
applied
sciences

Article

Data-Driven Control Algorithm for Snake Manipulator

Kai Hu 1,2,* , Lang Tian 1,3 , Chenghang Weng 1 , Liguo Weng 1,2 , Qiang Zang 1,2 , Min Xia 1,2

and Guodong Qin 4

����������
�������

Citation: Hu, K.; Tian, L.; Weng, C.;

Weng, L.; Zang, Q.; Xia, M.; Qin, G.

Data-Driven Control Algorithm for

Snake Manipulator. Appl. Sci. 2021,

11, 8146. https://doi.org/10.3390/

app11178146

Academic Editor: Alessandro

Gasparetto, Stefano Seriani and

Lorenzo Scalera

Received: 6 August 2021

Accepted: 30 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China;
20181223062@nuist.edu.cn (L.T.); 20201249145@nuist.edu.cn (C.W.); 002311@nuist.edu.cn (L.W.);
zangq@nuist.edu.cn (Q.Z.); xiamin@nuist.edu.cn (M.X.)

2 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China

3 China Telecom Stocks Co., Ltd., Zhangjiagang Branch, Zhangjiagang 215600, China
4 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 210001, China; guodongqin@nuaa.edu.cn
* Correspondence: 001600@nuist.edu.cn

Abstract: In some environments where manual work cannot be carried out, snake manipulators
are instead used to improve the level of automatic work and ensure personal safety. However, the
structure of the snake manipulator is diverse, which renders it difficult to establish an environmental
model of the control system. It is difficult to obtain an ideal control effect by using the traditional
manipulator control method. In view of this, this paper proposes a data-driven snake manipulator
control algorithm. After collecting data, the algorithm uses the strong learning and decision-making
ability of the deep deterministic strategy gradient to learn these system data. A data-driven controller
based on the deep deterministic policy gradient was trained in order to solve the manipulator system
control problem when the control system environment model is uncertain or even unknown. The
data of simulation experiments show that the control algorithm has good stability and accuracy in
the case of model uncertainty.

Keywords: deep deterministic policy gradients; snake manipulator; data-driven; accuracy

1. Introduction

Existing manipulator control theory can be divided into three categories: (1) Accurate
mathematical models are required, such as optimal control strategies, linear or nonlinear
control strategies, and pole assignment methods. Some (2) mathematical models are
known, such as sliding mode variable structure control, fuzzy control, adaptive control,
and intelligent control. (3) The mathematical model is unknown, or it is difficult to
establish a mathematical model, such as iterative learning control, model-free adaptive
control, and other data-driven control strategies [1]. Currently, the commonly adopted
control strategies of manipulators include PID control, fuzzy control, adaptive control,
and hybrid control strategy. Mendes designed an adaptive fuzzy controller to solve the
contact problem of a manipulator [2]. However, with continuous improvement of the
control requirements of manipulators, the scale of control systems is increasing, there are a
large number of coupling phenomena between the systems, and the traditional manipulator
control strategy has been unable to meet the control requirements. Due to their strong
self-learning ability and nonlinear system mapping ability, neural networks have been
introduced into manipulator control to compensate for the uncertainty of manipulator
models. Aiming at the trajectory tracking control problem caused by uncertainty and
disturbance of the manipulator, Vu proposed a robust adaptive control strategy based on a
fuzzy wavelet neural network system with dynamic structure. The control strategy can
effectively reduce system error and can improve the control accuracy of the manipulator
system [3,4]. Concerning the problem of the unknown dynamic model of a manipulator,

Appl. Sci. 2021, 11, 8146. https://doi.org/10.3390/app11178146 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7181-9935
https://orcid.org/0000-0002-9243-6682
https://orcid.org/0000-0002-1332-6566
https://orcid.org/0000-0001-8281-5323
https://orcid.org/0000-0002-7339-5045
https://orcid.org/0000-0003-4681-9129
https://orcid.org/0000-0001-5497-3623
https://doi.org/10.3390/app11178146
https://doi.org/10.3390/app11178146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11178146
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11178146?type=check_update&version=2

Appl. Sci. 2021, 11, 8146 2 of 18

Yu proposed an adaptive neural network tracking control strategy based on a disturbance
observer, which is used to compensate for the unknown disturbance of the system [5]. Jung
proposed an improved sliding mode control method based on an RBF neural network to
solve the problem of nonlinear function gain selection of a sliding mode controller and the
uncertainty of the three-link manipulator model [6].

The hybrid control strategy of neural networks [7] and classical strategy can improve
the control performance of the manipulator and can improve its application in many
fields, such as stirring, welding, polishing, and assembly. However, with continuous
improvement in industrial production accuracy, the neural network model’s uncertainty
compensation has been unable to meet control accuracy requirements. Therefore, the deep
neural network algorithm was introduced into manipulator control. Due to its strong
perception and decision-making ability, deep reinforcement learning can perceive the
response of the environment to change and improve the accuracy of the behavior of the
agent. Therefore, deep reinforcement learning is more widely used in deep neural network
algorithms [8,9].

Deep Reinforcement Learning (DRL) is an artificial intelligence method that combines
deep learning with a perceptual ability and reinforcement learning with a decision-making
ability. DRL can be divided into two categories: value-based function and strategy-based
gradient. The value-based learning algorithm is mainly an approximate representation
of the value function. The representative algorithms are the Deep Q Network (DQN)
algorithm, Nature DQN algorithm, Double DQN algorithm [10], prioritized replay DQN
algorithm [11], and Dueling DQN algorithm [12]. The representative algorithm based
on strategy learning is the Policy Gradient algorithm [13]. The algorithms that combines
strategy and value are the Actor-Critic algorithm [14], the Deep Deterministic Policy
Gradient (DDPG) algorithm, and the Asynchronous Advantage Actor-Critic (A3C) [15].
The algorithms are summarized in Table 1 [16].

Table 1. Classical Deep reinforcement learning algorithms.

Classification Algorithm Algorithm Name Algorithm Improvement

Nature DQN Two identical Q network structures.
Value-based
reinforcement learning
(DQN)

Double DQN
A choice of action between
decoupling target Q value and the
calculation of target Q value .

Prioritized replay
DQN The sample is prioritized.

Dueling DQN
The value function of the Q network
is divided into two parts: value
function and advantage function.

Strategy-based
reinforcement learning
method

Policy gradient Value-based methods are replaced by
policy-based methods.

Actor-critic
The two methods, namely
policy-based and value-based, are
combined.

Hybrid algorithm
actor-critic

Asynchronous
advantage
actor-critic (A3C)

Asynchronous training framework,
network structure optimization, and
evaluation point optimization. A
general asynchronous concurrent
reinforcement learning framework

Deep
deterministic
policy gradient
(DDPG)

Two actor networks and two critic
networks, a total of four neural
networks, are used to update the
model parameters iteratively.

Appl. Sci. 2021, 11, 8146 3 of 18

DRL has been proven to be effective in solving complex control problems of manipu-
lators in OpenAI, such as operating [17], grasping [18,19], and mobile tasks [20,21]. Luo
applied the DRL strategy to the assembly task of a manipulator. The device completed
a task that could not be realized using the traditional control strategy [22]. Through the
priority division of the DRL network, Wu realized high-precision millimeter-scale auto-
matic assembly technology [23]. Wen designed an obstacle avoidance algorithm based on
DDPG, which solved the convergence problem of the obstacle avoidance motion of the
manipulator and ensured its continuity and stability [24].

The contribution of this paper is to propose a data-driven snake manipulator control
strategy to solve the control problem of snake manipulators in some complex environments.
The main work is as follows:

(1) Based on the model control method, a control system of a two-link model snake
manipulator based on DDPG was designed. First, according to the structure of the
snake manipulator and the Lagrangian dynamic equation, the dynamic model of
the two-link snake manipulator was established. Second, the Q network model and
action network model of the DDPG agent were designed. Finally, the simulation
results show that the control strategy based on DDPG has good convergence and
strong anti-jamming ability.

(2) In order to solve the problem of model uncertainty, a data-driven control method
of the snake manipulator is proposed. When the number of connecting rods of
the serpentine manipulator increases and the environment becomes complex, it is
difficult to establish the model of an integral snake manipulator that renders the
control effect of the model-based control strategy poor. In view of this, a data-driven
control method based on DDPG is proposed. First, the data-driven control method
requires a large number of input and output data, and the data set was established
by using the results of the traditional control method as the training sample of this
method. Second, the DDPG agent model was designed according to the input and
output parameters. Finally, based on simulation and comparative results analysis,
the feasibility and superiority of the control method was verified.

The main sections of this paper are as follows. The Section 1 mainly introduces
the control methods currently applied to the manipulator. It briefly combs through the
control method of the manipulator, focusing on the DRL algorithm and its application in
the manipulator. Based on this, aiming at the problems in the application of the snake
manipulator, the main innovation of this paper is pointed out. Combined with previous
research work on DRL in manipulators, Section 2 outlines the chosen DRL algorithm and
DDPG algorithm used in this study. The main structure, workflow, and related calculation
methods of DDPG are described in detail. In the Section 3, the design of the DDPG
control method simulation of the two-link snake manipulator is explained. The method of
establishing the environment object and agent of the DDPG control system is introduced in
detail. This mainly includes the two-link dynamic model of the serpentine manipulator, Q
network design, and action network design. The simulation results show that the DDPG
algorithm is effective and superior in the control of snake manipulators. Section 4, based on
the research outlined in the Section 3, reports that it is difficult to establish the entire snake
manipulator model, with significant error in the accuracy of the model, which reduces the
stability and accuracy of the control system. In view of this, a data-driven control method of
the snake manipulator is proposed in this paper. The simulation experiment of this method
was designed, and the simulation results verify the feasibility of the method. In addition,
this method not only avoids the complicated task of establishing the manipulator model
but also improves the stability and accuracy of the control system.The data-driven control
algorithm uses the existing motion data of the serpentine robot. All the motion data of
the serpentine robot are integrated, and its motion database is established. The DDPG is
used to train using the data in the database, and the current best motion path is obtained.
With the increasing amount of data in the database, the accuracy and stability of robot
control continue to improve. Section 5 summarizes the work of this paper.

Appl. Sci. 2021, 11, 8146 4 of 18

2. Deep Deterministic Policy Gradient

In the study of motion control of a two-link manipulator, Jianping Wang compared
3 kinds of DRL algorithms: A3C, DPPO, and DDPG. He found that the DDPG algorithm
has the best convergence effect on the control system. The convergence reward value of
the algorithm is the most stable [25]. Since the DDPG algorithm has a better control effect
on the manipulator [26] and the motion of the snake manipulator is mainly continuous,
the application of the DDPG algorithm was studied in this work. DDPG adds a determin-
istic strategy network on the basis of the DQN to output action values; thus, compared
with the DQN, it only needs to learn the Q network, while DDPG also needs to learn the
strategy network. The network structure of DDPG is shown in Figure 1.

UO Noise Optimizer Optimizer

Online Strategy
Network

Target Strategy

Network

Target Q

Network

Online Q

Network
Snake Robot

Sample Bank

a
t

 s
t

 1s , ,
t t t
r s

 1storage s , , ,
t t t t
a r s

sampling

soft update reward

 1N* s , , ,
t t t t
a r s

 '

1
s
t

 s
t

a

update update Q

strategy

gradient Q

strategy

gradient

Sampling

Strategy

Figure 1. DDPG network structure.

From the figure, we can observe that DDPG has four networks: the current action
network, the target action network, the current Q network, and the target Q network.
The current action network is mainly used to update the policy network parameter δµ.
The network selects the current action A through the current state S. By utilizing target
action network sampling, one state S′ selects the optimal next action, and its network
parameter δµ′ duplicates the parameter value of δµ. The current Q network is mainly used
to update the value network parameter θQ and to calculate the current Q value. The target
Q network is used to calculate the Q′ part of the Q value, and the network parameter δQ′

copies the parameter θQ. The two processes of updating network parameters are different.
The current network uses the SGD algorithm to update network parameters. The target
network uses the soft update algorithm to update the network parameters, as shown
in Equation (1). By using the soft update algorithm, the change in the target network
parameters is small, and the training is easy to converge, but the learning speed is slow.

θQ′ ← δθQ + (1− τ)θQ′

θµ′ ← δθµ + (1− τ)θµ′
(1)

In Equation (1), θQ′ denotes the target Q network parameters. θQ denotes the current
Q network parameters. The current network parameters θµ and target network parameters
θµ′ are constructed by policy µ. δ is the update coefficient, and the value is often 0.1 or 0.01.

Appl. Sci. 2021, 11, 8146 5 of 18

For the definition of the network loss function, the current Q network loss function is
similar to that in the DQN, mainly using mean square error, as shown in Formula (2).

Loss =
m

∑
i=1

(ri −Q(si, ai, ω))2 (2)

In Formula (2), Loss denotes the loss function. ri denotes the reward value of i
moment. Q(si, ai, ω) denotes the current Q network Q value calculation function. Since the
deterministic strategy is adopted in the current action network, its loss function is different
from that of PG and A3C.

5J (θ) =
m

∑
i
[5aQ(si, ai, ω) |s=si ,a=πθ(s) ∗5θ∗πtheta(s) |s=si] (3)

In Formula (3),5 denotes the gradient decreases. πθ(s) denotes the action selection
strategy. For the loss function, the greater the Q value of the target action, the smaller the
Loss. The smaller the Q value, the greater the Loss; thus, the status network returns to a
negative Q value.

J(θ) = −
m

∑
i

Q(si, ai, ω) (4)

In Formula (4), si denotes the state of the manipulator at i moment, including joint
angle and angular velocity. ai denotes the moment value of the manipulator at time i,
which is transformed from the state si to si+1 through the dynamic model.

rTime =
Time

∑
i=t

γi−t ∗ r(si, ai) (5)

In Formula (5), γ denotes the weighted value of the reward, the range of the value
is
[
0 1

]
, and Time denotes the total time. r(si, ai) is used to calculate the single-step reward

value obtained by the dynamic model after performing the behavior ai in the state si. rTime
denotes the weighted total value of all single-step awards r from the current state to a
certain state throughout the process.

3. Simulation of DDPG Control Based on 2-Link Model

In order to verify whether the DDPG algorithm can be feasibly and effectively applied
to the space manipulator, a DDPG control simulation based on two connecting rods was
designed, as outlined in this section. In addition, a 2-link model lays the foundation for the
establishment of the whole model.

3.1. Overall Design Scheme of Control System

The DDPG-based control system is shown in Figure 2. According to the given param-
eters of the target trajectory point, the angular value, angular velocity value, and angular
acceleration value of each joint moving to the target point are calculated by using the ridge
method. These parameters are used as input to the DDPG controller. The DDPG agent
is trained, saving the agent that meets the conditions, and finally the state value with the
lowest reward value is the output. The position of the actual trajectory point is obtained by
the forward kinematics of the manipulator. The control precision value is obtained from
the error between the actual position and the target position.

Appl. Sci. 2021, 11, 8146 6 of 18

Target

Trajectory Point

Forward

Kinematics

Disturbance

DDPG Agent

Inverse

Kinematics

Actual

Trajectory Point

Sampling

Dynamics

P

t
Reward r Final , ,

Initial , , t

t

t

t+1

1

1

t

t

Figure 2. Control block diagram based on DDPG control system.

3.2. Environmental Object Establishment

A modular design method was adopted for the snake manipulator in this study to
facilitate equipment maintenance. In order to improve the flexibility of the manipulator,
a 1-joint 2-degrees-of-freedom structure was adopted to enable the manipulator to move in
both the yaw and pitch directions, and the three-dimensional motion of the manipulator
was realized. A structure diagram of the snake manipulator model is shown in Figure 3.
Due to the large number of structural joints, a 2-joint structure was used as an example in
this study to establish the dynamic model.

Figure 3. Structural model diagram of snake manipulator. (A) is the connecting rod structure and (B)
is the universal joint structure.

(1) Definition of input signal: In this experiment, the joint torque of the 2-link manipu-
lator was used as the input signal of the environment object.

(2) Establishing a dynamic equation to evaluate the environment: The dynamic model
of the two connecting rods was established according to the Lagrangian dynamic method.
The joint coordinate system of the manipulator is shown in Figure 4. The yaw angle is α.
The pitch angle is β.

Appl. Sci. 2021, 11, 8146 7 of 18

Figure 4. Joint coordinate system.

Suppose that the mass of the connecting rod is concentrated at the center of mass;
the inertia tensor of the connecting rod is set to 0. Therefore, according to the Lagrange
formula, the kinetic energy and potential energy of each connecting rod are expressed
as follows.

Ek1 =
1
2

m1ṖT
c1Ṗc1 (6)

Ep1 = m1gLc1sin(β1) (7)

Ek2 =
1
2

m2ṖT
c2Ṗc2 (8)

Ep2 = m2g(asin(β1) + Lc2sin(β1 + β1)) (9)

In Formulas (6)–(9), Ek1 denotes the kinetic energy of the first connecting rod; Ep1
denotes the potential energy of the first connecting rod; Ṗc1 denotes the velocity at the center
of mass of the first connecting rod; “g” denotes gravitational acceleration; “a” represents
the length of the connecting rod; and Lc1 denotes the length of the center of mass of the
first connecting rod, etc. The definitions are consistent for all formulas in this paper.

Pc1 =

 Lc1cos(α1)cos(β1)
Lc1sin(β1)

−Lc1sin(α1)cos(β1)

 (10)

Pc1 =

 a ∗ cos(α1)cos(β1) + Lc2cos(α1 + α2)cos(β1 + β2)
a ∗ sin(β1) + Lc2sin(β1 + β2)

−a ∗ sin(α1)cos(β1)− Lc2sin(α1 + α2)cos(β1 + β2)

 (11)

θ1 =
[
0 α1 β1

]T denotes the rotation angle of joint 1. θ̇1 =
[
0 α̇1 β̇1

]T denotes

the angular velocity of joint 1. θ̈1 =
[
0 α̈1 β̈1

]T denotes the angular acceleration of
joint 1. The angular value, angular velocity, and angular acceleration of joint 2 are the
same as those of joint 1. Set the center of mass of the connecting rod to the center of the
connecting rod, such that Lc =

1
2 a.

According to the position of the centroid point, the expressions of Formulas (6) and (8)
can be obtained, which are ṖT

c1Ṗc1 and ṖT
c2Ṗc2 of Formulas (6) and (8), as shown in Formulas (12)

and (13).
ṖT

c1Ṗc1 = L2
c1cos(β1)

2α̇1
2 + L2

c1 β̇1
2 (12)

Appl. Sci. 2021, 11, 8146 8 of 18

ṖT
c2Ṗc2 = a2cos(β1)

2α̇1
2 + a2 β̇1

2
+ L2

c2(β̇1 + β̇2)
2

+ L2
c2(cos(β1 + β2))2(α̇1 + α̇2)

2

+ 2aLc2cos(β1)cos(α2)cos(β1 + beta2)(α̇1
2 + α̇2)

+ 2aLc2sin(β1)cos(α2)sin(β1 + beta2)(β̇1
2
+ β̇2)

+ 2aLc2cos(β1)cos(β1 + β2)(β̇1
2
+ β̇2)

(13)

Lc2 in Formulas (12) and (13) denotes the centroid length of connecting rod 2, which is
only half of the length of a connecting rod. Formula (12) is substituted into Formula (6).
Formula (13) is substituted into Formula (8). The total kinetic energy of connecting rod 1
and connecting rod 2 can be calculated.

Ek = Ek1 + Ek2

=
1
2

θ̇T H(θ)θ̇
(14)

The Lagrangian dynamic formula deduces the dynamic equation by making use of the
difference between the kinetic energy and the potential energy of the mechanical system
of the manipulator. The second kind of Lagrange equation is shown in Formula (15).
The dynamic equation of the manipulator is shown in Formula (16).

d
dt

∂L
∂θ̇
− ∂L

∂θ
= τ (15)

H(θ)θ̈ + C(θ, θ̇))θ̇ + G(θ) = τ (16)

In Formula (16), H(θ) denotes the equivalent inertia matrix. C(θ, θ̇) denotes a Coriolis
matrix. G(θ) denotes the gravity matrix. τ denotes the moment. The complete dynamic
expression equation Formula (17) can be deduced according to Formulas (15) and (16).

θ̈ = [H(θ)]−1(τ − C(θ, θ̇)θ̇ − G(θ)) (17)

(3) Calculation and updated observations: According to the dynamic equation, the an-
gular acceleration of the joint at the next moment is calculated. The joint angular acceler-
ation integral operation is used to calculate the corresponding angle value and angular
velocity value. It is outputted as an observation of the agent.

(4) Calculation of the reward value: The reward value of each sampling is calculated
according to the angle value and angular velocity value. The reward value for each process
is the sum of all sample reward values. The simulation time for each episode is set to 10 s,
and the sampling time is set to 0.05 s. Each episode is sampled 200 times. The process
reward value function is set to the following.

rt = −
200

∑
i

7(θi1 + θi2)
2 + (˙θi1 + ˙θi2)

2 (18)

In Formula (18), rt denotes the sum of the reward values of the t process. θi1 denotes
the angle value of joint 1 during the i time sampling. ˙θi1 denotes the angle velocity of joint
1 during i time sampling. Joint 2 is defined in the same manner.

3.3. DDPG Agent Establishment

(1) Q network design. The Q network uses a deep convolution neural network with
three inputs and one output. The three inputs are the observed value (joint angle value[
θ1 θ2

]
; the angular velocity value

[
θ̇1 θ̇2

]
), and the action value (torque value

[
τ1 τ2

]
),

and the output is the evaluation reward value. The input parameter of the observed value
input is eight. The network is set to the first full connection layer to set the number of nodes
as 128. The activation function is ReLU. The number of nodes in the second layer of the

Appl. Sci. 2021, 11, 8146 9 of 18

full connection layer is 200. The input parameter of the action value is four. The number of
nodes in the fully connected layer is 200. The final output parameters of the full connection
layer of the three inputs are added through the ReLU activation function. The setting
parameter of the third layer is one. The output value can be obtained. The Q network
configuration is shown in Figure 5. The network optimizer is set to the adaptive matrix
estimation (adam) optimizer. The learning rate is set to 0.0005.

ReLU+

1´1´128 1´1´200

1´1´200
4´1´1

8´1´1

1´1´1

fully connected

fully connected +ReLU

input

output

Figure 5. Q network structure design.

(2) Action network design. The action network adopts a deep convolution network
with one input and one output. The input is the observed value. The output end is the
torque value

[
τ1 τ2

]
. The input parameter is eight. The network is set to the first full

connection layer to set the number of nodes to 128. The activation function is ReLU.
The second full connection layer sets the number of nodes 200. The activation function
is ReLU. The number of nodes in the full connection layer of the third layer is set to two.
The activation function is tanh. The magnification of the scale layer is five times. The action
network configuration is shown in Figure 6. The network optimizer is set to the adaptive
matrix estimation (adam) optimizer. The learning rate is set to 0.001.

1´1´128 1´1´200

8´1´1

1´1´2

fully connected +ReLU

fully connected +tanh

1´1´2

scaling

input

output

1´1´2

Figure 6. Action network structure design.

(3) Parameter setting of agent training: Training is set at 1800 episodes with 200 samples
per episode. The training end mark is the point at which the total value of a certain episode
reward is zero or the required number of training episodes is completed.

3.4. Analysis of Experimental Results

This simulation design is a single-point control precision simulation experiment.
The sampling time is 0.02 s. Single episode time is 10 s, with a total of 1800 episodes. Two
simulation experiments were designed. They involve the additive torque disturbance value[

1 1
1 1

]
and undisturbed value. The training progress is shown in Figures 7 and 8.

Appl. Sci. 2021, 11, 8146 10 of 18

Figure 7. Undisturbed training chart.

Figure 8. Diagram of disturbance training.

In Figures 7 and 8, the blue curve represents the change in the total reward value for
each episode of training. The red curve represents the change curve of the average value of
the total episode reward. The cyan curve is the Q value change curve for each episode of the
evaluation network. With the increase in the number of training episodes, the fluctuation
of the curve tends to be stable, the network finally converges, and the agent reaches the
optimal value in this state. Overall, there is no difference between the two situations. Due
to the anti-disturbance adjustment of the controller, the curve fluctuation is different in
early training. It is proven that the DDPG controller has a strong anti-disturbance ability
and strong stability.

Through the 2-joint experimental simulation of the snake manipulator, it is proven
that the DDPG algorithm can improve the anti-interference and stability of the manipulator
control system. Through many repetitions of training and learning, the position control
accuracy of the end of the manipulator can be improved. However, it is difficult to establish
the overall model of the snake manipulator. Thus, it is difficult to realize the model-based
DDPG control method.

4. Control Simulation of Snake Manipulator Based on Data-Drive

According to the 2-link model, the dynamic model of the snake manipulator is complex
and difficult to establish. The modeling of the whole snake manipulator not only is difficult
but also involves a large number of parameters. According to the model-free data-driven
control method, a data-driven control method based on DDPG is proposed for which

Appl. Sci. 2021, 11, 8146 11 of 18

an accurate snake manipulator and environment model are not required. This method
avoids the influence of model uncertainty on the control system to improve the safety and
reliability of the system.

4.1. Data Set Establishment

Since the snake manipulator mainly adopts the joint modular design method, as shown
in Figure 3, according to the 2-link model of the snake manipulator, the overall 10-link
snake manipulator model can be established. By using the traditional motion control
method of the snake manipulator, the motion parameters of the snake manipulator are
obtained. The data in the database are mainly based on the snake manipulator using the
firework-optimized BP neural network PID (FWA-BPNN-PID) control method to perform
varied trajectory motion. Part of the trajectory is shown in Figure 9.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4x
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

z

expected trajectory

FWA-BPNN-PID

(a) Circular trajectory motion diagram.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

z

expected trajectory

FWA-BPNN-PID

(b) Zigzag trajectory motion diagram.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x

-0.6

-0.4

-0.2

0

0.2

0.4

z

expected trajectory

FWA-BPNN-PID

(c) Ellipse trajectory motion diagram.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

x

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

z

expected trajectory

FWA-BPNN-PID

(d) Sinusoidal trajectory motion diagram.

Figure 9. Partial trajectory motion diagram of snake arm in the database.

The data set of this simulation takes the origin as the center and 0.3 as the radius.
The endpoint trajectory moves counterclockwise from the point (0.3), as shown in Figure 9a.
Since the trajectory of the endpoint in the figure is designed on the plane of y = 0.65, the co-
ordinate value y of the endpoint of the track is expected to remain the same. The coordinate
values of the output result of the FWA-BPNN-PID method in Figure 9a are used as the
input data set, and the sampling data are shown in Figure 10b. The desired track position
coordinate values in Figure 9a are taken as the output data set, and the sampling data are

Appl. Sci. 2021, 11, 8146 12 of 18

shown in Figure 10b. The three curves in Figure 10 represent the values of the coordinate
location in the data set.

0 20 40 60 80 100

adoption times

-0.4

-0.2

0

0.2

0.4

0.6

0.8

o
b
s
e
r
v
a
t
i
o
n

x

y

z

(a) Input data set.

0 20 40 60 80 100

adoption times

-0.4

-0.2

0

0.2

0.4

0.6

0.8

e
x
p
e
c
t
i
o
n

x

y

z

(b) Output data set.

Figure 10. Input and output data set.

4.2. Analysis of Simulation Results

A new DDPG agent was built according to the method described in Section 3.3.
The observed value of the agent is the coordinate position

[
xo yo zo

]T. The output

action value is the coordinate location point
[
xa ya za

]T. The reward value function is
set to the error between the action value and the expected value. The sampling time of the
training network is 1 s, the simulation time is 100 s, and the number of samples for a single
episode is 100. The number of sample training episodes is set to 3000. The 3000 training
results of the agent are shown in Figure 11. In Figure 11, it can be found that with the
increase in training times, the reward value of the sample gradually tends toward zero,
and the gap between the sample Q value and the sample Q value decreases and tends
to be stable. When the sample reward value tends to be stable, it means that the system
has converged and the network training has reached the current best state. The closer the
sample reward value is to zero, the smaller the system error value is and the higher the
system accuracy is.

0 500 1000 1500 2000 2500 3000

episode number

-300

-250

-200

-150

-100

-50

0

50

e
p
i
s
o
d
e

r
e
w
a
r
d

episode reward

average episode

episode Q0

Figure 11. One hundred samples for a single episode and 3000 training maps for agents.

The 12th, 1000th, and 3000 training states were randomly selected, and the error values
are shown in Table 2. The output results and error changes of the control system during
training are shown in Figure 12.

Appl. Sci. 2021, 11, 8146 13 of 18

0 20 40 60 80 100

adoption times

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

e
r
r
o
r

0 20 40 60 80 100

adoption times

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a
c
t
i
o
n

x

y

z

(a) 12th training state.

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

10

e
r
r
o
r

10
-3

0 20 40 60 80 100

adoption times

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a
c
t
i
o
n

x

y

z

(b) 1000th training state.

0 20 40 60 80 100
adoption times

1

2

3

4

5

6

7

8

e
r
r
o
r

10
-3

0 20 40 60 80 100

adoption times

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a
c
t
i
o
n

x

y

z

(c) 3000th training state.

Figure 12. Sampling of the system training process: (left) error curve; (right) output value.

Appl. Sci. 2021, 11, 8146 14 of 18

Figure 12 shows the 12th training state in the initial stage, the 1000th in the middle of
the training, and the 3000th at the end of the training. The three pictures on the left are error
curves, which represent the data output error values for the database. The average errors
of the 12th, 1000th, and 3000th training states are 0.0142, 0.006, and 0.0034, respectively.
The specific data are shown in Table 2. The three pictures on the right side of Figure 12 are
the output action graphs of the three training states, which clearly show that the curves
become smoother and that the fluctuations are reduced. The fluctuation of the output curve
represents the stability and accuracy of the output of the control system. With the increase
in the number of training episodes, the stability of the system increases.

Table 2. Training error data of data-driven control method based on DDPG.

FWA-BPNN-PID 12th 1000th 3000th

Average 0.0119 0.1420 0.0060 0.0034
MSE (10−5) 2.543 8.119 0.265 0.284

It can be found from Table 2 that, with the increase in training times, the control effect
of the snake manipulator control system is better, and the control accuracy is continuously
improved. In addition, compared with the traditional control methods, the control ac-
curacy and stability of the snake manipulator control system are significantly improved,
which verifies the effectiveness and superiority of the data-driven control algorithm based
on DDPG.

4.3. Comparative Experimental Analysis

In order to test the influence of intelligent agent single-episode training times and
agent network setting on the control system, a comparative experiment was designed.
The first group of simulations is the original network, but the number of single-process
training episodes is 10. The simulation results are shown in Figure 13. In the second group
of simulations, the number of single training episodes is set to 10, and the agent action
network adds a hidden layer. The hidden layer is set to the full connection layer, and the
number of network nodes is set to 150. The simulation results are shown in Figure 14.
The third group of simulations is based on the second group of experiments. The number
of single training episodes is set to 100. The simulation results are shown in Figure 15.

0 500 1000 1500 2000 2500 3000

episode number

-150

-100

-50

0

e
p
i
s
o
d
e

r
e
w
a
r
d

episode reward

average episode

episode Q0

(a) Training chart.

0 10 20 30 40 50 60 70 80 90

adoption times

0.02

0.025

0.03

0.035

0.04

0.045

e
r
r
o
r

(b) Sampling error curve.

Figure 13. The first group of simulations.

As observed in Figure 13a, the training simulation chart converges slowly and fluctu-
ates greatly compared with Figure 11. The average error of the sampling sample is 0.0301,
and the Mean Square Error (MSE) is 4.7225× 10−5. Compared with the simulation of
100 samples, the average error and MSE are larger. This shows that the number of training

Appl. Sci. 2021, 11, 8146 15 of 18

samples is too small, which results in deterioration of the accuracy and stability of the
control system.

0 500 1000 1500 2000 2500 3000

episode number

-150

-100

-50

0

e
p
i
s
o
d
e

r
e
w
a
r
d

episode reward

average episode

episode Q0

(a) Training chart.

0 10 20 30 40 50 60 70 80 90

adoption times

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0.03

0.031

e
r
r
o
r

(b) Sampling error curve.

Figure 14. The second group of simulations.

When comparing the training chart of Figure 14a to the training chart of Figure 13a ,
we can observe that, after adding the network, the fluctuation value and convergence speed
of the network do not change much. However, after increasing the network, the average
error is 0.0271, and the MSE is 8.2381× 10−6. From numerical analysis, the increase in the
number of network layers improves the accuracy and stability of the system.

0 500 1000 1500 2000 2500 3000

episode number

-700

-600

-500

-400

-300

-200

-100

0

e
p
i
s
o
d
e

r
e
w
a
r
d

episode reward

average episode

episode Q0

(a) Training chart.

0 20 40 60 80 100

episodetimes

3

4

5

6

7

8

9

10

11

e
r
r
o
r

10
-3

(b) Sampling error curve.

Figure 15. The third group of simulations.

By comparing the training chart of Figure 15a with that of Figure 11, it can be con-
cluded that the convergence speed of the network is faster when the number of samples is
the same. However, there are large fluctuations in the early stage, and the overall training
time is longer. The average error value of 0.0061, and the MSE value of 1.1585× 10−6 can
be obtained from the sampling error curve. Compared with the original network, the con-
trol accuracy of the simulation training system is reduced, but the stability is improved.
The simulation results are shown in Table 3.

Appl. Sci. 2021, 11, 8146 16 of 18

Table 3. Comparison of simulation training error.

Original 1st Group 2nd Group 3rd Group

Average 0.0034 0.0301 0.0271 0.0061
MSE (10−5) 0.284 4.7225 0.8238 0.1156

It can be observed from Table 3 that the number of samples and the number of network
layers have an impact on the stability and accuracy of the system. Too few samples result in
deterioration of the accuracy and stability of the control system. The control performance
of the system can be improved by increasing the number of samples and training network
layers. However, when the number of samples reaches a certain value, increasing the
number of network layers can continue to improve the stability of the system. This,
however, results in a decline in the accuracy of the system. In addition, increasing the
number of samples and the number of network layers results in a longer training time
of the system. In practical application, according to the needs of control, the number of
samples of training or the number of network layers can be increased. This adjusts the
manipulator control speed, stability, and accuracy to achieve a relative balance.

5. Summary and Prospects

In this study, the DRL algorithm was applied to a snake manipulator to verify whether
it can improve its control accuracy. Through the study of the theory of DRL and the
continuity of the action of the snake manipulator, the DDPG method is proposed as a
means of designing the controller of the manipulator’s joint. A model-based DDPG control
method is proposed to verify the effectiveness and superiority of the DDPG controller
through the control of two joints, the simulation object environment and the network
structure of the agent are established. The agent was trained, and the simulation without
disturbance and torque disturbance was carried out. The simulation results verify the
feasibility of the method. However, through the modeling of the 2-link snake manipulator,
it was found that it is difficult to establish the entire manipulator model. It is difficult to
realize the model-based DDPG control method for the whole manipulator control system.
In order to solve the control problem of an unknown model of the snake manipulator,
a data-driven control method based on DDPG is proposed. It does not need to establish
an accurate manipulator model and avoids the influence of the accuracy error of the
manipulator model. The training data were established according to the expected trajectory
and the actual output trajectory of the traditional control method. Compared with the
traditional control algorithm, it is proven that the data-driven control system based on
DDPG has higher accuracy and better stability. At present, the control system of the
snake manipulator is only based on data theory. In order to establish a complete snake
manipulator motion library for training, the actual manipulator motion data and a large
number of trajectory data are needed. The trained control system has a good ability to
control known movements. For unknown actions, it also achieves a better control effect.
By utilizing continuous learning, the strong adaptability of the snake manipulator control
system can be realized.

Author Contributions: Conceptualization, K.H. and L.T.; methodology, K.H.; software, L.T.; vali-
dation, L.T., C.W., L.W.and Q.Z.; formal analysis, L.T., L.W., and M.X.; investigation, L.T. and G.Q.;
resources, K.H., Q.Z.; data curation, K.H.; writing—original draft preparation, L.T., C.W., and L.W.;
writing—review and editing, L.T., C.W., and L.W.; visualization, L.T., C.W., and L.W.; supervision,
K.H.; project administration, K.H.; funding acquisition, K.H. All authors have read and agreed to the
published version of the manuscript.

Funding: Research in this article is supported by the National Natural Science Foundation of Chinese
(42075130, 61773219, and 61701244), the key special project of the National Key R&D Program
(2018YFC1405703), and I would like to express my heartfelt thanks. I would like to express my
heartfelt thanks to the reviewers who submitted valuable revisions to this article.

Appl. Sci. 2021, 11, 8146 17 of 18

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to the data being provided publicly.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and code used to support the findings of this study are
available from the corresponding author upon request (001600@nuist.edu.cn).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hou, Z.; Xu, J. Review and prospect of data-driven control theory and method. J. Autom. 2009, 35, 650–667.
2. Mendes, N.; Neto, P. Indirect adaptive fuzzy control for industrial robots: A solution for contact applications. Expert Syst. Appl.

2015, 42, 8929–8935. [CrossRef]
3. Yen, V.; Nan, W.; Cuong, P.; Quynh, N.; Thich, V. Robust adaptive sliding mode control for industrial robot manipulator using

fuzzy wavelet neural networks. Int. J. Control 2017,15, 2930–2941. [CrossRef]
4. Yen, V.; Nan, W.; Cuong, P. Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial

robot manipulators. Neural Comput. Appl. 2019, 31, 6945–6958. [CrossRef]
5. Yu, X.; He, W. Research on adaptive neural network tracking control of manipulator based on disturbance observer. J. Autom.

2019, 45, 1307–1324.
6. Jung, S. Improvement of tracking control of a sliding mode controller for robot manipulators by a neural network. Int. J. Control

Autom. Syst. 2018, 16, 937–943. [CrossRef]
7. Xia, M.; Zhang, X.; Weng, L.; Xu, Y. Multi-stage Feature Constraints Learning for Age Estimation. IEEE Trans. Inf. Forensics Secur.

2020, 15, 2417–2428. [CrossRef]
8. Xia, M.; Wang, K.; Song, W.; Chen, C.; Li, Y. Non-intrusive load disaggregation based on composite deep long short-term memory

network. Expert Syst. Appl. 2020, 160, 113669. [CrossRef]
9. Xia, M.; Wang, K.; Zhang, X.; Xu, Y. Non-intrusive load disaggregation based on deep dilated residual network. Electr. Power

Syst. Res. 2019, 170, 277–285. [CrossRef]
10. Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference on

Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 1–13.
11. Horgan, D.; Quan, J.; Budden, D.; Barth-Maron, G.; Hessel, M.; Hasselt, H. Distributed prioritized experience replay. 2018.

Available online: https://arxiv.org/abs/1803.00933 (accessed on 6 August 2021).
12. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement learning.

In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1995–2003.
13. Sutton, R.; Mcallester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approximation.

Submitt. Adv. Neural Inf. Process. Syst. 1999, 99, 1057–1063.
14. Barto, A.; Sutton, R.; Anderson, C. Neuron like elements that can solve difficult learning control problems. IEEE Trans. Syst.

Man Cybern. 1970, 13, 834–846.
15. Mnih, V.; Badia, A.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Kavukcuoglu, K. Asynchronous methods for deep reinforcement

learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1928–1937.
16. Weng, L.; Tian, L.; Hu, K.; Zang, Q.; Chen, X. Overview of robot force control algorithms based on neural network. In Proceedings

of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 6800–6803.
17. Levine, S.; Finn, C.; Darrell, T. End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 2016, 17, 1334–1373.
18. Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. In Proceedings of the

2016 IEEE International Conference on Robotics and Automation(ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3406–3413.
19. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning

and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [CrossRef]
20. Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Wierstra, D. Continuous control with deep reinforcement learning.

Comput. Ence 2015, 8, 1–10.
21. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International

Conference on Machine Learning, Lille, France, 6–11 June 2015; pp. 1889–1897.
22. Luo, J.; Solowjow, E.; Wen, C.; Ojea, J. A.; Agogino, A. Deep reinforcement learning for robotic assembly of mixed deformable and

rigid objects. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1–5 October 2018; pp. 1–5.

23. Wu, X.; Zhang, D.; Qin, F.; Xu, D. Deep reinforcement learning of robotic precision insertion skill accelerated by demonstrations.
In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC,
Canada, 25–28 August 2019; pp. 1651–1656.

24. Wen, S.; Chen, J.; Wang, S.; Zhang, H.; Hu, X. Path planning of humanoid arm based on deep deterministic policy gradient. In
Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15
December 2018; pp. 1755–1760.

http://doi.org/10.1016/j.eswa.2015.07.047
http://dx.doi.org/10.1007/s12555-016-0371-5
http://dx.doi.org/10.1007/s00521-018-3520-3
http://dx.doi.org/10.1007/s12555-017-0186-z
http://dx.doi.org/10.1109/TIFS.2020.2969552
http://dx.doi.org/10.1016/j.eswa.2020.113669
http://dx.doi.org/10.1016/j.epsr.2019.01.034
https://arxiv.org/abs/1803.00933
http://dx.doi.org/10.1177/0278364917710318

Appl. Sci. 2021, 11, 8146 18 of 18

25. Wang, J.; Wang, G.; Mao, X.; Ma, Q. Motion control method of two-link manipulator based on deep reinforcement learning.
Comput. Appl. 2021, 41, 1799–1804. (In Chinese with English Abstract)

26. Li, Z.; Ma, H.; Ding, Y.; Wang, C.; Jin, Y. Motion Planning of Six-DOF Arm Robot Based on Improved DDPG Algorithm. In
Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 3954–3959.

	Introduction
	Deep Deterministic Policy Gradient
	Simulation of DDPG Control Based on 2-Link Model
	Overall Design Scheme of Control System
	Environmental Object Establishment
	DDPG Agent Establishment
	Analysis of Experimental Results

	Control Simulation of Snake Manipulator Based on Data-Drive
	Data Set Establishment
	Analysis of Simulation Results
	Comparative Experimental Analysis

	Summary and Prospects
	References

