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Abstract: Technological innovations have revolutionized the lifestyle of the society and led to
the development of advanced and intelligent cities. Smart city has recently become synonymous
of a city characterized by an intelligent and extensive use of Information and Communications
Technologies (ICTs) in order to allow efficient use of information. In this context, this paper proposes
a new approach to optimize the planning of itineraries for one-day tourist. More in detail, an
optimization approach based on Graph theory and multi-algorithms is provided to determine the
optimal tourist itinerary. The aim is to minimize the travel times taking into account the tourist
preferences. An Integer Linear Programming (ILP) problem is introduced to find the optimal outward
and return paths of the touristic itinerary and a multi-algorithms strategy is used to maximize the
number of attractions (PoIs) to be visited in the paths. Finally, a case study focusing on cruise
tourist in the city of Bari, demonstrates the efficiency of the approach and the user interaction in the
determination of the itinerary.

Keywords: itinerary planning; smart tourism; graph theory; heuristic approach

1. Introduction

The planning of touristic itineraries is a typical decision making process for tourists
visiting a city in a limited time period. The selection of the most valuable Points of Interests
(PoIs) is not simple.

In the last years mobile applications are offering a variety of services from vacation
planning to mobile tourist guides and tourism recommender systems [1,2]. The design
of flexible, efficient, and user-friendly applications for mobile devices has a great interest
from both a commercial and a research point of view. The authors in [3] propose a
mobile application based on a hybrid multiobjective genetic algorithm to smartly generate
feasible itineraries. The algorithm incorporates an advanced heuristic to build a route,
with a start and an arrival time passing from a set of locations each characterized by
a score measuring its attractiveness, an opening and a closing time, and visit duration.
Vansteenwegen et al. [4,5] present an advanced mobile tourist guide, capable of suggesting
a near-optimal and feasible selection of attractions and a route passing among them. The
related optimization problem is solved by using a combination of guided local search
metaheuristics. Booth et al. [6] develop a data model for trip planning in multimodal
transportation systems and Navabpour [7] plans a trip with multimodal transportation
based on Service Oriented Architecture (SOA). In addition, Andre et al. [8] design a journey
planning system based on safety, weather and specific travel time for individual user.
Gonzalez et al. [9] propose a fastest-path computation system on a road network using
a traffic mining approach. However, while the above papers mainly focus on the mobile
application architecture, the following two subsections analyze existing contributions
focusing on methodology and parameters.
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1.1. Related Works: Methodology-Based Classification

This section groups and analyses research works that provide rigorous description of
heuristic and metaheuristic approaches to solve the Tourist Trip Design Problem (TTDP).
These approaches result the only viable methods to efficiently optimize the travel itinerary,
by analyzing the problem from different perspectives, with different problem variables and
constraints. The objective in TTDP modeling is to identify a set of near-optimal itineraries
to maximize tourist satisfaction. The baseline combinatorial optimization problem for
TTDP is the orienteering problem (OP). The OP can be used to model the TTDP where
the PoIs are associated with a profit and the goal is to find a single tour that maximizes
the profit collected within a given time budget. In the OP, given a starting node s, a
terminal node t and a positive time limit (budget), the goal is to find a path from s to
t such that the total profit of the visited nodes is maximized. In the related literature,
Garcia et al. [10] propose an intelligent routing system that defines an optimization problem
including multiple paths to move from one location to another. Such a system, by exploiting
an iterated local search metaheuristic method, suggests a personalized tour combining
information about the local attractions, weather forecasting and public transportation.
Gavalas analyzes the models, algorithmic approaches and methodologies about tourist
trip design problems [11]. Recent approaches are reported aiming at taking into account a
multitude of realistic PoIs attributes and user constraints. In this context, Gunawan et al.
focus on the most recent works about the Orienteering Problem (OP) and its variants [12].
The authors focus on a comprehensive and thorough survey of recent variants of the
OP, including the proposed solution approaches. The work reports the new variants of
the OP, such as the Stochastic OP, the Generalized OP, the Arc OP, the Multi-agent OP,
the Clustered OP and others. The authors summarize several interesting applications
which are related to the mobile crowdsourcing problem, the Tourist Trip Design Problem,
the theme park navigation problem and others. The authors in [13] provide a detailed
explanation about operation on tour routes only qualitatively. An optimizer is proposed
in [14], where a multiobjective evolutionary algorithm is used to identify the near-optimal
solutions to the planning of multiple-day routes in a reasonable computational time. In
the contribution [15], the authors present a heuristic procedure for the generalization
of a optimization problem to plan personalized recommendations for daily sightseeing
itineraries for mobile tourist guides.

Extensions of the OP have been applied to model more complex versions of TTDP:
the OP with time windows (OPTW) considers visits to locations within a predefined time
window; this allows modeling opening days/hours of PoIs. The time-dependent OP
(TDOP) considers time dependency in the estimation of time required to move from one
location to another; therefore, it is suitable for modeling multimodal transports among PoIs.
In particular, Cotfas considers a more complex variant of the tourist trip design problem
i.e., the time-dependent in the estimation of the time required to move from one location to
another for planning daily tours according to tourist’s preferences [16].

The team orienteering problem (TOP) is the extension of the OP to multiple tours.
The TOP with time windows (TOPTW) has been mostly commonly studied among the
aforementioned OP variants since it is useful for modeling several real-life optimization
problems. Vansteenwegen et al. propose a metaheuristic algorithm to tackle a more
effective extension of the optimization problem [17]. The proposed algorithm performs
a planning of a multipleday tour by considering a set of PoIs, a visiting duration, and a
set of multiple opening and closing times per day combined with the trip constraints of
the tourist.

Other studies propose approaches based on Graph Theory [18–21], applied in tourism.
The authors in [19] deal with typical tourist attractions in urban destinations, as pedestrian
zones, market areas or urban areas of architectural, cultural and scenic value rather than
only visiting sites of restricted access or taking the fastest route to move among city
landmarks. Herein, the authors introduce Scenic Athens, a context- aware mobile city
guide for Athens (Greece) which provides personalized tour planning services to tourists.
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Scenic Athens derives near-optimal sequencing of PoIs along recommended tours, taking
into account a multitude of travel restrictions and PoI properties, so as to best utilize time
available for sightseeing. The authors in [20] define tourist routes by means of graph
theory. The authors also calculate some relative indexes (e.g., the circle number, circle ratio,
line-point ratio etc.) to make quantitative evaluation of tourist routes. Chen et al. apply the
Graph theory to optimize tour path and tour flows to provide practical solutions to tourist
guides [21].

1.2. Related Works: Parameter-Based Classification

Another classification that can be proposed is based on the works that emphasizes
the study of the effect of key parameters of the TTDP on the final solution, such as: (i) the
selection of transport modes to reach the different PoIs; (ii) the choice of PoIs; (iii) the
number of tours to be generated, on the basis of visiting duration; (iv) the visit duration of
a PoI; (v) the travel times among PoIs; (vi) the daily time budget that a tourist wishes to
spend on visiting a PoI; (vii) the weather conditions.

Transport is a critical and dynamic process of tourism, which facilitates physical
movement to points of interest [22–24]. Transportation affects the accessibility to the tourist
destination, the distance travelled, and the comfort of the trip [25,26]. The authors in [27]
develop a genetic algorithm (GA) to solve the TTDP that included multimodal transport
and real traffic parameters and time constraints.

In [14] the influencing factors of the tour route choices of tourists are analyzed by
means of a questionnaire survey. Moreover, tour routes multiobjective optimization func-
tions are prompted for the tour route design with the aim of maximise the user satisfaction
with the minimum tour distance. The authors in [17] analyze the planning of a multipleday
tour by considering a set of PoIs, a visiting duration, and a set of multiple opening and
closing times per day combined with the trip constraints of the tourist. The authors in [28]
apply an evolutionary algorithm to solve the tour planning problem in time-dependent
urban areas. Gavalas et al. [29] develop a tool for tourist itineraries that considered the
departure time and the mode of transport on the tourist route. Wu et al. [30] develop a
mathematical model to consider the selection of transport modes, the travel budget, and the
maximum travel times. Zheng et al. [31] design a multi-objective model of one-day urban
tourist routes, taking into account the transport modes and the complexity of urban tourism
transport systems, as congestion, and the transport needs of tourists. Zhang et al. [32]
develop a model for the construction of itineraries in scenic routes considering the modes of
transport. The authors in [33] analyze the environmental implications of tourist itineraries
by creating groups of tourists that use a single mode of transportation (i.e., taxis). Some
works study the use of electric vehicles (EV) for the generation of more environmentally
friendly tourist itineraries, such as [34–36].

Other works focus on planning trips for tourist group [33,37], that consider the indi-
vidual preferences of each tourist. The authors in [38] develop a model for the route design
problem for various cycle-tourists. The model consider the preferences of each tourist who
incorporates different benefits on the same route. Finally, the authors in [33] develop a
route planning model that considers multiple days, urban tourism, PoI categories, and
heterogeneous preferences for a group of tourists that maximise profit and minimises travel
time, distance, and cost.

1.3. Contribution of the Paper

From the analysis of the above reported studies, the OP is not suitable in case the PoIs
need to be selected and exchanged among different itineraries, like outward and return
paths of a one day trip, because of time constraint. In this case, it is necessary to implement
a multi-level algorithm to be able to consult the tourist on any relocation of PoIs in the tour.
To these aims, we applied the Travel Salesman Problem (TSP) [39–41] method that involves
finding the shortest route through n nodes that begins and ends at the same city and visits
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every node. The TSP is among the best-known combinatorial optimization problems and
has been intensely studied by researchers in various research fields.

In this paper, we aim to determine the optimal itinerary for the one-day tourist,
maximizing the number of PoIs to be visited in the outward and return parth, and at the
same time minimizing the travel times taking into account the tourist preferences and hard
time constraints. The idea is to allow the tourist to select the preferred PoIs to be visited
on the first part of the day, i.e., in the outward trip, and on the second part of the day, i.e.,
in the return trip, respectively. We formulate our optimization problem on the basis of
Graph theory, TSP and multi-level algorithms. We model the city PoIs network on the
basis of the graph theory, where the nodes represent the various attractions (PoI) of the
city and two separate graphs are derived. The tourist can select the PoIs of the starting
graph to be visited with high priority in the outward and return journeys, respectively. In
our application the tourist is part of the multi-algorithms approach interacting with it and
taking decisions for one-day tourist. The proposed approach plans the tourist itinerary,
minizing travel times based on the TSP algorithm, taking into account the priority list of
PoIs and the decisions of the user. The TSP is used in this paper since it allows to consider
a first itinerary solution including all the PoIs of the city that is refined by the multi-level
algorithms interacting with the tourists. In detail, compared with the analyzed works, this
paper presents the following novelties:

• an innovative multi-level algorithm approach is proposed to determine the opti-
mal roundtrip path: the outward and return journeys are specified and customized,
minimizing the total travel time, including the visiting time of each PoI.

• the number of attractions to be visited is maximized and is splitted between the
outward and return path in order to improve the visiting experience on the basis of
user preferences.

• the tourist is seen as an active and informed user who directly interacts with the
system for the optimal planning of both the outward and return journeys, not only
providing initial inputs and preferences but taking decisions at intermediate stages of
the approach.

The rest of the paper is organized as follows: Section 2 describes the one-day tourist
itinerary planning problem; Section 3 presents the Multi-level algorithm approach for the
itinerary planning while Section 4 provides the analysis of the algorithms performance
and complexity; Section 5 demonstrates the effectiveness of the proposed approach by
a case study focusing on the cruise tourist in the city of Bari and Section 6 provides the
conclusions and future works perspectives.

2. The One-Day Tourist Itinerary Planning Problem

The one-day tourist, having reached a stage of his journey through the airplane, train,
car or cruise ship etc., wonders how to spend at best his/her time in the city in a short time
period (e.g., one day).

Due to the limited time, it is therefore necessary to pay attention to the organization
of the visits and excursions. The tourist can opt for a tour pre-organized by the operator or
he/she can plan it on his/her own. In the first case, one of the advantages concerns the
mere observation of the predefined roadmap to visit the city, without any worries. This
case, on the other hand, does not always satisfy the personal interests of the individual
tourist who must follow the visiting group and, in addition, can not personally manage
the route and the stops. In the second case, however, the tourist has more freedom of
choice but he/she must plan independently the trip in a city and respect the departure
times that are mandatory. Instead of relying on the tours organized by the company,
sometimes with unsatisfactory results, the tourist by use only a smartphone can select the
preferred attractions.

Today, there are numerous online travel planning systems that allow to automatically
generate a selection and routing plan to visit PoIs that suit the tourist’s personal inter-
ests [42]. These systems implement various functionalities that aim to satisfy different
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profiles of tourist interest [43,44]. Therefore, considering a tourist discovering the city, in
addition to walking through its most famous streets, he/she wants to head, for example,
to a restaurant near an attraction to have lunch and taste the typical dishes of the place,
and then resume the tour and return back. For instance, by simply accessing an app from
the smartphone, he/she can set the time available to carry out the tour from a starting
point to a restaurant and the time to return back. The visiting times must also include the
stop times for activities such as take photos in front of a monument, go shopping, visit a
museum and so on. The tourist can also select the preferred PoIs to be visited on the first
part of the day, i.e., in the outward trip, and on the second part of the day, i.e., in the return
trip, respectively. In addition, the tourist can also indicate the PoIs that are less important
and that can be deleted by the roundtrip in case of time unavailability.

Then, let us describe an example in order to present the addressed problem. Firstly,
the following assumptions are made:

• the tourist is an active user who wants to interact with the application in order to
customize the daily roundtrip;

• the PoIs of the city are initialized by the application;
• the tourist indicates the starting and destination PoIs, the travel modes and time

preferences as well as the PoIs to be visited with high and secondary priority, in the
first and second part of the day, respectively.

Let us consider the case of a cruise tourist who wants to visit the city in one day,
without loss of generality. When arriving at the port, the tourist needs to have a plan
for the daily tour. In particular, he/she needs to decide which PoIs to visit based on the
available time and in which order, also making a priority list to be sure to visit the most
important ones. There can be also the necessity to specify which PoIs to be visited in the
first part of the day, that is usually lightful and more appropriate to visit outdoor spaces
like parks, before to have a lunch, usually in a typical restaurant. The tour for the second
part of the day, starts after lunch allowing to complete the city visit going towards the final
destination point, i.e., the port. Of course, an application is needed to help the tourist at
planning the less time consuming roundtrip, respecting the preferences. In our scenario, the
application initializes the PoIs network and shows to the user the map of the city PoIs with
related information, including traveling times among each PoI couple based on transport
means. Different trip solutions can be provided by the application based on the user choice
regarding the stop time at each PoI and preferred way of transport: (1) fastest, (2) by foot,
(3) by metro/bus. The tourist is also asked to indicate the starting and destination points of
the roundtrip, that are different from the origin/final point (i.e., the port), as well as the
time deadline for the roundtrip. In addition, the tourist is asked to decide which PoIs to
be visited in the first and second part of the day, indicating the priority and the desired
time to dedicate to the visit. On this basis, the application try to generate the customized
outward and return tours of the day by applying the heuristic procedure presented in
Section 3. If the deadline time both for the outward and return trips are respected, the
heuristic procedure investigates the addition of secondary importance PoIs and generates
the final roundtrip itineraries. On the contrary, if the deadline time of the outward and/or
the return tours is violated, the heuristic procedure can exchange PoIs between the first
and the second tour. In case some feasible solutions are determined, i.e., the deadlines of
the outward and return trips are satisfied, the procedure delegates to the user the choice
of a solution from a list created by the application. Afterwards, the heuristic procedure
determines the final customized outward and return tours of the day including possible
addition of secondary PoIs. Finally, if the deadline time of the outward and/or the return
tours is violated and no feasible solution is achievable, a PoI deletion procedure must be
implemented in order to respect the deadline travel time. Let us summarize the necessary
input and output information and data of the proposed itinerary planning application:
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Initial inputs from the user:

• starting and ending PoI;
• deadline time both for the outward and return trips;
• stop times;
• priority list of PoI;
• list of PoIs both for the outward and return trips;
• preferred mode of travel;

Moreover, other inputs are required to the user from the application while running in
order to refine the roundtrip customization as described in detail in Section 3.

Real time inputs from the user:

• preferred itinerary from a list of feasible solutions determined by the proposed auto-
matic procedure.

Outputs by the application:

• outward and return paths;
• outward and return travel times.

3. The Multi-Level Algorithm Approach for Tourist Itinerary Planning

In this Section, we want to present an adequate solution to the problem of the one-day
tourist, whose goal is to visit the greatest number of attractions and carry out activities of
his own liking, respecting the times available for visiting. First of all the city PoI network
needs to be modeled in order to connect all the PoIs and decide the best itinerary. We apply
the Graph theory [21,45] to model and study the PoIs network which in this paper is
modeled as a weighted connected graph [46]. From each graph a path is determined
ensuring that the tourist will visit only once those nodes representing the essential PoI:
(i) the first path, called outward path, is from the source to the destination; (ii) the second
path, called return path, is from the destination to the source.

In particular, the nodes of the graph represent the city attractions. In addition, the
weight of an arc connecting two nodes represents the travel time between two attractions.
More in detail, the proposed approach uses two graphs Go and Gr that are built considering
the following tourist inputs: the starting and ending PoIs of the outward path (they
correspond to the ending and starting PoIs of the return path), the other preferred PoIs
to visit during the outward and return path, the preferred transport mode. The starting
PoI (ending PoI) of the outward path is represented by the source node (destination node)
vs (vd) as shown in Figure 1. Moreover, the starting PoI is the place that the tourist firstly
reaches after leaving the airport, port or station that are respresented in Figure 1 with the
origin node Vorigin. The origin node is not included in the set of nodes of Go and Gr. Finally,
each arc of graphs is weighted by the travel time between two PoIs and the time depends
by the preferred transport mode chosen by the tourist.

The proposed approach to solve the tourist problem is based on a multi-level algorithm
approach [39]. The proposed Algorithms are modeled by means of UML diagrams. UML is
a standard highly recognized language widely used to visually describe software programs
and algorithms [47]. More specifically, there is the main algorithm, so called Algorithm 1,
that is responsible for the data initialization and for the determination of the initial paths.
Moreover, Algorithm 1 makes use of two sub-algorithms to find an optimal planning of
the itinerary based on the tourist needs in term of time and places of interest, by applying
the TSP algorithm. The TSP is about a traveling man who wants to visit only once each PoI
of the list returning to the initial PoI through the least cost route. The TSP is suitable to be
modeled through a graph in which the nodes are the PoI and each arc connects a couple
of PoI (i, j) including a travel cost from i to j. The total lenght of a journey is given by the
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sum of the arc weights included in the round-trip of the traveler. In order to formulate the
generic version of the asymmetric TSP, the following binary variables are needed:

xij =

{
1 if arc (i,j) is in the tour i, j ∈ {1, . . . , m}
0 otherwise

(1)

with m total number of PoIs. Now, according to the Dantzig–Fulkerson–Johnson formula-
tion the TSP can be formalized as the following integer linear programming problem:

min
m

∑
i=1

m

∑
j=1,j 6=i

cijxij

s.t.

m

∑
i=1,i 6=j

xij = 1 j = 1, . . . , m

m

∑
j=1,j 6=i

xij = 1 i = 1, . . . , m

∑
i∈K

∑
j∈K,j 6=i

xij ≤ |K| − 1 ∀K ⊂ {1, . . . , m}, |K| ≥ 2

(2a)

(2b)

(2c)

with cij > 0 ∀i, j ∈ {1, . . . , m}, i 6= j time cost to travel from i to j, K nonempty subset of
the set of m PoIs and m(m− 1) number of binary variables. In particular, constraints (2c)
ensures that no subset K can generate sub-tours, i.e., only a single tour will be generated.
In order to obtain the symmetric version of the TSP it is necessary to have cij = cji ∀i, j ∈
{1, . . . , m}, i 6= j. It holds that the number of variables in the symmetric TSP is halves with
respect to the asymmetric TSP. In this paper, we consider the symmetric TSP inside the
proposed heuristic approach modeled with an undirect graph to find the optimal travel
times and paths associated to the outward and return tours.

Figure 1. Go and Gr graph examples.
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3.1. The Proposed Heuristic Approach

The proposed approach starts by Algorithm 1 described by the UML diagram in
Figure 2 that is the upper level Algorithm that executes two phases: (1) initialization phase;
(2) itinerary planning phase.

Figure 2. The UML diagram of Algorithm 1: data initialization and itinerary planning.

3.1.1. Initialization Phase

The first phase of the algorithm concerns the initialization of data and it is divided
into two parts. In the first part, the algorithm, by knowing the city map, creates the initial
graphs of the city tourist attractions: a tourist attraction is associated with a node and all
the nodes are connected to each other through indirect arcs. For each pair of nodes the
time needed to go from one attraction to another is specified, on the basis of the transport
means, with a weight associated with the arc that connects the nodes. In addition, the
times to reach each attraction starting from the origin PoI and vice versa are also provided.
In particular, two weighted graphs are initially considered, respectively named Gi,1 and
Gi,2, composed by the same nodes and arcs, i.e., Vi,1 = Vi,2 and Ei,1 = Ei,2, where each
node represents a PoI of the city, each arc indicates the connection between two nodes and
the arc weight represent respectively the travel times by foot in Gi,1 and by bus/metro in
Gi,2. Considering two nodes a and b of Gi,2, here we assume that the trip from a to b is
performed mainly by bus and/or metro, with the possibility that a short segment of this
trip must be traveled by foot. Moreover, for each node of Gi,1 and Gi,2 we are assuming
that the travel time to go from the origin PoI to the node is equal to the travel time to go
from the node to the origin PoI. After that, the graph Gi = {Vi, Ei} is defined composed
by the same nodes and arcs of Gi,1 and Gi,2. On each arc of Gi the weight is set among the
following three possibilities, based on the user preferences:
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(a) time preference: the weight of the arc is given by the minimum travel time among the
corresponding ones of Gi,1 and Gi,2;

(b) foot preference: the weight of the arc is given by the travel time by foot on the
corresponding arc of Gi,1;

(c) bus/metro preference: the weight of the arc is given by the travel time by bus/metro
on the corresponding arc of Gi,2.

In addition, the resulting graph Gi also keeps track of the transport means used on
each trip segment, i.e., by foot or by bus/metro.

In the second part of the initialization phase, the tourist sets the following preferences:

• to, time available for the outward trip and tr, time available for the return trip;
• ts, stop time at each node v ∈ Vi;
• define set Vp ⊆ Vi of nodes of high priority and set Vs ⊆ Vi of nodes of secondary

priority with Vp ∩Vs = ∅;
• vs source node and vd destination node, among the nodes v ∈ Vp;
• define set Vo ⊂ Vp and Vr ⊂ Vp, Vo ∩Vr = {vd, vs}, of the nodes to be visited on the

outward and return journeys, respectively.

3.1.2. Itinerary Planning Phase

On the basis of the input from the initialization phase, the Algorithm 1 proceeds with
the construction of two separate graphs Go and Gr to determine the outward and return
paths, respectively. The graph Go and Gr are composed by the nodes v ∈ Vo and v ∈ Vr,
respectively. Moreover, the graphs Go and Gr are of order No (cardinality of Vo) and Nr
(cardinality of Vr), respectively, and are implemented through the adjacency matrices. Since
the graphs are not oriented, connected and complete, the adjacency matrices are symmetric
with a null diagonal. We solve the TSP (2) for the graphs Go and Gr, respectively, in order
to find the minimum path Po and Pr and the associated travel time cost t1 and t2. Now, let
us define the following integer linear programming problem ILP1 in order to maximize the
available travel times for the outward and return paths:

F(λ) = max λ

s.t.

λ ≤ t
′
= t

′
1 − to

λ ≤ t
′′
= t

′′
1 − tr

t
′
1 = t1 + tstop(Po) + y1 ∗ tstop,s + y2 ∗ tstop,e + tp

t
′′
2 = t2 + tstop(Pr) + y3 ∗ tstop,s + y4 ∗ tstop,e + tp

y1 + y3 = 1

y2 + y4 = 1

λ ∈ R
y1, y2, y3, y4 ∈ {0, 1}

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

where λ is the real decision variable that has to be maximized in order to maximize the
difference between the effective travel times t

′
1 and t

′′
2 and the respective available times to

and tr. Let us specify that for the outward path Po, the source PoI is set as the initial node
while the destination PoI as the final node. On the contrary, for the return journey Pr the
destination PoI is set as the initial node and the source PoI as the final node. Moreover,
with constraints (3c) and (3d) ILP1 takes into account the following variables: the sum of
the stop time period at each PoI of Po and Pr, respectively called tstop(Po) and tstop(Pr); the
time period tp to reach the origin PoI from the final point; the stop time period for visiting
the source and destination nodes denoted respectively by tstop,s and tstop,e. In particular,
constraints, (3c), (3d), (3e) and (3f) are introduced to ensure that the source and end PoI
can be visited only one time respectively on the outward or on the return journey. More
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precisely, constraint (3e) states that if the tourist stops for visiting the source PoI on the
outward path, he/she will not repeat the visit on the return path: on the return path, the
tourist will just pass through the source PoI without stopping there. The same statement
of (3e) is done for the end/destination PoI by applying constraint (3f).

The resulting paths Po and Pr are not definitive and a further analysis is required to
satisfy the tourist preferences.

The travel times t
′
1 and t

′′
2 , must not exceed the time available for visiting to and tr,

respectively. Consequently, the following algorithms will manage the itinerary by adding
and/or removing none, one or more PoI (nodes) from the path Po and/or Pr so that the
time constraints are respected. Now, considering that to and tr are the available travel times
to complete the outward and return journeys, respectively, two cases which needs to be
managed can arise:

1. travel times exceed available times: t
′
> 0 OR t

′′
> 0;

2. travel times do not exceed available times: t
′ ≤ 0 AND t

′′ ≤ 0;

In particular, the management of case 1 is performed by Algorithm 1.1 and Algo-
rithm 1.2, respectively described by the UML diagrams in Figures 3 and 4, while case 2
is managed through Algorithm 1.3 described by the UML diagram of Figure 5 in the
following. At the end of Algorithm 1.1 and Algorithm 1.3, Algorithm 1 displays the final
itinerary to the tourist.

Algorithm 1.1: PoI Exchange Procedure

In case 1, it is necessary to manipulate the outward and return paths, Po and Pr, in
order to respect the time constraints, to avoid delay in the origin PoI. An attempt is made
to keep all the PoI of high priority by exchanging nodes between those selected for the
outward and the return journeys. To this aim, a node belonging to the outward graph Go
is exchanged with a node belonging to the return graph Gr. Once the exchange has been
made, the Algorithm 1.1 determines the new paths Po and Pr and the travel time t1 and t2

by applying ILP1. Afterwards, it checks if the times t
′

and t
′′

are positive or negative and
one of the two cases can occur, as highlighted in Figure 3.

If case 1 occurs, Algorithm 1.1 updates the table FS of feasible solutions, i.e., records
the paths Po and Pr obtained by feasible nodes exchange. Afterwards, all the possible nodes
exchange are tried between the two graphs (see Figure 3) and all the feasible solutions
are recorded in Table FS. If case 2 occurs the Algorithm 1.1 ignores the obtained solution
beacuse it is not feasible and proceeds with the node exchange procedure until other
combinations are no longer possible.

After all possible nodes exchange have been made, the Algorithm 1.1 checks if suitable
solutions have been found. If table FS is not empty, Algorithm 1.1 asks the tourist to
indicate one of the solution in table FS and Algorithm 1.1 goes to Algorithm 1.3. On the
contrary, if table FS is empty, i.e., no feasible node exchange are possible, Algorithm 1.1
goes to Algorithm 1.2 to start the node deleting procedure.
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Figure 3. The UML diagram for the node exchange procedure.

Algorithm 1.2: PoI Deletion Procedure

Algorithm 1.2 starts the node deleting procedure (see UML diagram of Figure 4).
If t

′
> 0, a node is eliminated from Go and, in case t

′′
> 0, a node is simultaneously deleted

from Gr. After that, Algorithm 1.2 computes Po and t1, Pr, t2 and, in particular, t
′

and
t
′′

by applying ILP1. Then, the algorithm checks if the time constraints on t
′

and t
′′

are
satisfied. These steps are repeated iteratively by Algorithm 1.2 until time constraints are
not respected or no more node can be deleted. The Algorithm 1.2 displays an error message
in case, after all possible nodes of Go or Gr have been deleted, it still holds t

′
> 0 or t

′′
> 0,

respectively. On the contrary, if t
′ ≤ 0 and t

′′ ≤ 0, the PoI elimination is not necessary
anymore and the Algorithm 1.2 goes to Algorithm 1.3 where the possible addition of other
points is evaluated.
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Figure 4. The UML diagram for the node deletion procedure.

Algorithm 1.3: PoI Addition Procedure

In the case t
′ ≤ 0 and t

′′ ≤ 0, it is reasonable to add one or more nodes to the paths
Po and Pr. Thus, a node v ∈ Vs with secondary priority is temporarily added to Go and
Gr. Note that Ns is the cardinality of Vs. At this point, if condition t

′ ≤ 0 and t
′′ ≤ 0 is

still verified the Algorithm 1.3 proceeds by adding another node v ∈ Vs, until no more
nodes v ∈ Vs can be added. On the other hand, if the addition of a node does not satisfy
the time constraints, the added node is removed from the relative path and the Algorithm
1.3 checks whether it is possible to insert other nodes by repeating the operation until all
nodes v ∈ Vs are examined (see the UML diagram in Figure 5).
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Figure 5. The UML diagram for the node addition procedure.

4. Complexity and Performance Analysis

In this section, the analysis of the complexity and performance of the proposed
algorithms are provided. The following results describe the algorithms complexity:

• the Algorithm 1 requires the implementation of the ILP 1 problem including two
TSP and 4 decision variables. Hence, considering a branch-bound approach, the
complexity of Algorithm 1 is O(24) + 2 ∗O(K) = O(K), with O(K) TSP complexity;

• the Algorithms 1.1, 1.2 and 1.3 show complexity O(N ∗ K) since the ILP 1 problem is
included in a N-dimensional “while” loop, where N is the number of PoI of graph Gi.
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We can conclude that the complexity of the heuristic approach is O(N ∗ K). In order
to be compliant with application time constraints, the TSP has been implemented using
the Lin-Kernighan algorithm that often keeps its tours within 2% of the Held-Karp lower
bound [48], then K = O(N2.2). Therefore, our heuristic approach shows complexity
O(N3.2). Let us underline that the proposed application interacts with users to find the
final best solution. Therefore, the time to complete the heuristic approach application and
provide the final solution strongly depends on the velocity of the user given the necessary
inputs to the application.

The performance of the proposed algorithms are validated with benchmark orien-
teering algorithms presented in [49]. In particular, the data set used in [49] and reported
in [50] is used as benchmark (see Figure 6). Since, in the considered benchmark data set
the PoI importance is defined by a score, we associate the priorities to the higher score
values as reported in Figure 6. Note that in Figure 6, X and Y are the cartesian coordinates
of the PoI and the PoIs distance is computed using the Euclidean distance formula [49].
Moreover, for comparison purpose, we assume that (i) the PoI Vd is selected as to minimize
the total travel time, (ii) the Euclidean distance includes the stop time for visiting in our
approach, (iii) the user preferences are randomly set in the instances simulation. Now, let
us report the comparison results between the proposed heuristic and the D-algorithm and
S-algorithm proposed by [49]. In particular, Figures 7–9 report respectively the comparison
results considering data set of problem 1, 2 and 3, where Tmax represents the total travel
time. Comparing the score and time values it can be concluded that the proposed approach
performs much better than D-algorithm and little worse than the S-algorithm. However, in
case only addition of PoI are needed by Algorithm 1.3, the proposed approach performs
better than S-algorithm too. It is also remarked that the performance of Algorithm 1.2 can
be further improved when a considerable number of PoIs must be deleted.

Figure 6. The benchmark data set.
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Figure 7. Algorithms comparison using data set of problem 1.

Figure 8. Algorithms comparison using data set of problem 2.

Figure 9. Algorithms comparison using data set of problem 3.

5. Case Study

This section presents a case study where the proposed multi-level algorithm approach
is applied to solve the cruise tourist problem in the metropolitan port city of Bari. Bari is
the capital city of Apulia Region and the second biggest city in southern Italy. Since the
roman epoch, Bari became an important commercial center, during the Saracen domination.
From 1071, it became a big maritime center and still today it is an important port hub of
the Mediterranean sea.

In the initialization phase of Algorithm 1, all the main attractions of Bari are determined
and represented by the adjacency matrix of the graph Gi as it shown in Figure 10. Note
that the weight of arcs are decided on the basis of the time preference (a) described in
Section 3, according to the user. For better understanding of Figure 10 let us consider two
examples: “1mp” in the box from PoI 2 to PoI 1 means that the tourist should travel by foot
for 1 min; “10m p+a” in the box from PoI 2 to PoI 7 means that the tourist should travel by
foot and by bus for 7 min total. The tourist inputs are provided in the initialization phase of
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the mobile application, where the tourist inserts the preferences and constraints related to:
(i) the maximum available time for the outward and return path; (ii) the PoIs to visit during
the outward and return path; (iii) the preferred transport mode, i.e., by foot, by bus or the
fastest way (see Figure 11). Moreover for each node of the PoI network, the tourist can edit
the selection of transport mode according to his/her preferences (see Figure 12).

Let the Saint Nicolas Basilica (node 2) be the starting point and Lungomare Nazario
Sauro (node 8) be the final point of the tourist itinerary. Note that for path Po the starting
point is node 2 and the final point is node 8. On the contrary, for Pr the starting point is
node 8 and the final point is node 2. In particular, let us define the nodes of priority level 1
(maximum priority) Vp = {1, 2, 4, 5, 8, 9, 10}, and the secondary nodes with Vs = {3, 6, 7}.
Furthermore, the PoI to be visited on the outward and return paths and the stop time at
each PoI are also reported in Figures 10 and 13.

Figure 10. Adjacency matrix of graph Gi.

Figure 11. The GUI of the user preferences.
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Figure 12. The GUI showing the travel times in the PoIs network from museo Nicolaiano. Preferred
transport mode can be edit.

Figure 13. Stop time at each PoI.

The Algorithm 1 creates the two graphs Go and Gr by using only the nodes of Gi of
priority level 1 (maximum priority) and calculates the travel times t1 and t2, as it is reported
in Figure 14. It implies Vo = {1, 2, 4, 5, 8} and Vr = {2, 8, 9, 10}. The travel times t1 and t2
do not include the time needed to go from the port to the first stop of the tour, i.e., node 2,
and vice versa that is equal to 10 min. In Figure 15 the vector of the times to reach the port
from each node is shown.

Figure 14. The Graphs Go and Gr and the travel times t1 and t2.

Figure 15. Travel times from each node of Gi to the port.
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Let us set to = 150 min and tr = 250 min. Since t
′
> 0, as t

′
1 = 159 (obtained by the

sum of the travel and stop times from one node to another in the outward path, except the
stop times of node 2 and 8) and t

′′
2 = 189 (obtained by the sum of the travel and stop times

from one node to another in the return path, considering also the stop times of node 2 and
8), this solution is not feasible.

Therefore, Algorithm 1 goes to Algorithm 1.1 that tries to exchange the nodes between
graph Go and Gr in order to obtain all the feasible solutions that are stored in FS. In the table
FS, two solutions are stored which are obtained by the following two nodes exchanging:
(i) node 4 of Go with node 10 of Gr, (ii) node 1 of Go with node 10 of Gr. In Figure 16, Po

and Pr of solution (i) obtained by solving ILP1 are shown. In this case t
′
< 0 and t

′′
< 0,

since t
′
1 = 130 and t

′′
2 = 212 (node 2 and 8 are visited during the return path).

Figure 16. Algorithm 1.1 exchanges node 4 of Go with node 10 of Gr

In Figure 17, Po and Pr of solution (ii) obtained by solving ILP1 are shown. In particular,
in this case t

′
< 0 and t

′′
< 0, since t

′
1 = 129 (node 2 and 8 are visited during the outward

path) and t
′′
2 = 215.

Figure 17. Algorithm 1.1 exchanges node 1 of Go with node 10 of Gr

The two resulting feasible solutions are shown to the user that can select the preferred
one in the mobile application (see Figure 18). Let us suppose that the tourist selects path (i).
Therefore, Algorithm 1.1 goes to Algorithm 1.3 that tries to add nodes of priority 2 both on
the outward and on the return paths. Since it implies that t

′
> 0, node 3 cannot be added

to the route and it is removed. The adding of node 3 is checked for the outward path (see
Figure 19). In this case, there is time available since t

′′
< 0 and t

′′
2 = 244. Therefore, node 3

with priority 2 is added to Gr. Moreover, since there are no other nodes of Gi to be added,
the outward journey does not change.
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Figure 18. The GUI of the feasible solutions.

Figure 19. The outward path after adding node 3 to Gr.

Figures 20 and 21 depicts the GUI of the mobile application showing the final outward
and return paths, respectively, connecting the identified PoIs.

Figure 20. The GUI of the outward path.
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Figure 21. The GUI of the return path.

The procedure ends and the tourist can get the sequence of attractions in both trips
with the relative means of transport. In the proposed case study, the mathematical calcula-
tions to obtain the final solution are performed in about 2 seconds.

The presented application demonstrates the effectiveness of the proposed heuristic
approach in planning the itinerary for the one-day tourist, customizing the outward and
return paths of the roundtrip in the city of Bari. In particular, the application can manage
the map of city PoIs, showing the travel means and times for each PoI pair, decided based
on the user preferences. The tourist preferences can initially be input through specific
app pages like presented in Figures 11 and 12, where it is possible to decide which PoIs
to be visited in the outward and return paths, respectively, and the preferred traveling
mode. In particular, in the proposed case study it is evident how the Algorithm 1.1 recovers
the initial unfeasible solution providing to the tourist alternative feasible trips including
all the high priority PoIs. After the user choice, made as in the app page in Figure 20,
Algorithm 1.3 further improves the solution adding node 3 belonging to secondary priority
list, given one more PoI to be visited.

Let us remark that the obtained solution by applying the proposed procedure can
be sub-optimal because of the human intervention. Indeed, with respect to a classical
orienteering problem, the user subdivides the PoIs between outward and return trip and
can choose a feasible itinerary according to the preferences affecting the real time procedure.
Nevertheless, even if the obtained solution can be non optimal, it is surely customized
based on the user preferences. Moreover, in Section 4, we enlighten that the proposed
heuristic procedure shows better performances than other algorithms such as D-algorithm
and S-algorithm [49] in some specific cases.

6. Conclusions

This paper is aimed at providing a tool to help the one-day tourist in the difficult choice
to plan an itinerary in a city. Indeed, a tourist often renounces relying on professionals of
the sector who offer a service although complete, often pre-packaged and not taking into
account her/his passions and preferences.

The proposed approach builds a network of points of interest (PoIs), proposing the
city attractions but leaving the choice of the PoIs to be visited by the tourist. Based on the
obtained graph, a multi-algorithms approach is provided to determine the optimal itinerary.
The tourist is part of the multi-algorithms approach interacting with it and taking decisions.

An Integer Linear Programming (ILP) problem is introduced to find the optimal
outward and return paths of the touristic itinerary and the multi-algorithms strategy is
used to maximize the number of PoIs to be visited in the paths. Moreover, a case study
demonstrates the approach efficiency and the steps of the procedure.
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Finally, an app prototype has been developed and several use cases are being tested
to iron out bugs before writing the final code. Future works will focus on useful devel-
opments of the application: integrating the possibility of making reservations at hotels,
purchasing entrance tickets for the various sites and promoting sustainable mobility by
providing simple but complete and updated information on how to get around the city
(bus/metro time schedule, opening/closing hours of attractions, etc.); locating bike-sharing
stations and bicycle parking; considering the cost as additional objective function to be
minimized. Furthermore, Algorithm 1.2 will be object of further studies in order to improve
its performance.
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