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Abstract: This paper proposes a novel reinforcement learning (RL)-based tracking control scheme
with fixed-time prescribed performance for a reusable launch vehicle subject to parametric uncer-
tainties, external disturbances, and input constraints. First, a fixed-time prescribed performance
function is employed to restrain attitude tracking errors, and an equivalent unconstrained system is
derived via an error transformation technique. Then, a hyperbolic tangent function is incorporated
into the optimal performance index of the unconstrained system to tackle the input constraints. Sub-
sequently, an actor-critic RL framework with super-twisting-like sliding mode control is constructed
to establish a practical solution for the optimal control problem. Benefiting from the proposed scheme,
the robustness of the RL-based controller against unknown dynamics is enhanced, and the control
performance can be qualitatively prearranged by users. Theoretical analysis shows that the attitude
tracking errors converge to a preset region within a preassigned fixed time, and the weight estimation
errors of the actor-critic networks are uniformly ultimately bounded. Finally, comparative numerical
simulation results are provided to illustrate the effectiveness and improved performance of the
proposed control scheme.

Keywords: reinforcement learning-based control; prescribed performance control; fixed-time control;
input constraints; reusable launch vehicle

1. Introduction

Recent years have witnessed an increasing demand for reliable and economical ac-
cess to space. Reusable launch vehicles (RLV), as a cost-effective means of undertaking
space missions, are attracting more and more attention from researchers [1]. A dynamic
model of RLV provides strong non-linear and coupling characteristics due to the complex
flight environment of the re-entry phase. External disturbances, uncertain structural and
aerodynamic parameters, and input constraints inevitably exist during real flight, having a
significant impact on the attitude control system. In this context, attitude control for RLV
is a challenging topic and has elicited widespread interest. Various control methodolo-
gies, such as adaptive control [2], dynamic inversion control [3], robust control [4], sliding
mode control [5,6], and neural network (NN) control [7,8], have been applied over the
past decades. Nevertheless, there is still scope to develop an optimal control approach
for RLV suffering from complicated non-linear dynamics, parametric uncertainties and
limited inputs.

From a mathematical point of view, the Hamilton–Jacobi–Bellman (HJB) function and
its solution are required to be established to solve the optimal control problems. However, it
is difficult to derive an analytical solution from the HJB function for non-linear continuous-
time systems. Given this, a reinforcement learning (RL) scheme with an actor-critic (AC)
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structure was initially created by Werbos [9], whereby a critic network was exploited to
approximate the value function, and an actor network was deployed to obtain the optimal
control policy. Informed by Werbos’ contribution, Vamvoudakis et al. developed an online
AC algorithm to solve the continuous-time infinite horizon optimal control problem [10].
He et al. proposed a novel online learning and optimization structure by incorporat-
ing a reference network into the AC structure [11]. Ma et al. devised a learning-based
adaptive sliding mode control scheme for a tethered space robot with limited inputs [12].
Although the above control strategies have provided excellent results in terms of opti-
mal control, the existing problem concerns the need for accurate dynamic modeling [13].
Given the parametric uncertainties and unknown disturbances, it is, in practice, difficult
to exactly determine the system dynamics for RLV, limiting the methods’ applicability.
Therefore, a further problem exists in that the aforementioned methods’ robustness must be
enhanced for practical systems with unknown dynamics. Fan et al. combined (ISMC) with
a reinforcement learning control scheme for non-linear systems with partially unknown
dynamics [14]. However, the input constraints were not considered, and the ISMC used
may lead to unexpected oscillation [15]. Zhang et al. developed a learning-based H∞
tracking control scheme for which the uncertainties and input constraints were consid-
ered [16]. Nevertheless, the control design is conservative, and the iterative algorithm is
rather complicated.

It is of note that previous RL-based control methods only establish asymptotic or
finite-time convergence [17]. Therefore, the upper bound of the convergence time is uncon-
trollable, and the transient and steady-state performance, namely, the maximum overshoot
and the steady accuracy, cannot be quantitatively prearranged by users. As a promising
solution to this problem, the prescribed performance control (PPC) method created by
Bechlioulis et al. has attracted widespread attention [18]. The salient feature of PPC is
that users can quantitatively pre-arrange both the transient performance and the steady
tracking error. In [19], a novel PPC scheme combined with a command filter was proposed
for a quadrotor unmanned aerial vehicle subject to error constraints. In [20], an NN-based
adaptive non-affine tracking controller was devised for an air-breathing hypersonic vehicle
with guaranteed prescribed performance. In [21], a data-driven PPC scheme was developed
for an unmanned surface vehicle with unknown dynamics. However, the conventional PPC
approach only ensures that the system states converge to the preset region as time tends to
infinity [22], leading to an unsatisfactory solution for time-limited problems, such as the re-
entry mission. Moreover, the input constraints and the optimality are not comprehensively
considered in the conventional PPC paradigm. Therefore, the expected performance index
cannot be consistently guaranteed and optimized for RLV suffering from poor aerodynamic
maneuverability and limited control torques.

Motivated by the foregoing considerations, a novel RL-based tracking controller, with
fixed-time prescribed performance for RLV subject to parameter uncertainties, external dis-
turbances and input constraints, is investigated. The main contributions and characteristics
of the proposed method can be summarized as follows.

• An online RL-based, nearly optimal, controller with limited inputs is developed by
synthesizing the AC structure and the hyperbolic tangent performance index. In addi-
tion, the robustness of the learning-based controller is strengthened by incorporating
a super-twisting-like sliding mode control.

• Compared with a previous learning-based controller described in [10–12], in which
the system dynamics are required to be known exactly, the proposed control scheme
only requires the input-output data pairs of RLV, such that the system dynamics can
be completely unknown.

• In contrast to existing RL-based control schemes with asymptotic or finite-time conver-
gence [10–12,17,21], the proposed control scheme can ensure that the tracking errors
converge to a preset region within a preassigned fixed time. Moreover, the prescribed
transient and steady-state performance can be guaranteed.
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• Comparative numerical simulation investigations show that the proposed method
can provide improved performance in terms of the transient response, and steady
accuracy with less control effort.

2. Problem Statement and Preliminaries
2.1. Problem Statement

Following [2], the control-oriented model of the rigid-body RLV is given as follows:{
Θ̇ = Rω

Iω̇ = −ΩIω + M + ∆D
(1)

where Θ = [α, β, σ]> represents the attitude angle vector, ω = [p, q, r]> denotes the angular
rate vector, M = [Mx, My, Mz]> is the control input vector, and Mx, My, Mz are limited
to the interval [−M̄, M̄], ∆D = ∆Da + ∆De is the unknown disturbance vector, ∆Da is
the aerodynamic torque vector, and ∆De is the external disturbance vector. ∆Da can be
formulated as:

∆Da =


(

mp
x Lr p
V + mσ

x σ
)

qVSrLr(mr
y Lrr
V + mβ

y β
)

qVSrLr(
mq

z Lrq
V + mα

z α
)

qVSrLr

 (2)

where mp
x , mr

y and mq
z represent the damping moment coefficients, mσ

x , mβ
y and mα

z are the
static stability moment coefficients, V is the velocity, qV is the dynamic pressure, and Sr
and Lr are the cross-sectional area and the reference length of RLV, respectively.

The skew-symmetric matrix Ω , the inertia matrix I , and the coordinate transformation
matrix R are defined by

Ω =

 0 −r q
r 0 −p
−q p 0

, I =

 Ixx 0 −Ixz
0 Iyy 0
−Izx 0 Izz

,

R =

 − cos α tan β 1 − sin α tan β
sin α 0 − cos α

− cos α cos β − sin β − sin α cos β

.

(3)

Defining the guidance command vector Θd = [αc, βc, σc]
>, the attitude tracking error

vector e1 = Θ − Θd = [e1α, e1β, e1σ]
>, and the angular rate tracking error vector e2 =

Rω− Θ̇d, the tracking error dynamics are given as:{
ė1 = e2

ė2 = B1M + ∆D1
(4)

where B1 = RI−1 is the control matrix, ∆D1 = −RI−1ΩIω− Θ̈c + Ṙω+ RI−1∆D denotes
the lumped disturbance vector.

Assumption 1 ([2]). ∆D1 is bounded by ||∆D1|| ≤ Dm.

Assumption 2 ([2]). During the re-entry phase, β 6= ±90 deg, thus R is always invertible.

Control Objective: According to the tracking error dynamics (4), the control objective
of this paper can be summarized as developing an RL-based optimal control scheme
with guaranteed fixed-time prescribed performance such that the attitude tracking errors
e1i(i = α, β, σ) can converge to a preset region within a preassigned fixed time.
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2.2. Preliminaries

Lemma 1 ([23]). Considering a non-linear function α(x) = ln[1 − tanh2(x)], the following
equation

α(x) = ln(4)− 2xsign(x) + κα (5)

always holds, where κα is bounded by a real positive constant.

Lemma 2 ([24]). Considering the following fixed-time prescribed performance function (FTPPF)

ρ(t) =

{
(ρ0 − ρ∞)

[
sin(2πt/T)

2π − t
T

]
+ ρ0, 0 ≤ t ≤ T

ρ∞, t > T
(6)

where ρ0 > ρ∞ > 0 represent the initial and terminal values of FTPPF, respectively. T > 0 is the
preassigned convergence time. It can be concluded that ρ(t) is a positive, non-increasing and C2

continuous function with ρ(0) = ρ0, ρ(T) = ρ∞ and ρ̇(T) = ρ̈(T) = 0.

Lemma 3 ([25]). For any µ > 0, the following inequality holds

0 ≤ |x| − x tanh
(

x
µ

)
≤ kpµ (7)

where kp satisfies kp = e−(kp+1) (i.e., kp = 0.2785).

3. Controller Design
3.1. Prescribed Performance Constraint

In this subsection, the following constraint is formulated to restrain the attitude
tracking errors e1i(i = α, β, σ) within the FTPPF

−ρi(t) < e1i(t) < ρi(t) (8)

where ρi(t) is defined in Lemma 2. Subsequently, the equivalent unconstrained error
variables η1i(i = α, β, σ) can be derived via the error transformation method [18]

η1i =
1
2

ln
1 + zi
1− zi

(9)

with zi = e1i/ρi. Taking the first and second-order time derivatives of η1i yields{
η̇1i = ξiη2i

η̇2i = ë2i −Λi
(10)

with η2i = e2i−
ρ̇i
ρi

e1i, ξi =
1

2ρi

(
1

zi+1 −
1

zi−1

)
≥ 1

ρi∞
and Λi =

ρi ρ̈ie1i+ρi ρ̇ie2i−ρ̇2
i e1i

ρ2
i

. Substituting

(4) into (10), one obtains {
η̇1 = ξη2

η̇2 = B1M + D1 −Λ
(11)

where ξ = D(ξi), η2 = C(η2i) and Λ = C(Λi), and the symbols C(·) and D(·) represent
the diagonal matrix and the column vector, respectively.

3.2. Reinforcement Learning-Based Control Design

Firstly, the following sliding variable s is defined as:

s = η2 + cη1 (12)
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where c is a positive diagonal matrix. Taking the first time derivative of s along (11) yields

ṡ = Ξ + B1M + D1 (13)

where Ξ = cη̇1 −Λ. In order to achieve a satisfactory tracking performance, a traditional
super-twisting controller based on (12) and (13) is developed as follows:

M = −B−1
1 Γ, Γ = Ξ +C

[
λ1isig1/2(si)

]
−Md, (14)

where sig1/2(si) = |si|1/2sign(si), Ṁd = −D(λ2i)sign(si), and λ1i and λ2i are positive
constants. Nevertheless, the feasibility of (14) may not be guaranteed with limited control
inputs, and the time-fuel performance index cannot be approximately optimized. To this
end, an online RL-based, nearly optimal, controller is proposed by integrating the AC
structure into the super-twisting controller for a comprehensive solution to the issue
mentioned above.

Before elaborating the detailed design procedure, it is assumed that there exists a
group of admissible control strategies [10]

M = Mo − B−1
1

{
C
[
λ1isig1/2(si)

]
−Md

}
∈ Ωu. (15)

Moreover, M can achieve the control objective with the following time-fuel perfor-
mance index being satisfied

V(s) =
∫ ∞

t
{Vs(τ) + J[Mo(τ)]}dτ (16)

where Vs = s>Qs, Q is a positive diagonal matrix, and J(Mo) is chosen as [26]:

J(Mo) = 2
∫ Mo

0

[
λtanh−1

( v
λ

)>
v

]
dv (17)

where v is selected as a positive diagonal matrix, v represents the variable of integration,
and the upper and lower bounds of v are Mo and 0, respectively. The Lyapunov equation
of (16) can be calculated as:

Vs(t) + J[Mo(t)] +∇V>s ṡ = 0 (18)

where ∇Vs = ∂V(s)/∂s. The optimal value function is defined as:

V∗(s) = min
Mo

∫ ∞

t
{Vs(τ) + J[Mo(τ)]}dτ, (19)

and the corresponding HJB equation can be formulated as:

min
Mo

{
Vs + J(Mo) +∇V∗>s ṡ

}
= 0, (20)

where ∇V∗s = ∂V∗(s)/∂s.
Equation (20) is equivalent to

∂

∂M∗o

[
Vs + J(M∗o ) +∇V∗>s ṡ

]
= 0. (21)

Solving the partial derivative of (21) yields the following optimal control strategy

M∗o = −λtanh(M̄∗o ), M̄∗o =
1

2λ
v−1B>1 ∇V∗s . (22)
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Substituting M∗o into (17), one obtains

J(M∗o ) = λ∇V∗>s B1tanh(M̄∗o ) + λ2v̄ln
[
1c − tanh2(M̄∗o )

]
= −∇V∗>s B1M∗o + λ2v̄ln

[
1c − tanh2(M̄∗o )

]
,

(23)

where 1c is a column vector with all elements being one, and v̄ is a row vector generated
by the elements on the main diagonal of v. Combining (20) and (23), it can be derived that

Vs +∇V∗>s ṡ + λ2v̄ln[1c − tanh2(M̄∗o )] = 0. (24)

The nearly optimal control M∗o can be obtained by solving (24) if ∇V∗s is available.
Inspired by the NN-based control scheme, the following approximation of V∗(s) can
be established

V∗(s) = W∗>σ[s(t)] + ε[s(t)] (25)

where W∗ is the optimal weight vector, σ[s(t)] is the base vector, and ε[s(t)] is the approxi-
mation error of NN. Subsequently, the gradient of V∗(s) is

∇V∗s = W∗>∇σs[s(t)] +∇εs[s(t)] (26)

where ∇σs = ∂σ/∂s, ∇εs = ∂ε/∂s. In light of the universal approximation property of
NN for smooth functions on prescribed compact sets, the approximation errors ε[s(t)] and
∇εs[s(t)] are bounded with a finite dimension of σ[s(t)] [27]. Moreover, it is assumed that
||W∗||, σ[s(t)] and ∇σs[s(t)] are bounded [13,14,16,17,21].

Recalling (22), the NN-based nearly optimal control law can be formulated as:
M = M̂∗o − B−1

1

{
C
[
λ1isig1/2(si)

]
−Md

}
M̂∗o = −λtanh

[
1

2λ
v−1B>1

(
∇σ>s W∗ +∇εs

)] . (27)

Defining the Bellman error as [14]:

Bε = λ2v̄
{

ln
[
1c − tanh2(M̄∗o )

]
−ln

[
1c − tanh2

(
ˆ̄M∗o
)]}

(28)

with ˆ̄M∗o = 1
2λ v−1B>1 ∇σ>s W∗, (20) can be rewritten as:

Vs + W∗>∇σsΓ + λ2v̄ln
[
1c − tanh2( ˆ̄M∗o )

]
+ εH = 0 (29)

where εH = ∇ε>s Γ + Bε + W∗∇σsD2 is the bounded HJB error [10].
In this paper, the optimal weight W∗ is generated by the online RL scheme with the

AC structure. In this context, the nearly optimal control policy is formulated as:
M = M̂∗a − B−1

1

{
C
[
λ1isig1/2(si)

]
−Md

}
M̂∗a = −λtanh

(
ˆ̄M∗a
)

, ˆ̄M∗a =
1

2λ
v−1B>1 ∇σ>s Ŵa

(30)

where Ŵa is the weight of the actor network. Moreover, the performance index (16) can be
estimated as:

V̂s = Ŵ>
c σs[s(t)] (31)
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where Ŵc is the weight of the critic network. The adaptation laws for Ŵc and Ŵa are
designed as:

˙̂Wc = −A1

{
θ̄
[
θ>Ŵc + Vs + J

(
M̂∗a
)]

+ pc
(
Ŵc − Ŵa

)}
, (32)

˙̂Wa = −A2

[
pa
(
Ŵa − Ŵc

)
− λpa

pc
∇σsB1Ψθ̄>Ŵc

]
, (33)

where θ = ∇σs
(
Γ + B1M̂∗a

)
, θ̄ = θ/

(
θ>θ+ 1

)2
; A1 and A2 are positive diagonal matrices;

Ψ = tanh
(

ˆ̄M∗a
)
− tanh

(
ˆ̄M∗a /κ

)
; pc, pa and κ are positive real constants. The projection

operator Proj(·) is imposed on (33) to guarantee that Ŵa is bounded [28]. It is assumed that
θ1 = θ/

(
θ>θ+ 1

)
is persistently excitating (PE) [29].

The proposed control scheme is illustrated by a block diagram in Figure 1.

Dynamic model 

of RLV

Disturbances
Parameter uncertainties

Input constraints

Error 
transformation 

in (9)

Guidance 
command

Time-fuel performance index in (16)

Super-twisting-like sliding mode control

FTPPF in (6)

Proposed 
Control Scheme

  1 2

1 1

1 sig /

i di
s    B M

  2
sign

id i
s M

Actor Network Critic Network

estimationoptimization

ˆ
a

W

ˆ
c

W

Update law in 
(33)

Update law in 
(32)

Online reinforcement learning control

1 T T

1

1

2
ˆtanh

s a
 



 
 

 
B σ W

1 2
,η η

1

2

e

e

, ,Θ R ω

 t

Nearly 
optimal 

control policy 
in (30)

s

s

s

Sliding 
variable in 

(12)

Figure 1. The block diagram of the proposed control scheme.

3.3. Stability Analysis

Theorem 1. Considering the control-oriented RLV model (1) with input constraints, if the initial
conditions satisfies −ρi0 < e1i(0) < ρi0, the nearly optimal control policy is chosen as (30) with
the weight update laws (32) and (33), then the following results can be obtained:

• the sliding variable s, the weight estimation errors W̃a and W̃c are uniformly ultimately
bounded (UUB);

• the attitude tracking errors e1i uniformly obey the fixed-time performance envelops in (8).

Proof of Theorem 1. Consider the Lyapunov function candidate as follows:

V = V(s) +
1
2

W̃>
c A−1

1 W̃c +
pc

2pa
W̃>

a A−1
2 W̃a (34)
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where W̃c = W∗ − Ŵc and W̃a = W∗ − Ŵa. Taking the first time derivative of V yields

V̇ = V̇(s) + V̇c + V̇a (35)

with V̇c = W̃>
c A−1

1
˙̃Wc, V̇a =

pc
pa

W̃>
a A−1

2
˙̃Wa, and

V̇(s) = ∇V>s
(
Γ + D1 + B1M̂∗a

)
. (36)

By invoking the HJB equation (29), ∇V>s Ξ can be rewritten as:

∇V>s Ξ = −Vs − λ2v̄ln
[
1c − tanh2

(
ˆ̄M∗o
)]

+∇V>s
{
C
[
λ1isig1/2(si)

]
−Md

}
− εe (37)

where εe = Bε +∇V>s D1. Substituting (37) into (36) yields

V̇(s) = −Vs − λ2v̄ln
[
1c − tanh2

(
ˆ̄M∗o
)]
− λ∇V∗>s B1 tanh

(
ˆ̄M∗a
)
− Bε. (38)

Furthermore, according to (17), it can be deduced that

λ2v̄ln
[
1c − tanh2

(
ˆ̄M∗o
)]

= J(M∗o ) +∇V∗>s B1M∗o (39)

with M∗o = −λ tanh
(

ˆ̄M∗o
)

. Equation (38) can be rewritten as:

V̇(s) = −Vs − J(M∗o )−∇V∗>s B1M∗o − Bε − λ
(

W∗>∇σs +∇ε>s

)
B1 tanh

(
ˆ̄M∗a
)

= −Vs − J(M∗o ) + εv − λ
(

Ŵ>
a + W̃>

a

)
∇σsB1 tanh

(
ˆ̄M∗a
) (40)

where εv = −Bε +∇V∗>s B1M∗o −∇ε>s B1M̂∗a . Noting that tanh(·) is an odd function, it can
be concluded that λŴ>

a ∇σsB1 tanh
(

ˆ̄M∗a
)
> 0. Moreover, it is indicated that J(M∗o ) > 0

from the definition in (17). Based on the above discussions, (40) can be simplified as:

V̇s(s) ≤ −Vs − λW̃>
a ∇σsB1 tanh

(
ˆ̄M∗a
)
+ εv. (41)

Subsequently, incorporating (32) with V̇c yields

V̇c = −W̃>
c Γ1

˙̂Wc = W̃>
c

{
θ̄
[
θ>Ŵc + Vs + J

(
M̂∗a
)]

+ pc
(
Ŵc − Ŵa

)}
. (42)

Recalling (29) and the definition of θ, (42) can be rearranged as:

V̇c = W̃>
c

{
θ̄[θ>Ŵc − θ>W∗ + θ>W∗ − εH − λ2v̄ln[1c − tanh2( ˆ̄M∗o )]

−W∗>∇σsΓ + J(M̂∗a )]
}
+ pcW̃>

c
(
Ŵc − Ŵa

)
= W̃>

c θ̄
{
−θ>W̃c +

(
∇σsB1M̂∗a

)>W∗ − λ2v̄ln
[
1c − tanh2

(
ˆ̄M∗o
)]
− εH

+λŴ>
a ∇σsB1 tanh

(
ˆ̄M∗a
)
+ λ2v̄ln

[
1c − tanh2

(
ˆ̄M∗a
)]}

+ pcW̃>
c
(
Ŵc − Ŵa

)
= W̃>

c θ̄
{
−θ>W̃c − λW̃>

a ∇σsB1 tanh
(

ˆ̄M∗a
)
− λ2v̄ln

[
1c − tanh2

(
ˆ̄M∗o
)]
− εH

+λ2v̄ln
[
1c − tanh2

(
ˆ̄M∗a
)]}

+ pcW̃>
c
(
Ŵc − Ŵa

)
.

(43)
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With the aid of Lemma 1 and Lemma 3, (43) can be further simplified as:

V̇c = W̃>
c θ̄
[
−θ>W̃c − λW̃>

a ∇σsB1 tanh
(

ˆ̄M∗a
)
− εH − λB>1 ∇σ>s Ŵasign

(
ˆ̄M∗a
)

+λB>1 ∇σ>s W∗sign
(

ˆ̄M∗o
)
+ λ2v̄(εa − εa∗)

]
+ pcW̃>

c
(
Ŵc − Ŵa

)
= W̃>

c θ̄
[
−εH + λ2v̄(εa − εa∗) + λB>1 ∇σ>s W∗sign

(
ˆ̄M∗o
)]

− W̃>
c θ̄

{
λW̃>

a ∇σsB1 tanh
(

ˆ̄M∗a
)
+ λŴ>

a ∇σsB1

[
tanh

(
ˆ̄M∗a
κ

)
+ κ1

]}
− W̃>

c θ̄θ>W̃c + pcW̃>
c
(
Ŵc − Ŵa

)
(44)

where ||εa||, ||εa∗ || and |κ1| are bounded. For ease of notation, two bounded vectors ℵ1
and ℵ2 are defined as:

ℵ1 =

{
λ∇σsB1 tanh

(
ˆ̄M∗a
κ

)
− λ∇σsB1 tanh

(
ˆ̄M∗a
)}

θ̄>W∗,

ℵ2 = λW∗>∇σsB1sign
(

ˆ̄W∗
o

)
− λW∗>∇σsB1

[
tanh

(
ˆ̄M∗a
κ

)
+ κ1

]
− εH + λ2v̄(εa − εa∗),

(45)

then (44) can be further sorted into the following structure

V̇c = −W̃>
c θ̄θ>W̃c + pcW̃>

c
(
Ŵc − Ŵa

)
+ W̃cθ̄ℵ2 + W̃>

a ℵ1 + λκ1W̃>
c θ̄W̃>

a ∇σsB1

+ λŴ>
c θ̄W̃>

a ∇σsB1Ψ.
(46)

Substituting (33), (41), and (46) into (35) yields

V̇ ≤ −Vs − λW̃>
a ∇σsB1 tanh

(
ˆ̄M∗a
)
+ ε−W̃>

c θ̄θ>W̃c + pcW̃>
c
(
Ŵc − Ŵa

)
+ W̃cθ̄ℵ2 + W̃>

a ℵ1 + λκ1W̃>
c θ̄W̃>

a ∇σsB1 − λŴ>
c θ̄W̃>

a ∇σsB1

+ λŴ>
c θ̄W̃>

a ∇σsB1Ψ + W̃>
a

[
pc
(
Ŵa − Ŵc

)
− λ∇σsB1Ψθ̄>Ŵc

]
≤ −Vs − λW̃>

a ∇σsB1 tanh
(

ˆ̄M∗a
)
+ εv − W̃>

c θ̄θ>W̃c + pc
(
W̃a − W̃c

)>(W̃a − W̃c
)

+ W̃cθ̄ℵ2 + W̃>
a ℵ1 + λκ1W̃>

c θ̄W̃>
a ∇σsB1

≤ −Vs − W̃>
c θ̄θ>W̃c + εv1 + W̃>

c θ̄ℵ3

(47)

where εv1 = εv − λW̃>
a ∇σsB1 tanh

(
ˆ̄M∗a
)
+ W̃>

a ℵ1 and ℵ3 = ℵ2 + λκ1W̃>
a ∇σsB1.

With the definition of the generalized vector G =
[
s, W̃>

c θ1
]>

, the inequality (47) can
be rewritten as:

V̇ ≤ −G>ΠG + G>Πθ + εv1 (48)

where Π = diag(Q, I), Πθ =
[
0,ℵ3/

(
θ>θ+ 1

)]>
. Given that Πθ , Ŵa are bounded vectors,

it can be concluded that the W̃a is a bounded vector and ||Πθ || ≤ Π̄θ and |εv1| ≤ ε̄v1.
Therefore, V̇ is negative if

||G|| >
Π̄θ

√
Π̄2

θ + 4λmin(Π)ε̄v1

2λmin(Π)
, (49)

which implies that the sliding variable s and W̃>
c θ1 are UUB . Furthermore, in view of the

assumption that θ1 is PE, the weight estimation error W̃c is also UUB [14]. Once the sliding
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variable converges to the vicinity of origin, the gradient vector ∇σ[s(t)] together with M̂∗a
will also be small enough. Defining d = Ξ + D1 + B1M̂∗a , and assuming that there exists a
small positive constant d̄ satisfying ||d|| ≤ d̄, the dynamic of the sliding variable can be
represented as: [

ṡ
Ṁd

]
=

[
d−C

[
λ1isig1/2(si)

]
−Md

−D(λ2i)sign(si)

]
. (50)

According to the deduction lines in [30], the sliding variable can reach a small neigh-
borhood of origin; thus, the equivalent unconstrained errors η1i are bounded.

Recalling the error transformation method in (9), it can be derived that

zi = T(η1i) =
exp(η1i)− exp(−η1i)

exp(η1i) + exp(−η1i)
. (51)

Note that T(η1i) is a smooth, strictly increasing, function w.r.t. η1i and satisfies
lim

η1i→−∞
T(η1i) = −1, lim

η1i→∞
T(η1i) = 1; thus, it can be derived that −1 < zi < 1 and

−ρi < e1i < ρi hold true if η1i is bounded. Following the above analysis, it can be deduced
that e1i never violates the fixed-time prescribed performance constraints in (8) for all t > 0,
and |e1i| < ρi∞ for t > T.

This completes the proof of Theorem 1.

4. Numerical Simulations

In this section, numerical simulations for the re-entry phase of RLV are carried out
to illustrate the effectiveness and improved performance of the proposed control scheme.
The parameters of the RLV are based on [31]. The initial states of the re-entry phase are set
as α0 = 47 deg, β0 = −2 deg, σ0 = 2 deg, p0 = 0 deg/s, q0 = 0 deg/s and r0 = 0 deg/s.
The guidance commands are designed as αc = (45− 0.5t) deg, βc = 0 deg and σc = 0 deg.
The uncertainties of the inertia parameters, the aerodynamic parameters and the air density
are each set to +20% bias. The external disturbance ∆De is given as [32]:

∆De =

(0.5 + cos(πt/2) + sin(πt/3))× p
(0.5 + cos(πt/2) + sin(πt/4))× r
(0.5 + cos(πt/3) + sin(πt/2))× q

× 104(N ·m). (52)

The saturation bound of the control torques is set as M̄ = 1× 105 (N ·m). The attitude
tracking errors are required to be less than 0.5 deg for t ≥ 2 s. Therefore, the parameters
of the FTPPF are selected as ρ0i = π/36, ρ∞i = π/360 and T = 2. Comprehensively
considering the satisfactory transient and steady-state performance, the parameters of the
proposed control scheme are rigorously chosen as c = 2I3×3, v = I3×3, Q = I3×3, λ1i =
2, λ2i = 0.1. Inspired by the work of [12,14], the suitable basis vectors can be selected as
polynomial combinations of the concerned state variables in the performance index (16).
The base vectors of the actor and critic networks are adjusted in repeated trials to balance
the approximation error and the computational burden. They are identically selected as:

σ[s(t)] =

[
s4

α

4
,

s3
α

3
,

s2
α

2
,

s4
β

4
,

s3
β

3
,

s2
β

2
,

s4
σ

4
,

s3
σ

3
,

s2
σ

2

]>
. (53)

The initial values of Ŵa and Ŵc are randomly generated in (0, 1). The user-defined
parameters of the weight adaptation laws are designed as A1 = I9×9, A2 = 0.1I9×9, pc =
0.001, pa = 1, κ = 0.001.

Furthermore, in order to demonstrate the superiority of the proposed control scheme,
the RL-based finite-time control (RLFTC) with input constraints in [17], and the robust
adaptive backstepping control (RABC) method in [33], are implemented. To provide a fair
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comparison, the time-fuel performance index of the RLFTC is identical to the proposed
method, and the generation method for the initial values of the actor network and the critic
network remains the same. The other user-defined parameters of the RLFTC are intensively
selected as T1 = 0.1, λ = 2/3, Γc = 0.2, Γa = 0.2, ka = 0.1. The parameters of the RABC
remain the same as that in [33]. The simulation results are given in Figures 2–10.

The tracking performances of the attitude angles under three controllers are shown
in Figures 2–5. It can clearly be seen that the proposed control scheme can provide faster
convergence and smaller overshoot in the presence of parametric uncertainties and external
disturbances. The angular rates of RLV and the sliding manifolds are demonstrated
in Figures 6 and 7, which provide further evidence for the improved performance of
the proposed control scheme. Moreover, by comparing the tracking performance with
the control inputs illustrated in Figure 8, it can be observed that the proposed control
scheme exhibits better transient and steady-state performance with limited control inputs.
The evolution trajectories of Ŵa and Ŵc are depicted in Figures 9 and 10, respectively. It can
be readily found that Ŵa and Ŵc are convergent to the same values, which indicates that
the ideal weight vector W∗ can be effectively estimated via the proposed adaptation law.

Figure 2. Time histories of the attitude angles.

Figure 3. Time histories of the attitude tracking error e1α.
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Figure 4. Time histories of the attitude tracking error e1β.

Figure 5. Time histories of the attitude tracking error e1σ.

Figure 6. Time histories of the angular rates.
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Figure 7. Time histories of the sliding manifolds.

Figure 8. Time histories of the control torques.

Figure 9. Weights of the actor network.
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Figure 10. Weights of the critic network.

To make a clear comparison, the maximum overshoot and the adjustment time are
introduced to evaluate the transient performance of these controllers. Moreover, the integral
absolute control effort (IACE) index

∫ 30
0 (|Mi|)dτ, (i = x, y, z) and the integral of the time

and absolute error (ITAE)
∫ 30

0 τ(|e1i)|dτ, (i = α, β, σ) index of three control schemes are
calculated to evaluate the tracking accuracy and control effort. The performance indices of
the three channels are summarized in Tables 1–3.

Table 1. Performance indexes of the α-channel.

Performance Index Proposed Method RABC RLFTC

Maximum Overshoot / 20.5% 34.0%
Adjustment Time 1 (s) 3.9 5.6 4.3
ITAE index (deg ·s2) 1.6407 43.2600 1.6962

IACE index (N ·m · s) 8.507× 105 8.893× 105 1.022× 106

1 The time when the attitude tracking error reaches to ±0.05 deg.

Table 2. Performance indexes of the β-channel.

Performance Index Proposed Method RABC RLFTC

Maximum Overshoot 4.5% 19.0% 38.2%
Adjustment Time (s) 3.1 4.1 4.6
ITAE index (deg ·s2) 0.7347 1.5192 1.1507

IACE index (N ·m · s) 1.8365× 105 2.0571× 105 4.155× 105

Table 3. Performance indexes of the σ-channel.

Performance Index Proposed Method RABC RLFTC

Maximum Overshoot 5.5% 17.7% 53.5%
Adjustment Time (s) 4.1 4.8 4.7
ITAE index (deg ·s2) 0.8783 1.7853 1.7242

IACE index (N ·m · s) 4.6577× 103 5.0277× 103 1.8364× 104

From the foregoing simulation results, it can be concluded that the proposed control
scheme outperforms RLFTC and RABC in terms of transient performance, tracking accuracy
and control effort. Furthermore, by synthesizing the AC structure and the fixed-time PPC
paradigm, the proposed control scheme offers an online RL-based model-free solution for
controlling RLV and other complex industrial systems.
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5. Conclusions

In this paper, an innovative RL-based tracking control scheme with fixed-time pre-
scribed performance has been proposed for RLV under parametric uncertainties, external
disturbances, and input constraints. By resorting to the FTPPF, fixed-time performance
envelopes have been imposed on the attitude tracking errors. Combined with the AC-based
online RL structure and the super-twisting-like sliding mode control, the optimal control
policy and the performance index have been learned recursively, and the robustness of the
learning process has been further enhanced. Moreover, theoretical analysis has demon-
strated that the attitude tracking error can converge to a preset region within a preassigned
fixed time, and that the sliding variable, the weight estimation errors of the actor and critic
networks are UUB. Comparative simulation results have verified the effectiveness and
improved performance of the proposed control scheme. The angular rate constraints will be
addressed in our future work, and the optimal control problem for the underactuated RLV
will be specifically addressed. Experimental investigations, such as hardware-in-the-loop
simulations, will be undertaken.
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