], respectively, were supported by the library TensorFlowLite,
which is suitable for implementations in mobile devices. With these pre-trained models,
128 floating-point feature elements, also referred to as embeddings, were obtained from
160 × 160 bits face images. The floating-point embeddings were discretized by means
of Linearly Separable Subcode (LSSC) [35], which was implemented to obtain a binary
representation with the codes 000, 001, 011 and 111. The feature space was segmented into
four intervals: (−∞,−0.1), [−0.1, 0.0), [0.0, 0.1) and [0.1,+∞), in order to improve the
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recognition performance. After discretization, each embedding or feature vector was made
up of 384 bits.

A shared library in C named as libClassicMcEliece was developed to include the
KeyGen, ENCODE and DECODE functions from the Classic McEliece proposal [32] and
the Enrollment Feature Transformation and Verification Feature Transformation functions from
our proposal. On the client device, a Java Native Interface (JNI) was employed to allow
for running C code in Java. In the computation, authentication and database servers, this
functionality was achieved by the use of the libraries ctypes and numpy.

4.2. Experimental Results
4.2.1. Face Databases

In order to demonstrate the efficiency of our proposal, two public databases were
selected: FERET and LFW. Both databases exhibit variations in pose, expression, sex, age
and illumination. The FERET database [39], distributed by NIST, was considered because
it is a standard database. Since the acquisition conditions in the FERET database were
semi-controlled (the same physical setup was employed but it was reassembled for each
session), the LFW database was also considered. The LFW database [40] was designed for
unconstrained face recognition by using images collected from the web. Since, during the
face detection and crop process, some samples are lost, the extracted embeddings were 8160
of 994 individuals in FERET and 12,770 embeddings of 5749 individuals in LFW databases.

4.2.2. Recognition Performance

For the evaluation of the recognition performance, we followed the FVC (Fingerprint
Verification Competition) protocol [41]. For the genuine comparisons, each sample of the
same individual is compared to the remaining samples of the same individual. For the
impostor comparisons, the first sample of each individual is compared with the first sample
of the remaining individuals. Symmetric comparisons are removed to avoid correlation.
In the FERET database, the number of genuine comparisons was 52,708 and the number
of impostor comparisons was 483,636. In the LFW database, the number of genuine
comparisons was 235,254 and the number of impostor comparisons was 15,487,395.

The recognition performance in the protected domain was evaluated by considering
the Classic McEliece parameter sets that provide security levels of 128 and 256 bits. These
parameter sets are mceliece348864 (with n = 3488, t = 64, m = 12, and k = 2720) and
mceliece6688128 (with n = 6688, t = 128, m = 13, and k = 5024), respectively. Embeddings
of 384 bits (48 bytes) were divided into two 192-bit segments for mceliece348864 and into
one 384-bit segment for mceliece6688128. Therefore, zi = 192 for mceliece348864 and
zi = 384 for mceliece6688128. The padding was considered to have Hamming weight t + 1
in order to ensure that the Hamming weight of the substrings ebi was greater than t. In this
way, paddings with 65 1s were generated for mceliece348864 and paddings with 129 1s
were generated for mceliece6688128.

The recognition performance was evaluated in terms of accuracy, defined as the ratio
in percentage between the number of true recognition decisions and the total number of
recognition decisions, False-Acceptance Rate (FAR) and False-Rejection Rate (FRR). Table 1
shows the recognition performance of FaceNet embeddings represented in floating-point
and binary in the unprotected domain. Comparisons of floating-point embeddings were
performed by using the Euclidean distance. Comparisons of binary embeddings were
performed by using the Hamming distance. Although some information is lost by the
binarization process, accuracy, FAR and FRR are not largely affected. Table 1 also includes
the recognition performance when the proposed protection based on Classic McEliece is
applied. The accuracy, FAR and FRR results prove that the recognition performance was
improved. For the genuine distribution, the same transformation (same secret padding and
same random positions) was applied for embeddings from different samples from the same
individual. Then, the DECODE algorithm could recover bR

i ⊕ bV
i from cbR

i ⊕ cbV
i when the

Hamming weight of ebR
i ⊕ ebV

i was smaller than or equal to t. For the impostor distribution,
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different transformations (different secret padding and different random positions) were
applied for embeddings of different individuals. Then, the DECODE algorithm could
not decode cbR

i ⊕ cbV
i because ebR

i ⊕ ebV
i had Hamming weight greater than t. For the

accuracy indicator, true-positive decisions were obtained from genuine comparisons that
could be decoded (impostor comparisons were always true-negative decisions). In the LFW
database, almost all the genuine comparisons were decoded. For this reason, the accuracy
was approximately 100%. FAR was 0% because impostor comparisons generated decoding
fails. FRR was the same as in the unprotected domain because all genuine comparisons
could be decoded so the recognition performance was not affected.

Table 1. Recognition performance of FaceNet embeddings.

Database Representation Protection Accuracy (%) FAR (%) FRR (%)

FERET

Floating-point No 99.2 1.15 1.15

Binary No 98.9 1.69 1.69

Binary mceliece348864 99.8 0 1.69

Binary mceliece6688128 99.8 0 1.69

LFW

Floating-point No 99.3 0.83 0.83

Binary No 99.2 1.18 1.18

Binary mceliece348864 ~100 0 1.18

Binary mceliece6688128 ~100 0 1.18

4.2.3. Size and Execution Time Performance

Table 2 shows the size performance of our proposals based on Classic McEliece
mceliece348864 and mceliece6688128 parameter sets compared to other post-quantum
biometric protection schemes from the literature. These proposals are based on a com-
bination of homomorphic encryption and lattice-based cryptography. Our proposal was
the best one in terms of the ratio between protected and unprotected feature sizes. The
last row illustrates the total size of protected features for 1000 users. This proves that the
communication and storage overheads of protected features with our proposal are lower.

Table 2. Size performance comparison of post-quantum biometric protection proposals based on
homomorphic encryption.

Proposal Ideal Lattices [8] R-LWE [8] R-LWE [9] M-LWE [10] M-LWR [10] mceliece348864
(Ours)

mceliece6688128
(Ours)

Security Level (bits) 80 80 128 128 256 128 256

Unprotected Feature
Size (bytes) 256 256 48 48 48 48 48

Protected Feature
Size (bytes) 19,456 31,744 5632 2181 3133 192 208

Protected Feature
Size/ Unprotected

Feature Size
76.0 124.0 117.3 45.4 62.3 4.0 4.3

Total Feature Size of
1000 Users (Kbytes) 19,000 31,000 5500 2130 3060 187.5 203.1

Table 3 shows the execution times required by the operations of mceliece348864 and
mceliece6688128 parameter sets in the platforms described in Section 4.1. These results
prove that the authentication of a user can be carried out in real time.
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Table 3. Execution times (ms) for the authentication operations.

Operations mceliece348864 mceliece6688128

Feature extraction, transformation and ENCODE 25.3 55.7

XOR, DECODE and threshold comparison 36.5 85.0

Total 61.8 140.7

4.2.4. Security Performance

The framework proposed in [42] was applied to evaluate unlinkability and revocability.
Unlinkability is evaluated by considering the distributions of mated and non-mated in-
stances. Revocability is evaluated by considering the distributions of the same sample and
non-mated instances. Distributions of mated instances are generated by genuine compar-
isons of protected features from different samples from the same instance created by using
different feature transformations (different embeddings from the same individual, different
secret paddings and different random positions). Distributions of non-mated instances are
generated by impostor comparisons of protected features from different instances created
by using different feature transformations (different embeddings from different individuals,
different secret paddings and different random positions). Distributions of same samples
are generated by genuine comparisons of protected features from the same sample created
by using different feature transformations (same sample, different secret paddings and
different random positions). These distributions must coincide to prove unlinkability and
revocability scenarios. Figure 6 shows that unlinkability and revocability were satisfied
for the distributions in the LFW database by considering protection based on the Classic
McEliece mceliece6688128 parameter set (similar results were obtained with mceliece348864
parameter set). The LFW database was selected for this evaluation because the numbers of
samples and comparisons are higher.
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The resistance to similarity-based attacks in case protected features could be accessed
was evaluated using the method described in [12]. This method considers that protected
biometric features are secure if there is no correlation between the distances of the impostor
comparisons in the protected and in the unprotected domains. The results obtained for
the LFW database by considering protection based on the mceliece6688128 parameter set
(similar results were obtained with mceliece348864 parameter set) are shown in Figure 7.
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This figure depicts the distances of the impostor comparisons in the protected domain on
the vertical axis and the distances of the impostor comparisons in the unprotected domain
on the horizontal axis. The figure illustrates that the impostor-protected distances do not
change with respect to their impostor-unprotected distances. Therefore, their correlation is
quite small, which proves the resistance to similarity-based attacks of our proposal.
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Another issue to consider is the stolen-device scenario. The attacker employs his/her
biometrics and the client device of a genuine user extracts the associated embeddings.
These embeddings are transformed with the same secret padding and random positions
employed to enroll the genuine user. In this scenario, as illustrated in Figure 8 with
the comparison of FAR and FRR (DET curve) for the LFW database by considering pro-
tection based on the mceliece6688128 parameter set (similar results were obtained with
mceliece348864 parameter set), the recognition performance was almost the same as in the
unprotected approach.
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5. Discussion

In this work, we proposed a biometric protection scheme based on homomorphic
encryption and Classic McEliece as well as its use in a non-device-centric biometric authen-
tication architecture with honest-but-curious servers. Classic McEliece is one of the round
4 candidates of the NIST post-quantum cryptography standardization competition.

A specific transformation of features is proposed to meet security and Classic McEliece
requirements. This precludes decoding-protected biometric features and impostor compar-
ison results, even knowing the private key and even the servers exchanging information.
Therefore, in an honest-but-curious adversarial model, the security is maintained and
recognition performance is improved in a normal scenario and preserved in a stolen-device
scenario. Parameter sets were selected to achieve security levels of 128 and 256 bits for
Classic McEliece (mceliece6688128 and mceliece348864 parameter sets, respectively). Irre-
versibility is ensured by the impossibility of decoding ciphertexts with more errors than
those permitted. Further, Classic McEliece-based protected features are random, even
though they are generated from the same sample and, thus, revocability and unlinkability
are satisfied. In addition, the scheme is robust to FAR and similarity-based attacks.

A practical realization is illustrated, which was performed by considering a smart-
phone as the device client and computers as the database, computation and authentication
servers. FaceNet embeddings were selected as biometric features. The execution times
obtained allow for real-time authentication. A relevant advantage of our proposal is that
Classic McEliece generates protected data with sizes much lower than other approaches,
while maintaining low computational cost.

6. Conclusions

In summary, the proposed non-device-centric biometric authentication scheme offers
the following advantages:

• Post-quantum security, even with honest-but-curious servers;
• Privacy-preserving management of individual data;
• Recognition performance improved in a normal scenario and maintained in a stolen-

device scenario;
• Practical realizations allowing for real-time authentication with low computational,

storage and communication costs.
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