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Abstract: Gesture recognition (GR) has many applications for human-computer interaction (HCI)
in the healthcare, home, and business arenas. However, the common techniques to realize gesture
recognition using video processing are computationally intensive and expensive. In this work, we
propose to task existing visible light communications (VLC) systems with gesture recognition. Differ-
ent finger movements are identified by training on the light transitions between fingers using the long
short-term memory (LSTM) neural network. This paper describes the design and implementation of
the gesture recognition technique for a practical VLC system operating over a distance of 48 cm. The
platform uses a single low-cost light-emitting diode (LED) and photo-diode sensor at the receiver
side. The system recognizes gestures from interruptions in the direct light transmission, and is
therefore suitable for high-speed communication. Gesture recognition accuracies were conducted
for five gestures, and results demonstrate that the proposed system is able to accurately identify
the gestures in up to 88% of cases.

Keywords: visible light communications (VLC); gesture recognition (GR); human-computer in-
teraction (HCI); human activity recognition (HAR); machine learning (ML); neural network; long
short-term memory (LSTM); photo-diode (PD)

1. Introduction

Gesture recognition (GR) systems can greatly assist the elderly or infirm as well as
persons unable to control equipment through speech. Meanwhile the growth of Internet of
Things (IoT) propelled the need for improved human-computer interaction (HCI) to enable
control of devices inthe areas of work, play, health, communication, and education. For
real-world application, a GR system should require modest computing resources and be
implementable with low-cost. While proprietary GR systems are emerging, they tend to be
expensive, single-task oriented, and application-specific.

Gesture recognition systems can be classified into contact or contactless types. The most
common contact type is the accelerometer or inertial sensor, while the contactless types
include (i) ultrasound-, (ii) mm-wave radar-, (iii) video camera-, and (iv) photo-diode
(PD)-based units. An accelerometer consists of multiple motion sensors in order to detect
movement in the three cardinal directions. A wrist-strapped accelerometer is a low-cost GR
solution in which the sensor directly tracks the hand gesture. Although research benefited
from analysis of accelerometer data collected by smartphones, such systems are still im-
practical. Short-range frequency-modulated continuous wave (FMCW) radar was recently
used in movement and gesture detection, as well as monitoring vital-signs (breathing and
heart rates), based on measuring the Doppler shifts. Similarly, GR can also be achieved
by measuring the Doppler from ultrasonic waves reflected by limb movement. However,
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these approaches are prone to clutter between the Tx and Rx reducing the resolution, and
ultrasounds can also cause stress to pets and infants who can hear the low-frequency waves.
Unlike visible light, some radio-frequency systems are precluded from use in hospitals,
aircraft, or mines due to electromagnetic compatibility issues. One issue with video-based
GR is that the foreground limb image needs to be distinguished from nearby clutter and
background objects. As deep-learning algorithms became more powerful, the ability to
delineate these images increased. However, deep learning often necessitates a high degree
of storage and processing power, such as from a desktop computer. Although recent
development kits including the Nvidia Jetson and Microsoft Kinect [1] greatly facilitated
AI-based image processing, the hardware and computational costs can still be prohibitive.
Another disadvantage of using video cameras for GR is due to privacy concerns and laws.
Meanwhile, interest in photo-diode (PD)-based GR will increase with the emerging visible
light communication (VLC) systems, which can be made with light emitting diodes (LEDs)
at a fraction of the cost.

Gesture recognition is a related field of human activity recognition (HAR), and recent
developments are briefly described here. Two common methods for HAR are those based
on video scene extraction and that of indirect sensing using wireless signals. Indirect
sensing involves the analysis of the received signal strength signature from Wi-Fi signals
that are blocked or reflected by human movement. Researchers demonstrated accuracies
above 90% using support vector machines (SVM) machine learning (ML) [2–4]. How-
ever, it is currently very difficult to classify the subtle finger gestures using the wireless
signals in a practical setting with a wall-mounted access-point, and it becomes harder
with several people in the room. Physical activity recognition system using wrist-band
based sensors were designed for wheelchair-bound patients with spinal cord injuries [5].
Smart healthcare systems are increasingly employing neural networks to categorize and
automate functions [6]. Estimation of the number of people in a room was made through
an analysis of reflection and blocking of visible light [7]. The long short-term memory
(LSTM) algorithm is a type of recurrent neural network that can efficiently learn time-series
sequences that are increasingly used in ML-based HAR systems, such as [8], for wearable
activity recognition [9] and sign language translation [10].

Meanwhile, visible light communication systems exploit the existing lighting infras-
tructure to provide high-speed and secure data communication [11–13] and are expected to
become commonplace in homes and office following the release of the IEEE 802.11bb [14]
Standardization currently scheduled for 2022. VLC leverages the huge bandwidth available
in the nonionizing visible electromagnetic spectrum [15]. Light is a suitable communication
medium in medical environments [16–18] where there are strict electromagnetic compati-
bility conformance standards. VLC-based health monitoring [19] and notification systems
were developed for the blind [20]. VLC systems can be built with very low-cost [21] using
standard light emitting diodes (LEDs) and photodiodes (PDs), such as those commonly
used in DVD players. High-speed VLC systems direct the transmission of focused light
between the transmitter (Tx) LED and receiver (Rx) PD. On the other hand, currently, most
GR systems for visible light operate on reflected light captured by multiple PDs. A non-
ML-based motion detection system using VL comprising multiple PDs was proposed
in [22]. The work focused on communications performance, and there were no gesture
classification accuracy results.

Gesture patterns are statistically repeatable and can be learned by repeated sampling
using ML. A summary of recent hand GR research using ML is tabulated in Table 1. Infra-
red (IR) systems are less affected by ambient light and can generally achieve higher classi-
fication accuracies. However, most IR systems do not achieve the high visible light (VL)
data-rates and at the same price-point. Using the decision-trees algorithm, authors reported
a 98% classification accuracy using IR proximity sensors [23]. Feature extraction using SVM
achieved 95% accuracy on data collected from an accelerometer [24]. Back-propagation
was used to track hand trajectories using an inertial sensor with 89% accuracy [25]. A smart
electronic-skin comprising an array of detectors and LSTM processing was proposed [26].
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By tracking the shape of shadows cast through hand-blocking using a 32-sensor array,
researchers achieved 96% accuracy [27]. Although the system achieved good performance,
the large 6 × 6 ft array is rather impractical, and additionally, not aimed at communications.
Classification performance is generally improved by deploying multiple PDs on the ceiling
and floor. As the cost and computational complexity generally scale with the number
of detection chains, these should be kept to a minimum. K-nearest neighbors (KNN) is
a low-complexity, nonparametric algorithm that can distinguish gesture classes based
on the Euclidean distances between samples. An accuracy of 48% was achieved using
KNN with a single PD and increased to 83% by employing two PDs [28]. Classification of
reflected IR waves was achieved using a hybrid KNN and SVM [29]. The researchers used
the THORLABS PDA100 PD module (currently cost about $430) to capture a wide range
of wavelengths with design ease. When the separation was 20 cm, the average denoised
accuracy was 96% for IR and 85% for VL. The performance decreased with increasing
Tx-Rx distance due to the lower received light intensity. When the separation increased
to 35 cm, the performance decreased to 91% for IR and 73% for VL. The use of reflected light
generally requires additional postprocessing to remove artifacts generated by multipath
reflections from surrounding clutter and is sensitive to thresholding. This makes building
a practical low-cost system challenging, and these systems offer lower data rates. The Fin-
gerLight system employs 8 spatially separated PDs and a recurrent neural network to learn
the gestures from measured light intensities. When a hand is carefully positioned in front
of the sensor array, a 99% classification accuracy was reported possible [30]. Short-range
millimeter wave radar has provided a 98% classification accuracy for hand gesture recog-
nition using LSTM [31]. Image processing-based techniques generally exhibit the highest
performance but require very high computing resources, and hence, are less suitable for
low-cost, portable-use cases. GR using captured video is often implemented using CNNs,
and researchers reported a 97% classification accuracy using this technique [32]. Recurrent
neural networks are able to extract auto-correlations in sequential data and were particu-
larly successful with speech- and hand-writing recognition. The LSTM recurrent network
contains gates that allow it to operate on relatively long time sequences. Multimodal
gesture recognition using 3D convolution and convolutional LSTM was described in [33].
Tracking of hand-joint movements using the unscented Kalman filter [34] with LSTM and
dynamic probabilities [35] was reported.

Our proposed GR solution is part of a wider VLC-capable system, and therefore the GR
capability comes at almost no additional cost. The system learns to associate finger move-
ments with the pattern of light directly impinging on the PD in the absence of obstruction
by fingers. This method is unaffected by nearby clutter or by the light-reflecting properties
of a subjects skin, which can depend on their age and gender. This enables us to employ
a low-cost PD (about $8 in small volumes) and the approach is compatible with high-speed
VLC systems targeted for communications. We employ the LSTM algorithm for the gesture
classification which requires considerably lower complexity than than that of the CNN
algorithm for video processing. Despite the modest complexity, the gesture recognition
performs well (88%) and can be used within a communications-based VLC system.

Our contributions can be summarized as follows:

1. Provided a review of contemporary gesture recognition systems.
2. Developed a practical GR methodology that can be integrated with a VLC system. The tech-

nique uses common off-the-shelf components with full part numbers provided.
3. Developed a system using a single PD that receives direct light from the transmitting LED.
4. Demonstrated an efficient LSTM-based GR system with limited computational complexity.
5. Achieved high classification accuracy under natural settings: gestures made at natural

speed and visible light.
6. Confirmed the system performance at different sampling rates and complexities.

In this paper, we focus on describing the operation of the GR module, which uses
the same components as the VLC system for compatibility. The scope of this paper is
limited to the gesture recognition system, and a full description of the communication
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operation will be described separately. The context switching between the sensing and
communications systems is an implementation issue and outside the scope of this paper.
However, we considered a method based on halting the communications as soon as
the hand is inserted between the Tx and Rx. This would be detected by a significant dip
in the received signal power. Communications would then resume a short period after
the signal blocking finishes.

The organization of this paper is as follows. Section 2 describes the VLC channel
model, and Section 3 discusses the activity recognition concept and our proposed solutions
for a VLC system. Section 4 details the system implementation and experiment setup,
while Section 5 describes the performance results. Discussions on areas for future work
and a conclusion is drawn in Sections 6 and 7, respectively.

Table 1. Gesture recognition systems using machine learning.

Reference Processing Sensor Accuracy (%) VLC

[23] Decision-trees IR proximity 98 No
[24] SVM Accelerometer 95 No
[25] BP-NN Inertial sensor 89 No
[26] LSTM 5× 7 sensor array 85 No
[27] PCA 32 PDs 96 No
[28] KNN 3× 3 PD array 48 (single PD) No
[29] KNN/SVM IR/VL (PDA100A) 73(VL@35 cm) No
[30] RNN 8 PDs 99 (10 cm) No
[31] LSTM FMCW radar 98 No
[32] CNN RGB Camera 97 No
[33] LSTM RGB/depth Camera 98 No
[34] LSTM RGB Camera (dataset) 85 No
[35] DP-LSTM RGB Camera 83 No

This work LSTM Single PD (low-cost) 88 Yes

2. VLC Channel Model

Assume a channel model between a Tx (LED) and an Rx (PD), and consider only
the line-of-sight (LOS) path. The channel impulse response of this LOS component is
deterministic and given by Equation (1) [36].

hLOS(t) = I(φ)
g(ψ)APD

d2 δ(t − d/c), (1)

where APD is the photo-diode surface area, φ is the angle from the Tx to Rx, ψ is is
the angle of incidence with respect to the axis normal to the receiver surface, d is distance
between Tx and Rx, c is the speed of light, g(ψ) is the Rx optical gain function, and I(φ) is
the luminous intensity.

At the Rx, the received optical power can be expressed as (2).

PR = H(0)PE, (2)

where H(0) is the channel DC gain, and PE is the emitted optical intensity.
It is common to model the emitted signal by a generalized Lambertian pattern, and the

DC channel gain can be expressed as [37].

H(0) =
(m + 1)APD

2πd2 cosm(φ)Ts(ψ)g(ψ)cos(ψ), (3)

for 0 ≤ ψ ≤ Ψc where Lambertian order is denoted by (4)

m =
−ln(2)

ln(cos(Φ1/2))
, (4)
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where Φ1/2 is the semiangle at half-illuminance of the Tx. Ts(ψ) is the optical filter gain,
Ψc is the Rx field of view (FOV) semi-angle.

The illuminance at a point on the receiving plane is described by I(ψ)cos(ψ)/d2 [38].
The total received power with lens is plotted in Figure 1. This figure shows that the power
is greatest directly below the LED and falls off greatest at the corners. The Rx power is
sufficiently high in all directions within 2 m of the center, and therefore photo-detectors
receive sufficient illuminance in a typical small room or office setting.

Figure 1. Lambertian simulation for total Rx power for φ = 30◦, ψ = 30◦ FOV.

3. Gesture Recognition System with LSTM Network

A typical HAR system comprises data acquisition, segmentation, feature extraction,
and classification stages. The categorization is based on an analysis of the pattern activity
sensed on each PD. Through training, the system learns to associate the sequences with
each activity.

The concept of the hand movement recognition system is shown in Figure 2. The iden-
tification activity takes place between the LED and PD. Unobstructed light from the LED is
incident on the photo-diode sensor and, as an object moves in between the two, light can
become blocked. The task is to associate the sequence of incident light with the particular
gesture. Typically, a hand may move at about 1 m/s or 1000 mm/s. The distance between
fingers is up to about 10 mm, and therefore periods of activity and inactivity will typically
last for about 10 ms. To reliably capture these movements the symbol sensing slot-time
should be at least 0.1 ms. The slot time depends on the underlying use of the VLC system
and is a trade-off between VLC data rate requirements, prediction accuracy, and computa-
tional complexity. The signaling rate is typically easily satisfied by modern VLC systems
that operate above 1 Mbit/s.
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Figure 2. Concept of finger movement recognition system based on received patterns of light on
a photo-diode sensor.

LSTM is a type of recurrent network that learns patterns embedded in time-series
data [39] and has complexity proportional to the number of time-steps. The network is
applied here to predict the finger gesture on a per time-step basis. The network comprises
a sequence layer for handling the series input data, an LSTM layer for computing the learn-
ing, a fully-connected layer, a softmax layer, and finally, a classification layer. The size of
the fully connected layer determines how well the network can learn the dependencies but
care is required to avoid problems associated with over-fitting. The LSTM block diagram
is shown in Figure 3 in which xt represents the input data. The hidden-state and cell-
states at time t are termed ht and ct, respectively. The current state and the next sequence
data samples will determine the output and updated cell state. The cell state is given by
Equation (5)

ct = ft � ct-1 + it � gt (5)

The hidden-state is given by Equation (6)

ht = ot � σc(ct), (6)

where σc represents the state activation function. Control gates allow data to be forgotten
or remembered at each iteration.

The forget, cell-candidate, input, and output-states at time step t are given by Equa-
tions (7)–(10) respectively:

ft = σc(W f xt + R f ht−1 + b f ), (7)

gt = σc(Wgxt + Rght−1 + bg), (8)

it = σc(Wixt + Riht−1 + bi), (9)

ot = σc(Woxt + Roht−1 + bo), (10)

where W f , Wg ,Wi, Wo represent the forget, cell-candidate, input, and output weights.
R f ,Rg,Ri, and Ro are the forget, cell-candidate, input, and output recurrent weights. b f ,
bg,bi, and bo are the forget, cell-candidate, input, and output biases.
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Figure 3. LSTM algorithm unit structure.

4. System Implementation
4.1. Design Approach

Two design approaches were considered for the gesture sensing operation. Approach
(i): the mark-space waveform generated by all fingers is encoded. As a finger cuts the light
beam, it results in a space period where the received light intensity on the PD sensor is
low. In the period where light can pass between the fingers, the received intensity is high.
Approach (ii): the PD output is summed over the duration of the whole gesture. The total
light incident on the PD from the first to last finger cutting the light beam is recorded.
The first approach was selected after an initial study showed it was more reliable, and
in particular, is less dependent on the hand-speed. A minimum and maximum threshold is
set, and the on-off signal is passed to the LSTM algorithm.

4.2. VLC Transceiver

The VLC system is implemented with real-time transmission and reception of symbols
using an arbitrary waveform generator (AWG) and digital storage oscilloscope (DSO) as
depicted in Figure 4. VLC data modulation/demodulation and activity recognition tasks
are computed off-line using a personal computer with Matlab software.

Figure 4. VLC for HAR system block diagram.

The Tx signal was generated with amplitude 1.80 V at 100 kHz in real-time using an
arbitrary waveform generator Tektronix AWG 710B (max. 2.1 GHz bandwidth, 4.2 Gsa/s).
An amplitude equalizer was inserted to counteract the low-pass frequency response of
the LED. The amplitude equalizer provides about 7 dB loss at DC and the normalized
gain rises to unity in the high-pass region at around 100 MHz. A Mini-Circuits ZHL-500
(0.1 MHz to 500 MHz) 17-dB gain-block is employed as a preamplifier to increase the small
signal-level. The amplified data signal is added to a LED bias voltage of 4.2 v using a Mini-
Circuits Bias-T ZFBT-4R2GW-FT+ (0.1–6000 MHz bandwidth) and the output connected
to a Luxeon Rebel LED via a standard SMA connector. The LED was selected as it is
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capable of supporting a data-rate in the order of 100 Mbit/s for communications. However,
many other LEDs can also be used for the purpose of gesture recognition. The bias-T
and amplifier had minimum operating frequency around 50 kHz. The bias voltage is
adjusted to maximize the amplifier output power but backed off to avoid distortion. The
amplifier, bias-T and LED were mounted onto a movable micro-stage platform to facilitate
the alignment of the Tx.

To increase the communication distance, a focusing-lens of diameter 40 mm was placed
at both the Tx and Rx sides with a separation of 30 cm as shown in Figure 5. The focusing
lens produces a narrow beam with optimum focus at the region where the hand is placed
which is at the half-distance between Tx LED and RX PD. The required distance can be easily
adjusted by increasing or decreasing the lens focal-range. In the current set-up if the hand
is positioned away from the center-point then the signal-to-noise ratio (SNR) is reduced
and therefore estimation accuracy will be degraded. A focusing lens is also an integral and
necessary component in all VLC systems and so is not an additional cost. A consumer VLC
system may likely employ directional Tx/Rx or an adaptive lens mechanism.

A standard PD (Hamamatsu S10784 commonly used in DVD laser-discs) was em-
ployed at the receiver. The PD output was amplified by an OPA 2356 based low-noise
amplifier (LNA) circuit that has a BW of about 200 MHz and was used here as a trans-
impedance amplifier (TIA). The Rx waveform is detected by a PD and amplified by the LNA.
LEDs generate incoherent light, which can be detected using simple direct or envelope
detection circuitry. The Rx DSO was set at 2 Msa/s with a total 3.2 Mpoints stored after
peak sampling.

Figure 5. Photograph of optical component section.

4.3. Gesture Waveform Capture

As a proof of concept, the system was trained with five gestures with an increasing
number of fingers as follows:

• Reference Rx signal (absence of movement),
• pointing up-down with 1 finger,
• pointing up-down with 2 fingers,
• pointing up-down with 3 fingers, and
• pointing up-down with 4 fingers.

The hand was moved up and down over a period of two seconds at a steady-rate
corresponding to a natural hand gesture. As the separation between each finger is only
about 3–5 mm, the sampling rate needs to be sufficiently high to capture the correspond-
ingly short duration of light. The Rx signal is first down-sampled as the sampling rate is
higher than the modulated light signal. The modulation is removed by finding the sig-
nal maxima and the resultant signal corresponding to 1–4 fingers present is shown in
Figure 6 (top) to (bottom). The small peaks at the start of each cycle are due to the com-
bined filtering response of the analogue and sample and hold circuitry in the digital storage
oscilloscope. The response quickly decays and does not affect the operation of the system.
The blocking of light by each finger results in low amplitudes and can be seen in each
capture. In part, the accuracy can decrease as the number of fingers increase due to the re-
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duced clarity of the raw signal. This reduction is partly offset however as classification
improves when a signal has more unique features.

(a)

(b)

(c)

(d)

Figure 6. Received signal captured on VLC photodiode corresponding to (from top): (a) 1 finger;
(b) 2 fingers; (c) 3 fingers; and (d) 4 fingers gestures.

4.4. Process Flow

There are three processing stages: signal-conditioning, training, and classification.
Signal conditioning: The waveform sampled by the photo-diode undergoes signal condi-
tioning prior to the identification. The signal magnitude is normalized so that the maximum
value for each gesture is one. Gesture training: Data are collected for each of the 5 gestures.
For each gesture, multiple frames are collected by repeating the movement over a period
of two seconds. The data are then randomly split into two sets one for training and one
for classification. This needs to be performed once on first use for each user, as they may
have different movement styles and speed for the same gesture type. Gesture classifica-
tion: The gestures are classified by ML. A practical gesture recognition system should
be able to operate in real-time. Therefore a trade-off can be met between computational
complexity and accuracy. We selected the LSTM algorithm as it offers a good performance
to complexity ratio and is suitable for the repetitive sequential waveforms generated by
hand gestures.

4.5. Signal Conditioning

The signal for training and categorization should encode the finger gesture and
the performance should be relatively unaffected by the level of ambient light. Any reflected
light from an object near to the PD should not result in a high amplitude signal that cannot
be recognized from the same motion without reflection. Therefore, the signal should be
normalized such that all signals have the same amplitude regardless of the ambient light
intensity. The normalization scales the signal according to the minimum and peak signal
level recorded over the measurement period. As the ambient light changes more slowly
than the direct LED light across a measurement frame, this is a simple and efficient step.
The recorded gesture features may vary slightly between each motion and also due to
environment. Each user also presents their hands at a slightly different angle and moves
them at a variable speed, and there will be temporal variations and potentially irregular
random reflex movements. The natural light present in the morning will be different to
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the artificial light in the evening and can vary if it is cloudy or sunny. All PDs exhibit a noise
floor, and the TIA has a noise figure which contributes to a lowering of the signal integrity.
Signal conditioning is required to manage these effects and to provide a clean representative
signal which contains the essential features of each gesture to the ML algorithm. After
conditioning, the Rx signal has range −1/+1 and is processed by the LSTM algorithm.

4.6. Training and Evaluation

As a proof of concept, data were collected for four different hands. The smallest span
(from extended little finger to thumb) was measured as 16.3 cm and the largest hand had
a span of 21.4 cm. Data were collected for the four hands on two separate measurement
campaigns. During a first session, data were collected for training the neural network
algorithm. A second validation session was conducted on the same day for evaluating
the performance of the trained neural network. The data were divided equally into training
and verification sets; that is, the training to verification ratio was 50% of all data. This figure
is common in ML research and some systems use higher amounts of training to achieve
high accuracies. Over-fitting can occur if the system is trained with too much data, and con-
versely, under-fitting if the training ratio is too low. The LSTM algorithm predicts the next
sample in a sequence, and hence the most likely gesture classification, subject to the noise,
variation, and irregularities present in human movement. The LSTM was trained using
the stochastic gradient descent with momentum (SGDM) optimizer. This is a commonly
applied solver with accelerated gradients to reduce the solving time [40]. After training,
the LSTM was switched to validation mode in which a section from the nontraining set
is evaluated. The output of the stochastic gradient solver can be sensitive to the initial
random seed used and, therefore, a Monte Carlo type simulation was set-up averaging
results over 50 cycles each with a different random seed. The accuracy and loss versus
iteration performance for one of the random seed settings is shown in Figure 7.

Figure 7. Performance of LSTM algorithm (top) Accuracy versus iteration and (bottom) Loss
versus iteration.

5. Performance Evaluation

The VLC testbed was positioned square to a window with center at a diagonal distance
of 4.65 m. The light through the window would enter the room in the direction of the VLC
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receiver unit. There was no direct sunlight impinging on the Rx in this experiment due to
an office-divider positioned between the window and the Tx unit.

A correct classification is determined when the actual and estimated gesture is identi-
cal. An average accuracy is computed for all gestures, users and tests per user. An example
of predicted versus actual gesture accuracy is shown in Figure 8, for the case of a low
number of iterations and sample-rate and demonstrates the frequency and duration of
observed errors. There is good agreement between the actual and estimated gesture, and
in this example, most errors occurred between the transition from two to three fingers.

0 1 2 3 4 5

Time (samples) 105

1

2

3

4

N
o
. 
o
f 
fi
n
g
e
rs

Predicted

Test Data

Figure 8. Predicted versus actual number of fingers in gesture.

Classification accuracy versus number of LSTM hidden-units is tabulated in Table 2
and plotted in Figure 9. The performance peaked at 75% accuracy for 50 hidden-units
and gradually decreased as the number of units increased. The number of units should
not be too large to avoid over-fitting. The performance is limited by the resolution of
the input waveforms but can be improved by over-sampling the Rx signal in the presence of
sampling and receiver noise. The classification accuracy increased to 88% when the number
of samples per symbol increased by a factor of two and is due to the reduction in noise
through averaging. We can compare this performance with other GR systems employing
visible light using a single PD. Classification accuracies of 85% and 73% were achieved
when the Tx-Rx separation was 20 cm and 35 cm, respectively, ref [29] with reflected
light. Our accuracy could be further improved by employing a moving-average filter or
wavelet denoising. Our performance may also increase by shortening the Tx-Rx separation
from 48 cm. However, this is considered a realistic separation for a practical VLC system.
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Table 2. Accuracy versus number of LSTM hidden-units.

Hidden-Units Accuracy (%)

25 72
50 75
75 72

100 71
125 69
150 68
175 70
200 64
225 62

25 50 75 100 125 150 175 200 225

No. of hidden-units
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Figure 9. Accuracy versus number of LSTM hidden-units.

The speed of making a hand gesture depends on each individual. If the Rx is tracking,
say, a robot arm, one could expect a highly regular pattern with near constant time intervals
between blocking. However, there is a relatively large time variation with human gestures.
Hand movements, even by the same person, move at a slightly different angle, speed,
and position relative to the sensor. Therefore, the performance can depend on the sample-
rate, and a system should be capable of increasing this to capture patterns from subjects
who make very fast hand movements. Figure 10 shows the normalized performance
figure-of-merit versus the sensor sample-rate. The normalized performance figure-of-merit
in Figure 10 is computed by dividing the classification accuracy by the processing time and
normalized to the highest value. From this result, we could select 0.25 MHz sampling-rate
as providing a good performance to processing-time ratio. These results show that there
are diminishing performance benefits from over-sampling when considering the added
processing complexity. There are a number of VLC parameters that can affect the overall
accuracy of the GR system. In particular, performance is sensitive to LED bias-voltage,
which should be set high enough to enable communication over the required distance
but not so high as to distort the waveform.
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Figure 10. Normalized figure-of-merit versus sensor sample-rate.

6. Discussion

Human limbs generally do not move with a constant velocity, and different users may
move their hands at a different speed. Depending on the point of capture, the finger may
be accelerating or decelerating. To compensate, the signal can be time-scaled as a function
of the finger velocity. For example, a person who moves their hand at half the speed of
another person would have their signal sampled at half the rate. The duration of shadows
generated by their fingers should then be approximately the same. Hand-speed could be
determined by a variety of means offline or during a calibration, such as by mm-wave
radar. It would also be possible to identify an individual from their unique finger signature,
and this is an interesting area for future work.

6.1. Calibration

Light-intensity distribution may vary at different locations within a room. The natural
changes in the ambient light level within limits should be managed by the amplitude
normalization step. For optimized performance, a calibration should be made if the system
is moved to a new location where the ambient light range may be different. The calibration
routine which could quickly cycle through parameters such as Tx LED amplitude, equalizer
coefficients, Tx-amp bias, and Rx TIA tuning to find optimized values. Alternatively,
a look-up table can supply the coefficients based on the location, time of day, and season.
Aging of components and heating may also result in drift, which can be resolved by
a relatively in-frequent calibration once a week. The calibration routine could also be
executed automatically once the system is first switched on.

6.2. Sensitivity to Hand Movement

Practical VLC systems require lenses to focus beams of light on the small photo-diode.
If the hand is placed off-center, the Rx beam will be slightly off-focus and the accuracy
may be reduced. This issue can be solved using an automatic lens or by employing
multiple spatially separated PDs. An interesting alternative solution would be to employ
the neural network to learn and predict gestures in cases where the beam is defocused.
A study on the performance as a function of hand-offset position is considered as part of
the future work.
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6.3. Competing Systems and Cost

Assuming that a VLC infrastructure was established, the additional cost for the GR
subsystem would mainly be due to the software development time. The cost of a dedicated
gesture system is worth consideration. In our work, we employed relatively expensive
and bulky AWG and DSO. The off-line processing could be conducted in real-time using
a low-power microprocessor, such as the MSP430 from Texas Instruments, which includes
built-in signal converters. One competitor to the optical system is an accelerometer based
design that could be positioned on the wrist by a strap or as part of a smartwatch. However,
a wrist-based transmitter unit would also be needed for relaying the accelerometer data to
a receiving unit for further processing. A VLC-based system is still preferable in a hospital
environment or for the elderly who may not own a smartwatch or smartphone.

6.4. Areas for Future Work

The number of recognizable gestures could be increased to include common sign-
language ones. The system could be developed for general human activity recognition by
extending the distance between LEDs and PD with their placement on the ceiling and/or
wall. The duration of each shadow cast could be encoded as a binary sequence, and this
could enable a probabilistic neural network to be employed for gesture pattern recognition,
applying a similar approach to [41], where binary bits encoded a communications busy-
idle state. We will investigate if there is any variability in the performance with different
directions of sunlight and placement. However, this should not impact the system design.
Finally, an automated VLC system should include an initial detection block which would
be intermittently polled to recognize when a finger gesture is deliberately being performed.

7. Conclusions

This work described the design and implementation of a finger-gesture recognition
system for visible light communication systems. The system employs a single low-cost
LED at the Tx and a single photo-diode at the Rx and operates on the patterns of blocking
of direct light by the finger motion. The LSTM algorithm can correctly categorize the finger
gestures with an average accuracy of 88%, and the optimized number of hidden units
was 50. A good performance-to-complexity state could be achieved by sampling the light
at 250 kHz. The system has many applications in human-computer interaction, including
health-care, commerce, and in the home. Our further work will focus on increasing
the number of gestures and tasking the system with recognizing individuals from their
gesture signatures.

Author Contributions: All authors contributed to the paper. Conceptualization & methodology, J.W.,
A.M. and R.T.; software, J.W.; validation, investigation, formal analysis, all authors; writing—original
draft preparation, J.W., A.M. and R.T.; writing—review and editing, all authors; funding acquisition,
A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Kuwait Foundation for Advancement of Sciences
(KFAS) under Grant #PR-15NH-04.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank anonymous reviewers for their constructive
comments, which helped in improving this manuscript.

Conflicts of Interest: The authors declare that there are no conflict of interest regarding the publica-
tion of this paper.



Appl. Sci. 2021, 11, 11582 15 of 16

References
1. Wang, C.; Liu, Z.; Chan, S. Superpixel-based hand gesture recognition with Kinect depth camera. IEEE Trans. Multimed. 2015, 17,

29–39. [CrossRef]
2. Li, W.; Xu, Y.; Tan, B.; Piechocki, R. Passive wireless sensing for unsupervised human activity recognition in healthcare.

In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain,
26–30 June 2017; pp. 1528–1533.

3. Bhat, S.; Mehbodniya, A.; Alwakeel, A.; Webber, J.; Al-Begain, K. Human Motion Patterns Recognition based on RSS and Support
Vector Machines. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea,
25–28 May 2020; pp. 1–6.

4. Bhat, S.; Mehbodniya, A.; Alwakeel, A.; Webber, J.; Al-Begain, K. Human Recognition using Single-Input-Single-Output Channel
Model and Support Vector Machines. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2021, 12, 811–823. [CrossRef]

5. Alhammad, N.; Al-Dossari, H. Dynamic Segmentation for Physical Activity Recognition Using a Single Wearable Sensor. Appl.
Sci. 2021, 11, 2633. [CrossRef]

6. Mucchi, L.; Jayousi, S.; Caputo, S.; Paoletti, E.; Zoppi, P.; Geli, S.; Dioniso, P. How 6G Technology Can Change the Future Wireless
Healthcare. In Proceedings of the IEEE 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5.

7. Yang, Y.; Hao, J.; Luo, J.; Pan, S.J. Ceilingsee: Device-free occupancy inference through lighting infrastructure based led sensing.
In Proceedings of the IEEE International Conference on Pervasive Computing and Communication (PerComs), Kona, HI, USA,
13–17 March 2017; pp. 247–256.

8. Xia, K.; Huang, J.; Wang, H. LSTM-CNN architecture for human activity recognition. IEEE Access 2020, 8, 56855–56866. [CrossRef]
9. Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition.

Sensors 2016, 16, 115. [CrossRef] [PubMed]
10. Guo, D.; Zhou, W.; Li, H.; Wang, M. Hierarchical lstm for sign language translation. In Proceedings of the AAAI Conference on

Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.
11. Du, C.; Ma, S.; He, Y.; Lu, S.; Li, H.; Zhang, H.; Li, S. Nonorthogonal Multiple Access for Visible Light Communication IoT

Networks. Hindawi Wirel. Commun. Mob. Comput. 2020, 2020, 5791436. [CrossRef]
12. Kim, B.W. Secrecy Dimming Capacity in Multi-LED PAM-Based Visible Light Communications. Hindawi Wirel. Commun. Mob.

Comput. 2017, 2017, 4094096. [CrossRef]
13. Wang, Z.; Chen, S. A chaos-based encryption scheme for DCT precoded OFDM-based visible light communication systems.

Hindawi J. Electr. Comput. Eng. 2016, 2016, 2326563. [CrossRef]
14. Purwita, A.A.; Haas, H. Studies of Flatness of LiFi Channel for IEEE 802.11 bb. In Proceedings of the IEEE Wireless Communica-

tions and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–6.
15. Ghassemlooy, Z.; Alves, L.; Zvanovec, S.; Khalighi, M. (Eds.) Visible Light Communications: Theory and Applications; CRC Press:

Boca Raton, FL, USA, 2017.
16. Ding, W.; Yang, F.; Yang, H.; Wang, J.; Wang, X.; Zhang, X.; Song, J. A hybrid power line and visible light communication system

for indoor hospital applications. Comput. Ind. 2015, 68, 170–178. [CrossRef]
17. An, J.; Chung, W. A novel indoor healthcare with time hopping-based visible light communication. In Proceedings of the IEEE

3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 19–23.
18. Lim, K.; Lee, H.; Chung, W. Multichannel visible light communication with wavelength division for medical data transmission.

J. Med. Imaging Health Inform. 2015, 5, 1947–1951. [CrossRef]
19. Tan, Y.; Chung, W. Mobile health–monitoring system through visible light communication. Bio-Med. Mater. Eng. 2014, 24,

3529–3538. [CrossRef] [PubMed]
20. Jerry Chong, J.; Saon, S.; Mahamad, A.; Othman, M.; Rasidi, N.; Setiawan, M. Visible Light Communication-Based Indoor

Notification System for Blind People. In Embracing Industry 4.0; Springer: Berlin/Heidelberg, Germany, 2020; pp. 93–103.
21. Zhang, C.; Tabor, J.; Zhang, J.; Zhang, X. Extending mobile interaction through near-field visible light sensing. In Proceedings of

the ACM International Conference on Mobile Computing and Networking, MobiCom ’15, Paris, France, 7–11 September 2015;
pp. 345–357.

22. Sewaiwar, A.; Vikramaditya, S.; Chung, Y.-H. Visible light communication based motion detection. Opt. Express 2015, 23,
18769–18776. [CrossRef] [PubMed]

23. Cheng, H.; Chen, A.M.; Razdan, A.; Buller, E. Contactless gesture recognition system using proximity sensors. In Proceedings of
the IEEE International Conference on Consumer Electronics (ICCE), Berlin, Germany, 6–8 September 2011; pp. 149–150.

24. Wu, J.; Pan, G.; Zhang, D.; Qi, G.; Li, S. Gesture recognition with a 3-d accelerometer. In Proceedings of the International Conference
on Ubiquitous Intelligence and Computing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 25–38.

25. Wang, Z.; Chen, B.; Wu, J. Effective inertial hand gesture recognition using particle filtering based trajectory matching. Hindawi
Wirel. Commun. Mob. Comput. 2018, 1, 1–9. [CrossRef]

26. Liu, G.; Kong, D.; Hu, S; Yu, Q.; Liu, Z.; Chen, T. Smart electronic skin having gesture recognition function by LSTM neural
network. Appl. Phys. Lett. 2018, 113, 084102. [CrossRef]

27. Venkatnarayan, R.H.; Shahzad, M. Gesture recognition using ambient light. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018,
2, 1–28. [CrossRef]

http://doi.org/10.1109/TMM.2014.2374357
http://dx.doi.org/10.14569/IJACSA.2021.01202102
http://dx.doi.org/10.3390/app11062633
http://dx.doi.org/10.1109/ACCESS.2020.2982225
http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.1155/2020/5791436
http://dx.doi.org/10.1155/2017/4094096
http://dx.doi.org/10.1155/2016/2326563
http://dx.doi.org/10.1016/j.compind.2015.01.006
http://dx.doi.org/10.1166/jmihi.2015.1675
http://dx.doi.org/10.3233/BME-141179
http://www.ncbi.nlm.nih.gov/pubmed/25227066
http://dx.doi.org/10.1364/OE.23.018769
http://www.ncbi.nlm.nih.gov/pubmed/26191937
http://dx.doi.org/10.1155/2018/6296013
http://dx.doi.org/10.1063/1.5040413
http://dx.doi.org/10.1145/3191772


Appl. Sci. 2021, 11, 11582 16 of 16

28. Kaholokula, M.D.A. Reusing Ambient Light to Recognize Hand Gestures. Undergraduate Thesis, Dartmouth College, Hanover,
NH, USA, 2016.

29. Yu, L.; Abuella, H.; Islam, M.; O’Hara, J.; Crick, C.; Ekin, S. Gesture Recognition using Reflected Visible and Infrared Light Wave
Signals. arXiv 2020, arXiv:2007.08178.

30. Huang, M.; Duan, H.; Chen, Y.; Yang, Y.; Hao, J.; Chen, L. Demo Abstract: FingerLite: Finger Gesture Recognition Using Ambient
Light. In Proceedings of the INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Toronto, ON, Canada, 6 July 2020; pp. 1268–1269.

31. Choi, J.W.; Ryu, S.J.; Kim, J.H. Short-range radar based real-time hand gesture recognition using LSTM encoder. IEEE Access 2019,
7, 33610–33618. [CrossRef]

32. Pinto, R.F.; Borges, C.D.; Almeida, A.; Paula, I.C. Static hand gesture recognition based on convolutional neural networks. Hindawi
Wirel. Commun. Mob. Comput. 2019, 2019, 4167890. [CrossRef]

33. Zhu, G.; Zhang, L.; Shen, P.; Song, J. Multimodal gesture recognition using 3-D convolution and convolutional LSTM. IEEE Access
2017, 5, 4517–4524. [CrossRef]

34. Ma, C.; Wang, A.; Chen, G.; Xu, C. Hand joints-based gesture recognition for noisy dataset using nested interval unscented
Kalman filter with LSTM network. Vis. Comput. 2018, 34, 1053–1063. [CrossRef]

35. Jian, C.; Li, J.; Zhang, M. LSTM-based dynamic probability continuous hand gesture trajectory recognition. IET Image Process.
2019, 13, 2314–2320. [CrossRef]

36. Barry, J.R. Wireless Infrared Communications; Kluwer Academic Publishers: Norwell, MA, USA, 1994.
37. Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum.

Electron. 2004, 50, 100–107. [CrossRef]
38. Do, T.; Junho, H.; Souhwan, J.; Yoan, S.; Myungsik, Y. Modeling and analysis of the wireless channel formed by LED angle

in visible light communication. In Proceedings of the International Conference on Information Networking (ICOIN2012), Bali,
Indonesia, 1–3 February 2012; pp. 354–357.

39. Greff, K.; Srivastava, R.; Koutník, J.; Steunebrink, B.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw.
Learn. Syst. 2016, 28, 2222–2232. [CrossRef] [PubMed]

40. Postalcıoğlu, S. Performance analysis of different optimizers for deep learning-based image recognition. Int. J. Pattern Recognit.
Artif. Intell. 2020, 34, 2051003. [CrossRef]

41. Webber, J.; Mehbodniya, A.; Hou, Y.; Yano, K.; Kumagai, T. Study on Idle Slot Availability Prediction for WLAN using
a Probabilistic Neural Network. In Proceedings of the IEEE Asia Pacific Conference on Communications (APCC’17), Perth,
Australia, 11–13 December 2017.

http://dx.doi.org/10.1109/ACCESS.2019.2903586
http://dx.doi.org/10.1155/2019/4167890
http://dx.doi.org/10.1109/ACCESS.2017.2684186
http://dx.doi.org/10.1007/s00371-018-1556-0
http://dx.doi.org/10.1049/iet-ipr.2019.0650
http://dx.doi.org/10.1109/TCE.2004.1277847
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1142/S0218001420510039

	Introduction
	VLC Channel Model
	Gesture Recognition System with LSTM Network
	System Implementation
	Design Approach
	VLC Transceiver
	Gesture Waveform Capture
	Process Flow
	Signal Conditioning
	Training and Evaluation

	Performance Evaluation
	Discussion
	Calibration
	Sensitivity to Hand Movement
	Competing Systems and Cost
	Areas for Future Work

	Conclusions
	References

