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Abstract: A war game between two matched fleets of equal size and capability is designed and
simulated in this work. Each fleet is composed of a carrier vessel (CV), a guided missile cruiser
(CG), and two guided-missile destroyers (DDGs). Each vessel is equipped with specific weapons,
including fighters, missiles, and close-in weapon system (CIWS), to carry out tactical operations. The
maneuverability, maximum flying distance, and kill probability of different weapons are specified.
Three goal options, a defense option and two more aggressive ones, are available to each fleet. A
particle-pair swarm optimization (P2SO) algorithm is proposed to optimize the tactical parameters
of both fleets concurrently according to their chosen options. The parameters to be optimized
include take-off time delay of fighters, launch time delay of anti-ship missiles (ASHMs), and initial
flying directions of fighters and ASHMs, respectively. All six possible contests between options are
simulated and analyzed in terms of payoff, impact scores on CV, CG, DDG, and the number of lost
fighters. Some interesting outlier cases are inspected to gain some insights on this game.

Keywords: war game; goal option; tactical optimization; particle-pair swarm optimization
(P2SO) algorithm

1. Introduction

War-gaming is a technique for exploring complex problems [1] (p. 7), is a tool for
exploring decision-making possibilities in an environment with incomplete and imperfect
information [1] (p. 3). War game participants may make decisions and take actions in a
game that even they would not have anticipated, if not for the game environment [1] (p. 3).
War-gaming provides structured but intellectually liberating safe-to-fail environments to
help explore what works and what does not, at relatively low cost, and is usually umpired
or adjudicated [2] (p. 5). Military wargaming was largely abandoned after World War II
and was revived in the early 1970s, inspired by commercial wargames [3] (p. 11).

A wargame is a combination of ‘game’, history and science [3] (p. 13). It offers unique
perspectives and insights that complement other forms of analysis or training on decision-
making in complex contexts when faced with a dynamic opponent [2] (p. 11). The value
of the war game is that decisions are not constrained by safety, rules of engagement, real-
world territorial boundaries, or training objectives. It is different from a training exercise,
which uses real forces [1] (p. 4). In a scenario-based warfare model, the outcome and
sequence of events affect and are affected by the decisions made by the players [4]. War
games are a pre-conflict way to test strategy. Experiential war games provide value to
game participants, while experimental war games provide value through the testing of
plans [1] (p. 2).

There has been an age-old debate about whether war games are a simulated exercise
on military confrontation as realistically as possible, or merely a game to be played and
enjoyed for its own sake [5] (p. 16). NATO defines a war game as a simulation of military
operation by whatever means, using specific rules, data, methods, and procedures [2] (p. 5).
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Ever booming PC capabilities facilitate computer war-games for entertainment, which also
drive a tide of viewing war games as a simulation, like other genres of games [3] (p. 7).

War games can be used to inform decisions by raising questions and insights, not to
provide a definitive answer [2] (p. 12). More robust conclusions can be drawn by playing
multiple games, perhaps with different scenarios and starting conditions [2] (p. 12).

War games immerse participants in an environment with the required level of realism
to improve their decision-making skills [2] (p. 5). A simulation might provide the engine
that determines outcomes, but is not the war game [2] (p. 7). The elements of a war
game include aims and objectives, an immersive gameplay scenario, data and sources to
build the setting, scenario and episodes within the war game, simulation of computer-
assisted, computerized or manual type to execute episodes, robust rules and procedures,
adjudication to determine the outcomes, analysis reliant on data and outcomes to help
understand what has happened during a war game and consolidate the benefits of war-
gaming [2] (pp. 7–8).

In this work, we design and simulate a war game between two matched fleets with
equal size and equal capability. Both fleets are equipped with the same weaponry and
follow the same rules of engagement. Each fleet has three strategical goal options to choose,
and the tactical parameters are optimized accordingly. Multiple games are then played
between the two fleets, and the simulation results are analyzed statistically to gain insights
and lessons. In this section, we will review references on tactical maneuvers and episodes
that are indispensable to the implementation of game simulation. Typical episodes in the
proposed game scenarios include target assignment, path planning, interception, chase
between pursuer(s) and evader(s), and simultaneous attack. War games between two
opposing parties will be reviewed in more details in the next section of Related Works.

Tactical maneuvering between pursuers and evaders has been widely studied in the
literature. In Reference [6], a multiagent pursuit-evasion (MPE) game was developed to
derive an optimal distributive control strategy for each agent. A graph-theoretic method
was used to model the interaction between agents. A mini–max strategy was developed to
derive robust control strategies at reduced complexity rather than solving the Hamilton–
Jacobi–Isaacs (HJI) equations of Nash equilibrium. In Reference [7], a guidance law for a
pursuer to chase multiple evaders was developed. The pursuer ran after all evaders over
a given period, then picked its target evader labeled the highest priority. The guidance
law significantly minimized the control effort of the pursuer, but this method does not
work if an interceptor is launched against the pursuer. In Reference [8], an autonomous
maneuver decision-making method for two cooperative unmanned aerial vehicles (UAVs)
in air combat was proposed. The situation or threat was assessed from the real-time
positions of target and UAVs. The training was conducted in a 13-dimensional air-combat
state space, supported with 15 optional action commands. Both the real-time maneuver
gain and the win–lose gain were included in the reward function. A hybrid autonomous
maneuver decision strategy in air combat was demonstrated on dual-UAV olive formation,
capable of obstacle avoidance, formation, and confrontation. In Reference [9], a particle
swarm optimization algorithm was enhanced with simulated annealing for path planning
of unmanned surface vehicle (USV), but only static obstacles were considered. Chase
between pursuer(s) and evader(s) is a common episode in a war game. In this work,
different types of intercepting missiles are fired to chase enemy fighters and different types
of attacking missiles.

Interception of a moving target is an important element of defense tactics. In Ref-
erence [10], an integrated guidance and control (IGC) design method was proposed to
guide a suicide unmanned combat air vehicle (UCAV) against a moving target during the
terminal attack stage. A trajectory linearization control (TLC) and a non-linear disturbance
observer (NDO) were used to control the accuracy and stability, respectively, of the system.
In Reference [11], a swarm of multi-rotor UAVs were dispatched to intercept a moving
target while maintaining a predetermined formation. An enhanced three-dimensional pure-
pursuit guidance law was used for controlling the trajectories of UAVs, a Kuhn–Munkres
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(KM) optimal matching algorithm was used to avoid redundancy or failure in searching
for the look-ahead time, and a virtual force-based algorithm was used to avoid collision
between UAVs. The proposed method claimed to decrease the length of UAV trajectories,
facilitate the interception process, and enhance the formation integrity. In Reference [12],
an optimal midcourse trajectory planning based on a Gauss pseudo-spectral method (GPM)
was proposed to intercept a hypersonic target, considering the path, terminal and physical
constraints. Proportional guidance was used in the terminal phase to meet the challenges
on high maneuverability of target, unpredictable trajectory, and detection error. In Ref-
erence [13], a team of cooperative interceptors were dispatched from different intercept
angles against a moving target in a linear quadratic zero-sum two-party differential game.
The cooperative guidance law was used for maneuvering the interceptors to reduce the
evasion probability of the target. The proposed guidance law was claimed better than
the optimal-control-based cooperative guidance law when the target is unpredictable. In
Reference [14], an extended differential geometric guidance law (EDGGL) was developed
for guiding a missile to intercept an arbitrarily maneuvering target without foreknowing
their motions. A modified EDGGL was developed to determine the direction of missile
acceleration without prior knowledge of the target acceleration. Interception of a moving
target is a critical tactical action in our game scenario, including the use of missiles to bust
enemy fighters or missiles, as well as close-in weapon system (CIWS) as the last defense
measure of ships.

Simultaneous attack has been considered an effective tactical movement. In Refer-
ence [15], a model-predictive-control (MPC) cooperative guidance law was developed
to synchronize the states of all the missiles to achieve simultaneous attack. The salvo
coordination was based on the consensus of ranges and range rates of individual missiles
to the static target rather than impact time or time-to-go. In Reference [16], an impact-time-
control guidance (ITCG) law was developed for hypersonic missiles to simultaneously hit
a static target. The ITCG law was applied in the vertical plane, based on the proportional
navigation guidance (PNG) law. In Reference [15,16], simultaneous attack became more
difficult to achieve if many missiles were used to intercept the attacking missiles, forcing
them to reroute. In this work, kill probability of intercepting missile, time gap between
consecutive missile launches, and transit time of CIWS engagement are potential weak
points that can be broken through with salvo, which will be verified in the simulations.

Target assignment among friendly agents may significantly affect the outcome of a
game. In Reference [17], a static weapon target assignment (SWTA) problem was studied
to minimize the target lethality and the total missile cost, constrained by the kill probability
of missile to target. A combinatorial optimization problem was formed and solved by
using an improved artificial fish swarm algorithm-improved harmony search (IAFSA-IHS).
In Reference [18], a problem of assigning several cooperative air combat units to attack
different targets was studied. Each air combat unit could be assigned to sequentially attack
different targets, with specific weapon for each target. A large-scale integer programming
problem was formulated, with constraints on flight route, damage cost, weapon cost, and
execution time. Target or task assignment is always required to initiate a tactical operation
with a team of agents. In this work, target assignment is guided by the goal option, and
each agent takes action based on a set of optimal tactical parameters.

Path planning is typically practiced by an agent before taking tactical operation on a
target. In Reference [19], a real-time path planning method was developed for an UAV to fly
through a battlefield, under threats from multiple radar stations and radar-guided surface-
to-air missiles (SAMs). A threat netting model was applied to the radars by sharing the
UAV information. A model predictive control (MPC) problem was formed by integrating
the threat netting model and the SAM models. The best control scheme in the state space of
UAV was searched by minimizing an objective function in terms of normal acceleration,
prediction horizon, distance cost, and threat cost. In Reference [20], the impact time for
an interceptor to hit a static target within the field-of-view (FOV) was controlled by using
a guidance strategy of deviated pursuit (DP) in the early stage, and the terminal lateral
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acceleration was set to zero in the later stage based on a barrier Lyapunov function. Real-
time cooperative tuning parameters of multiple interceptors were adopted to achieve
simultaneous attack on the static target. In Reference [21], an episodic memory Q-network
model was applied to train a drone swarm for military confrontation. A local-state target-
threat assessment method was designed by using expert knowledge, with a more efficient
dynamic weight adjustment strategy applied on the episodic memory. In this work, path
planning is conducted by adjusting the initial flying angles of fighters and anti-ship missiles
(ASHMs). Their actual flying paths are determined by the interaction with enemy agents
on their path and the engagement rules that apply. The ideal salvo on specific enemy target
is not planned explicitly. By setting different initial flying angles, we will be able to observe
salvo events and verify their efficacy in attacking a heavily defended enemy ship.

A practical agent makes trade-off between attacking target to gain some score and
avoiding counterattack to survive. In Reference [22], an evasive maneuver strategy was
proposed for one of two opponent unmanned combat air vehicles (UCAVs) to evade
high-performance beyond-visual-range (BVR) air-to-air missiles (AAMs) fired upon each
other. A multi-objective optimization problem was formed in a three-level decision space
of maneuver time, type, and parameters. A hierarchical multi-objective evolutionary
algorithm (HMOEA) was developed, by combining air combat experience and maneuver
decision optimization method, to find the Pareto-optimal strategies. Similar situations take
place all the time in the games of our work. For example, a fighter tries to launch missiles
against an enemy ship while avoiding missiles launched from nearby ships, or a fighter
tries to launch AAM against an enemy fighter while avoiding AAMs fired from the latter.

Similar episodes in these references have been included in our game design. In re-
ciprocal, some practical factors considered in our work may also be incorporated into
these works, as summarized in Table 1, to enhance the simulation realism. For example,
the impact method and action [17–19], evading maneuver of agents [10,11], kill probabil-
ity [6,7,19,22], maximum flying distance of agents [18–20], and counterattack of evader or
target [6,7,10–17,19,20,22].

Table 1. Suggested practical factors for relevant works in Section 1.

Practical Factor References

impact method and action [17–19]
evading maneuverability [10,11]

kill probability [6,7,19,22]
maximum flying distance [18–20]

counterattack of evader or target [6,7,10–17,19,20,22]

2. Related Works

In this section, we will review the literature on war games between two parties of
agents. There are always an attack force and a defense force in a war game. Each force
is formed to achieved a strategical goal, which is implemented via constituent agents
and weapons. Each agent or weapon follows a tactical plan to act and react with its own
capability, constraint and rules of engagement. Different parties may pursue different goals
in different settings to compete with their opponent. Asset-guarding games have been
widely discussed. In Reference [23], several teams of interceptors cooperatively protected
a non-maneuvering asset by intercepting maneuverable and non-cooperative attacking
missiles. A combinatorial optimization method was first applied to assign each team of
interceptors to simultaneously attack one of the missiles. Then, a cooperative guidance law
based on linear quadratic dynamic game theory was derived to control the interceptors
to hit the missiles as far away as possible from the asset. In Reference [24], an optimal
deployment of missile defense system was proposed to maximize the survivability of
the protected assets. A single shot kill probability (SSKP) model for an interceptor was
developed by considering the geometry of scenario, trajectories of interceptor and missile,
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and error models of interceptor and radar. Then, the survivability distribution of protected
assets was computed to determine an optimal deployment of the missile defense system.

Target-missile-defender (TMD) games have been widely studied since the cold-war
era. In Reference [25], a homing guidance law with control saturation was proposed for a
missile to hit a moving target while avoiding a cooperative defender fired from the latter.
A cooperative augmented proportional navigation (APN) was adopted by the defender
to minimize its acceleration loading. A performance index based on the miss distance to
the target and power consumption was proposed. An analytical solution was derived,
considering control saturation and minimum power consumption, to guide the missile as
close as possible to the target and to evade the defender by at least a specific miss distance.
The guidance law was claimed to achieve high precision and reliability, compared to the
optimal differential game guidance (ODGG) and combined minimum effort guidance
(CMEG). In Reference [26], an optimal online defender launch-time selection method in
a TMD game was proposed. A missile tried to hit an evading target while the latter
picked an optimal moment to launch a defender against the missile. An autonomous
switched-system optimization problem was formed and a deep neutral network (DNN)
was proposed to solve the problem with two launch strategies, wait-and-decide or assess-
and-decide. This method could deliver accurate prediction of optimal launch-time with
little computational load.

Proper task assignment plan for agents can effectively facilitate the tactical operation.
In Reference [27], a dynamic task assignment problem was studied between an attack
force and a defense force of UCAVs, with each UCAV equipped with different combat
platforms and weapons. The defense force cooperatively transported military supplements
from its base to the battlefront, while the attack force tried to bash the defense force. A
predator–prey particle swarm optimization (PP-PSO) algorithm was developed to search
for a mixed Nash equilibrium as the optimal assignment scheme. In Reference [28], an
antagonistic game WTA (AGWTA) in a cooperative aerial warfare (CAW) was studied. A
non-cooperative zero-sum game was played between two teams of fighters, with fire assault
and electronic interference to weaken the opponents and preserve themselves. A decompo-
sition co-evolution algorithm (DCEA)-AGWTA was proposed to derive a non-cooperative
Nash equilibrium (NCNE) strategy, by dividing the problem into several subproblems
and redistributing the objective functions of both teams to different subproblems. In Ref-
erence [29], a group of fighters were assigned to attack an integrated air defense system
(IADS). Payoff functions on both parties were defined in terms of value, threat, attacking
probability, jamming probability, weapon consumption, and decision vectors for attack-
ing and jamming. An improved chaotic particle swarm optimization (I-CPSO) algorithm
was developed to optimize the decision vectors of both parties. Different constraints on
both parties were studied, including weapon consumption, radius of non-escape zone,
and jamming distance. Each fighter was assigned off-line, without improvising when the
situation changed. However, the attacking and jamming probabilities were adjusted over a
given interval, leading to unnecessary complexity. In practice, a single value of probability
inducted from previous observations is enough to simulate the scenarios. In Reference [30],
an algorithm was proposed to simulate a within-visual-range (WVR) air combat between
two opponent teams of UCAVs. Each team was divided into several groups, with coopera-
tion only among UCAVs in the same group. Then, different groups were assigned to engage
designate enemy groups, with the optimal tactics based on achieving Nash equilibrium.

In Reference [31], force allocation in the confrontation of UAV swarms was analyzed by
using Lanchester law and Nash equilibrium. The UAVs were divided into groups to fight in
separate battlefields, regarded as a Colonel Blotto game. A method inspired by the double
oracle algorithm was proposed to search for the best force allocation. In Reference [32], a
close formation of multiple missiles was studied in attacking a ship defended with multi-
layered defense system. Such formation was intended to camouflage as a single object when
observed far away and took the target ship by surprise at close range. In Reference [33],
a description framework of cooperative maritime formation was built on an event graph



AI 2022, 3 895

model, to describe the operations of formation and the evolution of battlefield dynamics.
Event-driven task scheduling theory and methods were then proposed to formulate an
optimal combat plan.

Denial of intrusion into a designate region is a strategical goal in many war games. In
Reference [34], a state-feedback saddle-point strategy was developed on a pursuit-evasion
game (PEG), with two defenders trying to deny a designate area from being intruded
by a faster invader. In Reference [35], a reach-avoid game between an attacker and two
defenders bound within a rectangular domain was studied. The optimal strategies for
both parties were derived under different conditions that the attacker moved in an attacker
dominance region (ADR), a defender dominance region (DDR), and a barrier, respectively.
In Reference [36], a high-dimensional subspace guarding game was studied, with an
attacker trying to enter a target subspace protected by two cooperative faster defenders. An
attack subspace (AS) method was proposed to form optimal strategies for both defenders
and attacker to reach a saddle-point equilibrium, in favor of the defenders. In Reference [37],
a multi-player reach-avoid differential game in 3D space was studied, with two cooperative
pursuers protecting a target by capturing an evader moving at the same speed. A barrier
surface that enclosed a winning subspace was computed, and the saddle-point strategies
for agents were derived by using an Isaacs’ method and a Hamilton–Jacobi–Isaacs (HJI)
equation. In Reference [38], a planar multiagent reach-avoid game was studied, with an
evader targeting at a fixed point while avoiding capture by multiple pursuers. A non-linear
state feedback strategy based on a risk metric was developed for the evader to reach the
target, against pursuers moving under a semi-cooperative strategy. The strategy can be
switched by taking different control laws in different state-subspaces.

In Reference [39], a non-zero-sum Hostility Game with four players was studied, in
which blue players intended to navigate freely under the obstruction of red players. A
parallel algorithm was proposed to form strategies of reaching Nash equilibrium between
blue players and red players. In Reference [40], a coastal defense problem of deploying
unmanned surface vehicle (USV) to intercept enemy targets entering a warning area
was studied. The defense objective function included energy consumption for sailing,
contingent cost upon opponent capabilities, and reward of successful interception. A
hierarchically distributed multi-agent defense system was proposed on a central and
distributed system and cooperative agents, which improved the decision-making efficiency
and interception rate over conventional centralized architecture.

Missile combat between battleships in navel warfare has been studied. In Refer-
ence [41], a salvo model was developed for exploratory analysis on warship capability and
comparison between two naval forces in a naval salvo warfare. The warship capability was
composed of combat power and staying power, where the former included the number of
force units, number of missiles, scouting effectiveness, training deficiency, enemy distrac-
tion chaff, enemy alertness, enemy seduction chaff, and enemy evasion. The percentage of
out-of-action units between two forces was compared, without prior knowledge of how
and where the warships would fight. The staying power was valuable because a force
with weaker combat power but stronger staying power might win the game in the end. In
Reference [42], rescheduling of target assignment was made for ship-to-air missiles (SAMs)
launched from a naval task group (TG) to intercept incoming air-to-ship missiles (ASMs).
The combat condition may suddenly change due to, for example, destruction of an ASM,
breakdown of a SAM system, or an ASM pop out of nowhere, hence rescheduling of SAMs
should be made at regular intervals after the initial scheduling. A biobjective mathematical
model was built to efficiently maximize the probability of successful defense and minimize
the difference between rescheduling and the initial scheduling. Small-size problem was
solved by using an augmented ε-constraint method and large-size problem was solved by
running two fast heuristics procedures to obtain non-dominated solutions.

In Reference [43], a multi-ship cooperative air defense model against incoming missiles
was proposed, which considered missile launch rate, launch direction, flight speed, as well
as ship interception rate, interception range, number of fire units. The cooperation among
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ships was modeled via task assignment. The defense system was designed and analyzed
with analytical models, and the penetration probability was estimated with the queuing
theory. In Reference [44], fleet modularity was evaluated via a game theoretical model
of the competition between autonomous fleets in an attacker–defender game. Heuristic
operational strategies were obtained through fitting a decision tree on simulation results
of an intelligent agent-based model. A multi-stage game theoretical model was also built
to identify the Nash equilibrium strategy based on military resources and the outcomes
of past decisions. In Reference [45], a framework of consulting air combat of cooperative
UAV fleet was studied by using matrix game theory, negotiating theory, and U-solution.
The best paring of joint operations between own agents and enemy agents was computed,
considering the optimal tactics and situational assessment. NVIDIA graphics processor
was used to improve the computing efficiency in solving the equations of motion, con-
sultation, situational assessment, and searching for optimal strategies. In Reference [46],
offense/defense confrontation between two UAV swarms of the same size and capability
on an open sea was studied. The UAVs aimed to attack the enemy aircraft carrier, while
protecting own aircraft carrier from enemy UAVs. Each UAV made independent decisions
based on the behavioral rules, detection radius, and enemy position. A distributed auction-
based algorithm was used to guide the UAVs in making their real-time decisions with
limited communication capability. The algorithm parameters were optimized to facilitate
target allocation and elimination.

There are other relevant issues in the literature. In Reference [47], a maneuvering plan
for beyond-visual-range (BVR) engagement was developed, with two opponent aircrafts
taking actions of pursuit, head-on attack, or flee. The goal was to prevent an aircraft
from entering the missile attack zone of the opponent, reduce meaningless maneuver of
itself, and lure the opponent to its missile attack zone. A long short-term memory-deep
Q network (LSTM-DQN) algorithm was proposed for situational awareness and action
decision-making. A reward function was defined to account for the threat of enemy missile,
reduction in meaningless maneuver, and the boundary of battlefield. In Reference [48],
a mean-field multi-agent reinforcement learning (MARL) method was developed, by
modeling the interaction among a large number of agents as a single agent playing against
a multi-agent system. A mean-field Q-learning algorithm and a mean-field actor-critic
algorithm were applied to a mixed cooperative–competitive battle game, with two teams of
agents fighting each other by using different reinforcement learning algorithms. The goal
of each team was to collaborate with the allied agents to neutralize as many opponents as
possible. In Reference [49], a multi-UAV cooperative air combat was studied, with a team
of UAVs against their targets. The maneuver decision model of each UAV was built on
an actor-critic bidirectional recurrent neural network (BRNN), taking all the UAV states
concurrently to achieve cooperation, and the reward value was computed with the results
in target assignment and air combat situation assessment.

In Reference [50], an adversarial intelligence and decision-making (RAID) program of
the Defense Advanced Research Projects Agency (DARPA) was developed to estimate the
enemy’s movements, positions, actions, goals, and deceptions in urban battles. Approx-
imate game-theoretic and deception-sensitive algorithms were used to acquire real-time
estimation for the commander to execute and modify tactical operations more effectively.
In Reference [51], an intelligent agent-based model was proposed to optimize fleets of
modular military vehicles in order to meet the dynamic demands on real-time response
to adversarial actions. A game was played between a modular intelligent fleet and a
conventional intelligent fleet, in which the former predicted its adversary’s actions from
historical data and optimized its own dispatch decision. In Reference [52], a partially ob-
servable asynchronous multi-agent cooperation challenge (POAC) was built for testing the
performance of different multi-agent reinforcement learning (MARL) algorithms in a war
game between two armies. Each army was composed of heterogeneous agents, each acting
on observations and asynchronously cooperating with other agents. The POAC could be
configured to meet various requirements such as a human–AI model and a self-play model.
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In Reference [53], a multi-agent deep deterministic policy gradient (MADDPG) algo-
rithm was built to improve the capability of an UAV swarm in confronting another swarm.
A rule-coupled method was proposed to effectively increase the winning rate and reduce
the required action time. In Reference [54], a multi-agent deep reinforcement learning
(MADRL) method was used to conduct UAV swarm confrontation. Two non-cooperative
game models based on MADRL were built to analyze the dynamic game process and
acquire the Nash equilibrium. In Reference [55], confrontation between two UAV swarms
in a territory-defense scenario was studied, in which the UAVs maneuvered by searching
for the Nash equilibrium from the measured cost functions without explicit expressions.
Each UAV followed second-order fully-actuated dynamics and focused on minimizing the
coalition cost.

In Reference [56], a real-time strategy (RTS) was applied on a bot to navigate an
unfamiliar environment with a multi-agent potential field, in order to search and attack
enemies. In Reference [57], a hierarchical multi-agent reinforcement learning framework
was proposed to train an AI model in a traditional wargame played on a hexagon grid. A
high-level network was used for cooperative agent assignment, and a low-level network
was used for path planning. A grouped self-play approach was proposed to enhance
the AI model in contending various enemies. In Reference [58], a distributed interaction
campaign model (DICM) was proposed for campaign analysis and asset allocation of
geographically distributed naval and air forces. The model accounted for the uncertainty of
enemy plan, the factors that boost the force and the factors that disrupt enemy command,
control, and surveillance. In Reference [59], a stochastic diffusion model for two opponent
forces in an air combat was proposed to study the trade-off between logistics system and
combat success, including factors like lethality, endurance, non-linear effect of logistics,
and uncertainty of measurement. In Reference [60], a high-fidelity simulator was used to
optimize the tactical formation of autonomous UAVs in a BVR combat against the other
UAV team, considering uncertainties, such as firing range and position error of the enemy.

Similar settings in these references have been included in our work. In reciprocal, some
practical factors considered in our work may also be incorporated into these works, as sum-
marized in Table 2, to enhance the simulation realism. For example, the impact method and
action [28,29,41,42], evading maneuver of agents [26,27,48], kill probability [23,30,35,36,41,48,49],
and maximum flying distance of agents [30,38,48]. The boundary of battlefield in [35,47] can be
removed, the number of agents in [25,26,34–38] can be increased, and the optimization scheme
in [23,24,26,38,47] can be extended to both parties.

Table 2. Suggested practical factors for relevant works in Section 2.

Practical Factor References

impact method and action [28,29,41,42]
evading maneuverability [26,27,48]

kill probability [23,30,35,36,41,48,49]
maximum flying distance [30,38,48]

remove boundary of battlefield [35,47]
increase number of agents [25,26,34–38]

optimization on both parties [23,24,26,38,47]

In this work, a war game between two matched fleets of equal size and equal capability
is developed and played by simulations. The results are analyzed to gain some insights on
the risks of different strategical options. The rules of engagement and tactical maneuvers
of agents are delineated to set up a credible game environment. The constraint of matched
fleets maybe too tight, but the game scenarios and simulation results are already compli-
cated and enlightening. This work will focus on the comparison of goal options and the
optimization of tactical parameters to achieve the goal.

To preserve the complexity of the game, three types of vessels (carrier vessel, guided
missile cruiser, guided-missile destroyer), four types of missiles (air-to-air, air-to-ship, ship-



AI 2022, 3 898

to-ship, ship-to-air) are included. The numbers of fighters and missiles are large enough
to manifest the complicated game scenario, yet not too large to muddle adjudication and
lessons that can be learned. The characteristics of the agents are comparable to those in
the literature to make the games close to realism, including weaponry parameters, route
planning, evading maneuver, and maximum flying distance of fighters and missiles. The
imperfect kill probability of missiles against different targets is critical to cast uncertainty in
each individual game. With all the stages prepared, we will be able to play games between
these two matched fleets, each can pick one out of three distinct goal options. Each fleet will
then optimize its tactical parameters, including take-off time delay of fighters, launch time
delay of anti-ship missiles (ASHMs), and initial flying directions of fighters and ASHMs.
The optimal parameters depend not only the goal option of own fleet, but also that of the
opponent fleet. Hence, a particle-pair swarm optimization (P2SO) algorithm is proposed to
concurrently search the optimal tactical parameters for both fleets. The optimal parameters
derived with the P2SO algorithm are then used to play multiple games, and the outcomes of
all games are analyzed in terms of the payoff distribution and the cumulative distribution of
impact scores on carrier vessel (CV), guided missile cruiser (CG), guided-missile destroyer
(DDG), and lost fighters. Some interesting outlier games are further inspected to gain more
understanding of the tactical operations.

The war game proposed in this work is aimed to mimic real-life wars to some extents,
hence appear complex at the first glance. However, all the games are played by the rules,
the statistics of multiple games are compact for assessment and some insights could be
learned. The most complex and confusing parts maybe the game rules, which are inevitable
for the following reasons. Firstly, we try to incorporate more practical factors, such as
evasion, flying distance, kill probability, goal options, take-off/landing time gap, missile
launching time gap, diverse attack orientation and method, alert radius, attack range,
counterattack, impact score, cost, and so on. The simulated scenarios become diverse as
many practical factors are included. Secondly, we try to design a matched game, without
dominant factors or overwhelming agents, in order to observe subtle nuances that may
affect the outcome of a game.

The rest of this work is organized as follows. All the game rules are presented in
Section 3, the principle and implementation scheme of the proposed P2SO algorithm are
elaborated in Section 4. Since the game scenarios are complicated, different goal options are
carried out by different sets of rules, and the game rules in different stages of a game and
the engagement rules for different vessels are prepared in separate subsections for clarity
of presentation.

We propose the P2SO algorithm in Section 4 to optimize the objective function specified
in Section 3.1 via playing multiple games, following the rules specified in Sections 3.3–3.7.
The optimal tactical operations thus obtained are used to play another set of games, and the
payoff specified in Section 3.2 is computed at the end of each game for statistical analysis.

All six possible contests between goal options are simulated and analyzed in Section 5,
summarized and compared in Section 6. A few interesting outlier cases are further inspected
in Section 7, more retrospective discussions are presented in Section 8, and some conclusions
are drawn in Section 9.

Table 3 lists all the symbols used in this work, in an alphabetical order, for the conve-
nience of the readers.
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Table 3. List of symbols.

Symbol Definition Reference

(c1, c2) acceleration constants (12)
(c3, c4) acceleration constants (16)
Daam maximum AAM flying distance Table 4
Dashm maximum ASHM flying distance Table 6
Dasm maximum ASM flying distance Table 4
D f maximum fighter flying distance Table 4

Dsam maximum SAM flying distance Table 5
Ḡa global best position of fleet A (12)
Ḡb global best position of fleet B (16)

Imax maximum iteration number Table 9
Mashm ASHM maneuverability Table 6
Masm ASM maneuverability Table 4
M f fighter maneuverability Table 4

Msam SAM maneuverability Table 5
Np number of particle pairs Table 9

paamh AAM kill probability against high-speed target Table 4
paaml AAM kill probability against low-speed target Table 4
psamh SAM kill probability against high-speed target Table 5
psaml SAM kill probability against low-speed target Table 5
P̄an best position of fleet A in particle-pair n (12)

Pashm position of own ASHM (8)
Pasm position of own ASM (6)
P̄bn best position of fleet B in particle-pair n (16)
Pf position of own fighter (5)

Psam position of own SAM (7)
Pm, Pt position of a missile or target (10)

Q position of enemy SAM or AAM (5)
(r1, r2) random numbers over [0, 1] (12)
(r3, r4) random numbers over [0, 1] (16)
Rashm ASHM alert radius Table 6
Rasm ASM alert radius Table 4
Rci maximum firing range of CIWS Table 7

Rddg DDG alert radius Table 5
R f fighter alert radius (against missile) Table 4
Ri impact radius of all missiles Table 8

Rsam SAM alert radius Table 5
t progress time (9)
ta anticipated intercept time on target (10)
tg f take-off/landing time gap Table 4
tgm minimum time gap between missile launches Table 8
tp CIWS preparation time Table 7
tr remaining flight time of fighter -
ts time instant for CIWS to open fire (9)

Tf p CIWS firing period (9)
Ūt velocity vector of target (10)
V̄an particle velocity of fleet A in particle-pair n (12)
V̄∗an old particle velocity of fleet A in particle-pair n (12)
V̄bn particle velocity of fleet B in particle-pair n (16)
V̄∗bn old particle velocity of fleet B in particle-pair n (16)
vaam AAM speed Table 4
vashm ASHM speed Table 6
vasm ASM speed Table 4
v f fighter speed Table 4
vm speed of missile (10)

vsam SAM speed Table 5
wv weight on particle velocity (12)
X̄an particle position of fleet A in particle-pair n (11)
X̄∗an old position of fleet A in particle-pair n (12)
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Table 3. Cont.

Symbol Definition Reference

Xashm anticipated intercept point of own ASHM (8)
Xasm anticipated intercept point of own ASM (6)
X̄bn particle position of fleet B in particle-pair n (17)
X̄∗bn old position of fleet B in particle-pair n (16)
X f anticipated intercept point of own fighter (5)

Xsam anticipated intercept point of own SAM (7)
δan f m take-off time delay of fighter m of fleet A in particle-pair n (11)
δang` launch time delay of ASHM ` of fleet A in particle-pair n (11)
δbn f m take-off time delay of fighter m of fleet B in particle-pair n (18)
δbng` launch time delay of ASHM ` of fleet B in particle-pair n (19)

∆t simulation time step Table 8
∆tci time interval if missile in Rci Table 7
θa f initial flying angle of fighters from CV-A Figure 1
θan f initial flying angle of fighters of fleet A in particle-pair n (11)
θang initial flying angle of ASHMs of fleet A in particle-pair n (11)
θb f initial flying angle of fighters from CV-B Figure 1
4 symbol of fighter Figure 19
• symbol of AAM Figure 19
? symbol of ASM Figure 19

Hexagram symbol of ASHM Figure 19
symbol of SAM Figure 19

× symbol of intercept point Figure 19
� symbol of CV Figure 1

symbol of CG Figure 1
solid � symbol of DDG Figure 1

(a) (b)

Figure 1. Examples of game scenario, (a) defense option, (b) attack option, red marks for fleet A and
blue marks for fleet B, square with cross: CV, square with slash: CG, solid square: DDG, ———:
fighter forward path, · · · · · · : fighter return path, −−−: ASHM path.

3. Game Rules

The problem in this work is to evaluate possible risk of contest between two matched
fleets, each is allowed to choose among three goal options, followed by optimizing the
tactical parameters to fulfill the chosen goal option. The tactical parameters include take-off
time delay of fighters, launch time delay of anti-ship missiles (ASHMs) and initial flying
directions of fighters and ASHMs. The outcome of a game is boiled down to payoffs for
both fleets. The commanding officer will pick a goal option, and the payoffs summarized
from the war games suggest potential risk to take. The probability distribution of payoffs
reveals more nuances for an experienced commanding officer to speculate.



AI 2022, 3 901

Figure 1 shows examples of game scenario between two fleets, with defense option
and attack option, respectively. Each fleet is composed of a carrier vessel (CV), a guided
missile cruiser (CG) and two guided missile destroyers (DDGs). The distance between two
CVs is 400 km. Each DDG is 10 km beside the CV and the CG is 10 km behind the CV.

Each CV carries 10 fighters, each fighter can carry air-to-ship missiles (ASMs) and
air-to-air missiles (AAMs). Note that ASM and ASHM are anti-ship missiles launched
from fighters and CG, respectively. The ASMs are used to attack enemy vessels and the
AAMs are used to intercept enemy fighters, AAMs and ship-to-air missiles (SAMs). Each
fighter carries 4 AAMs under a defense option, or 2 ASMs plus 2 AAMs under an attack
option. The speeds of fighter, ASM and AAM are v f , vasm, and vaam, respectively, and their
maximum flying distances are D f , Dasm and Daam, respectively. Each fighter must return to
the CV before running out of fuel. The minimum time gap between consecutive take-offs
or landings of fighters is tg f . A CG carries 20 ASHMs to attack enemy vessels. The speed
of ASHM is vashm and its maximum flying distance is Dashm. Each DDG carries 30 SAMs
to intercept enemy fighters, ASHMs, ASMs, and SAMs. The speed of SAM is vsam and its
maximum flying distance is Dsam. The minimum time gap between missile launches from
the same fighter or vessel is tgm. The symbols, as listed in Tables 4–8, are chosen to comply
with the features of the indicated parameters.

Table 4. Parameters of CV and fighters.

Parameter Symbol Value

CV cost - USD 6.2 B
fighter speed v f 1 mach
fighter cost - USD 66.9 M

maximum fighter flying distance D f 1000 km
fighter alert radius (against missile) R f 50 km

fighter maneuverability M f 0.3
take-off/landing time gap tg f 60 s

ASM speed vasm 2 mach
ASM cost - USD 1.67 M

maximum ASM flying distance Dasm 400 km
ASM alert radius Rasm 40 km

ASM maneuverability Masm 0.45
AAM speed vaam 1.2 mach
AAM cost - USD 1.09 M

maximum AAM flying distance Daam 160 km
AAM kill probability against high-speed target paamh 0.55
AAM kill probability against low-speed target paaml 0.7

Table 5. Parameters of DDG.

Parameter Symbol Value

DDG cost - USD 679.6 M
DDG alert radius Rddg 200 km

SAM speed vsam 2 mach
SAM cost - USD 4.32 M

maximum SAM flying distance Dsam 200 km
SAM alert radius Rsam 50 km

SAM maneuverability Msam 0.45
SAM kill probability against high-speed target psamh 0.6
SAM kill probability against low-speed target psaml 0.75



AI 2022, 3 902

Table 6. Parameters of CG.

Parameter Symbol Value

CG cost - USD 1 B
ASHM speed vashm 2 mach
ASHM cost - USD 4 M

maximum ASHM flying distance Dashm 800 km
ASHM alert radius Rashm 50 km

ASHM maneuverability Mashm 0.45

Table 7. Parameters of CIWS.

Parameter Symbol Value

maximum firing range Rci 5.5 km
firing period Tf p 13 s

preparation time tp 2 s
time interval if missile in Rci ∆tci 2 s

Table 8. Other parameters.

Parameter Symbol Value

minimum time gap between missile launches tgm 15 s
simulation time step ∆t 15 s

impact radius of all missiles Ri 50 m

Before a game is played, each fleet chooses a goal option, based on which to search
for the optimal tactical parameters, including take-off time delay of fighters, launch time
delay of ASHMs, and initial flying directions of fighters and ASHMs, in order to achieve
the highest possible payoff. Then, a game is played and the outcomes on both fleets are
recorded for analysis.

3.1. Goal Options and Objective Functions

Three goal options are considered in this work. A defensive goal option 1 aims to
minimize the enemy threat by shooting down the intruding fighters and missiles. Op-
tion 2 aims to wreck havoc on enemy CV to significantly cripple the anti-ship threat from
enemy fighters. Option 3 aims to paralyze the enemy fleet, including its anti-ship and
defending capabilities.

Each option is carried out with an optimal set of tactical parameters acquired by
maximizing a corresponding objective function defined as

objective function of option 1 = 0.1× (number of enemy fighters lost)
−(total impact scores on own CV)− 0.2× (total impact scores on own CG)
−0.1× (total impact scores on own DDG)

(1)

objective function of option 2 = (total impact scores on enemy CV) (2)

objective function of option 3 = (total impact scores on enemy CV)
+0.2× (total impact scores on enemy CG) + 0.1× (total impact scores on enemy DDG)

(3)

Option 1 aims to deter enemy threat by shooting down the intruding fighters. Hence,
the objective function of option 1 is set to the value accrued from hitting enemy fighters
minus the value lost in the hit of own ships. The weighting coefficients on number of
enemy fighters lost, total impact scores on own CV, total impact scores on own CG and total
impact scores on own DDG are proportional to the cost of one fighter or the construction
cost of ships listed in Tables 4–6. Option 2 aims to strike only the enemy CV, hence the
objective function is proportional to the number of hits on the enemy CV. Option 3 aims
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to inflict wreck on all enemy ships, hence the objective function is a sum over hits on all
enemy ships, with the weighting coefficients on total impact scores on enemy CV, total
impact scores on enemy CG, and total impact scores on enemy DDG proportional to their
respective construction cost. Intangible values of fighters or ships are not considered in
setting the weighting coefficients. The optimal tactical parameters, obtained by applying
the P2SO algorithm, are used to play multiple games and derive the statistics of payoff on
both fleets.

3.2. Payoff

At the end of each game, payoff is counted on each fleet as

payoff = 620× (total impact scores on own CV) + 100× (total impact scores on own CG)
+67.96× (total impact scores on own DDG) + 66.9× (number of own fighters lost)
+1.67× (numbers of own ASM fired on targets or sunk with vessels)
+1.09× (numbers of own AAM fired on targets or sunk with vessels)
+4.32× (numbers of own SAM fired on targets or sunk with vessels)
+4× (numbers of own ASHM fired on targets or sunk with vessels)

(4)

where the total impact scores on own CV is set to 10 if it is greater than 10 (CV is sunk), the
total impact scores on own CG is set to 8 if it is greater than 8 (CG is sunk), and the total
impact scores on own DDG is set to 8 if it is greater than 8 (DDG is sunk). The weighting
coefficients are proportional to the construction cost of the assets listed in Tables 4–6. The
ammunition cost of CIWS is neglected.

3.3. Rules on CV and Fighters

Fighters take off from CV to engage enemy CV, CG, DDGs, and fighters. If option 1 is
taken, all the fighters will try to intercept enemy fighters and missiles. If option 2 is taken,
all the fighters will attack the enemy CV. If option 3 is taken, the enemy CV, CG, DDG 1,
and DDG 2 will be targeted by 3, 3, 2, and 2 fighters, respectively. The fighters take off in a
repeated sequence to target DDG 1, DDG 2, CG, and CV, until all the fighters are launched.

Figure 1a shows an example of game scenario with both fleets taking defense option 1.
A fighter from CV-A flies north-east at an initial angle θa f measured from the east. It flies
90% of the path from CV-A to the middle line between the two CVs, turns parallel to the
middle line and flies for 100 km, then returns to CV-A along a straight path. A fighter in
CV-B follows the same rule except its initial position is CV-B and its initial angle is θb f
measured from the west.

Figure 1b shows an example of game scenario with both fleets taking attack option
2 or 3. A fighter from CV-A flies north-east at an initial angle θa f measured from the east.
It reaches the middle line first, turns in the direction parallel to the line connecting the
two CVs and flies 80% of the distance measured from its position on the middle line to
the center point between two CVs, then turns straight towards CV-B. A fighter in CV-B
follows the same rule except its initial position is CV-B and its initial angle is θb f measured
from the west. When the distance between a fighter and the enemy CV is shorter than
170 km, the fighter fires its first ASM that flies along a straight path to its designate target.
Meanwhile, the fighter turns and flies parallel to the middle line until all the ASMs are
fired, then returns to its CV along a straight path.

If an enemy SAM or AAM, labeled as Q, flies within the alert radius R f of the fighter,
sited at Pf , with anticipated intercept point at X f , then the fighter fires an AAM against it.
At the same time, the velocity vector of the fighter is adjusted to

Adjusted velocity vector of fighter

= v f
M f×(unit vector of QX f )+(1−M f )×(unit vector of Pf X f )

|M f×(unit vector of QX f )+(1−M f )×(unit vector of Pf X f )|
(5)
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where v f is the fighter speed, M f is the fighter maneuverability. The AAM tries to intercept
the enemy missile at an intercept point or tailgates the enemy missile if no intercept point
is available.

Under option 1, when a fighter detects an enemy fighter within R f + 30 km and an
intercept point is available, it will fire an AAM to attack the enemy fighter. If the intercept
point is lost track of during pursuit, the AAM will tailgate the targeted enemy fighter.
Each enemy fighter can be marked by at most two AAMs, and each enemy SAM and
AAM can be marked by only one AAM. If a fighter finds itself being targeted by an enemy
missile which is not marked by any AAM, it will fire an AAM against it. When a fighter
successfully evades enemy missile, which means no enemy missile within range R f and no
intercept point is found, the fighter will return to its own CV along a straight path.

Under option 2 or 3, when a fighter detects any enemy fighter within R f + 55 km,
it will fire an AAM to intercept it if an intercept point is found. If the intercept point is
lost track of during pursuit, the AAM will tailgate the marked enemy fighter. Each enemy
fighter, SAM and AAM can be marked by only one AAM. If a fighter finds itself being
targeted by enemy missile which is not marked by any AAM, it will fire an AAM against it.
When a fighter successfully evades enemy missile, which means no enemy missile within
range R f and no intercept point is found, the fighter will fly in a straight path towards the
enemy CV if it is farther than 170 km away, or fly parallel to the middle line to fire ASMs if
the enemy CV is within 170 km of range.

An ASM on its way to the designate vessel regularly checks if any SAM is fired to
intercept itself. If an ASM, sited at Pasm detects an enemy SAM at Q within an alert radius
Rasm and the intercept point Xasm lies between the ASM and its designate vessel, then the
ASM will adjust its velocity vector to

Adjusted velocity vector of ASM

= vasm
Masm×(unit vector of QXasm)+(1−Masm)×(unit vector of PasmXasm)

|Masm×(unit vector of QXasm)+(1−Masm)×(unit vector of PasmXasm)|
(6)

where vasm is the ASM speed, Masm is the ASM maneuverability. When an ASM successfully
evades enemy SAM or no intercept point lies ahead, it will approach its target vessel along
a straight path. When a fighter uses up all the ASMs, it will return to its own CV along a
straight path. If a fighter finds itself being targeted by enemy missile on the return path, it
will fire AAM against it.

Under any circumstance, if it takes longer than tr − 3tg f for a fighter to fly straight
back to its own CV, where tr is the remaining flight time of the fighter, it will return to its
own CV along a straight path. When a fighter finds itself being targeted by enemy missile
on its return path, it will fire an AAM against it and remain its original course. When a
fighter returns to its own CV earlier than the landing time of the last fighter plus tg f , it will
wait around CV for its turn to land.

3.4. Rules on DDG

Under any circumstance, any enemy fighter, ASHM, ASM, or SAM within the alert
radius Rddg of a DDG will trigger the latter to fire SAM for interception. Each enemy fighter,
ASHM, ASM, and SAM can be marked by only one SAM. If a SAM, sited at Psam finds
an enemy missile (AAM or SAM) at Q is fired to intercept itself, which means the enemy
missile is within the alert radius Rsam of the SAM with intercept point at Xsam, the SAM
will adjust its velocity vector to

Adjusted velocity vector of SAM

= vsam
Msam×(unit vector of QXsam)+(1−Msam)×(unit vector of PsamXsam)

|Msam×(unit vector of QXsam)+(1−Msam)×(unit vector of PsamXsam)|
(7)

where vsam is the speed of SAM, Msam is the maneuverability of SAM.
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3.5. Rules on CG

A CG is equipped with ASHMs to attack enemy CV, CG, and DDGs. Under option 1,
no ASHM will be fired. Under option 2, all the ASHMs will be fired against the enemy CV.
Under option 3, the enemy CV, CG, DDG 1, and DDG 2 will be targeted with 6, 6, 4, and 4
ASHMs, respectively. The launch sequence is repeated as two ASHMs for enemy DDG 1,
two for enemy DDG 2, two for enemy CG, two for enemy CV, until all the ASHMs are fired.
The flying path of an ASHM is similar to that of a fighter, as shown in Figure 1b. It reaches
the middle line first, turns in parallel to the line connecting the two CVs and flies 80% of
the distance measured from its position on the middle line to the center point between two
CVs, then flies straight towards the designate vessel.

If an ASHM at Pashm find itself marked by an enemy SAM at Q within the alert
radius Rashm of the ASHM, with intercept point at Xashm, the ASHM will adjust its velocity
vector to

Adjusted velocity vector of ASHM

= vashm
Mashm×(unit vector of QXashm)+(1−Mashm)×(unit vector of PashmXashm)

|Mashm×(unit vector of QXashm)+(1−Mashm)×(unit vector of PashmXashm)|
(8)

where vashm is the speed of ASHM, Mashm is the maneuverability of ASHM. When the
ASHM evades enemy SAM, it will fly straight to its target vessel.

3.6. Rules on CIWS

Each vessel is equipped with a CIWS to defend against enemy missiles at close range.
If an enemy missile flies within the maximum firing range Rci of a vessel, its CIWS will
engage the former. The CIWS can mark only one target at a time and the ammunition can
last to the end of the game. The kill probability of CIWS is modeled as

kill probability of CIWS =
1− e−(t−ts)/Tf p

1− e−1 , ts ≤ t ≤ ts + Tf p (9)

where t is the progress time, Tf p is the firing period, and ts is the time to open fire. At
t = ts + Tf p, the CIWS halts for a period of tp to prepare its next engagement. Then, the kill
probability of (9) is resumed. Table 7 lists the parameters of CIWS and Table 8 lists other
parameters used in the simulations.

3.7. Other Rules

Since the vessels move much slower than fighters or missiles, the vessels are approx-
imated as static objects during the game period of about 3600 s. If a missile, sited at Pm,
moving at speed vm, tries to intercept a target, sited at Pt, moving at velocity vector Ūt, the
anticipated intercept time ta is computed by solving

|Pt + Ūtta − Pm| − vmta = 0 (10)

and the anticipated intercept point is at Pt + Ūtta.
A fighter or a missile takes its first priority to react to the nearest enemy missile with

the anticipated intercept point falling within the alert radius of the former. Each enemy
fighter or enemy missile can not be marked by more than one missile of the same kind,
except an enemy fighter under option 1. If a missile or fighter is hit by one of the two
intercept missiles, the other one will turn to pursue the nearest enemy fighter or missile of
the same kind. If no other enemy fighter or missile is nearby, the intercept missile keeps
flying until fuel is burned out.

Impact scores of 1 and 2 are gained if an ASM and an ASHM, respectively, hits a vessel.
If the score on a CV is higher than 4, it can no longer launch fighters and the return fighters
will dive to the water. If the score on a CV is higher than 9, the CV is sunk, bringing the
carried missiles and fighters to the bottom. If the score on a CG or DDG is higher than 4,



AI 2022, 3 906

it can no longer launch missiles. If the score on a CG or DDG is higher than 7, the CG or
DDG is sunk, bringing all the carried missiles to the bottom.

4. Particle-Pair Swarm Optimization

The P2SO algorithm proposed in this work is designed to search for the optimal
solution through a bunch of particle pairs. Each particle pair is consisted of particles A
and B, each having its position and velocity. The position of particle A(B) represents a
candidate set of tactical parameters for fleet A(B). In each iteration, the velocity of each
particle is updated first, which is then used to update the particle position. The velocity
is updated in terms of the current particle position, particle’s best position and the global
best position (among all the particle positions). By doing so, the updated particle position
tends to be closer the particle’s best position (local optimum) or the global best position
(global optimum).

After updating the position of a particle pair, a game is played to acquire an objective
function for each particle, which is then used to update the particle’s best position and the
global best position. The other particle pairs also update their positions, play a game and
acquire an objective function to update their best position and the global best position.

Several iterations are taken to approach the global optimum. The performance of
each particle pair keeps improving iteration by iteration. Finally, the global best position
is mapped to the optimal tactical parameters of each fleet to play another set of games, of
which the results are analyzed to gain some insights.

The parameters of each fleet include the take-off time delay of each fighter, the launch
time delay of each ASHM and the initial flying angles of fighters and ASHMs, respectively.
Denote the particle position of fleet A in the nth particle pair as

X̄an = (δan f 1, · · · , δan f 10, δang1, · · · , δang20, θan f , θang) (11)

where 0 ≤ δan f m ≤ 60 is the take-off time delay of the mth fighter, 0 ≤ δang` ≤ 60 is the
launch time delay of the `th ASHM, 10◦ ≤ θan f ≤ 80◦ is the initial flying angle of fighters,
and 10◦ ≤ θang ≤ 80◦ is the initial flying angle of ASHMs. The particle position X̄bn of fleet
B is defined in the same manner as (11), with subscript a changed to b.

A swarm of Np particle pairs are generated, each with random initial position and
velocity. The P2SO algorithm is applied to update the particle positions, based on the goal
options chosen by both fleets and the associated objective functions. The best positions
of the nth particle pair are denoted as (P̄an, P̄bn), and the global best positions of all the
particle pairs are denoted as (Ḡa, Ḡb).

In each iteration of the P2SO algorithm, the velocity of the nth particle for fleet A is
updated first as

V̄an ← wvV̄∗an + c1r1(P̄an − X̄∗an) + c2r2(Ḡa − X̄∗an) (12)

where X̄∗an and V̄∗an are the previous particle position and velocity, respectively, wv is the
weighting factor on particle velocity, c1 and c2 are acceleration constants, r1 and r2 are
random variables of uniform distribution over [0, 1]. Its position is updated as

X̄an ← X̄∗an + V̄an (13)

The take-off time of fighters and launch time of ASHMs from fleet A are then set to

take-off time of the first fighter of fleet A in the nth particle pair← δan f 1

take-off time of the mth fighter of fleet A in the nth particle pair
← (take-off time of the (m− 1)th fighter of fleet A in the nth particle pair) + tg f + δan f m

(14)

launch time of the first ASHM of fleet A in the nth particle pair← δang1

launch time of the `th ASHM of fleet A in the nth particle pair
← (launch time of the (`− 1)th ASHM of fleet A in the nth particle pair) + tgm + δang`

(15)
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Similarly, the velocity of the nth particle for fleet B is updated as

V̄bn ← wvV̄∗bn + c3r3(P̄bn − X̄∗bn) + c4r4(Ḡb − X̄∗bn) (16)

where c3 and c4 are acceleration constants, r3 and r4 are random variables of uniform
distribution over [0, 1]. Its position is updated as

X̄bn ← X̄∗bn + V̄bn (17)

The take-off time of fighters and launch time of ASHMs from fleet B are then set to

take-off time of the 1st fighter of fleet B in the nth particle pair← δbn f 1

take-off time of the mth fighter of fleet B in the nth particle pair
← (take-off time of the (m− 1)th fighter of fleet B in the nth particle pair) + tg f + δbn f m

(18)

launch time of the 1st ASHM of fleet B in the nth particle pair← δbng1

launch time of the `th ASHM of fleet B in the nth particle pair
← (launch time of the (`− 1)th ASHM of fleet B in the nth particle pair) + tgm + δbng`

(19)

Then, a game is played with the updated particle positions X̄an and X̄bn. Both fleets
operate according to the rules described in the last section. At the end of the game, each
fleet counts its objective function defined in (1), (2) or (3) to update P̄an, Ḡa, P̄bn and Ḡb.
The procedure is repeated for all the particle-pairs to complete one iteration. The P2SO
algorithm is completed after a specified number of iterations. The procedure of the P2SO
algorithm is listed in Algorithm 1, and is described below.

Input: Weighting factor of velocity wv, acceleration constants {c1, c2, c3, c4}, maximum
iteration number Imax, particle-pair number Np and game parameters in Tables 4–8.

Output: Ḡa, Ḡb.
step 1: Randomly initialize the position and velocity of the nth particle-pair.
step 2: Use the nth particle-pair to compute take-off time of fighters and launch time

of ASHMs for both fleets, and play a game. Then update (P̄an, P̄bn) and (Ḡa, Ḡb).
step 3: Repeat step 1 and step 2 for all the Np particle-pairs.
step 4: The velocity and position for fleet A in the nth particle-pair are updated

with (12) and (13), respectively. The take-off time of fighters and launch time of ASHMs
from fleet A are updated with (14) and (15), respectively.

step 5: The velocity and position for fleet B in the nth particle-pair are updated
with (16) and (17), respectively. The take-off time of fighters and launch time of ASHMs
from fleet B are updated with (18) and (19), respectively.

step 6: Play a game with take-off time of fighters and launch time of ASHMs from
fleet A in step 5, take-off time of fighters and launch time of ASHMs from fleet B in step 6,
as well as θan f , θang, θbn f , and θbng .

step 7: Use the resulting objective functions of fleets A and B in step 7 to update
(P̄an, P̄bn) and (Ḡa, Ḡb).

step 8: Repeat step 4 to step 7 for all the Np particle-pairs.
step 9: Increment the iteration index. If the index is smaller than Imax, go to step 4.

Otherwise, the algorithm is completed.
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Algorithm 1 Pseudocode of P2SO algorithm
Initialize: Particles best objective functions Jpa = 0, Jpb = 0

Global best objective functions Jga = 0, Jgb = 0
Input: Game parameters (Table 4–8) and P2SO algorithm parameters (Table 9)
Output: Ḡa, Ḡb

for n = 1:Np do
1. Randomly initialize X̄an, X̄bn, V̄an, V̄bn
2. Use X̄an, X̄bn to compute take-off time of fighters and launch time of ASHMs for fleet

A and B, respectively, with (14), (15), (18), (19).
Play a game with the resulting take-off time of fighters, launch time of ASHMs, θan f
and θang in X̄an, θbn f and θbng in X̄bn and game parameters to obtain objective
functions Ja and Jb.
Jpan ← Ja, Jpbn ← Jb
P̄an ← X̄an, P̄bn ← X̄bn
if Ja > Jga

Jga ← Ja ; Ḡa ← X̄an
end if
if Jb > Jgb

Jgb ← Jb ; Ḡb ← X̄bn
end if

3. end for
for i = 1:Imax do

for n = 1:Np do
4. V̄an and X̄an are updated with (12) and (13), respectively

Take-off time of fighters and launch time of ASHMs of fleet A are updated with
(14) and (15)

5. V̄bn and X̄bn are updated with (16) and (17), respectively
Take-off time of fighters and launch time of ASHMs of fleet B are updated with
(18) and (19)

6. Play a game with the updated take-off time of fighters, launch time of ASHMs,
θan f , θang, θbn f , θbng and game parameters to obtain objective functions Ja and Jb

7. if Ja > Jpan
Jpan ← Ja ; P̄an ← X̄an
if Ja > Jga

Jga ← Ja ; Ḡa ← X̄an
end if

end if
if Jb > Jpbn

Jpbn ← Jb ; P̄bn ← X̄bn
if Jb > Jgb

Jgb ← Jb ; Ḡb ← X̄bn
end if

end if
8. end for
9. end for

Table 9 lists the P2SO parameters used in the simulations. The P2SO algorithm concur-
rently updates the optimal tactical parameters of both fleets. The global best position of
one fleet is determined from its objective functions over all games, and both fleets usually
receive their global best positions from different particle-pairs. The global best position of
one fleet is unknown to the other fleet before a new game, but the outcome of the game may
affect both global best positions, which in turn will affect the next game. The simulation
results with the optimal tactical parameters of P2SO will be presented in the next section.
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The parameters listed in Tables 4–8 are roughly estimated with available data collected
from public sources, such as Wikipedia. The parameters listed in Table 9 are tried out
and fine-tuned over many runs of simulations, based on the convergence performance,
computational time, and the optimization outcomes. For example, increasing the number
of particle pairs (Np) and the maximum iteration number (Imax) of the P2SO algorithm may
generate tactical parameters that deliver better performance, but the computational load is
also increased. The speed, flying distance, alert radius, kill probability and maneuverability
of agents are properly chosen to design a matched game without dominant factors or
overwhelming agents in order to observe subtle nuances that may affect the outcome of a
game. The simulation time step (∆t) is adjusted to ensure the games are played smoothly
with reasonable CPU time. The choice of minimum time gap between missile launches
(tgm) is also constrained by the simulation time step.

Table 9. Parameters of P2SO algorithm.

Parameter Symbol Value

weight on particle velocity wv 1
acceleration constants c1, c2, c3, c4 2

number of particle pairs Np 40
maximum iteration number Imax 60

5. Simulations on Contest between Options

The simulations are run on a PC with i7-3.0 GHz CPU and 32 GB memory, in MATLAB
R2019a code. The game is staged as in Figure 1. Each fleet is composed of one CV, one
CG, and two DDGs. The two CVs are deployed at the north-east and south-west corners,
respectively, separated by 400 km and facing each other. The DDGs are 10 km beside
the CV and the CG is 10 km behind the CV. The P2SO algorithm is applied to optimize
the tactical parameters, including take-off time delay of fighters, launch time delay of
ASHMs and initial flying angles of fighters and ASHMs, for both fleets according to their
chosen goal option among (1)–(3). The optimized tactical parameters are then used to play
100 or 200 games. In each game, each fleet dispatches its fighters and ASHMs against the
enemy assets, and defends itself against incoming enemy weaponry with available missiles,
following the game rules presented in Section 3. Each game takes calendar time of 3600 s.
At the end of a game, the payoff of each fleet is computed with (4). Finally, the outcomes of
these games are analyzed statistically.

In short, the P2SO algorithm in Section 4 is applied to optimize the objective func-
tion specified in Section 3.1 via playing multiple games, following the rules specified in
Sections 3.3–3.7. The optimal tactical operations thus obtained are used to play another set
of games, and the payoff specified in Section 3.2 is computed at the end of each game for
statistica analysis.

With three goal options available to each fleet, there are six possible contest scenar-
ios between the two fleets. In this section, each contest scenario will be simulated and
analyzed statistically. General observations will be summarized in Section 5 and a few
interesting outlier cases will be investigated in Section 6 to gain more understanding of the
tactical operations.

5.1. Option 2 for Fleet A versus Option 3 for Fleet B

Figure 2 shows the convergence of P2SO objective functions, with option 2 for fleet A
versus option 3 for fleet B, which is abbreviated as A2/B3. The objective function of fleet
A converges to 11, which is higher than 6.4 of fleet B because fleet A targets solely on the
enemy CV, which has the highest value among all vessels.
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Figure 2. Convergence of P2SO objective functions, option 2 for fleet A versus option 3 for fleet B
(A2/B3), ———: fleet A, ———: fleet B.

It is observed that the objective function first converges to certain level and remains
unchanged for a few iterations before jumping to a higher level. There exists uncertainty in
the value of objective functions because the outcomes a game, which are used to update
the particle pair, manifest fluctuations caused by the imperfect kill probability of missiles,
and CIWS.

The proposed P2SO algorithm is aimed to update the optimal solution by using the
outcome of the latest game, hence it does not converge to a steady optimal solution and stay
therein. On the other hand, conventional multi-objective PSO algorithms [61–63] converge
to a steady optimal solution theoretically, even constrained by multiple objective or fitness
functions. With the proposed P2SO algorithm, each fleet in the game can always update
its optimal tactical parameters by incorporating the outcomes of the latest game, which is
more compatible to the real-life scenarios.

Figure 3a shows the cumulative distribution (CDF) of payoff over 100 games with
one P2SO run, namely, the global best positions in the final iteration are used to simulate
100 separate games. The curve of fleet B shows more obvious steps because fleet A targets
only CV-B, and each impact on CV-B contributes a significant payoff value to fleet B. On
the other hand, the curve of fleet A is smoother than that of fleet B because all four vessels
of fleet A are targeted, resulting in more possible levels of payoff value. The payoff of fleet
B is higher than that of fleet A because all the missiles from fleet A target solely on CV-B.
The lowest possible payoffs of fleets A and B are USD 1 B and USD 1.6 B, respectively. The
median payoffs of fleets A and B are USD 1.9 B and USD 3.9 B, respectively. The payoff of
fleet A is always lower than USD 6.2 B, is below USD 3 B in 80 games and is lower than the
median payoff (USD 3.9 B) of fleet B in 96 games.

(a) (b)

Figure 3. (A2/B3) Cumulative distribution of payoff with one P2SO run, (a) over 100 games, (b) over
200 games; ———: fleet A, ———: fleet B.

Figure 3b shows the CDF of payoff over 200 games with one P2SO run, namely, the
same set of parameters are used to simulate 200 separate games. The curves look similar
to those in Figure 3a, with most payoff values lying between USD 1.5 B and USD 5 B. The
difference between two fleets is slightly smaller, especially at payoff between USD 2.2 B
and USD 5.2 B.



AI 2022, 3 911

Figure 4a shows the CDF of impact score on CV over 100 games with one P2SO run.
It is observed that the impact score on CV-B is higher than that on CV-A in most games
because all the ASMs and ASHMs from fleet A are used to attack the CV-B while those from
fleet B are dispersed to attack all the vessels of fleet A. The lowest and highest scores on CV-
B are 2 and 12, respectively. The lowest and highest scores on CV-A are 1 and 8, respectively,
lower than their counterparts on CV-B. The score on CV-A is lower than 3 in 67 games,
while that on CV-B is lower than 3 in only 2 games and higher than 5 in 37 games.

Figure 4b shows the CDF of impact score on CG over 100 games. The score on CG-B
is always 0 because it is not targeted by fleet A. The lowest and highest scores on CG-A
are 0 and 6, respectively. The score on CG-A is 0 in 26 games and 1 in 49 games possibly
because it is deployed behind the other three vessels.

Figure 4c shows the CDF of impact score on DDG over 100 games, encompassing
200 scores on each fleet. The score on DDG-B is always 0 since they are not targeted by
fleet A. The scores on DDG-A are 0 in 184 games, 1 in 14 games and 2 in 2 games, which
are relatively low because fighters and ASHMs from fleet B are dispersed to attack all four
vessels of fleet A. Figure 4d shows the CDF of lost fighters over 100 games. Fewer fighters
of fleet A are lost compared to fleet B in most games. Fleet A loses no fighters in 93 games.
Fleet B loses more than 5 fighters in 54 games and loses all 10 fighters in 1 game.

Figure 5a shows the CDF of impact score on CV over 200 games with one P2SO run.
The curves are similar to those in Figure 4a, the difference between two curves become
smaller, and the percentage of games with score between 4 and 6 slightly increases.

(a) (b)

(c) (d)

Figure 4. (A2/B3) Cumulative distribution of impact score on (a) CV (b) CG, (c) DDG, (d) fighters;
over 100 games with one P2SO run, ———: fleet A, ———: fleet B.

Figure 5b shows the CDF of impact score on CG over 200 games. The curve of fleet
A is similar to that in Figure 4b, with score 0 in 60 games and 1 in 110 games. The highest
score is 5, as compared with the highest score of 6 in Figure 4b. The difference can be
accounted for by the statistical consequence of kill probability.

Figure 5c shows the CDF of impact score on DDG over 200 games, encompassing
400 scores on DDGs of each fleet. The curve of fleet A is similar to that in Figure 4c, the
highest score becomes 3 and the percentage of score 0 slightly decreases. Figure 5d shows
the CDF of lost fighters over 200 games. The curves are similar to those in Figure 4d, with
fleet A losing at most 5 fighters.
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(a) (b)

(c) (d)

Figure 5. (A2/B3) Cumulative distribution of impact score on (a) CV (b) CG, (c) DDG, (d) fighters;
over 200 games with one P2SO run, ———: fleet A, ———: fleet B.

Figure 6a shows the CDF of payoff over 200 games with two P2SO runs, where the
parameters from each run are used to simulate 100 separate games. The curves are similar to
their counterparts in Figures 3a,b, respectively, implying the payoff distributions obtained
with both P2SO runs are similar. The curves become smoother because more samples of
payoff value are counted in. The payoff difference between the two curves in Figure 6a is
smaller than that in Figures 3a,b, especially between percentiles 45% and 75%.

(a) (b)

Figure 6. (A2/B3) Cumulative distribution of payoff with two P2SO runs, (a) over 200 games, (b) over
400 games; ———: fleet A, ———: fleet B.

Figure 6b shows the CDF of payoff over 400 games with two P2SO runs, where the
parameters from one run are used to simulate 200 separate games. The curves are similar
to their counterparts in Figure 6a.

By comparing Figure 3 and 6, it is observed that the payoffs from both P2SO runs
reveal similar distribution, although the global best positions of the two P2SO runs may
not be close.

Figure 7a shows the CDF of impact score on CV over 200 games with two P2SO runs.
The curves are similar but smoother than their counterparts in Figure 5a. The lowest score
on CV-A is 0.
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(a) (b)

(c) (d)

Figure 7. (A2/B3) Cumulative distribution of impact score on (a) CV (b) CG, (c) DDG, (d) fighters;
over 200 games with two P2SO runs, ———: fleet A, ———: fleet B.

Figure 7b shows the CDF of impact score on CG over 200 games. The curve of fleet A is
similar to its counterparts in Figures 4b and 5b. The impact score on CG-A is 0 in 90 games,
but the percentage is higher than those in Figures 4b and 5b.

Figure 7c shows the CDF of impact score on DDG over 200 games. The curve of fleet
A is similar to its counterparts in Figures 5c and 4c. The score on DDG-A is 3 in Figure 5c,
which is slightly higher than that in Figure 7c.

Figure 7d shows the CDF of lost fighters over 200 games. The curves are obviously
different from those in Figure 5d. Different take-off time and flying angle of fighters
from both fleets may result in different scenarios of missile chasing fighter. Note that the
number of lost fighters is not considered in the objective function for optimizing the tactical
parameters. Thus, different P2SO runs may lead to different numbers of lost fighters. Fleet
A loses no fighters in 90 games, 4 fighters in 80 games, and up to 8 fighters in 16 games,
which is higher than 5 in Figure 5d. Fleet B loses fewer fighters as compared to Figure 5d.

Figure 8a shows the CDF of impact score on CV over 400 games with two P2SO runs.
The curves are similar to those in Figure 7a, except the probability of high impact score
slightly decreases.

Figure 8b shows the CDF of impact score on CG over 400 games. The curve of fleet A is
similar to its counterparts in Figures 7b and 5b. However, the curve appears smoother since
more samples are counted in. The score on CG-A is 0 in 184 games, at higher percentage
than those in Figures 7b and 5b.

Figure 8c shows the CDF of score on DDG over 400 games, encompassing 800 scores
for each fleet. The curve of fleet A is similar to that in Figure 7c. The score on DDG-A is
0 in 736 incidents and 380 incidents in Figure 7c.

Figure 8d shows the CDF of lost fighters over 400 games. The curves are similar to
that in Figure 7d.

In this contest scenario, the simulation results with one versus two P2SO runs and
with 100 games versus 200 games per run are compared. In general, the distributions of
payoff and impact score are insensitive to these two numbers. Thus, only one P2SO run
and 100 games per run will be simulated in the other five contest scenarios.
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(a) (b)

(c) (d)

Figure 8. (A2/B3) Cumulative distribution of impact score on (a) CV (b) CG, (c) DDG, (d) fighters;
over 400 games with two P2SO runs, ———: fleet A, ———: fleet B.

5.2. Option 1 for Fleet A versus Option 1 for Fleet B

In the A1/B1 contest scenario, the P2SO objective functions of both fleets are close
to each other and quickly converge with iteration to the maximum value of 1. Figure 9a
shows the CDF of payoff over 100 games with one P2SO run. The two curves are close to
each other since both fleets take the same option. The payoff value is relatively low because
no vessels are targeted. The minimum payoff of both fleets is USD 0.24B. Fleet A takes USD
0.38 B payoff in 74 games, its maximum payoff is USD 0.45 B, slightly lower than USD 0.58
B of fleet B.

Figure 9b shows the CDF of lost fighters over 100 games. The two curves are close
to each other. Both fleets lose at least 3 fighters and at most 6 or 8 fighters, respectively.
Fleet B loses more fighters in most games. Fleet A loses 5 fighters in 74 games. Note that
more fighters are lost in A1/B1 scenario than in A2/B3 scenario, because each fighter is
marked by at most two AAMs when the opponent chooses option 1 and marked by one
AAM otherwise.

(a) (b)

Figure 9. (A1/B1) Cumulative distribution of (a) payoff, (b) lost fighters, with one P2SO run over 100
games, ———: fleet A, ———: fleet B.
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5.3. Option 1 for Fleet A versus Option 2 for Fleet B

Figure 10a shows the CDF of payoff over 100 games with one P2SO run. The payoff of
fleet B is relatively low, ranging from USD 0.4 B to USD 0.7 B, since no vessels are targeted
by fleet A, and the payoff is attributed to the lost fighters, launched ASHMs, ASMs, and
AAMs. Fleet A takes payoff from USD 1.5 B to USD 4.7 B, takes USD 2.2 B in 36 games and
USD 2.8 B in 40 games, attributed to the score on CV-A.

Figure 11a shows the CDF of impact score on CV over 100 games with one P2SO run.
The score on CV-B is always 0 since it is not targeted. The score on CV-A ranges from 2 to 7,
is 3 or 4 in 77 games.

(a) (b)

Figure 10. Cumulative distribution of payoff, (a) A1/B2, (b) A1/B3, with one P2SO run over
100 games, ———: fleet A, ———: fleet B.

(a) (b)

Figure 11. (A1/B2) Cumulative distribution of (a) impact score on CV and (b) lost fighters, over
100 games with one P2SO run, ———: fleet A, ———: fleet B.

Figure 11b shows the CDF of lost fighters over 100 games. Fleet A loses only one
fighter in 91 games and fleet B loses 5 to 9 fighters. Fleet B loses many more fighters in
all the games because fleet A takes option 1 and its fighters can launch more AAMs to
intercept the enemy fighters.

5.4. Option 1 for Fleet A versus Option 3 for Fleet B

Figure 10b shows the CDF of payoff over 100 games with one P2SO run. The payoff
of fleet B varies from USD 0.2 B to USD 0.4 B because its vessels are not targeted. Fleet A
takes payoff from USD 0.3 B to USD 3 B, and takes about USD 1 B in 59 games.

Figure 12a shows the CDF of impact score on CV over 100 games with one P2SO run.
It is observed that CV-B is never targeted. The score on CV-A is 0 in 8 games, 1 in 61 games,
and the highest score is 4.
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(a) (b)

(c) (d)

Figure 12. (A1/B3) Cumulative distribution of impact score on (a) CV (b) CG, (c) DDG, (d) fighters;
over 100 games with one P2SO run, ———: fleet A, ———: fleet B.

Figure 12b shows the CDF of impact score on CG over 100 games. The score on CG-A
is 0 in 15 games, 1 in 74 games, and the highest score is 3. The score on CG-B is 0 because it
is not targeted.

Figure 12c shows the CDF of impact score on DDG over 100 games. The score on
DDG-B is always 0 since they are not targeted. The score on DDG-A is 0 in 130 incidents
and 1 in 54 incidents.

Figure 12d shows the CDF of lost fighters over 100 games. It is observed that all
the fighters of fleet A are intact. In contrast, fleet B loses 1 fighter in 86 games and loses
4 fighters in 1 game since more AAMs are fired upon them.

5.5. Option 3 for Fleet A versus Option 3 for Fleet B

Figure 13a shows the CDF of payoff over 100 games with one P2SO run. Both fleets
take similar payoff in most games because they choose the same option. Fleet A take payoff
from USD 1.1 B to USD 5.5 B, and takes around USD 1.2 B in 36 games. Fleet B takes payoff
from USD 1 B to USD 6.4 B, and takes around USD 1.8 B in 36 games.

(a) (b)

Figure 13. Cumulative distribution of payoff, (a) A3/B3, (b) A2/B2, with one P2SO run over
100 games, ———: fleet A, ———: fleet B.
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Figure 14a shows the CDFs of impact score on CV-A and CV-B are close to each other.
The highest scores on CV-A and CV-B are 7 and 9, respectively, and both have the lowest
score of 1. The score on CV-A is lower than 4 in 95 games and that on CV-B is lower than
4 in 78 games.

Figure 14b shows the CDFs of score on CG-A and CG-B are similar. Both fleets take
the highest score of 3 and take score of 1 in most games. CG-A takes no hit in 28 games and
CG-B takes no hit in 20 games.

Figure 14c shows the CDFs of score on DDG-A and DDG-B are similar, and both take
the highest score of 3. DDG-A takes no hit in 178 incidents and DDG-B takes no hit in
192 incidents.

Figure 14d shows the CDF of lost fighters over 100 games. It is observed that fleet A
loses more fighters in most games. Fleet A loses 0 fighter in 2 games, 2 fighters in 71 games,
and all the 10 fighters in 4 games. In contrast, fleet B loses 0 fighter in 88 games and up to
5 fighters in 4 games. It can be attributed to the optimal tactical parameters of both fleets,
which will be investigated further in Section 6.

(a) (b)

(c) (d)

Figure 14. (A3/B3) Cumulative distribution of impact score on (a) CV (b) CG, (c) DDG, (d) fighters;
over 100 games with one P2SO run, ———: fleet A, ———: fleet B.

5.6. Option 2 for Fleet A versus Option 2 for Fleet B

Figure 13b shows that both fleets have similar CDF of payoff since they choose the
same option. Both curves show a few big steps which are attributed to the score on CV.
Fleet A takes payoff from USD 1.6 B to USD 5.8 B, and takes USD 2.9 B in 36 games. Fleet B
takes payoff from USD 1.3 B to USD 7.3 B, and the distribution of payoff is uniform.

Figure 15a shows the CDFs of impact score on CV are close to each other, especially
at higher scores. The score on CV-A ranges from 2 to 8, and has a uniform distribution
between 2 and 4 in 64 games. The score on CV-B ranges from 1 to 14, and has a uniform
distribution between 1 and 6 in 82 games.
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(a) (b)

Figure 15. (A2/B2) Cumulative distribution of (a) impact score on CV and (b) lost fighters, over
100 games with one P2SO run, ———: fleet A, ———: fleet B.

Figure 15b shows the CDF of lost fighters. It is observed that fleet B loses more fighters
in most games. Fleet A loses 0 fighter in 78 games, 1 fighter in 13 games, 2 fighters in
8 games, and 7 fighters in 1 game. Fleet B loses 4 to 10 fighters, 6 fighters in 60 games, and
10 fighters in 36 games.

5.7. Comparison of Median Payoff

Table 10 lists the median payoffs on both fleets, summarized from the contests between
options in Sections 5.1–5.6. Since both fleets have equal size and equal capability, their
payoffs are swapped if both fleets exchange options with each other, with slight difference
due to the combined effects of too many factors involved in the game simulations. It is
observed that the difference of payoffs between both fleets is smaller when they choose
the same option than different ones. The fleet choosing option 1 suffers higher payoff
than its opponent, and the fleet choosing option 2 suffers lower payoff than its opponent.
Table 10 can serve as a quick hint to decision-makers, but the CDF is indispensable in
making grave decision.

Table 10. Median payoffs of option contest (USD B).

A/B Option 1 Option 2 Option 3

Option 1 0.378/0.409 2.836/0.536 1.115/0.202
Option 2 0.536/2.836 2.874/3.275 1.832/3.895
Option 3 0.202/1.115 3.895/1.832 1.570/1.732

6. Summary and Comparison

In the last section, it is observed that the highest payoff is inflicted upon a fleet if the
opponent fleet chooses option 2 to solely target the most valuable CV. If option 1 is chosen,
the own payoff is slightly reduced and more enemy fighters will be lost. If both fleets
choose the same option, their payoffs are generally in the same level. If option 3 is chosen,
the impact score on DDGs is low because fewer fighters and ASHMs are dispatched to
attack them.

In general, different P2SO runs deliver similar trend of distributions in payoff and
impact score. However, some optimal initial flying angle makes the evasion from enemy
missiles more difficult while some makes it easier. This will lead to some interesting results,
which will be investigated in the next section.

At first, compare the results between A2/B3 and A1/B2, as shown in Figure 16. One of
the two fleets chooses option 2, while the other chooses either defense option 1 or aggressive
option 3. Figure 16a,b show the CDF of payoff over 100 games with one P2SO run. The
payoff of fleet A in Figure 16b is lower than that of fleet B in Figure 16a. The lowest, median,
and highest payoffs of fleet A in Figure 16b are USD 1.5 B, USD 2.8 B, and USD 4.7 B,
respectively, while the lowest, median, and highest payoffs of fleet B in Figure 16a are USD
1.6 B, USD 3.9 B, and USD 7.2 B, respectively. It suggests that choosing a defense option
inflicts lower payoff than choosing a more aggressive one.
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(a) (b)

(c) (d)

Figure 16. Comparison between A2/B3 and A1/B2 over 100 games with one P2SO run. Cumula-
tive distribution of payoff, (a) A2/B3, (b) A1/B2. Cumulative distribution of impact score on CV,
(c) A2/B3, (d) A1/B2. ———: fleet A, ———: fleet B.

Figure 16c,d show the CDF of impact score on CV. The curve of fleet A in Figure 16d is
steeper than that of fleet B in Figure 16c, which suggests that choosing a defense option
takes lower impact score on the own CV.

Figure 17 shows the comparison between A1/B3 and A2/B3, where fleet B chooses
option 3 while fleet A chooses a defense option (A1) and a more aggressive option (A2),
respectively. The payoff of fleet A in Figure 17a is significantly lower than that in Figure 17b.
Figure 17a shows that the lowest, median, and highest payoffs of fleet A are USD 0.3 B,
USD 1.1 B, and USD 3 B, respectively, and the payoff is lower than or equal to USD 1 B
in 13 games. Figure 17b shows that the lowest, median and highest payoffs of fleet A are
USD 1 B, USD 1.9 B, and USD 6.2 B, respectively, and the payoff is higher than or equal
to USD 1 B in all games. Fleet A takes payoff lower than USD 2 B in 89 games if option 1
is chosen and in 63 games if option 2 is chosen. It suggests that choosing option 1 inflicts
lower payoff than choosing a more aggressive one.

Figure 17c,d show the CDF of impact score on CV. The score on CV-A in Figure 17c is
slightly lower than that in Figure 17d. The score on CV-A is lower than 3 in 90 games if
option 1 is chosen and in 68 games if option 2 is chosen.

Figure 17e,f show the CDF of impact score on CG. The highest score on CG-A is 3 in
Figure 17e and 6 in Figure 17f. The score on CG-A is lower than 3 in 99 games if option 1 is
chosen and 96 games if option 2 is chosen.

The simulations are run with MATLAB R2019a on a PC with i7-3.0 GHz CPU and
32 GB memory. It takes about 13–16 CPU hours to play a typical game with one fleet on
aggressive option and the other fleet on aggressive or non-aggressive option, and about
8–10 CPU hours with both fleets on non-aggressive option. The CPU time with aggressive
option versus non-aggressive option is not as low as expected, even though ASHMs are not
launched from the non-aggressive fleet and almost no SAMs are fired from the aggressive
fleet, because the fighters from the non-aggressive fleet fire many more AAMs, requiring
longer CPU time to track the aftermath.
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(a) (b)

(c) (d)

(e) (f)

Figure 17. Comparison between A1/B3 and A2/B3 over 100 games with one P2SO run. CDF of
payoff, (a) A1/B3, (b) A2/B3. CDF of impact score on CV, (c) A1/B3, (d) A2/B3. CDF of impact score
on CG, (e) A1/B3, (f) A2/B3. ———: fleet A, ———: fleet B.

7. Investigation on Interesting Outlier Cases
7.1. A1/B1

Figure 18 shows the outcome of a specific P2SO run on A1/B1 over 100 games.
Figure 18a shows that both objective functions have similar magnitude and converge
to the maximum value of 1 quickly. Figure 18b shows the payoff of fleet B is much higher
than that of fleet A in most games, which is beyond expectation under A1/B1 scenario.
Fleet A takes payoff from USD 0.03 B to USD 0.51 B, and USD 0.18 B in 48 games. Fleet B
takes payoff from USD 0.24 B to USD 0.65 B, and USD 0.51 B or USD 0.57 B in 70 games.
Figure 18c shows fleet B loses more fighters than fleet A in most games. Fleet B loses 4
to 9 fighters, with 7 or 8 lost in 70 games, while fleet A loses 0 to 7 fighters, with 2 lost in
50 games.

(a) (b) (c)

Figure 18. Specific P2SO run on A1/B1 over 100 games, (a) convergence of objective functions,
(b) CDF of payoff, (c) CDF of lost fighters; ———: fleet A, ———: fleet B.
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The cause can be traced back to the global best positions of this specific P2SO run that
the initial flying angle of fighters is 22.315◦ from fleet A and 62.569◦ from fleet B. With
these initial flying angles, most AAMs from fleet A close in on their targeted fighters more
quickly and more difficult to evade. On the other hand, most AAMs from fleet B take longer
time to reach their targeted fighters, easier to burn out of fuel before hitting the targets.

Figure 19 demonstrates a specific game on A1/B1, with an AAM from fleet A inter-
cepting a fighter from fleet B. The symbols defined in the caption apply to all the cases
elaborated in this section. Figure 19a shows that at t = 960 s, a fighter from fleet A detects
an enemy fighter and launches an AAM to intercept the latter. Figure 19b shows that at
t = 1005 s, the marked fighter detects the AAM and begins to evade, while the AAM closes
in on the marked fighter at high speed. Figure 19c shows that at t = 1050 s, the AAM flies
close to the marked fighter. Figure 19d shows that at t = 1080 s, the AAM successfully hits
the target, 120 s after launching.

(a) (b)

(c) (d)

Figure 19. Specific game on A1/B1, an AAM from fleet A is intercepting a fighter from fleet B,
(a) t = 960 s, (b) t = 1005 s, (c) t = 1050 s, (d) t = 1080 s; red marks for fleet A and blue marks for fleet
B, blank symbols: dead assets,4: fighter, •: AAM, ×: intercept point, −−−: projected flight path.

Figure 20 demonstrates a specific game with an AAM from fleet B intercepting a
fighter from fleet A. Figure 20a shows that at t = 675 s, a fighter from fleet B detects an
enemy fighter and launches an AAM against it. The relative speed between the AAM and
the target fighter is lower than that if they fly head on. Figure 20b shows that at t = 765 s,
the fighter changes its cause to evade while the AAM flies towards a farther intercept point
than that in Figure 20a. Figure 20c shows that at t = 990 s, even though the AAM is very
close to the marked fighter, but the relative speed is too low to hit the latter. Figure 20d
shows that at t = 1080 s, the AAM burns out fuel and the fighter survives.
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(a) (b)

(c) (d)

Figure 20. Specific game on A1/B1, an AAM from fleet B is intercepting a fighter from fleet A,
(a) t = 675 s, (b) t = 765 s, (c) t = 990 s, (d) t = 1080 s.

7.2. A1/B2

The P2SO objective function of fleet A quickly converges to 1 as option 1 is chosen.
The objective function of fleet B converges to a high value of 11 since CV-A is targeted.
Figure 21 shows the outcome of a specific P2SO run on A1/B2 over 100 games. Figure 21a
shows that fleet B takes payoff from USD 0.4B to USD 0.7B, while fleet A takes payoff
from USD 2.2 B to USD 7.2 B, takes higher than USD 3.4 B in 57 games, much higher than
anticipated under option 1. Figure 21b shows that the impact score on CV-A ranges from 3
to 11, and the score is 5 to 7 in 78 games. Figure 21c shows that fleet A loses no fighter in
97 games, while fleet B loses 4 to 8 fighters, and 6 fighters in 61 games.

(a) (b) (c)

Figure 21. Specific P2SO run on A1/B2 over 100 games, cumulative distribution of (a) payoff;
(b) impact score on CV, (c) lost fighter; ———: fleet A, ———: fleet B.

A closer examination reveals that the optimal flying angle of ASHMs from CG-B make
them difficult to intercept with SAMs from fleet A. The first SAM fired to intercept an
approaching ASHM often burns out of fuel in the pursuit, and another SAM has to be fired
to intercept the same ASHM. With the optimal flying angles of fighters from both fleets, the
AAMs fired by fighters from fleet A chase away the fighters from fleet B, but later either
burn out of fuel or are hit by AAM from the marked fighter.
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The fighters from fleet A chase the fighters from fleet B far away from the alert radius
of DDG-A. Meanwhile, DDG-A quickly uses up all SAMs against the approaching ASHMs.
Later, the fighters from fleet B fly towards CV-A after evading the AAMs from fleet A,
and each fighter launches two ASMs when it reaches the attacking range. At this stage,
all SAMs are used up and CV-B becomes a sitting duck, with CIWS as its last gate keeper.
With proper timing, one of ASMs penetrates the CIWS and hits CV-A.

Figure 22 shows the flight path of an ASHM from CG-B. Figure 22a shows that at
t = 390 s, one DDG-A fires the first SAM to intercept an approaching ASHM. Figure 22b
shows that at t = 570 s, the first SAM is still chasing the ASHM. Figure 22c shows that at
t = 705 s, the first SAM burns out of fuel, and the DDG-A fires a second SAM to intercept
the same ASHM. Figure 22d shows that at t = 735 s, the second SAM is still chasing the
ASHM. Figure 22e shows that at t = 1020 s, the second SAM also burns out of fuel, and the
DDG-A fires a third SAM to intercept the ASHM. Figure 22f shows that at t = 1260 s, the
ASHM burns out of fuel. By firing three SAMs to intercept one ASHM, all SAMs will be
exhausted quickly.

(a) (b)

(c) (d)

(e) (f)

Figure 22. Specific game on A1/B2, an ASHM from CG-B evading SAMs from fleet A, (a) t = 390 s,
(b) t = 570 s, (c) t = 705 s, (d) t = 735 s, (e) t = 1020 s, (f) t = 1260 s. Symbols are referred to Table 3.



AI 2022, 3 924

Figure 23 shows the scenario of fighters from fleet B attacking CV-A after DDG-A uses
up all SAMs. The circle in Figure 23a shows that at t = 1020 s, four fighters from fleet B are
chased away to the upper left region by AAMs fired by fighters from fleet A. Meanwhile,
several SAMs are fired upon ASHMs from CG-B. The circle in Figure 23b shows that at
t = 1200 s, the AAMs fail to intercept the enemy fighters because burning out of fuel or
hit by the marked fighters. The circle in Figure 23c shows that at t = 1890 s, three fighters
return from the upper left region, firing six ASMs to attack CV-A. DDG-A now has no spare
SAMs to intercept these ASMs. Figure 23d shows that at t = 2, 145 s, CV-A is hit by ASMs.

(a) (b)

(c) (d)

Figure 23. Specific game on A1/B2, fighters from fleet B attacking CV-A, (a) t = 1020 s, (b) t = 1200 s,
(c) t = 1890 s, (d) t = 2145 s. Symbols are referred to Table 3.

7.3. A2/B3

The P2SO objective functions of fleets A and B quickly converge to 10 and 7, respec-
tively. The objective function of fleet A is higher because it focuses the attack on CV-B.
Figure 24 shows the results of a specific P2SO run. Figure 24a shows that the payoff of fleet
A looks normal, but that of fleet B is higher than expectation. The lowest, median, and
highest payoffs of fleet B are USD 2.3 B, USD 5.4 B, and USD 7.3 B, respectively, and the
payoff is higher than USD 4B in 87 games. Figure 24b shows the impact score on CV-B
ranges from 3 to 12, and is higher than 6 in 56 games. Figure 24c shows that fleet A loses
only one fighter in 82 games.

When the ASHMs and fighters from fleet A fly near DDG-B1, SAMs are fired to
intercept the fighters. When DDG-B1 runs out of SAMs, the ASHMs from CG-A lure the
SAMs fired from DDG-B2 to burn out of fuel in chasing them. In the later stage of the game,
a few ASMs from fleet A survive the SAMs or no SAMs are spared for them, the remaining
ASMs and ASHMs on the fly can simultaneously attack CV-B.

Figure 25 shows the move of an ASHM from CG-A when DDG-B1 runs out of SAMs.
Figure 25a shows that at t = 1320 s, a SAM is fired by DDG-B2 to intercept an ASHM
from CG-A. Figure 25b shows that at t = 1440 s, the SAM moves closer to the ASHM.
Figure 25c shows that at t = 1530 s, the SAM moves to the proximity of ASHM, but the
intercept point is far away. Figure 25d shows that at t = 1635 s, the SAM burns out of fuel.
No SAM is available to intercept the ASHM, and the latter turns to fly straight towards
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CV-B. Figure 25e shows that at t = 1755 s, the ASHM closes in on CV-B and coordinates
simultaneous attack with two near-by ASMs. Figure 25f shows that at t = 1800 s, CV-B is
hit by one ASM and the ASHM.

(a) (b) (c)

Figure 24. Specific P2SO run on A2/B3 over 100 games, cumulative distribution of (a) payoff, impact
score on (b) CV, (c) lost fighters; ———: fleet A, ———: fleet B.

(a) (b)

(c) (d)

(e) (f)

Figure 25. Specific game on A2/B3, an ASHM from CG-A evading a SAM from DDG-B and later
attacking CV-B, (a) t = 1320 s, (b) t = 1440 s, (c) t = 1530 s, (d) t = 1635 s, (e) t = 1755 s, (f) t = 1800 s.
Symbols are referred to Table 3.



AI 2022, 3 926

7.4. A3/B3 with 100% Kill Probability

The distributions of payoff, impact scores on different vessels and number of lost
fighters are affected by the optimal tactical parameters, as well as the kill probability of
missiles and CIWS. To highlight the effects of optimal tactical parameters, we set the kill
probability of missile and CIWS to 100% in an A3/B3 contest scenario. It is observed that
the two objective functions are close to each other and have the same value over more than
30 iterations. The objective function of fleet B increases after the 58th iteration when the
its global best position is updated according to the previous game results. The objective
functions can be further increased as the iteration moves on.

By using the results of a specific P2SO run to play 100 games, with the kill probability
of missiles and CIWS set to 100%, it is observed that the payoff and impact scores of both
fleets remain the same game after game. For fleet A, the payoff is USD 1.86 B, the impact
scores on CV, CG, DDG and fighter are 2, 1, 0, and 2, respectively. For fleet B, the payoff is
USD 0.66 B, the impact scores on CV, CG, DDG and fighter are 0, 2, 0, and 1, respectively.
In all the previous cases where the kill probability is less than 100%, the distributions of
payoff and impact scores of each fleet spread over certain interval, revealing uncertainty
of missile or CIWS in hitting its target. When the kill probability is set to 100%, each hit
by missile or CIWS on a target within its impact radius or firing range will succeed. Thus,
the outcome of a game is solely determined by the tactical parameters optimized with the
P2SO algorithm.

A large payoff difference between two fleets is mainly attributed to the impact score on
CV-A by ASMs. CV-A is hit by two enemy ASMs while CV-B remains intact. The optimal
initial flying angles of fighters from fleets A and B are 78.603◦ and 71.614◦, respectively. In
the early stage of the game, all the ASHMs from both fleets are marked and intercepted by
enemy SAMs. In the later stage, only ASMs are used to attack the enemy CV while all the
enemy SAMs are used up, leaving CIWS to defend the vessels. If the two ASMs fired by
a fighter are about equally distant from the target vessel, the latter can be hit. However,
the initial flying angle of fighters from fleet A does not meet the condition for two ASMs
from a fighter to simultaneously reach the target vessel, the two ASMs are sequentially hit
by the CIWS. In contrast, the initial flying angle of fighters from fleet B renders two ASMs
fired by a fighter to simultaneously reach the target vessel, leaving one of the two ASMs to
penetrate the CIWS and hit CV-A.

A scenario of two ASMs from the same fighter of fleet B attacking CV-A is closely
examined. At t = 1830 s, two ASMs at a separation of 6.15 km close in on CV-A. The
CIWS hits ASM2 at t = 1845 s, but is not ready to engage ASM1. Then, ASM1 hits CV-A at
t = 1860 s.

Another scenario of two ASMs from a fighter of fleet A attacking CV-B is also closely
examined. At t = 1935 s, two ASMs at a separation of 7.11 km close in on CV-B. ASM2 is
hit by the CIWS of CV-B at t = 1950 s. At t = 1965 s, ASM1 is also intercepted by CIWS
before hitting CV-B. In this case, the separation between two ASMs is wide enough for the
CIWS to sequentially engage them.

7.5. Lessons Learned

By inspecting the specific game on A1/B1, if an incoming interceptor or missile moves
in opposite direction to that of its target, the former is likely to hit the latter. On the contrary,
if an incoming interceptor or missile moves far from opposite to the moving direction of its
target, the latter is likely to evade alive.

From the specific game on A1/B2, if an agent turns out to attract many enemy inter-
ceptors, the defense capability of the enemy will be weakened in the later stage of the game
and become vulnerable to the follow-up attacking agents.

In the specific game on A2/B3, attacking agents can be coordinated effectively to have
one group luring and exhausting enemy SAMs from DDGs, followed by another group to
close in on the target.
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The specific game on A3/B3 with 100% kill probability demonstrates the possibility of
firing two ASMs from the same fighter to break through the defense of enemy CIWS, by
adjusting the flying angle of fighter for the two ASMs to reach the target simultaneously.

8. Retrospective Discussion

In this work, we try to design a matched game, without dominant factors or over-
whelming agents, in order to observe subtle nuances that may affect the outcome of a
game. Thus, we make straightforward assumptions that two fleets have equal size and
capability, that is, both fleets are the same in number of vessels and weapons, fleet forma-
tion, rules of engagement, cost of vessels and weapons, kill probability, optional goals, and
objective functions.

The speed of ships is approximated as zero since they move much slower than fighters
and missiles, and the fighters and missiles are assumed to move at constant speed in 2D
space. The costs of assets are the construction cost or replacement cost.

The weaknesses of this work are directly related to the aforementioned assumptions,
which can be remedied by designing the game and algorithms for two fleets with different
sizes and capabilities, and extending the game scenario to 3D space. However, this will
increase the complexity of game designs and the difficulty of analysis on game outcomes.
This work takes a trade-off between complex reality and simple principles of operation,
aiming to gain some lessons and insights through the war games.

We have found no comparable game designs or approaches in the literature. A major
reason is that our approach integrates many types of episodes in a versatile game scenario.
The game rules in each type of episode are clearly specified and each type of episode
can find compatible works in the literature, such as evading and pursuing. However,
a complete game composed of different types of episode is rare in the literature, ruling
out possible performance comparison with existing literature. Instead, we focus on the
game results and their implications, which are essential to the purpose of conventional
war games.

We do not use analytical methods, such as game-theoretic method and Lanchester’s
equations, to derive the solution for comparison, because there are too many factors
speculated in the game scenario. The interaction among a large number of agents and the
uncertainty aroused by imperfect kill probability create numerous unexpected outcomes,
as presented in Sections 5–7.

Machine learning methods are versatile, but they require tremendously long training
time due to so many factors just mentioned. With all these considerations, we propose a
heuristic-oriented variant of P2SO algorithm to search for the optimal tactical parameters
under given goal options from both fleets. The optimization process requires the outcome of
tactical operation after playing a game between both fleets, which adds another dimension
of complexity to the game design.

We do not know how the commanding officer of a fleet will act or react on site. They
may avoid head-on clash by taking alert poise (close to option 1), or focus on the major
target of CV while reducing loss to own fleet (close to option 2), or take an all-out assault
at all costs (close to option 3). In this work, three options are devised for contest, and the
outcomes of games are presented in terms of payoffs on both fleets, in statistical forms.
The simulation results and their statistics should be useful to the commanding officer or
decision-makers.

This work tries to encompass as many real-life factors as possible, including prototypi-
cal episodes of chase between pursuer(s) and evader(s), interception, simultaneous attack,
target assignment, path planning, defense, CIWS as last line of defense, and so on. The
strategy or goal-setting of each fleet is boiled down to three goal options, defensive, taking
major targets at affordable cost, and all-out at all cost. The tactical parameters required to
implement each option, given opponent’s option, are optimized by using the proposed
P2SO algorithm, which is an extension of conventional PSO algorithm, with affordable
computer resources.
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An important war game between two fleets has been designed, focusing on the contest
between three strategical options and the associated tactical optimization. Many useful
prototypical episodes reported in the literature are seamlessly knitted into this work. Since
intangible factors beyond these two fleets themselves are capricious, a fair play will be to
presume both fleets have equal size and equal capability, and the values of these assets
are their tangible construction cost. Assuming all other conditions the same, we can
compare the efficacy of these three goal options against one another, as well as the tactical
optimization tailored to implement the chosen goal option. The payoffs of both fleets, based
on their construction cost, are used to assess the risk of taking one option against the other.

An attempt to design a closer to real-life war game may run the risk of including too
many real-life factors or constraints, such as intangible value of fleet or its constituents.
The simulation outcomes and their interpretations may become speculative and ambiguous,
gaining some insights but losing the clear picture.

9. Conclusions

A war game has been designed and simulated between two matched fleets of equal
size and capability. Each fleet is composed of one CV, one CG, and two DDGs, launching
fighters and different kinds of missiles to attack the opponent. Three goal options are
considered by each fleet, and the tactical parameters are optimized with the proposed P2SO
algorithm, including take-off time delay of fighters, launch time delay of ASHMs, initial
flying angles of fighters and ASHMs, respectively. Six contests between goal options are
simulated and analyzed statistically. The simulation results show that if a fleet chooses
defense option 1, its own payoff is lower than if choosing more aggressive option, and the
opponent usually loses more fighters. If a fleet chooses option 2, it can inflict the highest
payoff to its opponent since all the weapons are targeted on the enemy CV. Some interesting
outlier cases with unexpected payoff have also been inspected. It is demonstrated that the
initial flying angle may facilitate or impede the evasion of fighters or ASHMs from enemy
missiles, inflicting unexpected payoffs to both fleets.

In this work, we propose a method to optimize the tactical operation based on a
designate goal or strategic option, which was not mentioned in the literature. The P2SO al-
gorithm is proposed to find two optimal tactical plans for two opponent fleets, respectively,
with their objective functions updated according to the outcomes of previous games played
between them. Such an interactive update approach was not found in the literature. In
order to imitate actual combat scenarios more closely, one may implement variable speed
or other practical factors to the agents in the future studies. One may also develop other
optimization algorithms to acquire better tactical plans.
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