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Abstract: With the popularity of social networking services, people are increasingly inclined to share
their opinions and feelings on social networks, leading to the rapid increase in multimodal posts
on various platforms. Therefore, multimodal sentiment analysis has become a crucial research field
for exploring users’ emotions. The complex and complementary interactions between images and
text greatly heighten the difficulty of sentiment analysis. Previous works conducted rough fusion
operations and ignored the study for fine fusion features for the sentiment task, which did not
obtain sufficient interactive information for sentiment analysis. This paper proposes a global local
fusion neural network (GLFN), which comprehensively considers global and local fusion features,
aggregating these features to analyze user sentiment. The model first extracts overall fusion features
by attention modules as modality-based global features. Then, coarse-to-fine fusion learning is
applied to build local fusion features effectively. Specifically, the cross-modal module is used for
rough fusion, and fine-grained fusion is applied to capture the interaction information between
objects and words. Finally, we integrate all features to achieve a more reliable prediction. Extensive
experimental results, comparisons, and visualization of public datasets demonstrate the effectiveness
of the proposed model for multimodal sentiment classification.

Keywords: multimodal sentiment analysis; fine-grained fusion; attention mechanism; deep learning

1. Introduction

The boom in mobile internet and smartphone access has made social networking
an integral part of our daily lives. More and more people share their views and feelings
through Twitter, Reddit, Weibo, and other social platforms, generating a large amount of
social data. With the popularity of camera and video technology, data on these platforms
have developed from a single text form to a combination of different media forms such as
text, audio, and images. Massive multimodal data are formed in the form of a combination
of text and images. Multimodal sentiment analysis aims to identify users’ sentiment
polarities, as well as their attitudes towards topics or events, from different forms of data.
As the core field of social media analysis, sentiment analysis has received not only extensive
attention from academia [1,2] but also has broad commercial application prospects, such as
personalized advertising [3], opinion mining [4], and decision making [5], etc.

Compared with single-mode data, multimodal data contains more information and
can easily express the users’ real feelings. However, multimodal sentiment analysis is a
challenging task. Different modal data have the possibility of containing different sentimen-
tal information, and the underlying features of these modalities have different dimensions
and attributes. The traditional sentimental methods for multimodal sentiment analysis
are based on handcrafted features [6] in each modality, and the performance highly relies
on the quality of feature selection. Since the handcrafted features are usually designed
with limited human knowledge, it is difficult to comprehensively describe the highly ab-
stract features of sentiment to retain redundant emotional information and affect model
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performance. With the development of machine learning and deep learning, researchers
have proposed new sentiment analysis methods for unimodal and multimodal data, which
have achieved promising results. Compared with handcraft features, convolutional neural
networks [7,8], recurrent neural networks, and their variants [9] have been widely used
for feature extraction, which can extract high-level features of each modality efficiently. In
addition, benefitting from the introduction of large-scale datasets [10–12], many studies
have begun using pre-trained models to analyze multimodal data better. Furthermore,
deep-learning-based fusion methods have been proposed to explore the correlation among
multimodal data [13–15].

The research about multimodal sentiment analysis is generally separated into two
categories based on the dataset: video and image–text content. Some researchers leverage
the effective methods [16–19] to understand the emotion of user-generated videos [20,21],
which contain linguistic, visual, and acoustic information. Since the multimodal infor-
mation parsed from the video is highly correlated, most approaches are centered around
developing sophisticated fusion mechanisms to reduce the modality gaps between hetero-
geneous modalities. Other studies focus on the image–text data in social media. Visual and
textual information have beneficial complementary properties in conveying information.
This paper focuses on the text-image data from social media. Semantics in multimedia
research remains challenging because of the complex relationship between text and im-
ages [22–25]. Following a general approach [24,25], the relationship between image and text
is roughly divided into two parts: (1) Texts in multimedia mainly focus on the image con-
tent; the visual and textual information can be related based on the depicted or mentioned
content. (2) Texts describe the feelings or evaluation of users; the image is semantically
related to its corresponding text.

Intuitively, when the image content and the text have overlapping parts, people tend to
focus on the objects or regions mentioned by the text in the image, thus forming visual and
textual context information. These relevant contents often contain information that evokes
specific human emotional responses, which is beneficial for multimodal data analysis.
When there is no overlapping content between the image and the text, people will combine
the general information of the image and the text to understand. The image and the text
provide different information and complement each other to fully and effectively express
the user’s emotions. Some examples of posts which are collected from Twitter are shown
in Figure 1. Since a boy, swimming pool, dog, etc., are mentioned in the text of Figure 1a,
when we observe the picture, it is natural to pay attention to the local information of the
image corresponding to the text, such as the boy, dog, etc., so as to combine the text with
the corresponding image information to form contextual semantics. Such a correlation can
be considered a fine-grained local cross-modal interaction. Different from (a), the images
and texts in (b) do not directly express the overlapping information. The text expresses
the user’s feelings, experiences, and comments. The corresponding image supplements
the information that the text does not represent, such as the scenery seen or the specific
activities. When we see such text–image pairs, we tend to combine the image and text
into a whole to form the semantics of the overall fusion. Taking into account these fusion
relationships will benefit multimodal sentiment analysis.

According to the above analysis, this paper presents a global local fusion neural
network, which considers the integrated fusion information as well as fine-grained fusion
information between image and text for better understanding the visual and textual context
and for effective sentiment analysis. Figure 2 shows the architecture of the proposed
network, which consists of three sections: a global fusion module, local fusion learning,
and an integration network. The model first obtains the modality-based overall fusion
features from image and text, respectively, using an attention mechanism in the global
fusion module. Then, in local fusion learning, the cross-modal module aligns image
regions and sentence words, and fine-grained fusion builds the weight map for fusion
features to enhance the interaction between the corresponding image and text content.
Through these two modules, the coarse-to-fine interaction information is captured between
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objects, scenes in images, and words in sentences adaptively. Finally, an integration
network aggregates different levels of fusion information and comprehensively explores
the multimodal sentiment.

Figure 1. Examples of image–text posts from Twitter. (a) shows the fine-grained relation between
image and text. (b) shows the global relation between image and text.

Figure 2. The overall framework of proposed model.

The main contributions of this paper are as follows:

1. A global local fusion neural network (GLFN) is proposed for the multimodal sentiment
analysis task; the model captures fusion information at global and local levels to deal
with different types of text–image relationships in social media and integrates all
fusion information to achieve a more comprehensive prediction.

2. Symmetrical local fusion learning is introduced to effectively mine the modality-
based corresponding information between image regions and text words. The fusion
learning is coarse to fine; the cross-modal module aligns the features between image
content and words as coarse fusion, and fine-grained fusion enhances the correlation
between related content to strengthen the interaction.
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Finally, extensive experiments are conducted in the public social media datasets,
MVSA [26]. Comparisons with prior models are carried out to demonstrate the effectiveness
of the proposed method in this paper.

The rest of this paper is organized as follows: Section 2 gives a summary of related
works on sentiment analysis. Section 3 explains the detail of the proposed approach.
Experiments, including baseline comparisons, ablation studies, and visualization, are
reported in Section 4. Finally, the conclusion is summarized in Section 5.

2. Related Works
2.1. Unimodal Sentiment Analysis

The research for text sentiment analysis has been developed for many years. There
are multiple levels of text sentiment analysis based on the length of datasets, including
document-level, sentence-level, and aspect-level sentiment analysis. The methods used to
analyze these textual data can be divided into two categories, the lexicon-based approach
and the machine learning approach. The lexicon-based technique is extremely feasible for
sentence-level analysis. Park and Kim [27] used a dictionary-based approach to build a
thesaurus lexicon for sentiment tasks; the method adopted several dictionaries to collect
a thesaurus and stored co-occurring words, which improved the classification accuracy
without using human resources. Pang et al. [28] first applied machine learning methods,
Naive Bayes, and maximum entropy for movie review sentiment analysis. Moreover, some
methods used a combination of lexicon and machine learning. Borg and Boldt [29] first
applied VADER with sentiment lexicon to provide the initial labels of emails and used
LinearSVM to train the model and predict the sentiment of a not-yet-seen email, thereby
preparing specific actions for customers who may have negative reactions. Recently, the
deep neural network has been widely employed in natural language processing, including
sentiment analysis. An attention-based bidirectional CNN-RNN model is proposed by [30],
the model utilized two independent BiLSTM and GRU layers to capture past and future
contexts in both directions, and an attention mechanism is applied to give weights to words
for better performance.

Visual sentiment analysis primarily aims to explore the emotions associated with im-
ages. The first paper on image sentiment analysis was published in 2010 [31]. The authors
built the correlation between the sentiment of image and the visual content and performed
a discriminative feature analysis to predict the image sentiment. Borth et al. [32] proposed
a large-scale visual sentiment ontology (VSO) based on psychological theories and web
mining, which consists of many adjective–noun pairs (ANP), and then they trained the
sentiment classifier with ANP outputs for the sentiment task. Yang et al. [33] extracted
emotions from the images by leveraging all the related information, such as visual features,
comments, and friendships; the model can distinguish the comments closely related to
images’ emotional expression. Deep learning approaches have also been used in image
sentiment analysis. Chen et al. [34] introduced a convolutional neural network for the clas-
sification task. They performed fine-tuning training on the model and improved the results
significantly. Song et al. [35] presented the network with an attention mechanism, which
integrates visual attention into the CNN sentiment classification framework in an end-to-
end manner. Wu et al. [36] employed a model which fused salient object information in the
image with complete image information to predict the users’ sentiment. The model shows
that reasonably utilizing the local information could improve the model’s performance.

2.2. Multimodal Sentiment Analysis and Pretrained Model

The multimodal sentiment analysis has attracted attention in recent years. Baec-
chi et al. [37] proposed a semi-supervised model, CBOW-DA-LR, which extended the
CBOW model, learning textual and visual vector representations concurrently to build the
sentiment polarity classifier. Hu and Flaxman [38] used fine-tuning Inception and word
representation GloVe [39] combined LSTM to extract high-level visual and textual features
and concatenated the features as input of dense layer for the sentiment task. Poria et al. [40]
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utilized 1D CNN, RNN, and 2D CNN to obtain the features from the text, audio, and image
and applied a multiple-kernel learning classifier to fuse the multimodal information for
the sentiment classification. Many studies focus on the fusion method in the multimodal
sentiment task. Zadeh et al. [41] proposed a tensor fusion network, which learned intra-
modality and inter-modality dynamics end to end. Xu et al. [42] proposed a co-memory
network with attention mechanism, which captured the interaction of image and sentence
iteratively to conduct the sentiment analysis. Jiang et al. [43] proposed the FENet model,
which included interactive information fusion to learn the fusion features and a specific in-
formation extraction to extract sentimental features for sentiment prediction. Hu et al. [44]
introduced a two-stage attention-based fusion neural network to analyze textual–visual
information for sentiment classification. Yang et al. [45] proposed a model based on the
multi-view attention network, which combined object–text fusion and scene–text fusion
to tackle the task. Li et al. [46] proposed a contrastive learning and multi-layer fusion
network to detect sentiment. To build more effective correlations between image and text,
object and scene extraction methods have been used to catch more details of the images.
Zhu et al. [47] introduced an image–text interaction network to investigate the relationship
between image and text for sentiment classification. Although the researchers obtained
exciting results, the models did not consider the relationship between image and text and
coarse-grained fusion.

Recently, with the sophisticated pre-training targets and huge parameters, large-
scale pre-trained models have demonstrated significant performance in many fields. The
early exploration of the natural language process (NLP) pre-trained model is a shallow
network, such as Word2Vec [48] and GloVe [39], which can represent semantic meanings
of words. With the development of NLP, Transformers [49] are proposed, and based on
the architecture of transformers, pre-trained models, such as GPT, BERT, etc. [50], are
built to tackle NLP tasks. The fine-tuning models achieved exciting results in language
understanding and generation. The pre-trained models have also been used in computer
vision (CV) tasks. Applying pre-trained ResNet [8] as the backbone, many CV tasks have
advanced quickly, such as classification, object detection, segmentation, etc. Since the
pre-trained model has advanced at a breakneck pace in NLP and CV, many researchers
have begun to study vision-and-language (V-L) learning to improve the downstream
task of multimodal learning. Su et al. [51] proposed Visual-Linguistic BERT to adopt the
Transformer as the backbone, using visual and linguistic embedding features as inputs to
train the model. Tan and Bansal [52] introduced LXMERT, which not only contains a visual
and textual encoder but also contains cross-modality encoder to build the relationship
between images and sentences. Radford et al. [53] leverage large-scale image–text pairs
to build the CLIP model, which jointly trained a visual encoder and textual encoder to
predict the correct pairing. Singh et al. [54] proposed FLAVA, which first adopted a dual
encoder to obtain unimodal vision and language representation as well as multimodal
representation. Yu et al. [55] presented a contrastive captioner, which employed contrastive
loss and captioning loss for an image–text encoder–decoder and achieved the state-of-the-
art performance with a broad range of downstream tasks.

Even though there is lots of research for multimodal sentiment analysis, few studies
have applied pre-trained multimodal representations to this task. Considering the rela-
tionship between image and text on social media, this paper utilized the vision–language
pre-trained model and the unimodal pre-trained method to build the network for the
sentiment analysis task. Specifically, vision–language representation is applied to extract
global fusion features; unimodal representation is employed to construct a fine-grained
correlation between image regions and words.

3. Proposed Model
3.1. Overview

Text and image data in social media often exist at the same time. However, sometimes, a
single text may correspond to multiple images, which is more complicated. Considering that
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text and image information are equally important, this paper mainly focuses on the social
data that a text corresponds to an image, and the image–text multimodal sentiment classifica-
tion task is defined as follows. Given image–text pairs P = {(I1, T1), . . . (Ii, Ti), . . . (In, Tn)}
and the corresponding label set of the image–text pairs L = {l1, . . . li, . . . ln}, n is the total
number of pairs in the set. For an image–text pair (Ii, Ti), Ii denotes a single image, and
Ti denotes the corresponding texts. The sentiment label is li ∈{positive, negative, neutral}.
The goal of the multimodal method is to predict the sentimental polarity correctly. The
framework of the proposed model is shown in Figure 2. GLFN is composed of three
modules: global feature learning, local fusion learning, and an integration network. Global
fusion learning first extracts the overall fusion features from the pre-trained image and
text representation with an attention mechanism. Then, fine-grained local fusion learning
explores the detailed correlation between image content and words. Finally, an integration
network is applied to aggregate the sentimental information from global fusion features
and local correlation features to conduct the result.

3.2. Global Fusion Learning

The representations of image and text are from pre-trained vision–language CLIP [54].
Since the model used abundantly text–image pair data from the internet for training,
natural language is referenced in the visual concepts that can be learned in this process.
That is, visual representations can be learned from natural language information, and
likewise, textual representations somehow represent image information. We argue that a
pretrained multimodal approach can obtain shallow global fused features of image and text,
considering the relationship between visual and textual representations. Multidimensional
features are used to represent global visual content IG and textual content TG to retain
more features:

IG = CLIPimg(I) (1)

TG = CLIPtxt(T). (2)

The attention mechanism is applied to extract adequate information from shallow
global visual and textual fusion features. The attention operation first involves a scale-dot
product of query Q and keys K, and the softmax function is used to build a weight map to
measure the critical parts in fusion features. The output can be calculated by the weighted
sum of values V. Query, keys, and values are the linear projection of the input feature
M = {m1, m2, . . . , mn} ∈ Rdm×n. To achieve better performance, multi-head attention is
employed in this paper; when there is h head in the attention, the multi-head attention
mechanism can be expressed as follows:

Q = Wq M, K = Wk M, V = Wv M (3)

where Wq, Wk, Wv ∈ Rdm×dm are parameters that need to be learned during training. For
each head i, the output Oi is calculated as follows:

Oi = so f tmax
(

QiKi
T/
√

dh

)
Vi, (4)

where dh = dm/h, Qi, Ki, Vi ∈ Rdh×n are the split parts from Q, K, and V, and there are h
split parts of keys, query, and value for attention calculation. The output of multi-head
attention is shown as follows:

O = Woconcat(O1, O2, . . . , Oh). (5)

The parameter Wo ∈ Rdm×dm and output feature O keep the same dimensions as the
input features.
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So, for given image fusion features IG and text fusion features TG, the global image
fusion features FIG and the global text fusion features FTG can be represented as follows:

OIi = So f tmax
(

QIiKIi
T

√
dIh

)
Vi, (6)

FIG = WIoconcat(OI1, OI2, . . . , OIh), (7)

OTi = So f tmax
(

QTiKTi
T

√
dTh

)
Vi, (8)

FTG = WToConcat(OT1, OT2, . . . , OTh), (9)

where dIh = dIm/Ih, dTh = dTm/Th, and Ih and Th are the head number for image-based
attention and text-based attention, respectively.

3.3. Local Fusion Learning

There are two modules in local fusion learning: a coarse cross-modal module and a
fine-grained interaction module. A coarse cross-modal module builds rough interactions
between image content and sentences. The fine-grained interaction module further explores
the correlation between image region and words; the structure of local fusion learning is
shown in Figure 3.

Figure 3. The framework of local fusion learning.

3.3.1. Cross-Modal Module

For the input image, we consider that the image content information is the combination
of scenes and objects, the importance of objects and scenes is equal, and this information can
be extracted from the pretrained model. Objects’ representations and their corresponding
regions can be obtained by the Faster RCNN [56], which is trained on the Visual Genomes
dataset [11]. Top k region proposals are selected for each image as image object content
representations. We detect scene representations by utilizing the VGG model, which is
trained on the places 365 dataset [12]. For the input sentence, we apply GloVe [39] to
represent each word, and a bidirectional LSTM is employed to summarize the context
information of the sentence. The process can be expressed as follows:

Ro′ = Faster RCNN(I), (10)

Rs′ = VGG(I), (11)
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Rw′ = BiLSTM(GloVe(T)). (12)

To project the representations into the same d dimension space to calculate the weight
map, linear projection is applied:

Ro = WoRo′ + Bo, (13)

Rs = WsRs′ + Bs, (14)

Rw = WwRw′ + Bw, (15)

where Ro ∈ Rd×k, Rs ∈ Rd×1, Rw ∈ Rd×c, and c is the number of words in the sentence.
For the given object features Ro and word features Rw, the object word fusion matrix can
be computed as:

Wow = Ro
T Rw. (16)

The fusion matrix Wow ∈ Rk×c represents the affinity between objects from the image
and words in a sentence. Specifically, Wwoij represents the affinity between the ith image
region and the jth word. The attention weights between image objects and words can be
obtained by softmax function. We obtain word-specific image object region representation
Ao and region-specific word representation Aow by combining the representations and
weight map:

Ao = so f tmax
(

Wow
T

√
d

)
, Ao = Ao Ro

T . (17)

Aow = so f tmax
(

Wow√
d

)
, Aow = AowRw

T . (18)

In a similar way, by replacing Ro with Rs in the Equation (16), Wsw can be computed,
which shows the affinity between scene and words. When using Wsw and Rs and Rw, such
as in Equations (17) and (18), we can calculate word-specific image scene representation As
and scene-specific word representation Asw:

Wsw = Rs
T Rw, (19)

As = so f tmax
(

Wsw
T

√
d

)
, As = As Rs

T . (20)

Asw = so f tmax
(

Wsw√
d

)
, Asw = AswRw

T . (21)

3.3.2. Fine-Grained Fusion Module

Although the cross-modal module builds the correlation between image objects and
words, it is difficult to perfectly align words and image regions because the relationship
between images and sentences is complex in social media. Therefore, a fine-grained fusion
module is applied to control the coarse fusion feature adaptively, aiming to eliminate
the noises generated in the cross-modal module and explore deeper interaction between
image region and words. To the extent of matched parts fusion features and suppressing
the mismatched pairs of fusion features, in the beginning, a gate is designed to compute
the matching value of each fusion feature. Then, the gate weights control how much
information is useful to the fusion cross-modal features. The gate weight will be high when
the word and image content match well. On the contrary, when the image content and
word are unpaired, the weight is low, and the gate weights in the visual aspect are shown
as follows:

Gwo = sigmoid
(

sum
(

Ro � Aow
T
))

, (22)

Gws = sigmoid
(

sum
(

Rs � Asw
T
))

, (23)
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where � denotes the element-wise product, Gwo ∈ R1×k is the text-object region matching
weights in the visual aspect, and Gws ∈ R1×1 is the text-scene matching weights in the
visual aspect. We can obtain the fine-grained fusion features by the gate weights and fused
modality-based fusion features. To preserve the modality-based information which is not
intensively fused, we further integrate the fine-grained visual fusion feature with original
features to obtain the object wise fine-grained text-referred fusion Owo and scene-wise
fine-grained text-referred fusion Ows.

Owo = MLP
(

Gwo � concat
(

Ro, Aow
T
))

+ Ro, (24)

Ows = MLP
(

Gws � concat
(

Rs, Asw
T
))

+ Rs. (25)

MLP is a two-layer perceptron operation.
Symmetrically, we can calculate the weight map, and textual-wise fine-grained object-

referred features Oow and textual-wise fine-grained scene-referred features Osw:

Gow = sigmoid(sum(Ao
T � Rw)), (26)

Gsw = sigmoid
(

sum
(

As
T � Rw

))
, (27)

Oow = MLP
(

Gow � concat
(

Rw, Ao
T
))

+ Rw, (28)

Osw = MLP
(

Gsw � concat
(

Rw, As
T
))

+ Rw, (29)

where Gow ∈ R1×c, Gsw ∈ R1×c. We finally aggregate different fine-grained fusion features
in spatial dimension based on the modality and obtain visual-wise local fusion features FIL
and textual-wise local fusion features FTL:

FIL = concat(Owo, Ows), (30)

FTL = concat(Oow, Osw). (31)

3.4. Integration Network

The network aims to integrate the global and local fusion features effectively and
extract valuable information for sentiment analysis. Considering the architecture of global
fusion learning and local fusion learning, we adopt different methods to deal with the
features. For global fused parts, since the attention mechanism has been applied to explore
the deeper effective information for fusion, we apply one-dimensional max-pooling to
the global fusion features and on a spatial dimension, producing the features related
to sentiment:

OIG = maxpooling(FIG), (32)

OTG = maxpooling(FTG). (33)

We employ the attention mechanism on the spatial dimension for the local fused
features to aggregate the local image features FIL and local text features FTL with the built
spatial-wise attention weight map:

attI = So f tmax(MLP(FIL)), (34)

attT = So f tmax(MLP(FTL)), (35)

where attI ∈ R1×k, attT ∈ R1×c. The final local fusion features can be expressed as follows:

OIL = attI FIL
T , (36)

OTL = attT FTL
T . (37)
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After obtaining the final global and local fused representations, we concatenate them
as the input of a two-layer perceptron operation for the sentiment classification task:

l̂ = so f tmax(MLP(concat(OIG, OTG, OIL, OTL))). (38)

The model is trained by minimizing the cross-entropy loss with the Adam operation:

L = ∑ lilogl̂i. (39)

4. Experiments

This section describes the experimental results of the proposed model on two open
datasets. This section consists of four parts: experimental data and model setup, baseline
and comparison, ablation studies, and visualization.

4.1. Dataset and Setup

Niu et al. [26] established the public multimodal sentiment analysis datasets, which
were collected from Twitter, including MVSA-Single and MVSA-Multiple. There are
5129 image–text pairs in MVSA-Single. An annotator labeled the image and text with one
sentiment polarity form as positive, neutral, and negative, respectively. MVSA-Multiple
contains 196,00 image–text pairs. Three annotators give the label to the image and text
independently, and the judgment of each annotator is not affected by others. For a fair
comparison, we preprocess the two datasets following the previous method [26,42,43]: first,
remove the pairs which have different labels between image and text; when one label is
positive(negative), and the other corresponding content is neutral, the label of this pair
is regarded as positive(negative). As a result, we obtain the new MVSA-Single, which
has 4511 image–text pairs and MVSA-Multiple datasets with 17,024 image–text pairs for
the experiment.

In this study, the training, validation, and test sets are split with a ratio of 8:1:1.
We utilize Adam as the optimizer method. The initial learning rate is 5 × 10−5, and an
exponential decay is applied with gamma equal to 0.5 for every five epochs. The batch size
of MVSA-Single is 32, and the batch size of MVSA-Multiple is 128.

The maximum word number for each sentence is 50, the head number of the global
fusion attention mechanism is 8, and we select the top 3 image region features as local
image presentation. The dimension for projecting the local features into the same space is
512. The framework of the model is implemented by PyTorch.

4.2. Baseline and Comparison

We list six studies utilizing the deep learning method for MVSA dataset as follows:

1. MultiSentiNet [13]: employed CNN to obtain objects and scene deep semantic features
of the image and utilized visual feature guided attention LSTM to extract important
word features; all these features are aggregated for the sentiment analysis.

2. Co-Memory [42]: proposed an iterative co-memory model with an attention mecha-
nism by considering the relationship between image and text; the network explored
the interaction between visual and textual information multiple times to analyze
users’ sentiment.

3. FENet [43]: introduced an interactive information fusion mechanism, which learned
the deep modality-specific fusion representation and built an information extraction
network to extract information more effectively for the multimodal sentiment task.

4. MVAN [45]: proposed a multi-view attention-based interaction model, which built an
iterative scene–text co-memory network, as well as an iterative object–text co-memory
network to obtain semantic image–text features for the sentiment analysis.

5. CLMLF [46]: introduced contrastive learning with a multi-layer transformer-based
fusion method. Two contrastive learning tasks, label-based contrastive learning and
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data-based contrastive learning, are proposed for training to help the model learn the
common features for sentiment analysis.

6. ITIN [47]: developed an image–text interaction network to align the information
between image region and words and preserved the valid region–word pairs with a
cross-modal gating module for effective fusion features. The unimodal features are
combined with cross-modal fusion features for the sentiment classification.

Same as the previous studies, we use the accuracy rate and F1-score as the experimental
evaluation metrics. The calculation is as follows:

Precision = TP
TP+FP ,

Recall = TP
TP+FN ,

F1 = 2×Precision×Recall
Precision+Recall ,

Accuracy = TP+TN
TP+TN+FP+FN .

(40)

TP is the number of samples that obtain the correct prediction with the positive label,
and FP is the number of samples that wrongly indicate the prediction as positive while the
label is negative. TN denotes the number of samples that are marked as negative correctly.
FN presents the number with a negative prediction and positive label.

The experimental results comparisons between the proposed model and the baselines
are shown in Table 1. The results of baseline methods were retrieved from published papers.

Table 1. Comparative results of GLFN and baselines on MVSA datasets, ACC represents accuracy
and F1 denotes F1 score (↑ denotes the value is larger, the performance of model is better).

Model
MVSA-Single MVSA-Multiple

ACC↑ F1↑ ACC↑ F1↑
MultiSentiNet 0.6984 0.6963 0.6886 0.6811
Co-Memory 0.7051 0.7001 0.6892 0.6883
FENet-GloVe 0.7254 0.7232 0.7057 0.7038

MVAN 0.7298 0.7298 0.7236 0.7230
CLMLF 0.7533 0.7346 0.7200 0.6983

ITIN 0.7519 0.7497 0.7352 0.7349

Proposed model (GLFN) 0.7721 0.7642 0.7587 0.7399

The results show that the MultiSentiNet obtained the worst performance among the
models; even though the model considered the influence of visual information on the text,
it ignored the influence of textual information on the image, and the interaction between
image and text is shallow. Co-Memory considered the mutual influence and proposed
an interactive fusion module to analyze the sentiment and is better than MultiSentiNet,
but the coarse-grained attention mechanism may cause information loss and still need to
be improved. FENet applied symmetry interactive information fusion module and the
information extraction module to obtain informative representations, which separated
the analysis into two sections, making the model more effective than the previous model.
Since MVAN proposed a multi-view attention model to build the correlation between
objects/scenes and words and integrated the features to predict results, it is slightly superior
to FENet. CLMLF applied label-based and data-based contrastive learning for the sentiment
task, which learned more features related to sentiment and is better than MVAN. ITIN
model considered the relationship between image region and words and built deep region
information based fusion features for the classification, achieving the best results among
the baseline. Our model is competitive with other baseline models on the MVSA dataset.
The model extracts the coarse global fusion features to obtain whole fusion information
for image–text pairs and explores fine-grained local fusion features for detailed correlation
between corresponding regions from images and words in sentences, which utilizes the
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interaction comprehensively for multimodal sentiment analysis. As a result, for the MVSA-
Single dataset, the proposed model outperforms the existing base model ITIN and CLMLF
in terms of accuracy and F1 score with 2.02% and 1.45%. For the MVSA-Multiple dataset,
the model improved by 2.35% in accuracy and is superior to other models in F1 score.

4.3. Ablation Studies

To verify the effectiveness of each proposed module of GLFN, we carry out ablation
experiments on the MVSA dataset. We remove textual global fusion learning (wo-TGF),
visual global fusion learning (wo-IGF), textual local fusion learning (wo-TLF), and visual
local fusion learning (wo-ILF) of GLFN to evaluate the influence of each part. In addition,
we further investigate the importance of the cross-modal fusion module and fine-grained
fusion module of local fusion learning, removing the cross-modal fusion module (wo-
CM) and fine-grained fusion module (wo-FF) independently. The results of the ablation
experiments are reported in Table 2.

Table 2. Ablation study results of the GLFN model (↑ denotes the value is larger, the performance of
model is better).

Model
MVSA-Single MVSA-Multiple

ACC↑ F1↑ ACC↑ F1↑
wo-TGF 0.7442 0.7366 0.7398 0.7189
wo-IGF 0.7597 0.7497 0.7403 0.7268
wo-TLF 0.7637 0.7517 0.7396 0.7218
wo-ILF 0.7597 0.7497 0.7430 0.7281
wo-CM 0.7580 0.7522 0.7428 0.7253
wo-FF 0.7641 0.7558 0.7437 0.7293

GLFN 0.7721 0.7642 0.7587 0.7399

From the results, we can observe that the full version of GLFN achieves the best results;
removal of either part of the model will affect the performance. This indicates that all
these parts are adequate for the sentiment task. For global fusion learning, textual fusion
features are more important than visual features for the prediction. The importance of
the sentiment of visual and textual local fusion features is different by the datasets, which
strongly depend on the relationship between images and texts. The additional investigation
for local fusion shows that the cross-modal fusion module is more important than the
fine-grained fusion module, and the fine-grained fusion further enhances the performance
of the model. Compared with other parts, textual global fusion features are more effective
for the prediction.

We also consider the number of region proposals in the image as a hyperparameter
that affects the interaction between image and text, and the performance of sentiment
analysis. In addition, we conduct experiments with different top k region proposals where
objects exist. Figure 4a,b show the experimental results of accuracy and F1-score. MVSA-
S represents the results obtained from MVSA-Single, and MVSA-M denotes the results
performed on MVSA-Multiple. The figures show that when k = 3, both the accuracy and
F1-score reach the maximum values on the two datasets. The values show that correlation
discovery between image regions and words can be found within three region proposals
in the image, and the local learning is more valid when the number of region proposals
equals three. Therefore, for all the experiments reported in this paper, the region number
is set to three. Here, k = 0 denotes the local fusion learning is removed from the model,
which has a significant influence on the performance. The results indicate the effectiveness
of local fusion learning.
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Figure 4. The experimental results for different values of hyperparameter k. (a) The accuracy of
GLFN with different top k. (b) The F1-score of GLFN with different top k.

4.4. Visualization

We conduct a visualization experiment on parts of the MVSA-Single dataset to demon-
strate the effectiveness of global fusion learning. The image’s global fusion and initial
representation are visualized by dimensionality reduction. We use the TSNE algorithm
to reduce the dimensions of the visual features and project the representations into a two-
dimensional space to visualize them, as shown in Figure 5. Figure 5a is the visualization
of original visual features, and Figure 5b is the visualization of attention-based visual
fusion features. The three marking symbols in the figure represent three different labels
of sentiment: positive, neutral, and negative. From the figure, we can see that after the
attention mechanism of fusion learning, the distribution distance between the different
categories is more prominent. That is, the intra-class distance decreases, and the spacing
between classes increases. The figure shows that global fusion learning has the ability to
distinguish the valid information that helps improve the performance of sentiment analysis.

Figure 5. Visualization results of visual features projected to two-dimensional space. (a) Visualization
of the initial visual features. (b) Visualization of the attention-based features.

We visualize the attention weight of the words and image regions of the local fusion
learning part. Figure 6 illustrates two examples of visualization. The column shows region
and scene representations with the green weight color, and the bottom row represents the
words with red attention weight color. A darker color represents greater attention and
vice versa. We can see that the contribution of image regions and words is different in
Figure 6a. The area of the sky has the most contribution to the sentiment analysis, and the



Appl. Sci. 2022, 12, 8453 14 of 17

words ‘Gorgeous Milky Way’ are more effective than others for the prediction. In addition,
the road region has little attention in this image–text pair since both content and emotion
correlate less with that region. In Figure 6b, the region of the cars has the most significant
contribution, the area of the scene gives little contribution to the sentiment analysis, and
the corresponding text is a little complex; the word ‘disgraceful’ and phrase ‘nearly run
people off’ are the crucial parts for the analysis.

Figure 6. Visualization of the contribution of image region features and textual features for multi-
modal sentiment analysis. (a) expresses a positive feeling, (b) shows a negative mood.

5. Conclusions

Social media multimodal sentiment analysis is a challenging task. We have proposed
a global local fusion neural network (GLFN) for the sentiment prediction task. The model
considers the relationship between image and text, combining the general fusion infor-
mation extracted from global fusion learning and local fine-grained fusion information
obtained from local fusion learning to explore essential features related to the sentiment. To
be specific, the pre-trained vision–language model is employed as the input of global fusion
learning to obtain the comprehensive overall fusion features. In local fusion learning, scene
and object representations construct a deep correlation to words as fine-grained fusion fea-
tures for specified relation discovery between image and sentence. The integration network
aggregates visual and textual context features as integrated fusion information for effective
sentiment prediction. Experiment results and the comparison demonstrate that our model
significantly improves the sentiment classification performance in the multimodal dataset.
Even though we obtained promising results, there is a limitation to the model. Since there
are some posts in which image and text are unrelated, this leads the sentiment expression
to rely on the independent features, which may limit the performance of GLFN. So, in
future work, we plan to improve the integration network by exploring the complicated
relationship between images and texts to build more effective features by considering
the ratio of fused information and independent information on the effect of sentiment.
Furthermore, we want to extend the model to multimodal aspect sentiment analysis since
the local fusion learning can align the image and text information and explore the detailed
correlation between the corresponding pairs.
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