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Abstract: The accurate measurement of soil moisture content emerges as a critical parameter within
the ambit of agricultural irrigation management, wherein the precise prediction of this variable plays
an instrumental role in enhancing the efficiency and conservation of agricultural water resources.
This study introduces an innovative, cutting-edge hybrid model that ingeniously integrates Gated
Recirculation Unit (GRU) and Transformer technologies, meticulously crafted to amplify the precision
and reliability of soil moisture content forecasts. Leveraging meteorological and soil moisture
datasets amassed from eight monitoring stations in Hebei Province, China, over the period from
2011 to 2018, this investigation thoroughly assesses the model’s efficacy against a diverse array of
input variables and forecast durations. This assessment is concurrently contrasted with a range
of conventional machine learning and deep learning frameworks. The results demonstrate that
(1) the GRU–Transformer model exhibits remarkable superiority across various aspects, particularly
in short-term projections (1- to 2-day latency). The model’s mean square error (MSE) for a 1-day
forecast is notably low at 5.22%, reducing further to a significant 2.71%, while the mean coefficient
of determination (R2) reaches a high of 89.92%. Despite a gradual increase in predictive error over
extended forecast periods, the model consistently maintains robust performance. Moreover, the
model shows exceptional versatility in managing different soil depths, notably excelling in predicting
moisture levels at greater depths, thereby surpassing its performance in shallower soils. (2) The
model’s predictive error inversely correlates with the reduction in parameters. Remarkably, with a
streamlined set of just six soil moisture content parameters, the model predicts an average MSE of
0.59% and an R2 of 98.86% for a three-day forecast, highlighting its resilience to varied parameter
configurations. (3) In juxtaposition with prevalent models such as Support Vector Regression (SVR),
K-Nearest Neighbors (KNN), Gradient Boosting Decision Tree (GBDT), XGBoost, Random Forest,
and deep learning models like Deep Neural Network (DNN), Convolutional Neural Network (CNN),
and standalone GRU-branch and Transformer-branch models, the GRU–Transformer framework
demonstrates a significant advantage in predicting soil moisture content with enhanced precision for a
five-day forecast. This underscores its exceptional capacity to navigate the intricacies of soil moisture
data. This research not only provides a potent decision-support tool for agricultural irrigation
planning but also makes a substantial contribution to the field of water resource conservation and
optimization in agriculture, while concurrently imparting novel insights into the application of deep
learning techniques in the spheres of agricultural and environmental sciences.
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1. Introduction

Maize, ubiquitously recognized as a cornerstone in global food agriculture and a
prominent cash crop within the Chinese agrarian economy [1], holds a paramount position
in the agricultural sector. In 2019, as per the Food and Agriculture Organization of the
United Nations (FAO), China’s maize yield escalated to an extraordinary 260 million tons,
constituting a substantial 21.3% of the worldwide production [2]. However, the growth and
fecundity of maize are contingent upon an array of determinants, with soil moisture content
emerging as a critical environmental factor [3]. The hydration state of soil is pivotal, di-
rectly influencing the physiological and biochemical processes in maize, along with its root
development [4]. Consequently, the precise prognostication of soil water content within the
maize root zone is imperative for orchestrating efficient irrigation strategies and augment-
ing both the water-use efficiency and the crop’s yield. Yet, forecasting the moisture content
in maize’s root zone presents a labyrinthine nonlinear challenge. It is intricately influenced
by an amalgamation of factors such as meteorological conditions, soil characteristics, and
various stages of crop growth, defying simplification into elementary mathematical mod-
els [5]. Thus, the exigent scientific quandary lies in harnessing the available meteorological
and soil data to formulate a potent and efficacious predictive model.

Conventional methodologies for forecasting the soil moisture content in maize’s
root zone can be broadly categorized into three distinct classifications: physics-based ap-
proaches, statistics-based strategies, and machine learning-driven techniques [6]. Physics-
based methods employ a combination of soil moisture movement and crop water demand
equations, integrated with meteorological, soil, and crop parameters, to simulate the
dynamic fluctuations of soil moisture. Exemplified by sophisticated models such as HY-
DRUS [7], SWAT (Soil and Water Assessment Tool) [8], DSSAT (Decision-support System for
Agrotechnology Transfer) [9], and EPIC (Erosion Productivity Impact Calculator) [10], these
methods adeptly mirror the physical underpinnings of soil moisture dynamics. However,
they are hampered by their requirement for extensive parameter inputs, computational
intricacy, and the need for highly precise parameter values, rendering them less viable for
broad-scale and long-duration predictive applications [11]. Statistics-based methods, on
the other hand, rely on the application of statistical principles and techniques to construct
mathematical regression models. These models project future soil moisture levels based on
historical meteorological and soil data [12] and are often represented through methodolo-
gies like linear regression [13], multiple regression [12], and exponential smoothing [14].
Despite their simplicity and ease of use, these methods fall short in acknowledging the
nonlinear nature of soil moisture, failing to accurately track its dynamic variations and
generally suffering from lower predictive accuracy [15]. Machine learning-based methods,
meanwhile, harness the power of artificial intelligence to autonomously discern the intrin-
sic patterns of soil moisture from extensive meteorological and soil data, thereby predicting
future soil moisture levels [13]. This category includes a diverse array of techniques such
as the radial basis function neural network (RBF) [16], BP neural network [17], support
vector machine (SVM) [18,19], extreme learning machine (ELM) [20], Random Forest [21],
and Gradient Boosting Tree [22]. These methods are particularly proficient at processing
nonlinear and high-dimensional data, yielding high prediction accuracy. However, they
necessitate substantial volumes of training data, and their predictive performance is often
limited by the models’ inadequate feature extraction capabilities [23].

Deep learning, a sophisticated subset of machine learning, is founded on multi-layered
neural networks capable of autonomously extracting features and discerning patterns from
voluminous datasets, thereby boasting potent expressive and generalization proficiencies.
The primary modalities within deep learning encompass the convolutional neural network
(CNN) [24], the recurrent neural network (RNN) [25], and the self-attention mechanism [26].
As deep learning has evolved, methods such as DNN [27] and RNN [26] have been increas-
ingly applied to the prediction of soil moisture content in agricultural contexts, achieving
notable advancements. Nonetheless, traditional deep learning methodologies are not with-
out their limitations. The CNN, utilizing convolutional kernels for feature extraction, is
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adept at processing structured data like images and speech but falters with time-series
data [28]. Conversely, the RNN, designed to handle time-series data, leverages historical
information for future predictions but is plagued by gradient vanishing and explosion
issues, impeding its ability to capture long-term dependencies [29]. Similarly, while the
self-attention mechanism can effectively manage unstructured data such as natural lan-
guage, it is less effective with structured data [30]. To address these challenges, the Gated
Recurrent Unit (GRU) improves upon the RNN by incorporating a gating mechanism
to mitigate gradient vanishing and explosion, thereby enhancing the model’s memory
capabilities [4]. Meanwhile, the Transformer, based on the self-attention mechanism, can
discern global dependencies within an input sequence through multi-head attention and
position encoding, significantly bolstering the model’s expressive capacity [31]. Both GRU
and Transformer, originating from the realm of natural language processing, excel in han-
dling time-series prediction tasks and offer complementary advantages to redress the
shortcomings of RNNs and self-attention mechanisms, respectively [32]. There have been
successful applications of GRU and Transformer models in various fields, such as traffic
flow analysis [33], speech recognition [34], and environmental sequence modeling [35], yet
their application in predicting soil moisture content in maize’s root zone remains relatively
unexplored. Given the proven efficacy of hybrid models in enhancing prediction accuracy
by amalgamating different deep learning approaches [4,36], this study proposes a novel
technical solution: the creation of a hybrid model that fuses GRU and Transformer technolo-
gies. This GRU–Transformer hybrid model will be applied to the prediction of soil water
content in the root zone of maize, with an aim to evaluate its feasibility and effectiveness in
this specific domain.

The principal aim of this study is to introduce and assess the efficacy of a novel
soil water content prediction model, christened the GRU–Transformer. This model’s
validation involves a rigorous evaluation using meteorological and soil moisture data
collected from maize cultivation areas across eight distinct locations in Hebei Province,
China, spanning the years 2011 to 2018. The assessment strategy encompasses an analysis
of the model’s predictive capabilities across various input configurations and forecast
durations. Additionally, the performance of the GRU–Transformer model is benchmarked
against a range of conventional machine learning and advanced deep learning models,
providing a comprehensive understanding of its relative effectiveness in predicting soil
moisture content in agricultural settings.

2. Material and Method

The hybrid modeling methodology delineated in this manuscript leverages the syner-
gistic capabilities of GRU and Transformer algorithms to prognosticate future soil moisture
levels across varying depths, as depicted in Figure 1. This innovative model is bifurcated
into two distinct branches: the GRU branch and the Transformer branch. Each branch metic-
ulously processes the 3D tensor, characterized by the dimensions (batch_size, input_length,
num_features), amalgamating input variables derived from both meteorological and soil
datasets. Subsequently, the extracted features from each branch are intricately spliced and
amalgamated through a meta-learner, culminating in the synthesis of the final predictive
output. This output is represented as a two-dimensional tensor (batch_size, output_length),
encapsulating the forecasted soil moisture content at a future juncture, thereby showcasing
the model’s robust predictive acumen.
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2.1. GRU Branch

The purpose of the GRU branch in this study is to utilize the recurrent structure and
gating mechanism of GRU to capture the long-term dependence and temporal dynamics
features in the input sequences (Figure 2). GRU, using an improved RNN, can solve the
problem of vanishing or exploding gradients that RNNs are prone to when dealing with
long sequences [35]. The basic units of GRU are as follows:

rt = σ(Wrxt + Urht−1 + br) (1)

Zt = σ(WZxt + UZht−1 + bZ) (2)

∼
ht = tanh(Whxt + Uh

(
rt
⊙

ht−1

)
+ bh) (3)

ht = (1− Zt)
⊙

ht−1 + Zt
⊙ ∼

ht (4)
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where xt is an input vector, ht is an output vector, rt is a reset gate, Zt is an update gate, σ is
a sigmoid function,

⊙
is an element-by-element multiplication, Wr, WZ, Wh, Ur, UZ, Uh is

a learnable weight matrix, and br, bZ, bh is a learnable bias vector. Reset gates and update
gates can control the flow of information, selectively forgetting or remembering historical
states. The reset gate can decide whether to reset the historical state or not, and the update
gate can decide whether to update the current state or not.
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The structural design and hyperparameter configuration of the GRU branch in the
model proposed in this paper are shown in Table 1.

Table 1. Configuration of hyperparameters in the GRU branch.

Parameter Value Interpretation

Input dimension 22 Number of features received by the input layer
Network layer 2 Number of layers in the GRU network

Number of neurons per layer 512 Number of neurons per layer of GRU network
Activation function ReLU For increasing model depth and nonlinearity

Cyclic layer dropout ratio 0.2 Dropout ratios in the loop layer to prevent overfitting
Cyclic layer recurrent dropout ratio 0.2 Dropout ratios for internal connections in the loop layer

Number of neurons in the fully connected layer 256 The number of neurons to which the GRU output is mapped
Full connectivity layer dropout ratio 0.2 Dropout ratios for overfitting prevention in the fully connected layer

Fully connected layer activation function Linear Linear activation function for fully connected layers
Output layer dimension 256 Dimensions of GRU branch output

Firstly, a two-layer GRU network is constructed with 512 neurons in each layer. ReLU
is used for the activation function to increase the depth and nonlinearity of the model and
to improve the expressive power of the model. The formula for the ReLU function is

relu(x) = max(0, x) (5)
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The output of the GRU is then mapped onto a low-dimensional space using a fully
connected layer (Dense) of 256 neurons, reducing the number of parameters and decreasing
the complexity of the model. The formula for the fully connected layer is

y = Wx + b (6)

where x is the input vector, y is the output vector, W is the learnable weight matrix, and b
is the learnable bias vector.

Finally, a spreading layer (Flatten) is connected to obtain a 2D tensor (batch_size, 256),
which converts the output of the fully connected layer into a 1D vector for easy splicing
with the output of the Transformer branch. The formula for the Flatten layer is

y = x.reshape(batchsize,−1) (7)

where x is the input tensor, y is the output vector, batchsize is the batch size, and −1
indicates that the remaining dimensions are computed automatically.

The output of the GRU branch can be expressed as

y = Flatten(Dense(GRU(GRU(x)))) (8)

where x is the input tensor, y is the output vector, GRU is the GRU layer, Dense is the fully
connected layer, and Flatten is the spreading layer.

2.2. Transformer Branch

In the proposed GRU–Transformer model, the Transformer branch plays a pivotal role
in capturing global dependencies and multidimensional features within the input sequence.
This is achieved through the employment of the Transformer’s self-attention and multi-
head attention mechanisms, as depicted in Figure 3. The Transformer is adept at handling
sequence-to-sequence tasks, utilizing its attention-based encoder–decoder structure [33].
This structure is integral to the model’s ability to process and analyze complex sequences
of data effectively. The core unit of the Transformer can be conceptualized as follows:

Q = XWQ (9)

K = XWK (10)

V = XWV (11)

A = so f tmax(
QKT
√

dK
) (12)

Y = AV (13)

where X is the input matrix, Q, K, V is the query matrix, WQ, WK, WV key matrix, value
matrix, A is the learnable weight matrix, Y is the attention matrix, dK is the output matrix,√

dK is the dimension of the attention header, so f tmax is a scaling factor used to prevent
the attention weights from being too large or too small, and softmax is the normalization
function used to compute the weight of the value corresponding to each key. The attention
mechanism calculates the correlation of each element in the input sequence with the other
elements, thus enabling global dependency capture.

The structure of the Transformer branch in the model proposed in this paper is de-
signed as follows: firstly, position information is added to each element in the input
sequence by adding position embeddings to the inputs, so that the model can distinguish
between elements at different positions. The detailed hyperparameter configuration is
shown in Table 2.
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Table 2. Hyperparameter configuration for the Transformer branch.

Parameter Value Interpretation

Input dimension 22 Number of features received by the input layer
Number of encoder layers 4 Layers of the Transformer encoder

Attention headcount 4 Number of attention heads per layer of Transformer encoder
Dimensions of the attention head 64 Feature dimensions handled by each attention head

Dimensions of feedforward networks 128 Dimension of feedforward network in Transformer encoder
Dropout layer ratio 0.1 Ratio of Dropout layers used to prevent overfitting

Layer normalized epsilon 1.00 × 10−6 Small values in layer normalization to prevent division by zero
Number of neurons in the fully connected layer 256 Number of neurons to map the output of the Transformer

Full connectivity layer dropout ratio 0.2 Dropout ratios for overfitting prevention in the fully connected layer
Fully connected layer activation function Linear Linear activation function for fully connected layers

Output layer dimension 256 Dimension of Transformer branch output

The formula for position encoding is as follows:

PE(pos,2i) = sin
(

pos

10000
2i
d

)
(14)

PE(pos,2i+1) = cos
(

pos

10000
2i
d

)
(15)

where PE is the position encoding matrix, pos is the position index, i is the dimension
index, d is the dimension of the input. The dimensions of the position encoding are the
same as the dimensions of the input and can be added directly to the input.

Then, four Transformer encoder layers (Transformer_encoder) are constructed with
four attention heads per layer (num_heads = 4), each with a dimension of 64 (head_size = 64),
a feedforward network with a dimension of 128 (ff_dim = 128), and a Dropout layer with a
rate of 0.1 (dropout_rate = 0.1). The above configuration increases the depth and diversity
of the model and improves its expressive power. Among them, the Dropout layer can
randomly discard a small number of neurons to prevent model overfitting.
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The structure of the Transformer encoder layer is as follows:

X′ = X + MultiHeadAttention(X, X, X) (16)

X′′ = X′ + FeedForward
(
X′
)

(17)

Y = LayerNorm(X′′ ) (18)

where X is the input matrix, X′ is the output of the first residual connection, X′′ is the
output of the second residual connection, Y is the final output, MultiHeadAttention is the
multi-head attention layer, FeedForward is the feedforward network layer, and LayerNorm
is the layer normalization layer.

The multi-head attention layer can divide the input matrix into multiple sub-matrices,
which are stitched together after separate attention computations to capture the multi-
dimensional features in the input sequence. The feedforward network layer can increase
the complexity of the model by performing a nonlinear transformation of the input matrix.
The layer normalization layer normalizes each layer of the input matrix to make the model
more stable. Residual connections make the model easier to optimize avoiding gradient
vanishing or exploding. Then, a 256 neuron fully connected layer (Dense) is constructed
to map the output of the Transformer to a low dimensional space reducing the number of
parameters and decreasing the complexity of the model. Finally, a two-dimensional tensor
(batch_size, 256) is obtained through a Flatten layer, which converts the output of the fully
connected layer into a one-dimensional vector, which can be easily spliced with the output
of the GRU branch.

The output of the Transformer branch can be represented as follows:

y = Flatten
(

Dense
(

Trans f ormerEncoder4(PositionEmbeddings(x))
))

(19)

where x is the input tensor, y is the output vector, PositionEmbeddings is the position
encoding layer, Trans f ormerEncoder is the Transformer encoder layer, Dense is the fully-
connected layer, Flatten is the spreading layer, and 4 means repeat four times.

2.3. Meta-Learner

The purpose of the meta-learner in the model proposed in this paper is to splice and
fuse the outputs of the two branches to obtain the final prediction results. The structure
of the meta-learner is designed as follows: firstly, the outputs of the two branches are
concatenated to obtain a two-dimensional tensor (batch_size, 512), and then the features
of the two branches are combined to increase the information content of the model. The
detailed hyper-parameter configuration is shown in Table 3.

Table 3. Meta-learner hyperparameter configuration.

Parameter Value Interpretation

Dimensions after splicing 512 GRU and Transformer branches output spliced dimensions

Number of neurons in layers 1–5 (decreasing) 512, 256, 128,
64, 32

Number of neurons in the first five fully connected layers, decreasing
layer by layer

Number of neurons in layer 6 (output layer) 6 Number of neurons in the 6th fully connected layer, corresponding to the
output dimension

Dropout ratio per fully connected layer 0.2 Dropout ratios for overfitting prevention in each fully connected layer
Fully connected layer activation Function per layer ReLU Activation functions for fully connected layers except the last one

Output layer activation function Linear Linear activation function for the output layer

The equation for the splicing layer can be expressed as follows:

y = [x1, x2] (20)

where x1 is the output of the GRU branch, x2 is the output of the Transformer branch, y is
the spliced output, and [] denotes the splicing operation.
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Then, a 5-layer neuron fully connected layer (Dense) is constructed and the activation
function is ReLU. The formula for the fully connected layer is as follows:

y = relu(Wx + b) (21)

where x is the input vector, y is the output vector, W is the learnable weight matrix, b is the
learnable bias vector, and relu is the activation function.

Finally, the connection is made to the output layer, which is Dense, and the activation
function used is linear to obtain the final output, which is a two-dimensional tensor
(batch_size, output_length). The above process maps the output of the fully connected
layer to a one-dimensional space to obtain the predicted values.

2.4. Model Evaluation and Training

To evaluate the performance of different models, the following five evaluation metrics
were chosen in this paper.

Mean Squared Error (MSE):

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (22)

Mean Absolute Error (MAE):

MAE =
1
m

m

∑
i=1
|(yi − ŷi)| (23)

Root Mean Squared Error (RMSE):

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (24)

Coefficient of Determination (R2):

R2 = 1− ∑i(ŷi − yi)
2

∑i
(
yi − yi

)2 (25)

where ŷi is the predicted value, yi is the true value, yi is the average of the true values.
MAE can reflect the actual situation of the error of the predicted value: the smaller its
value, the higher the accuracy of the prediction. MSE is the expected value of the square
of the difference between the predicted value and the true value, which can evaluate the
degree of change of the data, the smaller its value, the higher the stability of the prediction.
RMSE is the arithmetic square root of MSE, which, like the MAE, is used to measure
the accuracy of the prediction, but it has a greater penalty for larger errors, so it is more
suitable for evaluating models that are sensitive to errors. R2 can eliminate the influence
of dimensionality on the evaluation index, it indicates the degree of correlation between
the predicted value and the real value, and the closer its value is to 1, the higher the fit of
the prediction.

Regarding the experimental setup for this research, the hardware configuration en-
compasses an Intel® Xeon® CPU E5-1620 v4 @ 3.50 GHz, an NVIDIA Quadro K2200 GPU,
and 32 GB of RAM. The software infrastructure leverages Anaconda as the foundational
platform for deep learning endeavors, with Keras serving as the framework for construct-
ing deep learning models, and TensorFlow-gpu 1.13 functioning as the backend engine.
CUDA technology, developed by NVIDIA Corporation based in Santa Clara, CA, USA, is
employed to facilitate parallel computing on the GPU, thereby augmenting the training
speed of the model. Python 3.7 is utilized as the primary programming language.
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The training methodology incorporates the Adam optimization algorithm for model
refinement, complemented by an early stopping criterion as a termination condition for
training. This criterion is set with a threshold of 50 iterations—training ceases if there
is no improvement in the model’s loss on the validation set within these iterations. The
optimal model weights are preserved, and the model is saved in the .h5 format. This
comprehensive setup ensures a robust and efficient training environment, which is crucial
for the development and validation of the deep learning model.

2.5. Study Area and Data Acquisition

The focal area of this study is Hebei Province, China, encompassing geographical
coordinates ranging from 36◦05′ to 42◦40′ N latitude and 113◦27′ to 119◦50′ E longitude.
This region is characterized by a temperate continental monsoon climate, distinguished
by four well-defined seasons, ample sunshine, moderate rainfall, and significant tempera-
ture variations, among other climatic attributes. The dataset employed in this study was
procured from the China Meteorological Data Network, encompassing both meteorolog-
ical and soil moisture content data spanning the years 2011 to 2018. In alignment with
the prevalent conditions of maize cultivation in the region and subsequent consultations
with local agricultural authorities, a comprehensive dataset comprising 450,120 records
was assembled from eight agrometeorological monitoring stations within Hebei Province
(namely Fuping, Weixian, Gaoyi, Fengning, Langfang, Xinglong, Weichang, and Qinglong
stations), as illustrated in Figure 4. Soil water content measurements were conducted at an
hourly frequency. The volumetric water content of the soil (denoted as 10SVWC, 20SVWC,
30SVWC, 40SVWC, 50SVWC, and 60SVWC, represented in percentage) was recorded at
varying depths of 10 cm, 20 cm, 30 cm, 40 cm, 50 cm, and 60 cm, with daily average
values being computed. The meteorological data encompassed a range of parameters,
including the daily mean air temperature (TEM_Avg, in degrees Celsius), minimum air
temperature (TEM_Min, in degrees Celsius), maximum air temperature (TEM_Max, in de-
grees Celsius), mean surface temperature (GST_Avg, in degrees Celsius), minimum surface
temperature (GST_Min, in degrees Celsius), maximum surface temperature (GST_Max, in
degrees Celsius), duration of sunshine (SSH, in hours), mean relative humidity (RHU_Avg,
in percentages), precipitation during the period from 20:00 to 08:00 h (PRE_Time_2008,
in millimeters), precipitation during the period from 08:00 to 20:00 h (PRE_Time_0820,
in millimeters), 24 h precipitation (PRE_Time_2020, in millimeters), average wind speed
(WIN_S_Avg, in kilometers per hour), maximum wind speed (WIN_S_Max, in kilometers
per hour), dominant wind direction (WIN_D_S_Max, in degrees), instantaneous maxi-
mum wind speed (WIN_S_Inst_Max, in kilometers per hour), and the direction of the
instantaneous maximum wind speed (WIN_D_INST_Max, in degrees).
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2.6. Data Analysis

Table 4 elegantly presents the synthesized statistical analysis of 22 distinct soil and
meteorological indicators, encompassing an array of parameters such as mean, standard
deviation, minimum, maximum, and median values across the eight meticulously chosen
monitoring stations. The temporal scope of this study encompasses an entire annual cycle
of data from maize cultivation locales, thereby encapsulating the complete spectrum of
seasonal fluctuations and chronological diversities. This comprehensive temporal coverage,
while providing a holistic view of the data, simultaneously introduces a formidable chal-
lenge in the precise prediction of soil water content at varying depths within the maize root
zone. Such an encompassing approach ensures a thorough understanding of the intricate
interplay between temporal variables and the dynamic nature of soil moisture content,
critical for advancing predictive accuracy in agricultural environmental studies.

Table 4. Comprehensive statistical analysis outcomes of soil and meteorological data.

Indicator Abbreviation Unit Mean Standard
Deviation

Minimum
Value

Maximum
Value Median

10 cm Soil Volumetric Water Content 10SVWC % 13.2 6.64 2.2 53.2 12.1
20 cm Soil Volumetric Water Content 20SVWC % 14.21 7.4 2.3 65.9 14
30 cm Soil Volumetric Water Content 30SVWC % 15.09 6.92 3.1 62 15
40 cm Soil Volumetric Water Content 40SVWC % 16.4 7.53 3.5 64 16.7
50 cm Soil Volumetric Water Content 50SVWC % 15 7.27 3.6 52.5 14
60 cm Soil Volumetric Water Content 60SVWC % 17.68 8.21 3.8 61.4 17

Average temperatures TEM_Avg ◦C 11.79 11.19 −24.0 32.7 13.7
Maximum temperature TEM_Max ◦C 18.39 11.26 −21.4 40.9 20.8
Minimum temperature TEM_Min ◦C 6.24 11.29 −27.8 28.6 7.5

Average relative humidity RHU_Avg % 58.46 19.64 8 100 59
Periods of precipitation in 20-08 PRE_Time_2008 mm 9.64 56.78 0 2495 0

8–20 h precipitation period PRE_Time_0820 mm 9.26 48.81 0 1678 0
20-20 precipitation period PRE_Time_2020 mm 22.53 347.03 0 2495 0

Average wind speed WIN_S_Avg km/h 20.21 10.53 2 123 18
Maximum wind speed WIN_S_Max km/h 53.14 22.85 12 213 49

Maximum wind direction WIN_D_S_Max ◦ 9.41 4.63 1 16 10
Maximum wind speed WIN_S_Inst_Max km/h 88.93 37.95 19 393 82

Maximum wind direction WIN_D_INST_Max km/h 9.36 4.66 1 16 10
Daylight hours SSH h 6.96 3.94 0 14.3 7.9

Average ground temperature GST_Avg ◦C 14.59 12.84 −21.9 41.1 16.6
Maximum ground temperature GST_Max ◦C 32.25 16.71 −14.1 71.6 33.9
minimum ground temperature GST_Min ◦C 4.81 11.71 −27.2 27.2 5.6

Figure 5 elegantly delineates the outcomes of the Pearson correlation analysis con-
ducted among the various variables. This analysis reveals that the correlation coefficients
pertaining to soil water content at diverse depths surpass the threshold of 0.7, indicat-
ing a robust and strongly positive correlation. The interplay between each meteorolog-
ical parameter and soil water content exhibits varying degrees of correlation. Specif-
ically, TEM_Avg, TEM_Max, TEM_Min, RHU_Avg, PRE_Time_2008, PRE_Time_0820,
PRE_Time_2020, GST_Avg, GST_Max, and GST_Min all demonstrate a positive correlation
with the soil water content at different depths. Conversely, WIN_S_Avg, WIN_S_Max,
WIN_D_S_Max, WIN_S_Inst_Max, WIN_D_INST_Max, and SSH exhibit a negative corre-
lation with soil water content across various depths. This intricate mosaic of correlations
underscores the multifaceted nature of the interactions between meteorological factors and
soil water content, providing invaluable insights into the complex dynamics governing soil
moisture across different strata.
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3. Results and Discussion
3.1. Comparison of Model Prediction Accuracy for Different Days of Delay

Figures 6 and 7 elucidate the predictive accuracy outcomes of the GRU–Transformer
model across various delay intervals. The model’s overall performance is noteworthy for
its consistently high accuracy and stability under diverse conditions. Specifically, the MSE
for soil moisture prediction at different depths fluctuated between 2.71% and 17.53%, while
the R2 spanned from 60.47% to 96.08%. These figures emphatically underscore the model’s
adaptability and resilience in varied scenarios. A more granular analysis reveals that the
model’s predictive precision is notably superior for shorter delay periods, such as 1 to
2 days. For instance, the average MSE for a 1-day delay stands at 5.22%, with the lowest
recorded value being 2.71%, and the average R2 is remarkably high at 89.92%. Nonetheless,
it is observed that the predictive error incrementally ascends with an increase in the delay
duration, suggesting a heightened proficiency of the model in forecasting near-term data.
When delving into the comparison across different soil depths, it is discernible that the
model’s predictive error for shallow soils, like at 10 cm depth, is relatively elevated, with a
mean MSE of 15.00% and an average R2 of merely 66.17%. In stark contrast, the model’s
error rate for deeper soils, such as at 50 cm, is markedly lower, boasting an average MSE
of 7.71% and an average R2 of 85.66%. This disparity highlights the model’s significant
advantage in predicting the water content of deeper soils. In summation, the soil water
content prediction model introduced in this study exhibits exemplary efficacy across various
prediction delays and soil depths. It is particularly commendable for its high accuracy and
reliability in short-term predictions and in assessing the water content of deeper soil layers.



Agronomy 2024, 14, 432 13 of 23

Agronomy 2024, 14, x FOR PEER REVIEW 13 of 24 
 

 

that the model’s predictive precision is notably superior for shorter delay periods, such as 

1 to 2 days. For instance, the average MSE for a 1-day delay stands at 5.22%, with the 

lowest recorded value being 2.71%, and the average R2 is remarkably high at 89.92%. 

Nonetheless, it is observed that the predictive error incrementally ascends with an in-

crease in the delay duration, suggesting a heightened proficiency of the model in forecast-

ing near-term data. When delving into the comparison across different soil depths, it is 

discernible that the model’s predictive error for shallow soils, like at 10 cm depth, is rela-

tively elevated, with a mean MSE of 15.00% and an average R2 of merely 66.17%. In stark 

contrast, the model’s error rate for deeper soils, such as at 50 cm, is markedly lower, boast-

ing an average MSE of 7.71% and an average R2 of 85.66%. This disparity highlights the 

model’s significant advantage in predicting the water content of deeper soils. In summa-

tion, the soil water content prediction model introduced in this study exhibits exemplary 

efficacy across various prediction delays and soil depths. It is particularly commendable 

for its high accuracy and reliability in short-term predictions and in assessing the water 

content of deeper soil layers. 

   

Figure 6. Analysis of prediction error in GRU–Transformer model across different time delays. 

  

  

Figure 6. Analysis of prediction error in GRU–Transformer model across different time delays.

Agronomy 2024, 14, x FOR PEER REVIEW 13 of 24 
 

 

that the model’s predictive precision is notably superior for shorter delay periods, such as 

1 to 2 days. For instance, the average MSE for a 1-day delay stands at 5.22%, with the 

lowest recorded value being 2.71%, and the average R2 is remarkably high at 89.92%. 

Nonetheless, it is observed that the predictive error incrementally ascends with an in-

crease in the delay duration, suggesting a heightened proficiency of the model in forecast-

ing near-term data. When delving into the comparison across different soil depths, it is 

discernible that the model’s predictive error for shallow soils, like at 10 cm depth, is rela-

tively elevated, with a mean MSE of 15.00% and an average R2 of merely 66.17%. In stark 

contrast, the model’s error rate for deeper soils, such as at 50 cm, is markedly lower, boast-

ing an average MSE of 7.71% and an average R2 of 85.66%. This disparity highlights the 

model’s significant advantage in predicting the water content of deeper soils. In summa-

tion, the soil water content prediction model introduced in this study exhibits exemplary 

efficacy across various prediction delays and soil depths. It is particularly commendable 

for its high accuracy and reliability in short-term predictions and in assessing the water 

content of deeper soil layers. 

   

Figure 6. Analysis of prediction error in GRU–Transformer model across different time delays. 

  

  

Agronomy 2024, 14, x FOR PEER REVIEW 14 of 24 
 

 

  

  

  

Figure 7. Error distribution in test set for GRU–Transformer model over various time delays. 

The marked disparities in the performance of the soil moisture content prediction 
model at varying delay intervals and soil depths, as highlighted in this study, underscore 
the intricate complexity of soil moisture dynamics and its susceptibility to environmental 
influences. These variances not only attest to the model’s adaptability but also furnish 
novel insights into the understanding of soil moisture behavior. The observed decrease in 
prediction accuracy with prolonged delay days is potentially attributable to escalating un-
certainties on the temporal scale. In the immediate term, the soil moisture content is rela-
tively less impacted by meteorological conditions, thereby enabling the model to forecast 
near-future soil moisture status with greater precision. However, the predictability dimin-
ishes as the timeframe extends, largely due to the increasing unpredictability of meteoro-
logical factors such as rainfall and evaporation, which exert a direct influence on the 
model’s accuracy [37]. Figure 8 delineates the outcomes of an autocorrelation analysis on 
soil water content over a 1–10-day delay period, using the data from this study. The anal-
ysis reveals a decline in the mean autocorrelation coefficient of soil water content from a 
peak of 0.91 to a mere 0.19 as the delay interval increases, thereby highlighting the ampli-
fied challenges in forecasting over longer future durations. This phenomenon aligns with 
the findings of Cai et al. (2019) [29], who examined the 1–16-day autocorrelation of soil 
water content. 

Furthermore, the dynamics of soil moisture encompass a spectrum of intricate non-
linear processes such as evaporation, infiltration, and plant water uptake. Consequently, 
the model’s prediction error tends to escalate with the extension of the forecast period, a 
concept corroborated by theoretical studies in time-series prediction. From the standpoint 

Figure 7. Cont.



Agronomy 2024, 14, 432 14 of 23

Agronomy 2024, 14, x FOR PEER REVIEW 14 of 24 
 

 

  

  

  

Figure 7. Error distribution in test set for GRU–Transformer model over various time delays. 

The marked disparities in the performance of the soil moisture content prediction 
model at varying delay intervals and soil depths, as highlighted in this study, underscore 
the intricate complexity of soil moisture dynamics and its susceptibility to environmental 
influences. These variances not only attest to the model’s adaptability but also furnish 
novel insights into the understanding of soil moisture behavior. The observed decrease in 
prediction accuracy with prolonged delay days is potentially attributable to escalating un-
certainties on the temporal scale. In the immediate term, the soil moisture content is rela-
tively less impacted by meteorological conditions, thereby enabling the model to forecast 
near-future soil moisture status with greater precision. However, the predictability dimin-
ishes as the timeframe extends, largely due to the increasing unpredictability of meteoro-
logical factors such as rainfall and evaporation, which exert a direct influence on the 
model’s accuracy [37]. Figure 8 delineates the outcomes of an autocorrelation analysis on 
soil water content over a 1–10-day delay period, using the data from this study. The anal-
ysis reveals a decline in the mean autocorrelation coefficient of soil water content from a 
peak of 0.91 to a mere 0.19 as the delay interval increases, thereby highlighting the ampli-
fied challenges in forecasting over longer future durations. This phenomenon aligns with 
the findings of Cai et al. (2019) [29], who examined the 1–16-day autocorrelation of soil 
water content. 

Furthermore, the dynamics of soil moisture encompass a spectrum of intricate non-
linear processes such as evaporation, infiltration, and plant water uptake. Consequently, 
the model’s prediction error tends to escalate with the extension of the forecast period, a 
concept corroborated by theoretical studies in time-series prediction. From the standpoint 

Figure 7. Error distribution in test set for GRU–Transformer model over various time delays.

The marked disparities in the performance of the soil moisture content prediction
model at varying delay intervals and soil depths, as highlighted in this study, underscore
the intricate complexity of soil moisture dynamics and its susceptibility to environmental
influences. These variances not only attest to the model’s adaptability but also furnish
novel insights into the understanding of soil moisture behavior. The observed decrease
in prediction accuracy with prolonged delay days is potentially attributable to escalating
uncertainties on the temporal scale. In the immediate term, the soil moisture content
is relatively less impacted by meteorological conditions, thereby enabling the model to
forecast near-future soil moisture status with greater precision. However, the predictability
diminishes as the timeframe extends, largely due to the increasing unpredictability of
meteorological factors such as rainfall and evaporation, which exert a direct influence on
the model’s accuracy [37]. Figure 8 delineates the outcomes of an autocorrelation analysis
on soil water content over a 1–10-day delay period, using the data from this study. The
analysis reveals a decline in the mean autocorrelation coefficient of soil water content
from a peak of 0.91 to a mere 0.19 as the delay interval increases, thereby highlighting the
amplified challenges in forecasting over longer future durations. This phenomenon aligns
with the findings of Cai et al. (2019) [29], who examined the 1–16-day autocorrelation of
soil water content.

Furthermore, the dynamics of soil moisture encompass a spectrum of intricate non-
linear processes such as evaporation, infiltration, and plant water uptake. Consequently,
the model’s prediction error tends to escalate with the extension of the forecast period, a
concept corroborated by theoretical studies in time-series prediction. From the standpoint
of soil depth, the model exhibits heightened accuracy in predicting moisture content in
deeper soils. This heightened accuracy could stem from the reduced impact of daily climatic
fluctuations on deeper soils, which exhibit relatively less variability in moisture content.
In contrast, surface soils are directly exposed to atmospheric elements, rendering their
moisture status more immediately susceptible to variables like rainfall and evapotranspira-
tion, thus posing greater challenges for accurate prediction [38]. The moisture dynamics in
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deeper soil strata are comparatively stable and are more effectively and accurately captured
by existing hydrological and soil science models [39]. This observation underscores the
significant role of soil physical characteristics in influencing the performance of prediction
models and suggests the necessity of comprehensive consideration of the properties of
different soil layers in the construction and parameter optimization of these models.
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3.2. Assessing the Predictive Efficacy of Varied Input Parameter Combinations

The efficacy of the proposed soil water content prediction model was exhaustively
evaluated across a spectrum of input parameter combinations. Six distinct sets of input
terms, comprising 6, 9, 12, 15, 18, and 22 parameters, respectively, were meticulously
formulated based on the inter-correlation of the indicators (as outlined in Table 5). This
approach was employed to juxtapose the model’s predictive accuracies under diverse
parameter amalgamations. The experimental outcomes elucidate key characteristics and
trends in the model’s performance.

Table 5. Framework of diverse input term combinations.

Combination Number of Parameters Parameters

Group 1 22

10SVWC, 20SVWC, 30SVWC, 40SVWC, 50SVWC, 60SVWC, TEM_Avg,
TEM_Max, TEM_Min, RHU_Avg, PRE_Time_2008, PRE_Time_0820,

PRE_Time_2020, WIN_S_Avg, WIN_S_Max, WIN_D_S_Max,
WIN_S_Inst_Max, WIN_D_INST_Max, SSH, GST_Avg, GST_Max, GST_Min

Group 2 18

10SVWC, 20SVWC, 30SVWC, 40SVWC, 50SVWC, 60SVWC, TEM_Avg,
TEM_Max, TEM_Min, RHU_Avg, PRE_Time_2008, PRE_Time_0820,

PRE_Time_2020, WIN_S_Avg, WIN_S_Max, WIN_D_S_Max,
WIN_S_Inst_Max, WIN_D_INST_Max

Group 3 15
10SVWC, 20SVWC, 30SVWC, 40SVWC, 50SVWC, 60SVWC, TEM_Avg,

TEM_Max, TEM_Min, RHU_Avg, PRE_Time_2008, PRE_Time_0820,
PRE_Time_2020, WIN_S_Avg, WIN_S_Max

Group 4 12 10SVWC, 20SVWC, 30SVWC, 40SVWC, 50SVWC, 60SVWC, TEM_Avg,
TEM_Max, TEM_Min, RHU_Avg, PRE_Time_2008, PRE_Time_0820

Group 5 9 10SVWC, 20SVWC, 30SVWC, 40SVWC, 50SVWC, 60SVWC, TEM_Avg,
TEM_Max, TEM_Min

Group 6 6 10SVWC, 20SVWC, 30SVWC, 40SVWC, 50SVWC, 60SVWC
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Figures 9 and 10 depict the predictive accuracy of the GRU–Transformer model under
these varied input scenarios. Regarding its overall performance, the model consistently
exhibited high accuracy and stability across the range of parameter combinations. The MSE
of the GRU–Transformer model oscillated between 0.43% and 1.11%, while the R2 ranged
from 0.8482 to 0.8578. This variance indicates that the proposed model adeptly predicts soil
water content, effectively handling different sets of input parameters.
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Focusing on the comparative performance across parameter combinations, the model
attained its zenith under the 22-parameter ensemble (Group 1), registering an average MSE
of 0.62% and an average R2 of 0.8578. This implies that the model harnesses a broader
array of data features to enhance predictive accuracy when endowed with a higher count of
parameters. Conversely, in the 6-parameter combination (Group 6)—the minimal parameter
set—the average MSE modestly declined to 0.59%, and the average R2 marginally ascended
to 0.8482. This demonstrates the model’s capacity to sustain high accuracy even with a
reduced parameter set, underlining its robustness and adaptability.

An in-depth analysis of the influence of the parameter count on the model’s efficacy
reveals that, while both the maximal and minimal MSE values diminish as the number
of parameters decreases, the overall performance remains relatively unaffected. This
observation suggests that the model proficiently captures the salient features of soil water
content, even under conditions of simplified input, highlighting its capability to efficiently
distill and utilize essential data characteristics.

This research discerned that diminishing the number of parameters led to a slight
escalation in the error indices, while the R2 values continued to hover at elevated levels.
This phenomenon suggests that the model retains the primary factors influencing soil water
content, even under a regime of parameter simplification, thereby facilitating effective
prediction. Such a capability could be attributed to the fact that the chosen parameters
exhibit a strong correlation with soil water content, coupled with a degree of redundancy
among them. That is, certain parameters can be inferred or approximated using others.
Consequently, when the parameter count is reduced, the model compensates for the absence
of certain parameters by adjusting the weights of the remaining ones, thus sustaining
its high predictive accuracy. This characteristic also underscores the model’s robust self-
adaptive nature, enabling automatic adjustments in its structure and parameters in response
to varying parameter combinations, to achieve optimal prediction outcomes.

Moreover, the progressive increase in MSE, RMSE, and MAE from Group 1 (22 pa-
rameters) to Group 6 (6 parameters), juxtaposed with the relatively minor fluctuation
in the R2 value (0.8482–0.8578), indicates the model’s tolerance to changes in parameter
quantity. This implies that alterations in the number of parameters do not significantly
impact the predictive capability of the model. This resilience may stem from the model’s
GRU–Transformer hybrid neural network architecture, which adeptly extracts higher-order
features of the parameters through multilayer nonlinear transformations, thereby enhanc-
ing its expressive and generalization abilities. Hence, even with a limited number of
parameters, the model is capable of discerning potential interrelationships through neural
network learning, facilitating accurate soil water content prediction.

The high consistency in error metrics between Groups 1 and 2 may be attributed to
the inclusion of comprehensive soil volumetric water content parameters and other critical
parameters such as temperature, relative humidity, precipitation, and wind speed in these
combinations. These parameters collectively encapsulate the soil’s physical, chemical, and
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biological attributes, as well as the soil–atmosphere interactions, thereby influencing the
dynamic shifts in soil water content. Hence, they provide a wealth of information that
enhances the predictive accuracy and stability of the model.

Interestingly, even with Group 6, which comprises the least number of parameters
focused solely on volumetric soil water content, the decline in predictive accuracy is not
significantly pronounced. This implies that these parameters are direct indicators of soil
water content and the primary factors influencing its variability. Additionally, as depicted
in Figure 11, the correlation between different soil depths ranges from 0.65 to 0.95, offering
synergistic features that bolster the stability of the model’s predictions. Consequently, the
model achieves satisfactory predictive accuracies even when solely reliant on soil water
content data.
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3.3. Comparative Analysis of Prediction Accuracy against Benchmark Models

In assessing the performance for five-day-ahead predictions, this study scrutinizes
the distinctions in the predictive accuracy of the newly devised GRU–Transformer model
relative to other established models. This comparative evaluation encompasses typical ma-
chine learning models such as Support Vector Regression (SVR [18]), K-Nearest Neighbors
(KNN [40]), Gradient Boosted Decision Trees (GBDT [41]), XGBoost [42], Random For-
est [21]), and deep learning models like Deep Neural Networks (DNN [27]), Convolutional
Neural Networks (CNN [4]), as well as independent GRU and Transformer branches.

Table 6 delineates the soil water content prediction accuracies of these various models,
showcasing a spectrum of performances with MSE values ranging from 10.31% to 31.40%
and R2 values spanning 42.32% to 80.27%. These results highlight the diverse capabilities
and adaptability of the different models in predicting soil water content.

Table 6. Comparative analysis of prediction accuracy across various models for soil water content.

Model MSE (%) RMSE (%) MAE (%) R2

KNN 31.40 5.60 4.26 0.4232
SVR 22.58 4.74 3.55 0.5844

GBDT 19.59 4.39 2.56 0.6274
DNN 18.78 4.2 3.17 0.6454

XGBoost 12.69 3.52 2.28 0.7579
LSTM 12.52 3.51 2.36 0.7627

Random Forest 12.20 3.46 2.35 0.7676
CNN 11.94 3.42 2.27 0.7725

GRU branch 11.86 3.41 2.21 0.7738
Transformer branch 11.04 3.29 2.18 0.7895
GRU–Transformer 10.31 3.17 2.04 0.8027

Upon comparing the performances of these models, the GRU–Transformer model, as
proposed in this study, emerged as the most proficient, recording an MSE of 10.31% and
an R2 of 80.27%. This exemplifies its superior predictive capabilities in handling complex
soil moisture data. In stark contrast, the traditional KNN model fared the poorest, with an
MSE of 31.40% and an R2 of merely 42.32%. The XGBoost model, known for its efficacy and
popularity, yielded an MSE of 12.69% and an R2 of 75.79%, outperforming most models
but still falling short of the GRU–Transformer model’s proficiency.

When comparing deep learning models against traditional machine learning models,
it is observed that deep learning-based models (such as CNN, LSTM, independent GRU,
and Transformer branches) generally surpass their traditional counterparts. Their MSE
and R2 values lie in the range of 11% to 13% and 76% to 79%, respectively, underscoring
the formidable capability of deep learning in processing complex datasets. Conversely,
traditional machine learning models, including SVR and GBDT, exhibit comparatively
lower predictive accuracy, with significantly higher MSE and MAE values than those
of deep learning models. This dichotomy accentuates the burgeoning potential of deep
learning approaches in the realm of complex data analysis and prediction.

In the realm of soil water content prediction, the exemplary performance of the GRU-
Transformer model underscores the formidable potential of deep learning technologies
in processing environmental data. The model’s capacity to surpass both traditional ma-
chine learning and other deep learning models can be primarily attributed to its unique
structural composition and its enhanced capability in handling complex datasets. The
GRU–Transformer model ingeniously amalgamates two cutting-edge neural network archi-
tectures: the GRU and the Transformer. This combination allows for an effective capture of
long-term dependencies and intricate spatial features within time-series data. The GRU
component of the model is particularly adept at processing time-series data [4], proving
especially potent in comprehending and predicting the dynamically evolving nature of
soil water content. Meanwhile, the Transformer branch, through its self-attention mecha-
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nism [35], excels in deciphering complex interrelationships between different data points,
thereby substantially elevating the model’s prediction accuracy.

In contrast to conventional machine learning models like SVR and GBDT, deep
learning models demonstrate a heightened ability to manage highly nonlinear and multi-
dimensional data. This study reveals that deep learning models, such as CNNs and LSTM
networks, generally outperform traditional machine learning approaches, highlighting deep
learning’s prowess in capturing intricate data patterns and relationships [27]. However, the
GRU–Transformer model elevates this capability to a higher echelon by synergizing the
strengths of both GRU and Transformer architectures. By integrating these two powerful
neural network structures, their individual advantages are mutually amplified [33].

This synergistic fusion not only allows the GRU–Transformer model to surpass the
accuracy of individual deep learning models but also to outshine traditional machine
learning methods. This enhancement is pivotal in the context of environmental data
processing, where the complexity and variability of data demand sophisticated analytical
approaches. The GRU–Transformer model, with its dual-architecture advantage, thus
stands as a significant advancement in the field, pushing the boundaries of what can be
achieved in soil water content prediction and environmental data analysis.

3.4. Limitations and Further Study

We advocate the utilization of deep learning methodologies for the intricate processing
of meteorological and soil data, with the aim of achieving precise predictions of soil mois-
ture at various depths. This approach effectively harnesses the strengths of the two models
to enhance predictive outcomes. Nevertheless, this study is not devoid of limitations, which
present opportunities for refinement in future endeavors. A primary shortcoming is the
relatively limited dataset size, encompassing merely eight consecutive years of data from
eight locations. This constraint poses a potential risk of overfitting, potentially impairing
the model’s generalization capabilities. Additionally, this study did not incorporate factors
such as the growth stages of maize or other agricultural management practices, including
irrigation and fertilization, all of which can significantly influence soil moisture dynamics.

In light of these limitations, future research directions will focus on expansion and
optimization in several key areas. (1) Enlarging the dataset: Future studies will aim
to broaden the dataset’s scope, encompassing data from diverse regions, encompassing
different years and maize varieties. This expansion will provide a more comprehensive and
varied dataset, enhancing the robustness and applicability of the model. (2) Incorporating
additional variables: The inclusion of variables such as the maize’s growth stage, various
agricultural management practices, and soil types will be a focal point. These additions will
offer a more holistic view of the factors impacting soil moisture, thus enriching the model’s
predictive accuracy. (3) Model optimization: We plan to refine the structure and parameters
of the model further. This will involve exploring various combination methods and fusion
strategies, with an emphasis on enhancing the model’s efficiency and stability. Through
these enhancements, we aim to not only address the current study’s limitations but also
significantly advance the field of soil moisture prediction using deep learning techniques,
ultimately contributing to more effective and informed agricultural management. Given
its demonstrated accuracy and versatility, the GRU–Transformer model holds potential
for application in a range of environmental contexts, including the prediction of flash
droughts, thereby contributing valuable insights for proactive disaster management and
environmental preservation.

4. Conclusions

This research introduces a novel hybrid modeling approach that synergizes GRU
and Transformer architectures, aiming to predict soil moisture content at varying depths,
specifically within the maize root zone. Utilizing meteorological and soil moisture data
from eight maize cultivation sites in Hebei Province, China, spanning from 2011 to 2018,
the study meticulously evaluates the model’s predictive performance across diverse input
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combinations and varying forecast durations. This evaluation also includes comparative
analysis with conventional machine learning and other deep learning models. The findings
of this study reveal distinct prediction efficacies under varying conditions. The results
showed that (1) the GRU–Transformer model exhibited significant advantages under
different prediction delay days and soil depth conditions. The model demonstrated the
highest accuracy in the short-term prediction of 1 to 2 days, in which the mean MSE
was 5.22% and the lowest reached 2.71% in the prediction with a 1-day delay, while the
mean R2 was as high as 89.92%. The prediction accuracy decreased as the number of
days of delay in prediction increased, but the overall performance remained stable. In
addition, in the comparison of different soil depths, the model showed higher accuracy
in predicting the water content of deeper soil layers, which was much better than the
performance of shallow soil prediction. The methodology and experimental design adopted
in the study fully considered the adaptability and robustness of the model under different
environmental conditions. (2) By comparing the model performance under different
combinations of input parameters, we found that the prediction error of the model rises
with the decrease in parameters; however, even under the combination of only soil water
content parameters, the model predicts the third day in the future with an average MSE
of 0.59% and an average R2 of 98.86%, which reflects the high tolerance of the model to
different combinations of parameters. (3) In comparative analysis, the GRU–Transformer
model substantially outperformed a range of typical machine learning models (such as SVR,
KNN, GBDT, XGBoost, and Random Forest) and deep learning models (including DNN,
CNN, independent GRU, and Transformer branches). This superiority affirms the model’s
exceptional capability in handling complex soil moisture data. Conclusively, this study
presents a potent decision-support tool for agricultural irrigation management, contributing
significantly to enhancing the efficiency and conservation of agricultural water resources.
The GRU–Transformer model, with its robust predictive accuracy and adaptability, offers
valuable insights for the sustainable development of agriculture, addressing critical needs
in environmental data processing and agricultural resource management.
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