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Abstract: Elevators have become a kind of indispensable facility for everyday life, which bring
people both convenience and safety hazards. Specifically in the household environment, an elevator’s
lifespan is expected to be more than 20 years. An appropriate and regularly maintained counterweight
is conducive to extending elevator life. This paper proposes a passenger counting approach in the
elevator for regular counterweight adjustment based on commodity WiFi called ECC. Since the
running time of the elevator between two adjacent floors is short, the major challenge of ECC is
how to count passengers from the limited captured data. This paper first theoretically analyzes
the relationship between the number of passengers and the variation of channel state information
(CSI). Then ECC constructs a multi-dimensional feature by extracting the average of amplitude
(AOA), time-varying spectrum (TVS), and percentage of non-zero elements (PEM) features from the
limited data. Finally, the random forest (RF) classifier is used for passenger counting and the local
optimization problem is solved by expanding the feature dataset through data segmentation. ECC
is implemented by using off-the-shelf IEEE 802.11n devices, and its performance is evaluated via
extensive experiments in typical real-world scenes. The estimated precision of ECC can reach more
than 95%, and more than 97% of estimation errors are less than 2 persons, which demonstrates the
superior effectiveness and generalizability of ECC.

Keywords: WiFi; channel state information (CSI); short-time local detection principal component
analysis (SLD-PCA); time-varying spectrum (TVS); passenger counting

1. Introduction

With the development of cities, the number of elevators has surged, and elevators
have become an indispensable smart device for the household, which not only brings
great convenience to people’s lives but also provides more space for city construction.
However, the emergence of elevators also introduces new safety problems. For instance,
the unbalance of the elevator’s counterweight is one of the vital factors affecting elevator
safety [1]. Traditional elevators only care about whether the overall load is overweight,
not the mass of the actual load. Therefore, they employ a rated counterweight based on
their maximum load capacity instead of the elevator’s actual load. The principle of elevator
operation is achieved by the movement of a directional pulley. One side of the pulley is
connected to the elevator, and the other side is connected to the counterweight. When
the elevator is running, it produces friction between the rope and the pulley to control
the movement of the elevator. If there are few or many passengers in the elevator, the
overall weight of the passengers will be seriously imbalanced to the counterweight. The
imbalanced weight on both sides of the rope requires the drive motor to output more power
to ensure the elevator keeps running at an even speed. Continuous operation increases the
wear of the rope and multiple components, which may cause accidents and increase energy
overhead. Hence, regular maintenance of the elevator is very important [2,3].
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According to the statistics, more than 10% of accidents are caused by components or
protection devices malfunctioning due to the elevator counterweight problem. Therefore,
many studies [4] have improved the counterweight system of the elevator to reduce the
safety risk. For instance, Tzou and Schiff [5] propose a passive vibration control device
that can effectively reduce the risk due to the imbalanced counterweight by constraining
the motions of two rails through intermediate ties to reduce the contact load. However,
it requires improving the elevator hardware, which is difficult to implement in actuality.
If the number of passengers in the elevator can be accurately estimated, the rule of the
passenger flow at different periods can be grasped, and then the actual load range of
the elevator can be inferred. In this way, the counterweight can be regularly maintained
and adjusted based on the actual utilization rate of the elevator, thereby enhancing the
elevator’s safety and saving energy overhead. In addition, excessive passengers may cause
the elevator to be overcrowded and introduce other safety issues for the passengers.

Traditional sensors-based crowd counting approaches, such as the infrared sensor,
camera, mobile devices, etc., either require the deployment of extra infrastructure or the
cooperation of occupants to carry dedicated devices, which are intrusive and inconvenient
for pervasive implementation. With the development of WiFi, signals have covered
whole buildings, so the passive sensing approaches based on WiFi sensors have received
more attention. These approaches can effectively overcome the drawbacks of the above
methods and solve the privacy issue. Moreover, WiFi can solve the problem of weak mobile
phone signals in elevators and enable people to keep in touch with the outside world in
emergencies. In summary, the current sensors-based crowd counting approaches can be
classified into vision-based and non-vision-based approaches.

Vision-based approaches [6–10] mostly use image recognition for crowd counting.
However, since the European Union implemented the general data protection regulation
(GDPR) [11] on 25 May 2018, which aims to protect users’ privacy and data security, the
monitoring data captured by cameras in public venues cannot be made public arbitrarily.
In this context, most product and system developments prioritize privacy and establish
a sensing and detection platform for people and biological monitors that do not rely
on captured video or identification data. Therefore, non-vision-based approaches have
received extensive attention in recent years.

Non-vision-based approaches mainly include: device-based and device-free approaches.
The device-based approaches (e.g., mobile phones [12,13], RFID tags [14,15], Bluetooth [16,17],
etc.) rely on people to carry at least one specific device. They are more suitable for object
localization than crowd counting. In many practical scenarios, it is impossible to ask people
to take the same devices with them. Device-free approaches (e.g., infrared sensors [18],
UWB radar sensors [19,20], PIR sensors [21]) do not require people to carry any devices
but only rely on the interaction with the wireless signals or induction in a certain area.
However, these approaches require deploying specific sensors in the interest region that
cannot be blocked. General WiFi sensors-based [22–25] methods can overcome the above
drawbacks, but they need people to keep moving. Therefore, they cannot detect static
crowds, for instance, passengers in the elevator.

Hence, the traditional approaches can not be used in the elevator environment. If
the passenger number can be counted by using commercial WiFi in the elevator; it can not
only solve the occlusion problem of the people but also does not require the addition of
additional devices. This paper proposes a passenger counting approach in the elevator
based on channel state information (CSI) measurements using commodity WiFi. The
rationale behind ECC is that the passenger number can be accurately inferred from the
variation of the CSI. The contributions of this work are summarized as follows.

• First, this paper theoretically analyzes and verifies the monotonic relationship between
the variation of CSI and the passenger number. The analysis results suggest that the
variation of CSI is sensitive to crowd influences, which can be used for passenger
counting.
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• Secondly, this paper implements the signal pre-treatment process by CSI segmentation,
sub-carrier decorrelation, and noise reduction. In particular, this paper proposes a
short-time local detection principal component analysis (SLD-PCA) algorithm to
decorrelate the CSI streams quickly. SLD-PCA can effectively extract the principal
components from all the CSI sub-carriers while maintaining the CSI’s local structure.

• Thirdly, this paper proposes the time-varying spectrum (TVS) feature that adopts
radar detection schemes, which can maximally reveal the relationship between the
passenger number and variation of CSI by calculating the energy variation of CSI
attenuation in a short time. To improve the estimation accuracy, ECC also extracts the
average of amplitude (AOA), and percentage of non-zero elements (PEM) features
to construct a multi-dimensional feature as an indicator of relationship variation.
Then, the passenger counting is implemented by the Random Forest (RF) classifier, for
the local optimization problem introduced by the small dataset has been solved by
expanding the dataset through data segmentation.

• Finally, the ECC scheme is implemented with commercial off-the-shelf (COTS) 802.11n
devices (Atheros 9300 NICs), then it is evaluated with real-world experiments. Ex-
tensive results prove that ECC can effectively estimate the passenger number in the
elevator, which can be applied to guide the adjustment of the elevator counterweight.

The rest of this paper is organized as follows. Section 2 presents the theoretical analysis
and real-world observations of the relationship between the passenger number and the
variation of the CSI. The materials and system design are elaborated in Section 3, followed
by performance evaluation in Section 4. Section 5 discusses the limitations and solution
schemes of ECC systems. Finally, the conclusion is given in Section 6. The list of main
abbreviations is shown in Abbreviations part.

2. Theoretical Analysis
2.1. The Variation of CSI with the Passenger Number

The CSI of one sub-carrier can be expressed as [26,27]:

H =
p

∑
i=1
|Ai| · e−jφi (1)

where, p is the number of propagation paths. |Ai| and φi denote the amplitude and phase
values, respectively. Since the center frequency of each sub-carrier is different, for m sub-
carriers, the channel CSI matrix is denoted as Hr = [H1, H2, . . . , Hm]. People affect the link
in two major ways: Line of Sight (LoS) path and multi-path. Each person may reflect or
block the signal and cause the receive vector to be strengthened or weakened. The receive
matrix of one antenna is denoted as Yi. Thus, if there have p propagation paths from a
transmit antenna (Tx) to one receive antenna (Rx), the receive matrix can be expressed as:

Y = Y1 + Y2 + Y3 + · · ·+ Yp =
p

∑
i=1

Yi (2)

hence, the orthogonal frequency division multiplexing (OFDM) system in the frequency
domain is modeled as Y = HrX + Nv. X and Nv are the transmit vectors and the noise
vectors, respectively. Hence, the estimated value of Hr can be expressed as:

Ĥr =
Y
X

=
1
X

p

∑
i=1

Yi (3)

In radio communications, the OFDM systems are widely used to divide the wireless
network spectrum into orthogonal sub-carriers. However, the emitted WiFi signals often
do not reach the receive antenna directly due to obstacle blocking and multi-path effects of
signal propagation [23]. A portion of the signals passes through the medium, while other
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signals are reflected or absorbed by the medium. Hence, the signal has different degrees
of attenuation during transmission and different reflection coefficients on the various
mediums, which are calculated as follows [28]:

Γ =

∣∣∣∣E′E
∣∣∣∣2 ≈

(
1−

√
2wε0

σ

)2
+ 1(

1 +
√

2wε0
σ

)2
+ 1

≈ 1− 2

√
2wε0

σ
(4)

where E′ and E are the energy of the reflected signal and the incident signal. w, ε0, and
σ are the frequency constant, dielectric constant, and the conductivity of the medium,
respectively. As Γ is close to 1, as σ → ∞, the signal strength reflected by the medium is
becoming stronger. The reflection coefficient of walls and furniture is about 65–78% which
is close to 70% of people. Hence, many approaches require people to keep moving to reflect
the variation of signals for separating people from objects. If people are in a static state, the
performance of these methods will become weakened.

Unlike indoors, the elevator is mainly composed of metal materials with no occlusion
inside. Hence, the reflection coefficient inside the elevator can reach more than 90%. The
intensity of signal propagation is stronger than the indoor environment, and different
crowd numbers will produce a drastic variation of signal. The relationship between the
variation of CSI and the passenger number can be revealed. The probability of signal
reflection inside the elevator can be calculated as follows:

S f (n) ≈ 0.7 · Sb(n) + 0.9 · (1− Sb(n)) = 1− 0.2 · Sb(n) (5)

where n is the passenger number, Sb(n) is the probability of signal occlusion, and Sb(n)
satisfies Sb(n+1)−Sb(n)

Sb(n)
> n, which illustrates that the probability of signal occlusion will

increase as the passenger number grows [29]. Hence, the following inequality can be
inferred:

S f (n + 1)− S f (n) < n ·
(

S f (n)− 1
)
< 0 (6)

Equation (6) shows that the probability of signal reflection reduces as the passenger
number increase, which also proves the signal propagation path number reduces. Based on
this, the Fast Fourier Transform (FFT) operator is applied to the two sides of (3):

S(Ĥr) =
1
X

p

∑
i=1

S(Yi) (7)

S(Ĥr) decreases with the growing number of people, which also proves that the CSI
attenuation strengthens as the passenger number increases. Figure 1a shows the variation
of the CSI amplitude for one sub-carrier when the elevator runs between adjacent floors
under a different passenger number. There is a monotonous relationship between the
variation of CSI average amplitude and the passenger number, which could effectively
validate the above analysis, as shown by the blue line.
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Figure 1. CSI measurements of one sub-carrier.

2.2. Major Challenge

Figure 1a also shows that the running time is Tr = Pn × τ = 4 s when the elevator
only moves between adjacent floors, which is the shortest running time for the elevator.
Pn is the number of packets, τ is the interval time between sending packets, and τ = 1 ms.
Hence, only about 4000 packets can be captured, which means the relationship between the
variation of CSI and the crowd number can not be effectively reflected. In addition, the CSI
is easily affected by environmental changes (e.g., people distribution), and it will become
weaker as the passenger number continued to expand. Hence, the primary challenge of
ECC is how to extract more properly quantifiable indexes from the limited data in the short
running time of the elevator that can characterize the relationship between the number of
static passengers and the variation of CSI. Secondly, how to solve the issue of small datasets
for multi-dimensional features and to find a suitable classification algorithm to estimate
the crowd number and perform passenger flow calculations are the other problems.

In addition, when the door of the elevator opens, people may enter and exit, which
also affects the CSI. Figure 1b shows the variation of the CSI when the elevator door opens.
In this experiment, there are 4 persons in the elevator, and when the elevator door opens,
3 persons leave, and 4 other persons enter. The door opening is about 3s long, and the door
is open for 9s, while this time is different due to manual intervention. When the door opens
or closes, the CSI amplitude rapidly drops or rises until the door fully opens or closes. The
amplitude of CSI is at the valley value when the door fully opens and vice versa. Moreover,
the people number keeps changing when the door opens. Hence, these fragments should
be cut out.

3. Materials and Methods
3.1. System Design

In this section, the details of our ECC system are given. Figure 2 gives an overview
of the system architecture. The system works in three phases: (1) CSI pre-treatment: The
system adaptively selects the principal components (PCs) from the 30 sub-carriers and
performs signal de-noising. The largest difference of all sub-carriers can be reflected in the
PCs, and the external interference is removed. (2) Multi-dimensional feature extraction:
The system composes a multi-dimensional feature by calculating the AOA, TVS, and PEM.
They are used to indicate the relationship between the change of CSI and the passenger
number. (3) Passenger counting: The system divides the data into multiple groups to
expand the datasets, which expands the range of samples selected for the classifier and
reduces the impact of the local optimization problem. In the basic ECC system, Atheros
9300 NICs are used for data acquisition, two antennas continue to broadcast beacon mes-
sages, and the other two antennas work to measure the CSI values of the channel. In the
next six subsections, the design of ECC is elaborated.
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Figure 2. The work flow.

3.2. CSI Segmentation

People keep in a relatively static state in the elevator with small activity. As the
passenger number changes due to some people entering or exiting, the passenger number
cannot be predicted correctly during this time. Hence, the CSI signal requires to be split
and the running segments of the elevator are extracted. Figure 3a shows that CSI amplitude
gradually decreases to the valley due to the number of signal propagation paths reducing
when the door opens or closes. However, the raw CSI signal is too rough for us to split.
Therefore, the wavelet transform (WT) is introduced to perform time-frequency analysis
that not only keeps the integrity of the information but also can locally detect the singularity
of the signal, which is suitable for mutation signals.

Figure 3b shows the Low-Frequency (LF) and High-Frequency (HF) information of the
CSI sequence after WT. HF information can reflect the mutation of the signal more clearly.
The result also illustrates that the running time is different every time. CSI segmentation is
mainly divided into 3 steps: (1) Get HF wavelet coefficients after WT. The mutate points of
signal in the WT domain often correspond to the modulus maxima values of the HF wavelet
coefficient. (2) Find all extreme modulus points. All the modulus maxima points of the
HF wavelet coefficients need to be extracted. (3) Extract running fragments. The running
parts are the signals between the two adjacent modulus maxima of HF wavelet coefficients.
However, they cannot contain modulus minima points between adjacent modulus maxima
points of the HF wavelet coefficient.
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Figure 3. CSI segmentation of one sub-carrier.



Appl. Sci. 2022, 12, 7321 7 of 21

3.3. Sub-Carrier Decorrelation by SLD-PCA

A single antenna pair provides 30 streams of CSI from 30 sub-carriers, and they are
mostly correlated. However, for time-frequency analysis, as few streams as possible are
required to reduce the computational overhead in constructing the spectrogram for feature
extraction [30]. Traditional principal component analysis (PCA) [31] uses the same method
to deal with adjacent data and non-adjacent data, which makes it impossible to discover
the local structure of the data in a short time. Hence, this paper proposes an SLD-PCA
algorithm to decorrelate the CSI streams.

SLD-PCA combines the local preservation idea of the locality preserving projection
(LPP) method and adopts different processing methods for the adjacent and non-adjacent
data in the data. It separates the non-adjacent data as much as possible in the projection
space while keeping the original adjacent relationship for the data. If the initial data matrix
is x = (x1, x2, . . . , xN), and the matrix after projection is y = (y1, y2, . . . , yN). Then, the
following constraint conditions are added to the original optimization function:{

max ∑N
i,j=1 ||yi − yj||G′ij,

s · t ·∑N
i,j=1 ||yi − yj‖2Gij = 1

(8)

where N is the length of CSI, the weight G′ij = 1 if the data xi and xj are non-adjacent points;

otherwise G′ij = 0. The weight Gij = e−‖xi−xj‖2
/ξ , and ξ is an adjustable parameter. Gij = 0

represents xi and xj are non-adjacent points. The smaller the distance between adjacent
points xi and xj in the high-dimensional space, the larger the value of Gij. According to
the equality constraint, the distance between their corresponding low-dimensional space
projections yi and yj is smaller. The equality constraints mean that when the closer points
in the high-dimensional space are projected into the low-dimensional space, they keep a
relatively close distance, so the local structure of data is preserved.

After SLD-PCA, the data are converted from the original coordinate system to the new
coordinate system, and the PCs are extracted. However, most of the variances are in the
first few coordinates in the order, while the other few are almost zeros in the subsequent
coordinates [32]. Its meaning is to retain only the feature dimensions that contain most of
the variances while ignoring the dimensions where the variances are almost zero to reduce
the dimensionality of the feature data. Hence, the number of PCs is selected by calculating
the capture variance (CAV):

CAV =
CUM of selected PCs

CUM of all 30 sub-carriers
≥ 95% (9)

where CUM is the cumulative variance. Figure 4 shows the results of PC’s selection for 4
and 6 persons. The results prove that the main variation of the CSI concentrates on the first
3 and 2 PCs. Moreover, the number of PCs is not the same under the different cases, and
there is no monotonous relationship between the number of people and the number of PCs.
It is because the human factor will cause the different reflection of CSI. The results also
show that the noise level begins to increase as the number of PCs increases. Hence, the
signal de-noising on each PC is required.
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Figure 4. Sub-carrier decorrelation and PC selection.

3.4. Noise Reduction

CSI subcarriers obtained from the wireless network cards are accompanied by additive
white Gaussian noise and encounter various interference during propagation [33]. Time
domain methods may cause vital high-frequency information to be lost for unstable signals.
Frequency domain methods have a long transition zone, which is easy to cause distortion
and loses vital signal components. Hence, the wavelet coefficient correlation de-noising
algorithm (WCCDA) based on discrete wavelet transform (DWT) is adopted; it is a time-
frequency analysis method in all bands. In WCCDA, by transforming the signal into the
wavelet domain, the signal is divided into multiple frequency levels, called wavelet levels.
The high-frequency wavelet coefficients of the signals between the adjacent levels have
a strong correlation, but the noise has no such correlation [34]. Based on this, the noise
mixed in the CSI can be effectively eliminated. The wavelet correlation coefficient and
normalization coefficient can be calculated as:

CWj,k = Wj,kWj+1,k (10)

W̃j,k = CWj,k

√
PWj

PCWj
(11)

where Wj,k is the high-frequency wavelet coefficient, CWj,k is the correlation coefficient at
point k of level j, W̃j,k is the normalized correlation coefficient, PWj = ∑

k
W2

j,k represents

the energy of high-frequency wavelet coefficients, and PCWj = ∑
k

CW2
j,k represents the

correlation coefficient’s energy.
Then, compare W̃j,k and Wj,k on each level: If W̃j,k≥Wj,k, it is the true signal, take

W̃j,k = Wj,k, and set Wj,k = 0. If W̃j,k < Wj,k, it is controlled by noise, leave Wj,k, and set
W̃j,k = 0. Finally, the signal points are retained in W̃j,k and the noise points are retained in
Wj,k. Figure 5 denoises the first three PCs in Figure 4a. WCCDA can effectively eliminate
the noise in each principal component and reflect the variation of the signal. The results also
showed that the CSI amplitude attenuation gradually strengthens, as the highest amplitude
is present in the first PC, the next highest amplitude is present in the second PC, and so on.
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3.5. Multi-Dimensional Feature Extraction

As mentioned above, the multi-path effect is stronger in elevators than that in indoor
environments, and the CSI is more sensitive to such change. Based on this, a multi-
dimensional feature is proposed that includes the AOA, TVS, and PEM to reflect the
variation of CSI.

3.5.1. Amplitude Feature

Though the number of signal propagation paths in the elevator gradually reduces as
the passenger number increases and the received vector becomes weaker, the variation
range of CSI becomes narrow. Hence, the CSI amplitude can not directly be used to
characterize the relationship between the people number and the variation of CSI. The
AOA is defined to denote the received amplitude of CSI, which is the average value of all
PCs after noise filtering. By averaging the PCs, the amount of frequency information of
CSI can be obtained as the PCs are orthogonal to each other, and each of them consists of
unique frequency components [30]. Moreover, this method can reduce human interference,
and the relationship between the variation of CSI and the crowd number can effectively be
reflected. The AOA is expressed as:

AOA =
1

MN

M

∑
j=1

N

∑
i=1

Aij (12)

where Aij is the CSI amplitude, N is the length of CSI, and M is the number of PCs. The
average AOA values of two Rxs with 10 experiments under each passenger number are
shown in Figure 6. The AOA value gradually decreases as the passenger number increases.
However, the variation of AOA becomes weak as the passenger number grows. Hence,
more proper quantifiable indexes are required to verify the relationship between the people
and the variation of CSI in a short time.
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Figure 6. AOA and TVS value under different passenger numbers.
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3.5.2. Spectral Feature

As shown in (7), the energy of CSI attenuation is gradually becoming stronger with
the growing number of people. Hence, a new feature of CSI called TVS is proposed, which
can be calculated through the following steps:

(1) Frequency feature extraction: For the challenge of few data brought by the short
running time of the elevator, the short-time Fourier transform (STFT) method [30,35] is used
to transform the signal into the time-frequency domain. STFT adds a sliding time window
to the signal and obtains the time-varying frequency spectrum in a few fragments of the
signal. The major challenge here is that the frequency resolution is inversely proportional to
the time resolution, which requires us to find an optimal window size to obtain satisfying
time and frequency resolutions. This paper opts for an FFT window size of 256 samples at a
sample rate of 1000 pkts/s and chooses the overlap size of two windows to be 128 samples
for two reasons: (a) Excessive window size results in poor time resolution. (b) Higher value
increases the computational efforts as it introduces high interpolation. We calculate the
frequency resolution of the sample rate

FFTsize ≈ 5 Hz and a time resolution of window−overlap
samplerate ≈ 0.1 s.

The spectrograms obtained through this process are illustrated in Figure 7. The results
show that the high-frequency information gradually reduces, and the CSI attenuation
strengthens as the crowd number grows. It illustrates that the frequency/energy variation
of CSI attenuation can characterize the variation of CSI.

(a) 0 passenger (b) 2 passengers

(c) 4 passengers (d) 6 passengers

Figure 7. Comparison of spectrograms for different numbers of passengers.

(2) Energy statistics of CSI attenuation: The power burst curve (PBC) is adopted to cal-
culate the energy information, adapted from Doppler radar fall detection techniques [30,36].
Doppler radar associates the negative frequencies because it needs to consider the motion
direction. Unlike Doppler radar, our spectrum U(g, f ) does not consider the motion direc-
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tion, this enables us to define the PBC only for positive frequencies, so our TVS feature can
be expressed as:

TVS =
N

∑
g=1

PBC(g) =
N

∑
g=1

fu

∑
f= fl

|U(g, f )| (13)

where f is the frequency range, fl is the lower frequency bound, and fu is the upper
frequency bound. We perform this operation on AOA and sum the CSI spectral in the
whole frequency range. The average TVS values of each Rx with 10 experiments are also
shown in Figure 6. The TVS curve can effectively reflect the monotonous relationship
between the energy variation of CSI attenuation and the crowd number.

3.5.3. Metric Feature

The variance operator is applied to both sides of (3), then we obtain D(Ĥr). D(Ĥr)
increases with a growing number of moving people in the room due to more reflection
paths and strong signal fluctuations being introduced [29]. However, the people are in a
static state in the elevator, and the block of the signal propagation path is more serious
as the number of people grows, which causes the number of receive paths p to reduce.
This variation is opposed to the indoor environment of moving people. Based on this, the
value of the PEM can be calculated as follows: (a) Transform CSI matrix: Transform the CSI
amplitude values in the matrix composed of all PCs into a two-dimensional matrix; the CSI
amplitude data are converted into integers Int, which is expressed as:

Int =
B[i][j]− Bmin

Bmax − Bmin
· (R− 1) + 1 (14)

where B[i][j] is the CSI amplitude value after noise filtering, Bmax and Bmin are the maxi-
mum and minimum values, and R is the number of rows of the CSI matrix. The elements
in row Int and column j in the matrix are set to “1”. There is a “1” in each column, and the
rest are “0”s, and a new CSI matrix C is formed. (b) Dilate CSI matrix: The dilate matrix
C0 is calculated by setting the elements around “1” to “1”s with the dilatation coefficient
d. The experiments prove that when d = 15, PEM can implement the best effect in ECC.
(c) Calculate PEM value: Calculate the percentage of the non-zero elements in C0, which
is the PEM value. (d) Integrating CSI fingerprint: Gather the CSI fingerprint to find the
relationship between PEM and the people.

Figure 8 shows the variation of the PEM value in the elevator and the room. The
values of PEM have a monotone decreasing relationship with the growing people number
in the elevator, while the change in the room is the opposite. However, the performance of
PEM is poor when people keep relatively static in the room due to weak signal fluctuations.
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Figure 8. Comparison of the variation of PEM in two scenes. (a) In the elevator. (b) In the room.
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3.6. Passenger Counting

Through the above steps, three kinds of feature information are extracted from each
Rx, and they are put into a matrix to form a multi-dimensional feature matrix. Then,
a suitable classification method is required to train the multi-dimensional feature with
small computation and high accuracy. In this part, the RF classifier is adopted that does
not require any domain knowledge and special parameter settings and is particularly
suitable for probing knowledge discovery. However, RF classification algorithms have local
optimization problems due to the RF classifier selecting part of the data to construct the
decision tree, especially when the amount of data is small.

To solve this problem, this paper divides the captured data into L groups and extracts
the features for each group through the above steps, which increases the total number
of features L times. This way can expand the range of samples selected for the classifier,
which reduces the impact of the local optimization problem. After classification, four
prediction results can be obtained: True Positive (TP), False Negative (FN), False Pos-
itive (FP), and True Negative (TN). Therefore, the estimate accuracy is calculated as
Accuracy = (TP + TN)/(TP + TN + FP + FN). However, this research only focuses on
the positive part of the predicted value. In other words, we care about TP but not TN. There-
fore, the estimated precision represents our classification effect, which can be expressed as
Precision = TP/(TP + FP).

3.7. Passenger Flow Rate Statistics

Finally, the passenger number is obtained for each running fragment, so the average
flow rate of passengers can be estimated in a certain period. The calculation process is:

F̂r =
∑Ns

j=1 ∑Nr
i=1

(
Kij ·Vij

)
∑Nr

l=1 Ll
· ρ (15)

where Nr is the number of running fragments in a certain period, and Ns is the frequency
of crowd counting in the elevator running fragment. Kij is the estimated value of the crowd
number each time, Vij is the time for each calculation, and Ll is the frequency for crowd
counting in running fragments. ρ is the group control coefficient, which is a constant with
a value range from 0.5∼1.0 and is determined by the number of group control elevators.

4. Results
4.1. Experiments Setup

This section illustrates the implementation and conducts real-world experiments
to show the performance and robustness of ECC in the elevator environment. For the
hardware, two Thinkpad X201 laptops equipped with Atheros 9300 NICs are used as the
testbed of the proposed method. Each Atheros 9300 NIC is equipped with 2 antennas. The
antennas are placed diagonally in the corners of the elevator by using coaxial antenna signal
cables to form a 2× 2 multiple-input multiple-output (MIMO) communication system.
The signal frequency of NIC is 5.2 GHz, and the bandwidth is 20 MHz.

For the software, PicoScenes is adopted as the software platform. PicoScenes [37]
is a versatile and powerful middleware for CSI-based WiFi sensing with support for up
to 27 models of COTS NICs. PicoScenes provides flexibility for transmission parameter
selection and a user-friendly approach for CSI data collection. Moreover, PicoScenes
provides multiple easy-to-use APIs for plugin development, providing not only CSI data
but also other helpful information such as timestamps, RSSI, SNR, etc. In the experiments,
40 groups of real-time data under each passenger number (0∼18 passengers) are captured
in real elevator scenes, of which 30 sets of data are used to construct the training dataset
while the other 10 sets are used to form the testing dataset. The data are captured based on
the shortest running time of the elevator (4 s) and set the packet sending interval of 1 ms.
Hence, the length of each group of data is 4000.
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4.2. Performance Comparison of Different Classifiers

Besides the RF classifier, many other classifiers are also suitable for small sample
datasets, for example, the decision tree (DT) and support vector machine (SVM) classifiers.
Hence, the impact of different classifiers should be considered. A set of experiments
are carried out to evaluate the performance of each classifier. Figure 9 shows the average
classification results of each classifier under different passenger numbers after 10 exper-
iments, where Pre and Rec represent classification precision and recall rate, respectively.
All the test results of each classifier under different passenger numbers are accumulated
and averaged. DT can achieve an average Pre of 75%, but when the number of people is 1,
2, and 4, its Rec is low, which shows that the recognition ability of DT is poor. The Pre of
SVM can reach 88% on average, but the Rec is very low in all cases. It indicates that only
a small part of the positive examples in all the samples is predicted correctly, especially
when the crowd number is 2; it is completely unrecognizable. It also illustrates that the
performance of SVM is unstable. Both the Pre and Rec of the RF can reach more than 94%,
and the Rec is very stable in all cases that demonstrate the stability and robustness of RF are
the best among the three classifiers, and RF is the most suitable for the proposed system.
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Figure 9. Performance comparison of different classifiers.

4.3. Impact of Different Feature Dimensions

Since the multi-dimensional feature is used, the impact of different feature dimensions
should be evaluated. Figure 10 shows the classification precision when using various
features under different passenger numbers. When a single feature is used, the overall
average prediction precision can reach about only 30% and 47%, while the precision can
effectively improve when 2 features are used simultaneously. The estimated results are 58%
(AOA and PEM), 64% (AOA and TVs), and 72% (PEM and TVS), respectively. These results
also prove that the precision is greatly improved when the TVS feature is joined, but the
effect is still not ideal.
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When 3 features are used, the precision improves to more than 94%. To sum up,
there is a monotonically increasing relationship between prediction precision and the
number of features. Moreover, the highest prediction precision group from each feature
combination is selected, and the cumulative distribution function (CDF) of crowd counting
errors is calculated, as shown in Figure 11. More than 97% of estimation errors are less
than 2 persons when using 3 features, while the CDF value can only reach 60∼75% in other
cases. It is because the CSI is susceptible to external factors when the features are few,
resulting in poor prediction. In addition, the small estimation error for the crowd number
can improve the estimation accuracy of the actual load range and lay a good foundation for
the counterweight adjustment of the elevator.
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Figure 11. CDF of the estimation error of different features.

4.4. Impact of Different Scenes

To verify the practicability of ECC, comparative experiments are implemented in two
real elevators with a maximum load capacity of 1 ton (scene 1) and 1.35 tons (scene 2),
while the data are captured when the elevators move between adjacent floors. Since the
TVS and AOA have the same changing trend with the variation of passenger numbers,
only the variation of AOA and PEM in the two scenes needs to be tested. Figure 12 shows
the average variation of feature values for two Rxs in each scene. Since the space of scene
2 is larger than that of scene 1, the number of propagation paths of the CSI in scene 2 is
more than in scene 1 when few people are inside. Hence, most feature values in scene 2
are slightly higher than that in scene 1 under the same cases. When the passengers reach
saturation, the feature values are substantially equal, and the average precision of both
scenes is above 95%. It also proves that CSI is sensitive to scene changes but not to the
scene itself. In a word, ECC has good environmental adaptability and applicability that
can provide a better reference standard for counterweight adjustment in various elevator
environments.
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4.5. Impact of Human Factors

Since the height, weight, and body shape are different for each person, and the people
distribution in the elevator is random, these factors may affect our system performance.
Hence, the impact of human factors should be evaluated. With the crowd expansion, the
internal space of the elevator gradually reduces, and the human factor is not obvious when
the passenger reaches saturation. The largest variation rates of all features are when the
crowd size is between 2 and 7, as shown in Figure 12. Hence, this experiment chooses
this crowd range to evaluate, whereas the tester’s height is 140∼180 cm with a weight
of 35∼90 kg. The volunteers are randomly selected to test in two distribution patterns:
concentrated (P1) and scattered (P2). Figure 13 shows the average precision and estimation
errors of two distribution patterns. The precision of P1 can reach 93%, and the estimation
error is about 7%, while the precision of P2 reaches 95%, and the difference between the
two estimation errors is 1.4%. Though the performance of ECC in the P2 pattern is slightly
better than the P1, ECC still has good stability. The result also proves that ECC can adapt to
the passenger characteristics and the diversity of distribution well in the elevator; thereby
it can accurately infer the actual load range of the elevator.
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Figure 13. Precision and estimation error comparison.

4.6. The Resolution of Passenger Counting

Figure 14 shows the maximum resolution of passenger counting and the average
estimation errors when the passenger number is 0∼18. All the features gradually stabilize
when the passenger number is greater than 15. Moreover, for two scenarios, the errors are
tiny when the people number is less than 12, and they increase to 9–10% when the number
of passengers grows to 15. The estimation error of both scenes increases to about 14% when
the number of people reaches 18. The results also show that the elevator gradually reaches
saturation as the number of people increases from 15 to 18, and the estimation errors vary
around 12–14%. It also shows that the number of CSI propagation paths gradually becomes
stable. The performance of the maximum extent estimate for the passenger number makes
a wide adjustable range of the elevator’s counterweight, which can meet the daily work
requirements of most elevators.
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4.7. Impact of Device Layouts

The placement of the devices directly affects the quality of the captured data, which is
also related to the performance of the classification. Hence, the impact of device layouts on
the predicted results should be analyzed. Because the elevator space is small, in order not
to affect the regular use of the elevator, the devices can only be placed in the corner. This
experiment changes the layout by adjusting the height of the antennas and conducting a set
of experiments. Figure 15 shows the classification results when the height of the antennas
from the ground is set to h = 1 and h = 2 m, respectively. The average classification
precision and recall rate can reach more than 95% when the antenna height is 1 m, while
the above indexes are only about 90% when the antenna height is 2 m. This is because the
principle of our method is as the number of people increases, the number of propagation
paths reduces, and the attenuation of signal strength decreases. When the antenna height is
higher than that of a person, the reflection area for people reduces, and the blocking effect
on the signal reduces. Hence, the relationship between the variation of CSI and the people
number becomes weaker.
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4.8. Precision Comparison of Passenger Flow Rate Statistics

This part shows a set of experiments that verify the practical applicability of ECC. The
experiments are carried out in a 5-floor office building equipped with two group-controlled
elevators, and the maximum rated number is 15. The passenger flow rates are counted
during peak hours (a.m. 8:00∼9:00) and normal hours (a.m. 10:00∼11:00). Three tests are
carried out in each period, and each test interval is 10 min. The group control coefficient
is ρ = 0.8. Figure 16 shows the comparison between the predicted results and the actual
passenger flow rates. The average predicted precision of flow rate during peak times
reaches 95%, while it can achieve 98% for normal times. It is because the saturation ratio of
the elevator is low under normal cases, which makes the system performance better.
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4.9. Comparison with Other Approaches

Since there are many device-free crowd counting works, ECC needs to compare with
the state-of-art approaches. As the underlying data sample distribution of each approach
is unbalanced in the different environments, the F1-score, which is not sensitive to the
data sample distribution, is used for evaluation. Then, a set of experiments under the
same environment of the above subsection are performed. Figure 17 compares the F1-
score of these methods in scene 1. For the M1 [25] and M2 [22] methods, about 50% of
the results are accurate due to the RSSI-based schemes performing poorly in multi-path
complex environments and scene migration. FreeCount [23] (M3) can achieve more than
60% accuracy because CSI is more sensitive to the diversity of transmission channels than
RSSI. Due to M4 [24] not only estimating the number of people but also providing human
dynamics monitoring through participant number estimation, its F1-score reaches more
than 80%.
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Figure 17. Comparison with different methods.

Though the proposed methods in M5 [38] can achieve about 100% estimation accuracy
for moving people in indoor environments based on COTS, its estimation accuracy drops
to about 90% for relatively static crowds in the elevator. The M6 [39] approach uses
the relationship between the variation of CSI and the people number for counting and
locating dynamic and static crowds. However, its average accuracy for crowd counting and
localization can only reach 77% and 82%, respectively. In addition, most of these methods
need people to keep moving, and the maximum crowd resolution is low. Compared with
the above methods, the estimation accuracy and crowd resolution of ECC are much higher,
which reaches more than 95%. For a more specific comparison, this paper adds some other
related algorithms and gives the benchmark table of ECC and each method, including
range, accuracy, infrastructure, characteristics, etc., as shown in Table 1. It also can be seen
from each indicator of the methods in the table that the comprehensive performance of the
ECC system is the best and is suitable for application in the elevator environment.

Table 1. Benchmark of indexes for state-of-the-art WiFi-based crowd counting.

Ref. Environments Standards Classifier Accuracy Rate Max # of
People

[25] indoor, outdoor D-link WBR-1310 and WLAN card − P(e ≤ 2) > 90% 20
[22] bus ESP8266 battery pack and SD card reader − 67–88% 17
[23] indoor TPLINK N750 SVM-TKL >67–99% 7
[24] indoor Intel 5300 NICs Semi-supervised Learning >90% 15
[38] indoor Intel 5300 NICs SVM-Gaussian >99% 8
[39] indoor ESP32 modules RF 77–82% 5
[40] indoor Intel 5300 NICs and mini R1C Deep Learning >82% 5
[41] indoor HBE-Zigbex RF >77% 5

ECC elevator Atheros 9300 NICs RF P(e ≤ 2) ≥ 95% 15
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4.10. System Overhead

Since the running time of the elevator is very short, the time overhead of the system is
related to the practical applicability of ECC. Hence, the time cost of ECC through 10 sets
of experiments with the number of passengers from 1 to 10 is tested to ensure that it can
handle CSI and identify the passenger number in practice. Table 2 shows the average
time overhead of the main processing steps. The results show that the overhead of ECC
is modest: The total time overhead of ECC is about 3.5 s, which is less than the shortest
running time of the elevator (between adjacent floors). Among all the time overhead, the
feature extraction accounts for more than 50%, and the most time-consuming step is the
time-frequency analysis step in the feature extraction, which finishes within about 1 s for
a sampling rate of 1000 pkts/s. If ECC can be implemented in DSP or other embedded
systems, the time overhead can be decreased.

Table 2. System overhead of the main steps.

Procedure Processing Time (s)

CSI Segmentation 0.29
Stream Selection 0.62
Noise Filtering 0.45
Feature Extraction 1.73
Passenger Counting 0.38
Total overhead 3.47

5. Discussion

ECC is still researching prototype implementations that need further improvements
before it can finally be deployed for the intended application of elevator safety. The factors
that affect the system performance have been summarized in the following fields:

• A general way of device deployment is required to make sure of WiFi signal coverage
and the verification of our system in more types of elevator environments. In the
experiments, the device was deployed in positions where it could achieve maximum
coverage. However, it is impossible to deploy these devices inside an elevator in an
actual environment. In addition, the materials and structures of some elevators are
different, which will lead to differences in the mathematical relationship between the
variation of CSI and the crowd number. The variation of the features may also be
different in different cases.

• In the experiments, the testers are relatively static, but people usually perform some
small activities, such as raising their hand, touching their nose, turning around or
talking to each other, etc. These activities may affect the strength and path number of
signal propagation that may have different effects on the system.

To solve the above problems, the researchers have designed two improvement schemes
and will try to implement each scheme:

• The researchers first consider using a smaller alternative hardware device, which can
be deployed on the top of the elevator, like a camera, without affecting the normal
use of the elevator. Then, the device number and the deployment will be adjusted
according to the different elevators and verify the system performance.

• More CSI propagation path information (e.g., the phase, etc.) will be introduced into
the multi-dimensional feature to improve the resolution of the crowd when the CSI is
interfered with by human activities, thereby improving the estimation accuracy and
strengthening the practical applicability of the system.

In addition, there also is a problem with the experimental hardware devices; of course,
this problem is not limited to our system. Currently, many wireless sensing research based
on commercial WiFi devices use network interface cards, e.g., 5300 and 9300 series NICs.
However, the CSI can be accessed through software only in a limited number of chip-set
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ranges with modified drivers and firmware. If the chip-set manufacturers can expose CSI
externally in a wider range of products, it will greatly accelerate our research progress in
the field of wireless sensing.

6. Conclusions

As the number of buildings in the city continues to rise, elevators have become an
inevitable device for household environments. However, the long-term imbalance between
the counterweight and the actual load during the elevator movement will accelerate the
consumption of the device, resulting in safety hazards and energy costs. Hence, a
passenger counting method is required to calculate the usage rules of elevators. In this
way, the actual load range of the elevator can be inferred, thereby regularly adjusting the
counterweight of elevators according to practical requirements to solve the above problem.
This paper proposes a device-free passenger counting approach in the elevator called ECC
based on commodity WiFi. ECC presents an SLD-PCA method to decorrelate the CSI
streams and simultaneously performs the pre-treatment process with CSI segmentation and
noise reduction. Then, ECC proposes a TVS feature that adopts radar detection schemes,
which can calculate the short-time energy variation of CSI attenuation with the passenger
number, then constructs a multi-dimensional feature matrix with AOA and PEM features.
Finally, the RF classifier is employed to complete the passenger counting work based on
the expended datasets. Extensive real-world experiment results demonstrate that ECC
performs well in precision, scalability, and reliability, which can be applied to guide the
adjustment of the elevator counterweight.
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Abbreviations
The following abbreviations are used in this manuscript:

CSI channel state information
GDPR general data protection regulation
OFDM orthogonal frequency division multiplexing
COTS commercial off-the-shelf
PCs principal components
AOA average of amplitude
TVS time-varying spectrum
PEM percentage of non-zero elements
WT wavelet transform
SLD-PCA short-time local detection principal component analysis
LPP locality preserving projection
CAV capture variance
WCCDA wavelet coefficient correlation de-noising algorithm
DWT discrete wavelet transform
STFT short-time Fourier transform
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PBC power burst curve
MIMO multiple-input multiple-output
RF random forest
DT decision tree
SVM support vector machine
CDF cumulative distribution function
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