
Citation: Yousaf, J.; Zia, H.; Alhalabi,

M.; Yaghi, M.; Basmaji, T.; Shehhi,

E.A.; Gad, A.; Alkhedher, M.; Ghazal,

M. Drone and Controller Detection

and Localization: Trends and

Challenges. Appl. Sci. 2022, 12, 12612.

https://doi.org/10.3390/

app122412612

Academic Editors: Luis Gracia and

Carlos Perez-Vidal

Received: 16 September 2022

Accepted: 5 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Drone and Controller Detection and Localization: Trends and
Challenges
Jawad Yousaf 1 , Huma Zia 1 , Marah Alhalabi 1 , Maha Yaghi 1 , Tasnim Basmaji 1 , Eiman Al Shehhi 1,
Abdalla Gad 1 , Mohammad Alkhedher 2 and Mohammed Ghazal 1,*

1 Department of Electrical, Computer, and Biomedical Engineering, Abu Dhabi University,
Abu Dhabi 59911, United Arab Emirates

2 Mechanical Engineering Department, College of Engineering, Abu Dhabi University,
Abu Dhabi 59911, United Arab Emirates

* Correspondence: mohammed.ghazal@adu.ac.ae

Abstract: Unmanned aerial vehicles (UAVs) have emerged as a rapidly growing technology seeing
unprecedented adoption in various application sectors due to their viability and low cost. However,
UAVs have also been used to perform illegal and malicious actions, which have recently increased.
This creates a need for technologies capable of detecting, classifying, and deactivating malicious and
unauthorized drones. This paper reviews the trends and challenges of the most recent UAV detection
methods, i.e., radio frequency-based (RF), radar, acoustic, and electro-optical, and localization meth-
ods. Our research covers different kinds of drones with a major focus on multirotors. The paper also
highlights the features and limitations of the UAV detection systems and briefly surveys the UAV
remote controller detection methods.

Keywords: Unmanned aerial vehicles (UAVs); detection technologies; radio frequency-based (RF);
radar; acoustic; electro optical; hybrid fusion; controller detection

1. Introduction

In recent years, there has been a significant advancement in unmanned aerial vehicles
(UAVs). UAVs are widely used for commercial, civilian, and military applications due to
their low cost, spatiotemporal coverage, and remote sensing capability. They have been
specifically popular for collecting information in remote and inaccessible areas, such as
military surveillance and search and rescue in floods or earthquakes [1–3].

An aircraft without onboard human command and control is called a UAV, also called
a drone. Command and control are achieved autonomously by the embedded autopilot
or remotely by the operators through a ground station [1]. Moreover, autonomous and
remote controls can be integrated as a single UAV control mechanism. Over the years, the
technology and features of UAVs have improved tremendously to address the varying
requirements of different applications. In addition, ongoing research has been successful in
finding ways to improve the performance of the UAV. Various designs and features that
support their assigned missions in different fields and sectors have been proposed, such as
shape structures, take-off, and landing techniques [2,4].

Surveillance applications use UAV technology to be integrated as a standalone, con-
nected platform for information gathering. The human detection system in [4] was achieved
through input from thermal images and videos from a thermal camera connected to a UAV.
These images and videos are categorized by reference to a thermal dataset in the system
and are processed by sequence operations to achieve the final result. In the military, some
geographic areas are difficult to reach for monitoring and detecting unwanted signals or
entities. The proposed system in [5] overcomes this demand.

Moreover, smart farming utilizes UAV technology for real-time monitoring and
data acquisition of crop parameters, e.g., plant height, presence of weeds, or fungus.
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Tsouros et al. [1] discussed different types of UAVs and explored multiple applications
of UAVs in precision agriculture, crop health, and growth monitoring. Moreover, this
work reviews data acquisition technologies and aerial image processing methods. Further,
civil engineering utilizes UAV technologies for seismic risk assessment, transportation
management, disaster response, construction management, surveying and mapping, and
flood monitoring and evaluation [2].

To summarize, UAV technologies have numerous features that enable their usage in
multiple sectors and applications. The benefits of such technologies include: (1) reducing
human risk, (2) lower energy consumption, (3) a lower cost, (4) flexibility, and (5) accuracy
of data collection. The advances in electronics and sensor technology have widened the
scope of UAV applications for their likely invaluable inclusion in police, fire brigades,
and disaster management operations. However, in recent years, UAVs have been used to
perform malicious actions, such as drug smuggling, intelligence gathering, and suicide
attacks [2,3,5]. UAVs also pose a threat to surpassing restricted government or military sites.
In addition, with the prevalence of smaller UAVs, concerns over public privacy are rising.

All these threats warrant an urgent need for research into UAV detection methods. It
becomes strategic to detect and localize UAVs to prevent such malicious actions. Recently,
various detection algorithms have been researched, such as active radar probes, acoustic
recognition, infrared spectrum identification, visual recognition, and radio frequency (RF)
signal detection [1–7]. This study aims to provide a detailed literature review of these
detection methods, identify their strengths, explore various applications where they were
used, and compare these methods for the major relevant studies in the open literature. Our
study scope includes the detection and localization of multirotor and other UAV types.
The study also reviews the techniques for the UAV controller localization of the detected
drones. This review aims to survey the quickly evolving field, record what is notable and
popular within this sector, and provide recommendations for future investigators. Table 1
summarizes the covered topics in different sections of this study.

Table 1. Summary of reviewed topics for drones and their controller detection.

Detection Technologies Ref.

UAV Architecture and Security Concerns [3–8]

UAE Detection Technologies

RF [7–20]
Radar [21–29]

Acoustic [30–40]
Electro-optical [41–46]
Hybrid fusion [40,41,47,48]

Controller Detection and Localization [12,18,49,50]

The rest of the study is organized as follows: Section 2 details the architecture of UAVs
and associated security concerns with drones. A comprehensive review of UAV detection
technologies is outlined in Section 3. The studies about drone controller localization are
reviewed in Section 4. Lastly, Section 5 concludes the findings of the study.

2. UAV Architecture and Security Concerns
2.1. UAV Architecture

UAVs have multiple subsystems integrated to perform various operations, such as
launch, fly, operate, process, transmit, and receive commands from remote or ground
stations [3,5]. Four main UAV subsystems should be considered: (1) a power unit, (2) a
communication module, (3) the main computing device, and (4) a sensor board. The power
unit is designed to provide a longer lifetime for UAV operation without charging it [4].
The high-level architecture of the UAV system is illustrated in Figure 1, including UAV’s
main computer processes commands based on the collected data from other subsystems or
components (GPS, sensors, gyroscopes, accelerometers, antennas, receivers, etc.). These
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data or commands are transferred through a communication link between the UAV and
the ground control station (GCS). This communication is mainly monitored to detect UAVs
based on RF and radar-based technologies (details in Sections 3.1 and 3.2).
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Figure 1. High-level architecture of a UAV.

A brief description of the major components of UAE architecture is as follows:

• UAV’s structure/airframe: There are many common features of a UAV’s chassis, such
as lightweight, small size, endurance, aerodynamic flexibility, etc.

• Main computer: The critical part responsible for autonomous functioning and flight
control. The computing subsystem processes sensed information, transmits it back,
manages flight operations, and communicates with the control base.

• Sensors/payloads: UAVs can be equipped with a range of possible lightweight sensors
per the application’s needs, including RGB cameras, thermal sensors, LiDAR sensors,
and multispectral and hyperspectral sensors. All of them are connected to the flight
controller to gather real-time data and process it for the missions’ execution.

• Communication link: UAVs are equipped with a high-quality wireless communication
unit, including 5G, WiFi, Bluetooth, and radio-frequency identification (RFID), to
facilitate communication with the GCS or the internet.

• Ground control station (GCS): This base station is mainly employed to monitor and
control the UAV during its operation. Flight operation is continuously monitored and
can be controlled to alter the mission.

2.2. Security Concerns

Regarding UAV security, two main topics are discussed in the literature: the security
and safety of UAVs and the potential misuse of UAVs against critical infrastructures and
privacy-related issues.

Threats to UAV security are well-researched concerning targeting its hardware, soft-
ware, and communication module. In [6], threats to various components of the UAV system
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are discussed. GCS’s physical, network, and cloud security have been highlighted as vul-
nerabilities that can be exploited. Moreover, threats exist against the UAV communication
according to the communication medium technology or type (WiFi, cellular network, GPS,
and other RF solutions). The possible common attacks are eavesdropping, jamming, replay,
denial of service, hijacking, etc. Other threats include mission disruption and itinerary
tracking [7,8].

Despite promising application benefits using UAVs, threats also exist by their preva-
lence in the public domain. UAV security threats and incidents are mainly caused by
privacy violations of sensitive sites, airplane flight disruption, damage and explosion in
targeted areas, and sensitive data leakage through eavesdropping [7,8].

3. UAV Detection Methods

As mentioned in Section 2, there are many sectors in which UAVs have been explored
and adopted, utilizing their practical and advanced features. The continuous development
and improvement of UAV’s main systems and components, i.e., flight controller, sensors,
gyroscopes, cameras, GPS, etc., increased the demand and reliance on UAVs for accom-
plishing different civilian and military missions. Moreover, they are widely available in the
market at a reasonable cost compared to other solutions.

Research has been dedicated to designing, developing, and implementing systems
for detecting malicious UAVs. Techniques of these systems are classified into passive and
active. RF-based, acoustic, and vision-based techniques are among the passive technologies,
whereas radar-based techniques are defined as active technologies. These technologies
vary in operational conditions, covering range, consistency, accuracy, and many other
parameters. This section focuses on UAV detection technologies and discusses the general
framework and related work.

3.1. RF-Based

RF is used for UAV remote command and control communication. RF-based detection
technologies rely on real-time sensing, capturing, processing, analyzing, and retrieving
data from UAV’s RF-emitted signals. Acquired RF data are intended to identify, track
and classify the detected UAV and localize the controller. RF-based techniques analyze
the captured spectrum between the UAV and operators using circular or linear array
antennas to detect both the drone and its controller in all-weather environments. As
most of the communication between a drone and its controller occurs in the ISM band,
around 2.4 GHz, the implementation cost of such a system is much lower compared to a
radar-based solution [21–28,51].

In RF-based detection technologies, RF and WiFi-based fingerprinting techniques
are major verification systems. RF-based techniques include studying and analyzing the
characteristics of the captured transmitted RF signal from UAVs or UAVs’ controllers.
However, WiFi-based fingerprinting is related to the WiFi links and traffic between the
UAV and its remote controller. The reviewed studies include the analysis of RF spectrogram
(fingerprinting) [7,9,10,19], angle of arrival (AOA) (MUSIC) [12], and direction of arrival
(DOA) [40] methods for the identification and localization of drones using conventional as
well machine learning algorithms [9,10,13–15].

In [7], the technique proposes a complete UAV detection and identification system
framework designed to work in the 2.4 GHz frequency band. The system starts with
capturing the wireless signals in the test area. Then, the captured signal is processed based
on a 4-level Haar wavelet transform analysis. The standard deviation of the processed
signal is calculated to define the UAV detection condition. After the detection of the UAV,
the RF fingerprinting stage is activated, and three main features are extracted: (1) fractal
dimension (FD), (2) square integrated bispectra (SIB), and (3) axially integrated bispec-
tra (AIB). These features are adjusted and weighted using principal component analysis
(PCA) and neighborhood component analysis (NCA) algorithms. The final RF fingerprints
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are stored as the training data for a set of machine learning algorithms used to classify
the UAV.

Based on indoor and outdoor experimental scenarios, the average identification accu-
racy of UAVs is summarized with respect to three fingerprinting features. Furthermore,
in [8], the WiFi network traffic is monitored, and the UAV detection method is based on
WiFi fingerprint analysis. The extracted features are related to the captured traffic’s dura-
tion, behavior, and distribution. Different scenarios are applied to evaluate the system’s
performance in UAV detection, where the average precision is about 96%.

The authors of [15,19,20] fed the extracted time-domain characteristics (shape factor,
skewness, kurtosis, and variance) of recorded RF signals to the machine learning data pro-
cessing units to detect and classify UAVs. In [9], indoor experimental testing is conducted
for data collection using the RF fingerprints of the transmitted signal from the micro-UAV
controller to the UAV for UAV detection and classification. Different micro-UAV controllers
(a total of 14) operating at the 2.4 GHz frequency band were used to create the dataset
(a total of 100 RF signals) and test the proposed detection and classification technique.
Each micro-UAV controller has a different transmitted signal, categorized with its unique
transmitter characteristics, excluding the traditional threshold-based detection technique.
The Markov model algorithm is later used for UAV detection and energy transient signal
approach for feature extraction and UAV classification. The performance and accuracy of
the system were found to be 96.3%.

UAVs use the Industrial Scientific and Medical (ISM) frequency bands, i.e., 2.4 GHz
and 5.8 GHz bands, to communicate with their remote controllers [11]. Multiple passive
RF sensors support these frequency bands and are used for non-invasive surveillance
operations, including UAV monitoring, detection, localization, and tracking. In [11], the
UAV detection system consists of a sensor node, Keysight RF sensor N6841A, operating in
the range of 20 MHz–6 GHz, broadband antenna, and GPS tracker linked with geolocation
software, N6854A. The RF signals are detected and collected within a radius of 2 km from
the sensor node. A GPS antenna also records the time stamps for these collected signals.
The localization of the UAV is performed using a detection algorithm and time difference
of arrival (TDOA) measurements. Extended Kalman filter (EKF) framework and fitting
motion models (MM) address these errors and improve localization performance.

Furthermore, the research work in [10] illustrates a system model and architecture
followed by experimental validation of the proposed direction finding (DF) method of
sparse de-noising auto-encoder (SDAE) for UAV surveillance. This method consists of a
single channel for a receiver and a directional phased array antenna. The mechanism of the
system works as follows. First, the transmitted signal from the drone to its ground controller
gets processed using an RF switching mechanism to measure the received signals output
power at each directional phased array antenna. Next, the acquired output power values
from the N-antennas of the phased directional array are input to the proposed SDAE-based
deep neural network (DNN). The first network layer extracts received wattage values. Then
the remaining network utilizes sparse representation to categorize UAVs’ signal directions.
The system diagram of the proposed method in [10] is depicted in Figure 2. To summarize,
the wattage power values are passed to the proposed deep network, followed by the DF
method, which exploits both the sparsity parameter of the transmitted UAV signal and the
gain variation parameters of the directional antenna array.
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In [16], the authors discuss UAV detection using RF-transmitted signals between UAVs
and their remote controllers. Power spectrum cancellation and multi-hop autocorrelation
are developed to achieve RF passive detection of UAVs and controllers to detect emitted
signals. The multi-hop autocorrelation method can detect the cross-correlation signal if
the Signal-to-Noise (SNR) ratio is small by applying an emitted remote-control signal.
A limitation of the multi-hop autocorrelation is the low accuracy in the case of fixed
frequency in remote-control signals. The calculated parameters significantly depend on
the autocorrelation function, leading to false positives. Hence, the study of [16] used the
power spectrum cancellation technique to eliminate the effect of fixed frequency signals.
Power spectrum cancellation works by first finding the differences between the control
signal power spectrum and fixed frequency signals over time. Once the differences are
identified, the fixed frequency signal is eliminated, and the remote control signal is applied
to multi-hop auto-correlation to finalize the parameters for UAV detection.

Furthermore, [17] stated that the RF passive detection method has the advantage of
low cost, license-free, long-range distance coverage, and early warning capability. They
also illustrated an RF passive system architecture, which analyzes the electromagnetic RF
spectrum emitted from exchanged signals between the UAV and its controller. The passive
RF detection algorithms analyze these signals to sense alternations in the frequency and
time domain RF spectrum.

Various studies have reported promising results utilizing different algorithms and
techniques for RF-based UAV detection. However, the presence of noise affects the accuracy
and detection range. Table 2 summarizes the reviewed papers and tabulates the features
and accuracy of the undertaken methodology for RF-based UAV detection.
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Table 2. Summary of reviewed RF-based techniques for UAV characterization.

Ref. Operating Frequency
Functionalities

Performance
Identification Classification Localization/

Tracking

[7] 2.4 GHz
√ √

- Average of 97%
[8] 2.4 GHz

√ √
- Greater than 96%

[9] 2.4 GHz
√ √

- Average of 96.3%
[11] 20 MHz–6 GHz

√
-

√
-

[13] 1–6 GHz
√ √

- Average of 99%
[10] 2.401–2.481 GHz

√ √ √
-

[16] 2.4 GHz and 5.8 GHz
ISM bands

√
- - -

[12] 2.4 GHz
√

-
√

-
[18] 2.4 GHz ISM band

√
-

√
-

3.2. Radar

Radar signal processing is among the classical approach for aircraft and drone detec-
tion as it can be used in all weather conditions with 24/7 operation [18,21,52] as compared
to acoustic and visual detection methods. In this approach, the received signal is charac-
terized to detect echo, doppler signature, or radar cross-section (RCS) for detecting and
tracking the target [21,28,29,53]. The conventional radar signal processing techniques have
the limitation of accurate distinction of mini UAVs from birds due to their smaller RCSs.
AI-based techniques are proposed [28,29,53,54] to process the extracted features from the
radar signals to address this issue to some extent.

In radar-based detection, radio energy is used to detect the target and define its
position [21,23,55]. Typically, a radar-based detection system has three main components:
RF radar, data acquisition, and signal processing. In RF radar, the electromagnetic energy
radiates into space and encounters the UAV’s body flying in the monitored area. The
UAV’s reflected wave is returned and received by the system, measured, and processed in
real-time (data acquisition and signal processing). Hence, the UAV is successfully located,
and its flight path is tracked by the system [30,36,55,56].

Frequency-modulated continuous wave (FMCW) and continuous wave (CW) radars
are preferred to be used in UAV detection and identification, especially for their continuous
pulsing, effective cost, and performance [21]. The FMCW radar contains a transmitter and
a receiver antenna. The oscillator and the control signal produce the transmitted signal.
After the backscattering/reflected signal is received, it gets passed to the I/Q demodulator
for filtering. Power is equally distributed into two signals with 90 degrees phase shift to be
forwarded to the low pass filter (LPF). The intermediate frequency (IF) signal, resulting from
in-phase and quadrature-phase components, is directed to the analog-to-digital converter
(ADC) and the digital signal processing (DSP), as depicted in Figure 3. The distance and
velocity of the target can be defined by using the time delay and phase information of both
the transmitted and received signals [21].

The studies of [24,25,28,54,57,58] employed the principal component analysis (PCA) [24],
convolutional neural networks (CNN) [23,28,51,54], long short-term memory (LSTM) [28],
and support vector machines (SVM) [57,58] techniques for the processing of extracted
features from radar signals such as micro-doppler spectrogram [23,28,54,57,58] and range-
doppler signature [24] for the classification of drones. Recently authors in [13] used the
hierarchical learning approach for the detection of the presence, type, and flight trajectory
of a UAV. Due to the smaller size of most UAVs, wideband, high frequency, expensive
radars are required for the accurate detection and tracking of mini UAVs [23,24,52,54],
which increases the overall cost of the detection and localization system.
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In [55], the authors proposed research and experiments for evaluating the data ac-
quisition and signal processing algorithm in a CW radar system that supports C and X
frequency bands operations. The radar system uses the micro-Doppler principle. The
extracted signatures in the frequency and time domains are used in UAV classification for
calculating the propeller blades’ length and determining the rotation propellers’ speed.
For performance evaluation, the number of UAV propellers varies during the experiments
while fixing the propellers’ rotational speed and a maximum distance of 25 m between the
radar and UAV. The classification and measurement of UAVs become complex with the
increase in propellers.

In another work [56], simulation and analysis of continuous wave radar’s echo signals
are studied and presented in different conditions at an operating frequency of 35 GHz.
Mainly UAV detection is based on the time-frequency characteristics of the Micro Doppler
signal produced by the rotor rotation using singular value decomposition. Discrete wavelet
transform is also used to remove environmental clutter from the radar echo signal, whereas
the support vector machine (SVM) is used as a classifier. The detection accuracy of the
developed system achieved 85%.

Another type of radar-based UAV detection mechanism, cylindrical phased array radar,
was discussed in [27]. The system performs better for UAV detection when comparing
the omnidirectional scanning to planner array radar due to the flexibility of changing the
direction of the beam and illumination time to the target after the phased array was used.
As for the operational norms, the system’s hardware structure and signal processing flow
are designed to get a strong clutter suppression specified in the investigation, and the
result of the experiment shows potential for UAV detection. Authors in [27] developed
a cylindrical phased array radar system and explored signal optimization by specifying
signal processing flow with the moving target detection (MTD) based on the maximum
signal-to-clutter ratio (SCR) criterion.

Tang et al. [24] explained the type x-band, a small phased array radar based on
AD9361, an RF Agile Transceiver. The AD9361 is a highly integrated RF module with a
high-performance agile transceiver for 3G and 4G base station applications. The reported
radar system consists of a control module controlling the antenna beam pointing through
the transmitter/receiver (T/R) module. The signal processor also sends waveforms as
transmitted RF signals to AD9361 within the timing sequence. Then the corresponding
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waveform is generated and established by AD9361. The radar simulation detects a drone
with a radar cross section (RCS) of 0.01 m−2 within the range of 5 km. For radar detection,
enhanced reflected signals are necessary to minimize the effect of noise. An SNR value
greater than 14 dB indicates a highly accurate detection.

In the case of a reliable RCS, the chosen wavelength should not reach half of the
detected object’s dimension. It is critical to use a higher frequency while using Doppler-
based detection. As illustrated in [22], radar is used to detect smaller drones; however, it
has an ill-prepared standard for UAV detection based on low air-velocity aircraft and weak
radar signature. During target detection, the radars would receive reflections from clutter-
like objects, landscapes, and precipitation, posing a challenge in detection. A target can
only be detected if system noise due to clutter is minimized. A 30 × 30 rectangular phase
array used in [22] detects the presence of drones in monostatic radar. It would continuously
scan the predefined surveillance region, with the limitation of a 90-degree azimuth sector,
to achieve 360 azimuth coverage at a low cost. Doppler estimation discussed in [22] can be
described as a spectrum estimation process.

The reference [26] illustrates the new method based on 5G millimeter waves with an
end-to-end network. It further explains the detection method done using 5G millimeter-
wave radar at rotors of UAVs. The high-resolution range profile (HRRP) can identify a UAV
location, while micro-Doppler identifies the UAV. Moreover, the cepstrum method was used
to extract any number and speed information of the detected UAV rotor. Multiple UAVs
can be identified using the sinusoidal frequency modulation (SFM) parameter optimization
method. The proposed method determines the following: the number of detected UAVs,
the number of rotors, the rotation speed of all rotors, and the position of the UAVs. The
proposed radar detection in [26] presents a UAV identification and detection study by
providing a method for UAV tracking using the GPS-independent method, such as GPS
signal failure, GPS signal interference, and satellite occlusion areas. HRRP technology and
micro-Doppler provide a successful solution to detect and localize any rotating targets
regardless of weather conditions. The presented simulated results showed high robustness
and performance of the cepstrum method.

Authors in [59] presented a passive radio drone detection system that uses goodness-
of-fit (GoF) based spectrum sensing and the MUSIC algorithm to detect the transmitted
signal of a drone and its controller and estimate the DOA. Once a signal is detected, the
DOA is estimated at the detected frequency. The MDL algorithm detects the number of
targets and whether the source is a drone or controller. The detection system detected
drones and controllers from different manufacturers with good sensitivity.

A challenge associated with UAV detection is the presence of aircraft and birds in the
background [60–62]. Hence, clutter suppression and target detection algorithms are needed
to overcome this complex issue, as stated in [26]. Rationally, object detection of possible
UAVs comes first, followed by classification to separate UAVs from other detected objects.
In addition, the purpose of these classifications and identifications can be used to extract
many unique features of these UAVs [23]. As stated previously, the effects of Doppler radar
are used to determine the velocity of a distant object more accurately. This is obtained from
the radial component of a target velocity in relation to radar. Using stepped frequency
waveform (SFW), an HRRP can be obtained. Due to HRRP and Doppler information from
a wide-band Doppler radar, detected objects scanned using wide-band are identified and
classified. Millimeter wave base stations and 5G network systems can be used as detection
network channels for UAV detection using the data from the processing center of 5G base
stations. The process includes extracting essential parameters from multipath locations
through 5G bases.

Many factors must be considered during the development to enhance the radar sys-
tems’ performance, such as operating frequency, data acquisition, processing algorithms,
classification techniques, and environmental clutter. The summary of reviewed studies of
this technique is given in Table 3.
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Table 3. Summary of reviewed radar-based techniques for UAV characterization.

Ref.
Detection
Technique Specifications

Functionalities
Performance

Identification Classification Localization/
Tracking

[21] FMCW/CW radar Doppler effect
principle

√
- - NA

[55] CW radar
C and X frequency

bands, Micro
Doppler principle

√ √
- -

[56] CW radar Operating
frequency: 35 GHz

√ √
- Accuracy 85%

[27] Cylindrical phased
array radar

Operating
frequency: C band

√
-

√
Performed well
under a strong

cluttered
environment

[24] Small phased array
radar Based on AD9361

√
-

√
Reliable and stabile

[22] Rectangular
phased array radar

Operating
frequency: X band

√
- - Mixed up with birds

[26] 5G millimeter wave
radar

Starting frequency
is 25 GHz, which is

in the 5G band

√
-

√
Detected at 300 m

with a speed of
157.9 r/s & at 850.2 m
with a speed of 88 r/s

3.3. Acoustic

Acoustic sensors, such as microphone arrays, capture the generated audio from the
rotors and propellers of the drone and then compare the extracted features, including
mel- frequency cepstral coefficients (MFCC) and short-time Fourier transform (STFT), with
acoustic signature databases for the detection and classification of drones and UAVs using
conventional and AI-based architectures. MFCC is a set of reflected human perception
features of sounds, which is used in audio classification when paired with machine learning
approaches. STFT is considered an intermediate feature compared to MFCC. MFCC
compresses signals while representing them with coefficients set. On the other hand, STFT
features contain more information and noise than MFCC, giving STFT an advantage. Deep
learning models can easily adopt STFT and manage it given more complex data [37].

Authors proposed a machine learning framework in [38], shown in Figure 4, to detect
and classify ADr sounds in a noisy environment, among other sounds. The required
features are extracted from ADr sound using the feature extraction techniques of MFCC
and linear predictive cepstral coefficients (LPCC). Following the feature extraction process,
these sounds are then identified using SVMs. The results show that the SVM cubic kernel
with MFCC outperforms the LPCC technique by detecting ADr sounds with 96.7% accuracy.

Acoustic-based technologies are effective for detecting UAVs since they are not affected
by the UAV’s frequency range, weather fluctuations, e.g., fog, environmental disturbance,
and noise. Hence, such technologies do not block the acoustic sensors’ earshot to detect the
UAV’s acoustic signals. Acoustic signals produced by the engine and propeller blades of the
UAV are collected and processed to classify the UAV and calculate its distance, direction,
and location [33].

Authors in [39] proposed a CNN-based system to detect drones using acoustic signals
received by a microphone. STFT magnitude is used as the two-dimensional feature in the
study since drones’ harmonic properties differ from those of other devices that make a
similar noise. The dataset comprised 68,931 and 41,958 frames of drone and non-drone
sounds collected using DJI Phantom 3 and 4 drones flying outdoors. The proposed approach
has a detection rate of 98.97% for the 100-epoch model and a false alarm rate of 1.28. Figure 5
illustrates the system overview of the proposed approach.
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An acoustic-based detection system was designed and implemented in [30] to detect
and locate the UAVs efficiently. The acoustic sensor array configuration comprises two
tetrahedron-shaped microphones. The system uses multiple algorithms for data and fea-
tures extraction from the collected acoustic signals: cepstral coefficients (CC) for extracting
the harmonics’ features, SVM to classify and distinguish between the extracted features’
vectors related to UAV or background noise, and TDOA based on Bayesian framework.
Signal processing is concluded with the temporal and dimensional features’ vectors calcu-
lations to acquire the accurate UAV classification and localization path. They also study the
contribution of the SNR in detecting the UAVs against the detection rate.

In [36], multi-label UAV sound classification is examined using stacked bidirectional
long short-term memory (BiLSTM), an advanced, recurrent neural network (RNN) capable
of handling sequence or multiple classification tasks and avoiding long-term dependency
issues. The proposed BiLSTM model is 94.02% successful in UAVs’ sound classification.

Several types of research and studies aim to investigate and evaluate different algo-
rithms used in data acquisition, processing, and classification of the collected acoustic
signals. In [31], the system’s performance level varies using different audio processing
algorithms for characteristic feature vector extraction. The extracted features are inputted



Appl. Sci. 2022, 12, 12612 12 of 22

into concurrent neural network (CoNN) for classification. The results confirm better ac-
curacy when integrating CoNN with the Wigner-Ville dictionary than MFCC and mean
instantaneous frequency (MIF).

The authors in [35] gathered the acoustic data from a local suburban airport for the
five samples of commercial multirotor UAVs to establish the performance based on passive
acoustic detection. The study characterizes the emitted noise of UAVs of different levels
in an anechoic chamber at the airborne time. The microphone array was arranged within
two circular tiers, each 1-m in radius, and separated vertically by 1.6 m to collect data from
the local airports. The generalized cross-correlation (GCC)-based algorithm is used to find
direction by fusing the time difference of both arrivals and steered power response with
phase transform (SRP-PHAT). The smallest UAV with a 294 m detection distance was tested
and demonstrated. Differential Doppler is used to overcome the decorrelation effect for
better accuracy, as stated in [35].

In [32], the authors used classical detection and direction-finding methods using
an array of microphones. There had been a physical investigation of the UAVs through
experiments on acoustic emission with two signal models presented in harmonic signal and
broadband signal for open area and indoor environments, respectively. The spectral signs
are used for detecting and recognizing the UAVs in a noisy environment by incorporating
the effect of noises in urban transport, speech signals, and environment noises. The result
gives the same quality as the MFCC method, where acoustic portraits are unnecessary. The
cross-correlation function is efficient in the direction-finding of the UAV. The study of [32]
concludes with the following points: (1) high-pass filters are effective in the processing
stage of UAV acoustic emission; (2) taking a noisy environment as a background experiment
while detecting and recognizing UAVs by spectral signs performs similarly to the MFCC
method, excluding acoustic portraits; (3) it is suggested to improve the efficiency of the
CCFM algorithm in acoustic signals to filter out low-frequency noise; (4) MFCC and CCFM
can be used to create an effective counter-action system against UAVs.

Yang et al. [37] researched the utilization of acoustic nodes in the UAV detection
system. The proposed system finds the best configuration of the node for deploying the
UAV acoustic detection system using machine learning models. The study was designed to
investigate the best combination of acoustic features, STFT and MFCC, machine learning
algorithms, SVM and CNN, for node optimization. After integrating the sensing nodes
in four different configurations among the test sets, the one that maximizes the detection
range without blind spots is selected. A semi-circle by the STFT-SVM model with a 75-m
distance between the protected area and node has the best performance for configuration
optimization. Demonstrating machine learning in the audio signal domain with different
learning algorithms was used for detection module development. The study [37] focused
on event sound detection using binary classification with MFCC features in an urban area.

A drone acoustic detection system (DADS) is proposed and demonstrated experi-
mentally to detect, classify, and track airborne objects in [33]. They used a Phantom 4
UAV for testing, which reached 350 m with four degrees as an average precision to track a
maneuvering UAV with compact acoustic nodes. This test also implemented the classifica-
tion algorithm to detect a multirotor UAV based on a specific sound inherent in the flight
control mechanism. The Steven Institute of Technology has developed the DADS to detect,
track, and classify anonymous UAVs by propeller noise. The proposed system has three
or more microphone nodes in a tetrahedron configuration. The communication between
the microphone nodes and the central computer is done through WiFi for processing. The
orientation calibration for the DADS system is performed by emitting white noise from a
speaker and tracking the GPS position for several minutes. Based on the difference between
the detected direction and computed ones from the surveyed GPS, the orientation can
easily be corrected in the case of detection and tracking. Establishing a tracking process can
be predicted using collected data and parameters. Node placement, the direction-finding
probability that depends on precision and range for a given target, and ambient conditions
with the tracker association threshold are among the collected data.
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Two main components affecting the system’s overall performance are (1) hardware
specifications, including acoustic sensors and data acquisition tools, and (2) software tools
and algorithms, including acoustic fingerprints and features extraction, classification, and
localization. Table 4 summarizes the recent studies for acoustic-based UAV detection,
classification, and localization.

Table 4. Summary of reviewed acoustic-based techniques for UAV characterization.

Ref. Detection Technique
Functionalities

Performance
Identification Classification Localization/

Tracking

[30]

Designed for Amateur
Drones (200 Hz), SVM

(Drone sound
identification)

√
-

√
High accuracy

[36] BiLSTM (UAV sound
classification)

√ √
- UAV sounds 94.02%

[31] Concurrent Neural
Networks

√
- - 96.3%

[35] TDoA, SRP-PHAT
√

-
√ SRP-PHAT outperform

TDoA
[32] -

√
-

√
-

[37] MFCC, STFT, CNN, SVM
√

-
√

Noise affects the detection

[33] SRP-PHAT
√

-
√ Drone classification

algorithm to be improved
according to distance

[34] SRP-PHAT
√

-
√

-

Unlike radar and RF approaches, the acoustic solution does not require a line of sight
(LOS). However, this solution has challenges of a short range, the need for an extensive
large signature database, and vulnerability to ambient environmental noise and clutters,
particularly in urban areas [14,30,31,40], and quiet operation of the drone [9,30,38]. The
detection of the drone pilot could be very difficult, too, using acoustic sensors.

3.4. Electro-Optical

The electro-optic sensing system transmits, detects, and examines radiations in the
optical spectrum, including visible light, infrared, and ultraviolet radiation. It can handle
long-range imaging and has reliable results under different illumination levels. The compo-
nents associated include optics, laser, detectors, camera, processing unit, etc. Such systems
have been used for UAV detection, direction finding, and localization continuously and in
all weather conditions.

In [46], the authors proposed using machine learning techniques to automatically
detect and track small moving objects in the airfield from their motion patterns, i.e., the
ways an object moves. The system utilized remote digital towers with high-resolution
cameras covering the 360-degree view of airports to construct a video dataset comprising
aircraft in an airfield and drones. Harris detection and convolutional neural network
followed by optical flow we applied to the dataset to locate and track very small moving
objects in the wide-area scene. The results showed that the system can detect objects with
15 × 15 pixels in 1080p images with a low miss rate. Motion-based features are extracted
from their trajectories, after which a K-nearest neighbor classifier is applied to classify
objects into drones or aircraft, with an accuracy of 93%.
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The proposed approach in [42] performs the detection by integrating a 3D LADAR
sensing system. The study employed voxel-based background subtraction and variable
radially bounded nearest neighbor (V-RBNN) techniques to detect small UAVs up to 2 km.
During the development phase, this integration is supported with augmented data set to
enhance the model’s performance. The developed LADAR scanner can be rotated to cover
a wide range of areas, e.g., 350 degrees for azimuth direction and 120 degrees for elevation
direction. Furthermore, the used clustering algorithm, V-RBNN, has a good impact on the
target UAV classification, which may increase the use of this proposed detection system in
various applications.

In some electro-optic solutions, the detected data transferred to the analysis phase,
including advanced processing, machine vision, or machine learning, are not accurate
enough to track small UAVs effectively. Authors in [44] proposed an electro-optic system
integrated with an all-sky camera system to get a wider view of the monitored area to
improve the detection resolution. Multiple experiments were performed to evaluate the
proposed solution and test its integration with other cues, i.e., acoustic. The combination of
these three systems, electro-optic, all-sky camera, and acoustic cues, is also evaluated.

The study in [41] improved its outcomes’ reliability by using the electro-optical method
for small UAV detection and tracking. The actual video stream was used in real-time, and
a differential method was employed for analyzing and investigating UAV detection and
tracking. The differential method finds the differences in sequenced frames in a video
stream. In the case of hovering UAVs or some axially moving and revealing objects near
the frames, the contrast was selected only for the displaced part of the object to process the
video streams using the DIS algorithm.

The electro-optical detection method needs to consider the following factors: size and
movement in 3D, speed of detected airborne objects, the maximal distance of detected ob-
jects from the camera position, optical lens descriptions, and linear object image resolution.
Since these factors directly relate to image processing methods, detecting distance and
outputs of detections get affected negatively if one of the aforementioned factors contains
faulty or inaccurate information. Detecting moving objects at a maximal distance from a
camera in real-time is the main objective of the method.

A single dynamic vision sensing (DVS) camera, a base station, UAV, and a blinking
marker are used in [45] to detect and locate mobile UAVs. During video streaming, the
differences among the captured frames are computed and filtered to detect UAVs in the
background image using a temporal-filtering algorithm. The triangulation algorithm was
also used to help capture UAVs or drones by extracting spatial localization parameters and
providing details about the physical size of the detected object.

Similarly, in [43], Seidaliyeva et al. developed an algorithm to detect drones from
a video stream. The system overview for the process is illustrated in Figure 6. The
input frames are passed into a moving object detector algorithm. The authors relied on
background subtraction followed by threshold filtering and morphological operations
for detecting moving objects. The background subtraction method describes a model
background image that is subtracted from all frames to extract the foreground. This method
heavily depends on the background remaining static throughout the operation. A CNN-
based classifier is used on the detections to distinguish drones from other objects such
as birds.

The limited detection range can pose a challenge while employing the electro-optic
technique. The detection performance can be enhanced by incorporating other supporting
algorithms. The summary of reviewed studies of this method is depicted in Table 5.
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Table 5. Summary of reviewed electro-optical sensor-based techniques for UAV characterization.

Ref. Detection Technique
Functionalities

Performance
Identification Classification Localization/

Tracking

[42]
3D LADAR sensor, 3D

background subtraction,
V-RBNN

√
-

√
Detection Range 2 km

[44] Combination of: EO/IR,
All-sky, and acoustic cues

√
-

√
Line of sight limitation

[41] Real stream detection,
Differential method

√
-

√
-

[45] DVS camera, Temporal
filtering, Triangulation

√
-

√ Accurate Detection range
30 m

[43] Background subtraction,
CNN’s

√
- - Moving Background

dependency

The performance of vision-based solutions becomes poor with no LOS (angle of cam-
era), bad quality of lenses, in foggy, dark, and dusty environments (weather conditions),
and background temperature [9,10,21,63]. The aforementioned limitations could be ad-
dressed to some extent by using an IR camera, i.e., detection based on drone component
heat, but that increases the system cost significantly and limits the detection range and en-
vironment due to the sensibility of the sensors that measure the thermal difference between
the drone and the background [14,63].

3.5. Hybrid Fusion Systems

The hybrid fusion of multiple cues, such as radio frequency, radar, acoustic, and visual
sensors, improves the performance of detection, classification, and localization of both the
drone and its controller. Jovanoska et al. [47] suggested an array of sensors to collect the
detected drone’s data to be fed to a fusion engine for further analysis using the multiple
hypothesis tracker (MHT) techniques, as illustrated in Figure 7. The RF signal is received
and processed to compute the detected drone’s DOA for drone localization. The captured
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signals from the integrated acoustic sensors are filtered to remove unwanted noise. After
identifying and detecting the drone signatures, the coherent broadband beamforming
technique is used to recognize the drone bearing angle and reduce its error by the two-step
filter. Finally, the extracted DOA and bearing angle are referred to by the fusion engine for
localization purposes. Finally, the GSM passive radar [41] is used for UAV detection and
localization, and its output is fed to the fusion engine of the overall system. Combining
all these technologies improved the system performance and enhanced the localization
accuracy.
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In [40], the proposed UAV detection and localization system relies on time delay and
beamforming of the collected acoustic signal from a set of microphones. Acoustic signal
characteristics with such signal processing are used to find the DOA of the UAV’s detected
recorded signal. Furthermore, Kalman filtering is used to improve the UAV’s trajectory. The
system is designed to identify and track the RF signal emitted by portable RF devices [48].
The system consists of two parts: (1) RF signal acquisitions achieved by an antenna array
followed by a Nyquist ADC converter and (2) signal processing. The RF signal from the first
part is passed into FFT to measure the DOA. The DOA is passed into the digital bandpass
filter to measure the TDOA, which is used together with the DOA to estimate the location.
AOA calculated from the DOA, the location, and past tracking information are used for
tracking the drone’s position [40].

3.6. Comparison of Detection Technologies

Earlier sections have discussed different techniques for detecting, identifying, and
localizing UAVs. Each technique’s performance varies according to equipment complex-
ity and cost, coverage range and distance, operation efficiency, accuracy and precision
measurements, etc. Table 6 summarizes the techniques cited in this study with their main
features and affected factors. Combining the different techniques and integrating different
sensors can increase the accuracy and reliability of the UAV detection systems, reduce the
possibility of errors, and improve the system’s ability to adapt.
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Table 6. Summary of all reviewed UAV detection techniques.

Detection
Technique Summary Limitations Ref.

Radio Frequency

Real-time analysis for the detected radio communication
between UAV and its controller. However, it does not apply
to autonomous UAV detection.
Low cost and simple architecture and elements: Antennas,
Processors, RF sensors. Power and sensitivity of each affect
detection system performance and accuracy.
Common frequency bands are around 2.4 and 5 GHz
Covering a long detection range will perform more
efficiently in the less congested RF zones.
Referring to RF datasets and integrating with machine
learning algorithms are advanced ways to enhance
detection, localization, and precise classification.

The RF-based detection
technique applies only if the
UAV is remotely controlled.

[7–20]

Radar

Transmitting radio signals, then receiving and analyzing the
reflection/backscattering/echo radar signals.
UAV’s detection, tracking (Doppler-based), classification,
and localization are based on the analysis of the reflected
radio signal.
Active sensor (Radar) and data processing modules with
high-range detection and accurate localization.
Machine learning algorithms and techniques’ integration for
better performance and results.
Less noise and applicable in different weather conditions
(fog, dust, rain, etc.).
UAVs with small radar cross-sections are difficult to be
identified and classified.

UAVs generally have limited
Radar Cross Sections similar
to birds or pedestrians. The

amount of false positives
remains high and low-RCS
limits the detection range of
the radar, especially X-band

Radars.

[21–29]

Acoustic

Analyze acoustic signals coming from UAV’s engine or
propeller blades.
Acoustic sensors/microphones arrays combined with data
acquisition and signal processing modules
Acoustic fingerprint analysis, features extraction,
classification, and localization
UAV’s identification and distinction from other objects
Effective in a short distance, however, it’s affected by the
nearby noise sources and weather.
Acoustic dataset and Machine learning techniques
integration for higher performance (detection
and classification).

The detection of acoustic noise
emitted by UAVs is low; thus,

the acoustic technique
requires a network of sensors

deployed around sensitive
places.

[30–40]

Electro-optic

Imaging and motion line of sight detection.
High-cost equipment
Ability to track autonomous UAVs.
Controlling false alarms with advanced integration with
other methods/algorithms/machine learning.
Detection performance can vary with different
environmental conditions and weather.

Using different electro-optics
is required, and the fusion of
video streams is required to

cope with UAVs’ environment
and type/size. This increases

the cost of the solution.

[41–46]

4. Drone Controller Detection and Localization

Once UAVs are detected, the detection and localization of the drone controller are
implemented to monitor their communication and limit illegal use.

UAV detection systems differ according to the technologies and functions performed,
such as identification, classification, tracking, localization, interdiction, destruction, and
damage. Technology and functions are selected and implemented based on the main
requirements of the UAV detection system. In this section, some detection systems that
support localization functionality are reviewed.
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The process of locating and positioning a UAV is mainly based on collecting the direct
measurements of the detected UAV and its emitted signals. These direction measurements
and other extracted features are calculated and utilized in the UAV detection system to
estimate the geolocation of the UAV. The computed geolocation parameters for the direction-
finding methods include angle of arrival (AOA) [40], time of arrival (TOA) [64], direction
of arrival (DOA) [18,47], frequency difference of arrival (FDOA) [51], time difference of
arrival (TDOA) [11,35], and received signal strength (RSS) [65].

The proposed system in [12] utilizes a low-cost passive RF-based UAV detection and
localization method. The system computes AOA for the RF-based signal to determine
whether the transmitted signals’ peaks correspond to the UAV or its controller. Then, it
uses the triangulation technique to estimate the location of RF signal peak sources. The
free-space path loss model and triangulation combination is reported in [50] to detect
and localize a stationary drone controller. The proposed system contains two direction-
finding systems for direction identification and localization for the drone and its controller.
Each direction-finding system has an omnidirectional antenna for detecting drone signal
occurrence and a mechanically agile directional antenna for directions identification and
localization of RF signal peaks for UAV and/or its controller signals. The whole system is
depicted in Figure 8.
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The study [12] discussed that distinguishing between RF signals from the UAV and its
controller from other RF signals in the surrounding area poses a challenge in drone con-
troller localization. The reported direction-finding station consists of two modules: drone
signal analysis to classify drone and remote controller (RC) signals and the direction-finding
module. Each direction-finding station extracts acute parameters from detected RF signals
and uses a mechanical steering antenna for identification and localization. The precision of
the direction-finding function is dependent and affected by the antenna’s directivity and
gain, drone velocity, scanning velocity, and beam width of the used directional antenna.

The reported detection system in [18] employs frequency hopping spread spectrum
(FHSS) to detect and locate UAVs and RCs. The cyclostationarity analysis algorithm is used
to identify the FHSS-type drone RC signals and differentiate them from other background
signals operating in the same frequency band. After the successful classification of the
drone RC signals, STFT and additional re-sampling processing are applied to enhance
the detection accuracy of the reconstructed RC signal. Finally, the direction-finding phase
is achieved by implementing the subspace algorithms to identify the AOA of the FHSS
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drone RC signal. The proposed system [49] utilizes a set of a uniform linear array of
quasi-Yagi antennas in the experimental setup to enhance the precision of the direction-
finding function.

5. Conclusions

This study has reviewed the most recent techniques for UAV/drone and its controller
detection, classification, and localization. Cost-effectiveness, precision, accuracy, reliability,
and real-time processing are among the factors considered while developing UAV detection
systems. After discussing the high-level architecture of UAVs and security concerns, a
comprehensive review of radio frequency, radar, acoustic, electro-optic, and hybrid systems
for UAV detection is presented. The UAV detection systems employ different algorithms
and techniques depending on the applications for detecting, classifying, locating, tracking,
and alerting. To address the challenges, meet market needs, and improve reliability,
employing a hybrid fusion of multiple cues, such as radio frequency, radar, acoustic, and
visual sensors, can enhance detection performance.
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