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Abstract: Recently, using unmanned aerial vehicles (UAVs) to collect information from distributed
sensors has become one of the hotspots in the Internet of Things (IoT) research. However, previous
studies on the UAV-assisted data acquisition systems focused mainly on shortening the acquisition
time, reducing the energy consumption, and increasing the amount of collected data, but it lacked
the optimization of data freshness. Moreover, we hope that UAVs can perform long-term data
collection tasks in dynamic scenarios within a constantly changing age of information (AoI) and
within their own power levels. Therefore, we aim to maximize the quality of service (QoS) based
on the freshness of data, while considering the endurance of the UAVs. Since our scenario is not an
inertial order decision process with uniform time slots, we first transform the optimization problem
into a semi-Markov decision process (SMDP) through modeling, and then we propose a hierarchical
deep Q-network (DQN)-based path-planning algorithm to learn the optimal strategy. The simulation
results show that the algorithm is better than the benchmark algorithm, and the tradeoff between the
system QoS and the safe power state can be achieved by adjusting the parameter βe.

Keywords: UAV; QoS; SMDP; hierarchical DQN; AoI; trajectory planning

1. Introduction

Unmanned aerial vehicles (UAVs) have received extensive attention in wireless com-
munication networks due to their small size, flexibility, mobility, and controllability [1–4].
One of the most important applications is using UAVs as flying base stations to collect data
from ground nodes, especially in the area of the Internet of Things (IoT). Using UAVs to
assist data collectio, can not only save energy by reducing communication distances and
hops, but it also enables data collection tasks to be performed in areas lacking communi-
cation coverage. In [5–7], UAVs are used to transmit data for the ground nodes, and the
trajectory planning goal is set to balance the transmission delay of the ground nodes, as
well as reducing the energy consumption of the UAVs. However, UAVs consume additional
propulsive energy during movement. Thus, a tradeoff is required between the transmission
energy consumption of the ground nodes and the propulsion energy consumption of the
UAVs [8]. Because of the limited capacity and coverage of cellular networks, it is challeng-
ing to accommodate massive IoT devices. UAVs can be used to provide additional radio
access services [9]. Moreover, UAVs can fly close to each ground node and can establish
air-to-ground channels dominated by their line of sight (LoS), which can greatly reduce
the transmission energy consumption, and can significantly improve the throughput of the
ground nodes. These advantages have made UAV-assisted IoT networks attract extensive

Appl. Sci. 2022, 12, 2546. https://doi.org/10.3390/app12052546 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052546
https://doi.org/10.3390/app12052546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5804-276X
https://orcid.org/0000-0002-6388-8006
https://doi.org/10.3390/app12052546
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052546?type=check_update&version=2


Appl. Sci. 2022, 12, 2546 2 of 15

attention in recent years. A study by Abdulla et al. [10] demonstrated how to maximize the
acquisition efficiency of the unmanned aircraft system (UAS), modeling the problem as a
potential game between UAS and sensor nodes, and proposing a data acquisition method
that maximizes energy efficiency under fairness constraints. Zhan et al. [11] considered
jointly optimizing the wake-up time of the sensor nodes and the trajectory of UAVs. While
ensuring the required amount of data is collected, the energy consumption is minimized,
and the suboptimal solution is obtained by using the iterative convex optimization tech-
nique. Wang et al. [12] considered minimizing the completion time of UAV acquisition
tasks, which builds on their previous research on joint optimization. Moataz et al. [13]
considered the problem of UAV-assisted data acquisition in delay-sensitive application sce-
narios, and they maximized the available quantity of devices serving the IoT by optimizing
the trajectory and resource allocation of UAVs.

Most of the existing works of UAV-assisted data acquisition systems focus mainly
on shortening the acquisition time, reducing energy consumption, and increasing the
amount of collected data, which is aimed at either maximizing system throughput or
minimizing delay via designing the trajectory, deployment position, or resource allocation
of UAVs [14–18]. However, for real-time IoT applications, such as air quality monitoring,
precision agriculture, and post-disaster early warning, the quality of service (QoS) highly
depends on the freshness of information collected by UAVs from the ground nodes. In
this paper, we introduce the age of information (AoI) to indicate the freshness of collected
data. Different from the delay metric, the AoI is defined as the time elapsed since the latest
received status update packet at a destination node [19]. The continuous data collection
task is also a research hotspot. Due to its learning ability and generalization ability, deep
reinforcement learning (DRL) is very suitable for such dynamic scenarios in which the AoI
is constantly changing [20,21]. In [15,22], the authors formulated the fresh data collection
problem in UAV-assisted IoT networks as a Markov decision process (MDP) and used a
DRL-based approach to minimize the AoI. Zhou et al. [23] considered the unknown and
time-varying traffic generation pattern of ground nodes, and proposed a novel online
AoI-based trajectory planning approach using a deep deterministic policy gradient (DDPG).
However, the energy of the UAV is limited, and each UAV needs to recharge in continuous
data collection tasks. None of these works take recharging the UAV into account. In
addition, the MDP-based UAV path-planning method requires the environment to be
divided into discrete areas with separate action spaces, which results in a lot of additional
propulsion power consumption. To solve these problems, we consider, in our work, that
UAVs can perform long-term data collection tasks in dynamic scenarios where the AoI and
their own power levels are constantly changing. Therefore, we formulate the trajectory
design problem of the UAVs as a semi-MDP (SMDP) and use a hierarchical deep Q-network
(DQN)-based method. The contributions can be summarized as follows:

• We study the path-planning of rechargeable UAVs in continuous data collection tasks,
in which a UAV moves towards the ground nodes to collect data during a period of
time and returns to recharge at the right time. We introduce the AoI to indicate the
freshness of the collected data;

• To optimize the freshness of collected data and to ensure that the remaining charge
of the UAVs is sufficient, we formulate the path-planning problem as an SMDP and
propose a hierarchical DQN (H-DQN) method to deal with it. The agent learns to
select options at a high level and the action depends on the selected option.

The rest of the paper is organized as follows. We review related work regarding the
AoI and the typical algorithm of DRL in Section 2. Then, we describe our system model
in Section 3. In Section 4, the proposed algorithm is explained in detail. Afterwards, we
present simulation experiments and analyses to validate the performance and efficiency of
our proposed approach in Section 5. Moreover, we compare our proposed method with the
baseline methods to show its advantages. Finally, we give the conclusions in Section 6.
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2. Related Work

Traditional data communications pay attention to the time delay of information trans-
mission. However, after the data is generated, the staleness of the data information will
increase with the one-way passage of time. So, real-time update applications need to pay
more attention to the freshness of information. The concept of the age of information (AoI)
is for scenarios that require a high freshness of collected data, and it is used to describe
the freshness of the data collected by the system [24,25]. The biggest difference between
the AoI and time delay is that the AoI includes not only the transmission time delay of
the information, but also the waiting time of the information at the source node and the
residence time at the destination node. The AoI is defined as the difference between the
current time and the generation time of the latest packet available at the receiving end. Both
the average age and the average age distribution can be used to characterize the freshness
of the information. There are some studies that have already explored the data freshness
in the UAV-assisted IoT network for data collection. Cao et al. [26] considered a scenario
where a UAV aims at a source node to transmit data packets to a remote destination node,
minimizing the peak AoI by jointly optimizing the flight trajectory and power allocation.
Yi et al. [27] proposed a dynamic programming approach to minimize the AoI at the data
center by redesigning the path-planning of UAVs. In these works, the UAV collects the
data from each ground node only once, and then flies back to the depot.

Reinforcement learning is a learning mechanism that obtains the long-term maximum
reward by learning the mapping relationship between the environment state space and
the agent action space [28]. Reinforcement learning can be divided into two categories:
value-based and policy-based. Value-based methods mainly use the state-value function
V and the state-action value function Q for policy selection, where the expressions of V
and Q are in a recursive form. In the case of limited state and action space, all strategies
can be evaluated to obtain the optimal strategy pi∗, but that is difficult to achieve in reality.
A feasible method is to continuously optimize the policy through iterations. Firstly, this
involves randomly initializing the value function of a policy, then selecting the action
according to the value function and updating it according to the Bellman optimal equation
value function until its convergence. Q-Learning is a common algorithm of value-based
functions. However, traditional reinforcement learning methods can only be applied in
some very simple scenarios due to the difficulty of convergence, the curse of dimensionality,
and the low generalization. Deep learning is very suitable for regression problems. Using
artificial neural networks to fit value functions can not only overcome the problem of a
dimensional explosion of state–action space, but it can also give reinforcement learning
a certain generalization ability, which makes deep reinforcement learning possible [29].
The introduction of deep learning into reinforcement learning also brings some new chal-
lenges. First, in deep learning, the samples used for training are often independent and
identically distributed, while decision-making is inertial in reinforcement learning. There is
a correlation between samples, which makes it difficult for the neural network to converge.
Besides, in the original Q-Learning, the target values and the current evaluation values,
as the sample labels, are generated by the same Q-table. However, in deep reinforcement
learning, this approach causes the model to oscillate and diverge, so the network that
generates the labels is constantly changing.

In order to solve the above problems, the deep Q-network (DQN) came into being [30].
The DQN is a classic representative of value-based algorithms. There is only one value
function network in this algorithm, without a policy network. In [31], the authors believe
that its biggest feature is that it can directly use the original high-dimensional sensor data
for reinforcement learning, and can use the stochastic gradient descent for training, making
the training process more stable. The DQN uses the experience reply mechanis; that is, it
constructs a memory called the experience playback pool to store the samples collected each
time, and it then removes the independent and identically-distributed samples through
the random sampling for training, breaking the association of the data. For the second
problem, a network identical to the Q-network is constructed in the DQN, called the target
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Q-network. The network is updated after a certain training step, and the updated method
involves copying the parameters in the Q-network. This method can reduce the possibility
of oscillation divergence during training, and can make training more stable.

Liu et al. [17] proposed a QoS-based action selection strategy based on the double
deep Q-network algorithm. UAVs can make real-time moving and unloading decisions
according to the current system state. Wang et al. [32] transformed the path-planning
problem of the UAV base stations into a constrained Markov decision process (CMDP), and
used Q-Learning to solve the problem. Due to the large state dimension, an adversarial
deep Q-Network (dueling deep Q-network) is proposed, which introduces neural networks
and adversarial architectures. Yi et al. [33] considered throughput and user fairness, a deep
Q-network based learning method is proposed to maximize the overall network utility in
the downlink of heterogeneous networks. However, the current research rarely conducts a
unified study of the UAV’s energy consumption and the AoI-based quality of service.

In this paper, we propose an improved method based on the DQN algorithm, and we
use it in our study.

3. System Model
3.1. Scenario

As shown in Figure 1, we consider a UAV-assisted post-disaster early warning scenario
with a set N of N ground nodes randomly distributed on the ground, a hovering UAV,
and a ground control station (GCS). The ground nodes are responsible for sensing the
environmental information data of the target area, and the UAV takes off from the GCS and
collects the data from each ground node. During the flying and collection process, if the
remaining energy is insufficient, the UAV should return to the control station for recharging
to ensure the completion of the mission. For the ease of deployment, we assume that the
UAV flies at a fixed flight velocity vu and a fixed altitude h. In addition, we require the
UAV to fly directly above the ground node to collect data. Therefore, the UAV has N + 1
predetermined waypoints, which are denoted by the set Pu =

{
pu

0 , pu
1 , ..., pu

N
}

, where
pu

0 is the position of GCS and pu
n, n ∈ N is the position of the n-th ground node. The

trajectory of the UAV is approximated by the sequence pu =
{

pu
0 , ..., pu(i), ..., pu

0
}

, where
pu(i), pu(i) ∈ Pu denotes the hover point of the i-th decision.

Figure 1. The UAV-assisted data collection scenario.

3.2. Communication Model

Similar to [27], the channels between the UAV and the ground nodes are assumed to
be dominated by the LoS links. Therefore, the channel power gain between the UAV and
the m-th ground node can be given by

g = β0d−2 =
β0

h2 , (1)



Appl. Sci. 2022, 12, 2546 5 of 15

where β0 is the channel gain at a reference distance of 1 m, and d is the distance between
the UAV and the ground sensing device. Since this paper assumes that the UAV collects
data directly above the sensing device, d = h. Then, the uplink throughput between the
UAV and the m-th ground node can be calculated as

Rn = Blog2(1 + γn), (2)

where B is the channel bandwidth, γn = png
σ2 is the signal-to-noise ratio (SNR) between the

UAV and the n-th ground node, pn is the transmitting power of the n-th ground node, and
σ2 denotes the Gaussian white noise power perceived at the UAV. The flight time of the i-th
decision is then given by

Ti
f =
‖pu(i)− pu(i− 1)‖

vu
, (3)

where vu is the flying speed of the UAV. This paper assumes that the UAV is flying at a
constant speed. The collecting time of the i-th decision can be given by

Ti
c =

sn

Rn
, (4)

where sn is the size of the data generated by the n-th ground node.

3.3. Energy Model

The energy consumption of the UAVs consists of the communication energy and the
propulsion energy. Since the communication energy consumption is relatively small, we
only consider the propulsion energy in this paper. According to [34], the propulsion energy
is used for keeping the UAV hovering, flying, and accelerating, which is related to the
speed of the UAV. The propulsion energy of the rotary-wing UAV can be expressed as

Eu =P0(1 +
3V2

t
U2

tip
) + P1(

√
1 +

V4
t

4v4
0
− V2

t
2v2

0
)

1
2

+
1
2

d0ρs0 ArV3
t ,

(5)

where P0 and P1 represent the blade profile power and derived power, respectively, Vt is
the flying speed of the UAV in time slot t, Utip is the tip speed of the rotor blade of the UAV,
v0 is the mean rotor induced velocity in the hovering state, d0 is the fuselage drag ratio, ρ
is the density of air, s0 is the rotor solidity, and Ar represents the area of the rotor disk. In
particular, the energy consumption, when hovering, is Eu = P0 + P1. Therefore, the energy
consumption generated of the i-th decision can be expressed as

Ei = E(v)Ti
f + E(0)Ti

c, (6)

where E(v) is the UAV flight energy consumption and E(0) is the hovering energy con-
sumption. In this paper, it is assumed that Emax is the initial energy consumption of
the UAV.

3.4. Freshness of Collected Data

We employ the AoI to measure the freshness of collected data, which is defined as the
time that elapsed since the generation of the latest status update received by the UAV. The
AoI of the n-th ground node at time slot t can be expressed by

∆n(t) = t−Un(t), (7)

where Un(t) denotes the time at which the latest status update of the n-th ground node,
successfully received by the UAV, was generated.
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Figure 2 describes the characteristics of the AoI. It can be seen that when there is no
data collection action, the AoI of the sensing device increases in a stepwise manner. When
data is successfully collected, the AoI will decrease to the time it takes to generate the
latest data. Moreover, the data freshness should be evaluated based on how valuable the
fresh data is in the specific application. Therefore, data freshness can be characterized by a
non-increasing utility function. Our optimization objective is the AoI-based system utility.
The AoI-based system utility at the time slot t can be expressed as

Q(t) =
1
N

N

∑
n=1

un(∆n(t)), (8)

according to [35], we define the function u(∆) = aw∆, where 0 < a < 1 is a constant, and w
is the time-sensitive weight.

Figure 2. Example diagram of AoI changes.

3.5. Optimization Problem

We consider a discrete-time system, where the entire time is discretized into the t
time slots of equal length, denoted as T = {1, 2, . . . , T}, and the unit length is denoted
as δ. On the basis of equal-length time slots, the time system is abstracted into multiple
execution cycles of unequal length. The duration of one cycle is the time it takes to execute
a decision, and the length of each time slot depends on the task performed in this time
slot. For example, in the y-th cycle, the UAV performs the data acquisition task of the n-th
device, n ∈ N, then the execution time is Ti = Ti

f + Ti
c, where Ti

f represents the flight time

to the target sensing device in (3), and Ti
c represents the time of the data transmission in (4).

According to the model and formulas described above, the central goal of the multi-
UAV path-planning problem can be modeled as the following maximization problem

max
pu

I

∑
i=1

∑i
j=1 T j

∑
t=∑i−1

j=1 T j

Q(t), (9)

s.t. pu
i ∈ {p1, ..., pN}, ∀i ∈ I , (10)

ei > 0, ∀i ∈ I . (11)
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The first constraint in (10) indicates that the target point of the UAV can only be
selected from the set of specified locations for each decision. The second constraint in (11)
indicates that the energy of the UAV during the mission will not be exhausted prematurely,
where ei stands for the remaining energy.

4. Proposed Trajectory Optimization Approach

Different from common reinforcement learning problems, the scenario modeled in this
paper is not an inertial order decision process with evenly divided time slots. Therefore,
a time abstraction strategy is adopted, using a semi-Markov decision process (SMDP) to
describe this problem. At first, we abstract the UAV as an agent, and build the system
model as an SMDP problem by designing the system state space, the action space, and
the reward function. Then, a path-planning algorithm based on the hierarchical DQN is
proposed, which enables the UAVs to perform long-term data collection tasks in dynamic
scenarios with constantly changing AoI and their own power.

4.1. SMDP

An MDP is often used to simplify the modeling of scenarios in reinforcement learning.
It assumes that the state transition of the environment has Markov properties; that is, the
probability of transitioning to the next state is only related to the previous state. The agent
continuously observes the environment with Markov characteristics and makes habitual
decisions in an MDP. An MDP with M agents consists of a quadruple 〈S ,O,A,R〉, where
S represents the state space of the environment, which is used to describe the state of each
entity. In addition, O represents the observable state space of each agent, A represents
the action space of each agent, and R represents the reward function. Common MDP is
mainly used to model the traditional decision-making process. However, the time between
decision-making stages is not constant in the actual scene. Thus, it can be hard for the
traditional MDP to model such problems. The SMDP, as an extension of the MDP, is an
option-based decision-making process that can model this kind of control problem with
variable decision-making times.

An SMDP is mainly composed of a quintuple 〈S ,A,O,P ,R〉, where O represents
the set of options, and other elements in the tuple have the same meaning as in the MDP.
The ption can be represented by a triplet 〈Io, πo, βo〉, where Io ∈ S is the initial state set
of the option, πo represents the strategy adopted within the option, and βo represents the
termination condition of the option. In other words, the option 〈Io, πo, βo〉 is available only
when the current state st ∈ Io. If the option is chosen, the agent has to choose the next
behavior according to the strategy π, and βo is responsible for judging whether it reaches
the termination state. If so, the agent chooses the next option to enter. The MDP can be
converted into an SMDP by defining the set O of options on the basis of MDP. The original
MDP is more like a special case of the SMDP, in which each action in the MDP is an option
that only lasts for a moment.

The upper-level strategy in the SMDP µ : S ×O → [0, 1] applies to the reinforcement
learning of the selection of an option; that is, to choose an option from O according to the
current state, and then proceed to the next round of selection after the option reaches the
terminate state. As for the strategy π in each option, it can include some pre-defined rules,
or a mapping function from a state to an action space learned through a reinforcement
learning algorithm.

4.2. Proposed Model

We consider that the UAV can return to the control station for charging when the
battery is about to run out, and then continue its data collection task. This paper uses the
SMDP to model the UAV-assisted data collection process, and regards the UAV responsible
for data collection as an agent, which is designed as follows.

• State space model S : The system state space includes the state of the UAV and
the AoI of the sensor equipment. At each time t, the system state is expressed as
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st = {pu(t), e(t),4(t)}. Among them, pu(t), e(t) are the own state of the UAV,
representing the current position and remaining energy of the UAV, respectively, and
4(t) = {41(t), . . . ,4n(t)} represents the current AoI of each sensing device.

• Work space model A: In this paper, the no-fly areas due to terrain and other reasons
are not considered, and the UAV can reach the target area by flying in a straight
line. Therefore, the action space includes three categories: a f , ac, and ar, where
a f = {a f ,0, a f ,1, ..., a f ,n, ..., a f ,N}, n ∈ N represents the flight action of the UAV, and a f ,n
is the action of the UAV flying straight from the current position to the n-th sensing
device, in which a f ,0 represents the UAV flying in a straight line above the control
station. ac indicates that the UAV performs a data collection action, and ar indicates
that the UAV performs a charging action.

• Option set O: The set of options to be executed by the UAV agent in this chapter
includes oc, or, where oc = {oc,1, . . . , oc,n, . . . , oc,N}, n ∈ N , and oc,n represents the data
of the n-th sensor device for the collection tasks. The UAV first flies in a straight line
from the current position to the top of the n-th sensing device, executing the action a f ,n,
and then executes the data collection action ac. The completion of data collection is the
suspension state. or represents the option of returning home for charging. The strategy
of this option is that the UAV first flies from the current position to the control station
executing the action a f ,0, and then executes the charging action ar. The suspension
state means that the power of the UAV reaches Emax. In this SMDP, the selectable
option set of the agent in each state is the entire option set Io = S .

• Reward function R: In the SMDP constructed in this paper, the agent can only get
rewards after executing an option, and all options use the same reward function. The
instantaneous reward function of the i-th decision can be expressed as

ro,i =

 1
Ti

∑
∑i

j=1 Tj

t=∑i−1
j=1 T j Q(t) + βe

e(∑i
j=1 Tj)

Emax
for e(∑i

j=1 Tj) ≥ emin,

p for e(∑i
j=1 Tj) < emin.

(12)

It can be seen from the above formula (12) that there are two main situations for
instantaneous rewards. emin represents the minimum energy consumption that can
guarantee the return of the UAV. After an option is executed, it will bring a penalty
value p if the energy consumption of the UAV is less than the threshold. Otherwise,
the instantaneous reward is mainly composed of two parts: the first item represents
the average QoS during the execution of the option, and the second item represents
the reward brought by the current remaining energy consumption. βe represents the
weight of energy consumption rewards, which is used to balance the proportion of
the energy consumption rewards with the overall rewards.

4.3. Proposed H-DQN Algorithm

We use the SMDP to model the data collection and flight process of the UAV. In fact,
the entire decision-making process is layered. The upper-level strategy u is used to select
an option from the option set, and the strategy πo in the option set is used to perform a
series of bottom-level actions to complete the goal of the option. In the more typical deep
reinforcement learning methods used to solve the SMDP problems, such as the hierarchical
DQN (H-DQN) algorithm, both u and πo need to be trained. For example, in a scene where
there is a no-fly zone, the high-level strategy u is used to learn which option should be
executed in the current state; the low-level strategy πo learns the flight rules in the target
area, bypassing the no-fly zone to reach the target point in the option. However, in the
modeling of the SMDP in the above section, in order to simplify the scene, it is assumed
that there is no no-fly zone, so the low-level strategy πo can reach the target point in a
straight flight. This is a pre-defined strategy that does not need to be learned. This chapter
uses the H-DQN architecture to solve the SMDP problem.

The H-DQN algorithm needs to first initialize the Q network parameters, experience
the playback pool, and initialize the environment state and decision index in each training
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round. For each decision cycle, the agent selects an option oi based on the current system
state and a Q network based on the greedy strategy ε. It randomly selects an option from
the option space with the probability of ε, and selects an option oi = arg max

o
Q(si, o | θ)

according to the Q network with the probability of 1− ε. Then, it executes the strategy
of the option. After the execution is complete, the system reaches the new state si+1 and
gets the reward ro,i, saving the four-tuple 〈si, oi, si+1, ro,i〉 into the experience replay pool.
This algorithm does not use a fixed greedy coefficient, but allows itself to be continuously
updated during the training process. The update formula can be given by

ε = eωdnepi , (13)

where nepi represents the current episode round number, and ωd is the decay weight. ε
will continue to decrease during the training process, together with the probability of
exploration. When ωd is smaller, ε decreases faster. After updating the greedy coefficient,
the time stamp is updated according to (3) and (4). After that, K quadruple samples are
randomly sampled from the empirical playback pool and the target value is calculated. The
calculation formula for the target value can be expressed as

yk =

{
ro,k when s′k is the terminal state,

ro,k + γ max
a′

Q(s′k, o′ | θ′) when s′k is not the terminal state. (14)

Then, ∑K
k=1(yk − Q(sk, ok | θ)) is used as the objective loss function to update the

parameters of the Q network. The H-DQN algorithm flow is shown as Algorithm 1. Every
C updates cycles, and the parameters of the Q network are assigned to the target network
for updating. When the remaining energy of the UAV is less than 0 or the mission execution
time is reached, the current training round ends and the next round of training is entered.

Algorithm 1 The H-DQN algorithm
Input: initial Q network parameter θ and target network parameter θ′

Output: trained network parameters
1: initialize the experience playback pool D and the greedy coefficient ε = 1
2: for episode∈ {1, 2, 3...} do
3: initialize the system state t = 0
4: for i ∈ {1, 2, ..., I} do
5: the UAV agent gets the current system state si
6: choose an option based on ε-greedy strategy oi
7: execute the middle strategy πo of option
8: get the new system state si+1 and reward ro,i
9: save 〈si, oi, si+1, ro,i〉 into D

10: update the greedy coefficient ε according to (13), update t← t + Ti
11: randomly sample K samples from D: 〈sk, ok, s′k, ro,k〉, ∀k ∈ {1, . . . , K}
12: calculate the target value yk of each sample according to (14)
13: take ∑K

k=1(yk −Q(sk, ok | θ)) as the objective function
14: use the gradient descent method to update θ
15: if i%C = 0 then
16: θ′ ← θ
17: else if e(t) < 0‖t ≥ T then
18: episode←episode+1,end this round of training
19: else
20: continue training

5. Performance Evaluation

In this section, the performance of the proposed H-DQN method is numerically
evaluated. The simulation program runs on the Ubuntu16.04 operating system. The deep
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reinforcement learning environment is realized based on the Gym toolkit, andit implements
the H-DQN algorithm code based on PyTorch. We consider using a 500 m × 500 m area as a
simulation scenario. Due to natural disasters or other reasons, UAVs are needed to assist
in real-time data collection tasks in this area, and a certain number of sensor devices are
distributed. The data convergence center is located at the edge of the area [0, 0], and the
UAVs take off or land from here. During the execution of the data collection task, the UAV
can return to the data convergence center for charging. In the simulation environment, the
UAV flies at a fixed speed of 20 m/s and the maximum energy it can carry is 2 ×104 J. The
experimental analysis is carried out according to the percentage of residual energy. More
detailed environmental parameters and UAV parameters are shown in Table 1.

Table 1. The environmental parameters and the UAV parameters.

Symbol Parameter Description Value

β0 Channel gain when the distance is 1 m −50 dB
B Channel bandwidth 1 MHz
σ2 Gaussian white noise power −100 dBm
vu The flying speed of UAV 20 m/s
a Utility function parameter 0.8
w Utility function parameter 1
pn Transmitting power of sensor equipment 0.5 W
P0 Blade contour energy consumption in hovering state 99.66 W
P1 Induction energy consumption in hovering state 120.16 W

Utip Tip speed 120 m/s
δ The time length of each time slot 1 s
v0 Average rotor-induced speed in hovering state 0.002 m/s
d0 Airframe drag ratio 0.48
s0 Rotor stability 0.0001
Ar Rotor area 0.5 s2

Emax The maximum energy that a drone can carry 2 ×104 J

In our H-DQN method, both the Q network and the target Q network use four-layer
artificial neural network architecture. The activation function is unified using the ReLu
function, the output layer is added with a layer of the Softmax function to obtain the
probability distribution of the output action, and the learning rate is set to 0.001. Other
hyperparameters related to the H-DQN training are shown in Table 2.

Table 2. The hyperparameters of the H-DQN.

Parameter Value

Number of training round episodes 1000
Target network update frequency C 100

Size of reply buffer B 5000
Mini-batch size K 128
Discount factor γ 0.9

The number of neurons in the first hidden layer 128
The number of neurons in the second hidden layer 64

5.1. Training Results

First, we verify the convergence effect of the algorithm when the learning rate is 0.001,
and we compare it with the traditional DQN algorithm based on rasterization processing
and the Markov decision process modeling. As shown in Figure 3, it can be seen that the
layered deep reinforcement learning algorithm H-DQN proposed in this paper converges
around the 100th training round, and the reward remains between 140–150. In comparison,
the traditional DQN algorithm has an upward trend, but the convergence process is much
slower than the H-DQN method proposed in this paper. This is due to the large action state
space of the traditional DQN algorithm, while the H-DQN method is modeled through
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the SMDP and the option, which greatly reduces the action state space, making it easier to
learn the optimal strategy. In addition, in the last 200 training rounds, the DQN method has
a certain convergence trend, but the reward is still lower than the H-DQN method. This is
because the rasterized flight mode of the DQN method causes more energy loss.

Figure 3. Convergence of the H-DQN method at different learning rates.

The energy consumption weight in the reward function will affect the performance
of the algorithm. Figure 4 represents the remaining energy change curve of the H-DQN
algorithm when the energy consumption weight βe = 1, 1.5, 2. The horizontal axis repre-
sents the decision sequence, and the vertical axis represents the current remaining energy
consumption as a percentage of the initial energy consumption. It can be seen that when
βe = 1, the percentage of the lowest remaining energy is 2–10%,while 2% of the remaining
energy is a relatively dangerous situation, which is close to energy exhaustion, and the
safety factor is low, which may lead to the UAV not being able to complete the return flight,
making it difficult to deal with emergencies. With the increase in βe, it can be seen that
the charging frequency of the UAV also increases, and the remaining energy can also be
maintained at a safer level. When βe = 1.5, the remaining energy of the UAV is always
maintained above 18%. When βe = 2, the remaining energy of the UAV is basically main-
tained at more than 40%, but frequent charging may cause more QoS losses. As shown in
Figure 5, when βe = 1, the average QoS of the system is maintained at around 0.25, which
is significantly higher than the QoS when βe = 1.5 and βe = 2. Therefore, users can set βe
according to the application requirements to achieve a tradeoff between the QoS and the
safe power state.

5.2. Comparing with Baselines

In this section, we test the effect of the H-DQN algorithm and other benchmark
algorithms. The evaluation metric is the average QoS. As shown in (7), the QoS is a utility
function about the AoI. The benchmark algorithms include the DQN algorithm and the
only AoI selection method. The DQN algorithm uses the traditional MDP to model the
path-planning problem, in which the target area is divided into 20 × 20 square sub-areas
of equal area, and the center point of each sub-area is specified as the waypoint where
the UAV can hover. The action space of the UAV is to move to an adjacent sub-area, and
perform data collection tasks and charging tasks in this area. The instantaneous reward of
the UAV is set to the AoI QoS only, and the energy reward of the time slot. In the AoI only
method, each time the UAV selects the sensor device with the largest AoI in the current
system for data collection, it then returns for recharging when the remaining power is less
than a certain threshold.
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Figure 4. Change curve of residual energy consumption of the UAV.

Figure 5. QoS change curve of the UAV-assisted data collection system.

Figure 6 describes the performance of the H-DQN and other benchmark algorithms
with different numbers of sensing devices. It can be seen that when the number of ground
sensors is 10, 20, and 30, the performance of the H-DQN algorithm is better than the other
two benchmark algorithms. First of all, the selection algorithm based on the AoI is a greedy
strategy, and the effect in long-term tasks is not as good as reinforcement learning methods,
while reinforcement learning methods focus on long-term cumulative benefits. In addition,
the performance of the H-DQN algorithm, based on the SMDP modeling, is also better than
the traditional DQN method which is based on the MDP modeling. When the number of
ground sensors is 10, 20, and 30, the performance of the H-DQN method is improved by
18.36%, 37%, and 21%, respectively, compared with the DQN method. This is because the
H-DQN method, based on the SMDP modeling, uses the concept of time abstraction, which
greatly reduces the state-action space, making it easier to learn better strategies. However,
as the number of sensing devices increases, the performance of the H-DQN algorithm
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gradually declines. Therefore, when the number of sensing devices is large, the use of the
multi-UAV collaboration for data collection should be considered.

Figure 6. Comparison of the H-DQN and benchmark algorithms.

6. Conclusions

In this paper, we have studied the path-planning problem in UAV-assisted data
collection. In order to enable UAVs to perform long-term data collection tasks in dynamic
scenarios with a constantly changing AoI and their own power levels, we propose a method
based on the QoS maximization problem of the AoI, and we use a semi-Markov decision
process (SMDP) to describe this problem. In addition, we also propose a path-planning
algorithm based on hierarchical DQN to learn the optimal strategy, and conduct simulation
experiments to verify the convergence of the proposed algorithm. We test the effect of the
energy consumption weight βe on the remaining power and the QoS influence. Experiments
show that the tradeoff between the system QoS and the safe power state can be achieved
by adjusting the parameters βe. At the same time, it is compared with two benchmark
algorithms, i.e., the DQN and the AoI only algorithm. The results show that this algorithm
is better than the other two benchmark algorithms. In the H-DQN method in this paper,
the bottom-level strategy option uses the established strategy. In future work, further
improvements can be made, such as using the DQN for high-level strategies and the DDPG
for low-level strategies.
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