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Abstract: Wheat stripe rust-damaged leaves present challenges to automatic disease index calculation,
including high similarity between spores and spots, and difficulty in distinguishing edge contours.
In actual field applications, investigators rely on the naked eye to judge the disease extent, which
is subjective, of low accuracy, and essentially qualitative. To address the above issues, this study
undertook a task of semantic segmentation of wheat stripe rust damage images using deep learning.
To address the problem of small available datasets, the first large-scale open dataset of wheat stripe
rust images from Qinghai province was constructed through field and greenhouse image acquisition,
screening, filtering, and manual annotation. There were 33,238 images in our dataset with a size of
512 × 512 pixels. A new segmentation paradigm was defined. Dividing indistinguishable spores
and spots into different classes, the task of accurate segmentation of the background, leaf (containing
spots), and spores was investigated. To assign different weights to high- and low-frequency features,
we used the Octave-UNet model that replaces the original convolutional operation with the octave
convolution in the U-Net model. The Octave-UNet model obtained the best benchmark results among
four models (PSPNet, DeepLabv3, U-Net, Octave-UNet), the mean intersection over a union of the
Octave-UNet model was 83.44%, the mean pixel accuracy was 94.58%, and the accuracy was 96.06%,
respectively. The results showed that the state-of-art Octave-UNet model can better represent and
discern the semantic information over a small region and improve the segmentation accuracy of
spores, leaves, and backgrounds in our constructed dataset.

Keywords: wheat stripe rust; semantic segmentation; deep learning; convolutional neural network

1. Introduction

Wheat stripe rust is a disease caused by the fungus Puccinia striiformis f. sp. tritici
(Pst) that can destroy wheat crops [1]. It is one of the most dangerous wheat diseases
worldwide, causing more than 5 million tons of wheat to be lost annually and costing
nearly $1 billion [2]. It is also one of the most serious biological disasters affecting the safety
of wheat production in China, mainly in the Hebei, Henan, Shandong, Shanxi, and Qinghai
provinces. Stripe rust has been reported to have a devastating impact on wheat yields,
leading to a reduction of more than 40% or even no wheat harvest in pandemic years [3].
Therefore, deploying real-time monitoring and accurate diagnosis of the disease severity
before an outbreak will facilitate the much-needed timely implementation of prevention
and intervention strategies and shift from passive disease prevention and control to active
control. However, the traditional disease severity classification approaches are mostly
visual and the severity of wheat rust is classified according to the percentage of spot
areas (rather than spore areas) to the total leaf area. This has the disadvantages of high
labor intensity, slow speed, significant subjectivity, and high misjudgment rates. However,
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rapidly developing artificial intelligence technologies have gradually been integrated into
various disciplines. If the artificial intelligence image segmentation technology can be
adopted to accurately identify the incidence area of wheat stripe rust, it can provide
a theoretical foundation and technical support for guiding agricultural production and
effective intelligent disease prevention and control.

The construction of a plant image dataset is very important for detecting diseases
and pests using deep learning, and a high-quality dataset can improve the performance of
the model and the accuracy of the results. Some scholars are constructing datasets related
to agricultural diseases and pests. For example, Parraga-Alava J et al. [4] constructed a
robusta coffee leaf image dataset called RoCoLe. The dataset contained 1560 images of
leaves infected with visible red mites and spots (indicating the presence of coffee leaf
rust) and healthy leaves. Additionally, the dataset included annotations on object (leaf),
status (healthy and unhealthy), and disease severity (spotted leaf area). The proposal of this
dataset laid the foundation for the classification of coffee leaf conditions using deep learning.
Parraga-Alava J et al. [5] provided a dataset of 665 images of healthy and unhealthy lemon
leaves. The latter were leaves where aphids were present, and the visible white spots were
their characteristic. Additionally, each image contained a set of annotations identifying
leaves, their health status and infestation severity based on the percentage of affected
area. Next, Parraga-Alava J et al. [6] proposed a method to automatically detect aphids
on lemon leaves using a convolutional neural network (CNN) as a binary classification
problem and solved it using the VGG-16 network architecture. The experimental results
reached average aphid detection rate of 81% to 97%. Unfortunately, there is currently no
segmentation dataset for wheat stripe rust. In the field of wheat disease research, many
researchers have applied image processing technology for the recognition, detection, and
segmentation of disease-related data. Kukreja et al. [7] constructed a 2000-image wheat
plant dataset and used a deep-learning method, namely, deep convolutional neural network
(DCNN), for the automatic classification of rust, leaf spot, spike, and viral diseases. The
classification accuracy of the method reached 97.16%. Sood et al. [8] used two transfer
learning techniques to implement deep-learning models for the detection of wheat rust
and automatic classification of leaf rust, stem rust, and stripe rust. The study found that
the classification accuracy based on the VGG16 model was the highest, reaching 99.07%.
Hayit et al. [9] proposed a Yellow-Rust-Xception model based on a DCNN. Using the
severity of stripe rust, the model divided the input wheat stripe rust images into five
types: disease-free, disease-resistant, moderately resistant, moderately susceptible, and
susceptible, and automatically learned and recognized features in the data. The results
showed that the performance of the proposed network for the specific task was comparable
to or even better than that of humans, with the accuracy reaching 91%. Bao et al. [10] studied
powdery mildew and stripe rust and proposed an algorithm for wheat leaf disease detection
and severity recognition based on the ellipse-maximum boundary criterion metric learning.
The experimental results showed that the proposed algorithm was superior compared to
the traditional support vector machine, with the recognition accuracy reaching 94.16%.
Su et al. [11] used a feature pyramid network based on the ResNet-101 network as the
backbone of a Mask-RCNN to construct a feature pyramid and extract features. After
generating a mask image of a wheat ear from a full-size image, the Mask-RCNN was used
to predict the affected area on each individual ear. The detection rates of the method were
77.76% and 98.81%, respectively. By calculating the ratio of the detected wheat SCAB
severity to the ground truth, prediction accuracy of 77.19% was observed.

It can be seen from the above recent studies that the application of image processing
technology for automatic diagnosis, reactive classification, and disease index calculation
using plant disease images has been advancing. However, the current studies in this field
still focus on the classification of different diseases and target detection, and have the
following shortcomings:

(1) Most of the disease datasets have only been used for the classification of disease
type rather than segmentation of a specific disease. The specific incidence of a disease
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cannot be evaluated, and the disease management decisions cannot be supported with
quantitative data.

(2) For many diseases, only small numbers of images are available or are of small scale.
The targets and background are not sharply differentiated. Light and shooting angle and
access device pixel resolution have a significant effect on the interference factors, making
segmentation tasks difficult. Thus, the accuracy, precision, and generalization ability of the
existing segmentation algorithms and disease models need to be improved.

To resolve the above problems, this study first established a wheat stripe rust image
dataset and designed a novel semantic segmentation task for spores, leaves, and back-
grounds. Image processing, deep learning, and other technologies were applied to the
dataset. The performance of convolutional neural network models with different architec-
tures for extracting the features from the dataset was explored, and a model with the best
segmentation performance was determined.

2. Materials and Methods
2.1. Data Collection

The crop disease treatment dataset based on an artificial intelligence system (CDTS)
presented in this study is the first open dataset of wheat stripe rust images in Qinghai
province. The development principles were as follows: images of wheat stripe rust ob-
tained under different illumination and angles were taken at a wheat stripe rust cultivation
greenhouse in the Qinghai Academy of Agricultural Sciences in the morning, in the mid-
dle of the day, and in the evening. Photos of wheat stripe rust specimens were also
collected in the fields in Galianggou Village, Galiang Township, Guide County, Hainan
Prefecture, Qinghai Province, and Chengshang Village, Kangyang Town, Jianzha County,
Haidong City and other areas in Qinghai province. Parts of the sampling scenarios are
shown in Figure 1. In order to further diversify the dataset, 2353 images with 538 differ-
ent resolutions were obtained using different mobile devices. Among them, 178 images
were 1470 × 2608 pixels, 508 images 2310 × 4096 pixels, 397 images 1891 × 4096 pixels,
420 images 3000 × 4000 pixels, and 32 images 3001 × 4001 pixels.
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Figure 1. Wheat stripe rust sampling scenes. (a) Collection of diseased leaves cultivated in greenhouse;
(b) diseased leaf collection for field investigation.

2.2. Data Annotation and Processing

After matting the 2353 images, the Labelme4.5.13 [12] software was used to manually
label the images. The tool “Create Polygons” was used to annotate the leaf category first,
then the spore category and the remainder were assigned to the background category.
The segmentation task was to divide the image into three categories: background, leaf,
and spore.

The significance of this research is that, in the field of agricultural diseases, no tool
exists that can directly quantify the spore-to-leaf area ratio in wheat leaves. In the field
investigations of wheat rust, researchers and technical agricultural personnel usually use
the percentage of spot area to the leaf area, namely, the severity of the disease, observed by
the naked eye, to arrive at the disease index. However, this approach is very subjective and
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can only provide qualitative conclusions. If the quantitative data on rust disease occurrence
of popular resistant wheat varieties can be obtained, the regional variation and dynamic
changes in resistant wheat varieties can be better understood, to promote resistant wheat
varieties in different areas. The segmentation task using computer vision techniques is
difficult because the disease spore and spot areas are very similar, and spore and spot
pixels are distributed over a small area of the image. The purpose of the data collection
and segmentation was to calculate the percentage of the rust uredospore heap to the total
leaf area.

The dataset was subsequently processed as follows: (1) image grid clipping. Due to
the significant similarity between spores and spots, the image had to be enlarged before
annotation. The original images were about 1000 × 4000 pixels. If the pixel size of the
image were directly adjusted to 512 × 512, the image would be distorted and a significant
amount of information lost, resulting in the difficulty of distinguishing spores from spore
edges. Thus, the original images were divided into multiple small 512 × 512-pixel images
to ensure that the semantic information in the images could be fully learned by the neural
network. At the same time, an image can be divided into several 512 × 512-pixel local
images to enhance the amount of data. Eventually, the total of 2353 images collected by
different mobile devices were divided into 77,152 smaller 512× 512-pixel images. (2) Image
filtering. Since the proportion of targets in the original images is usually less than 100%,
i.e., not all the original images contain target pixels, there will be a considerable proportion
of pure background images after image division. To strengthen the generalization ability of
the model, 43,914 background images were deleted, 1500 were retained, and, as a result,
the total number of images changed from 77,152 to 33,238.

The steps of the dataset generation process are shown in Figure 2.

Agronomy 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

The significance of this research is that, in the field of agricultural diseases, no tool 
exists that can directly quantify the spore-to-leaf area ratio in wheat leaves. In the field 
investigations of wheat rust, researchers and technical agricultural personnel usually use 
the percentage of spot area to the leaf area, namely, the severity of the disease, observed 
by the naked eye, to arrive at the disease index. However, this approach is very subjective 
and can only provide qualitative conclusions. If the quantitative data on rust disease oc-
currence of popular resistant wheat varieties can be obtained, the regional variation and 
dynamic changes in resistant wheat varieties can be better understood, to promote re-
sistant wheat varieties in different areas. The segmentation task using computer vision 
techniques is difficult because the disease spore and spot areas are very similar, and spore 
and spot pixels are distributed over a small area of the image. The purpose of the data 
collection and segmentation was to calculate the percentage of the rust uredospore heap 
to the total leaf area. 

The dataset was subsequently processed as follows: (1) image grid clipping. Due to 
the significant similarity between spores and spots, the image had to be enlarged before 
annotation. The original images were about 1000 × 4000 pixels. If the pixel size of the image 
were directly adjusted to 512 × 512, the image would be distorted and a significant amount 
of information lost, resulting in the difficulty of distinguishing spores from spore edges. 
Thus, the original images were divided into multiple small 512 × 512-pixel images to en-
sure that the semantic information in the images could be fully learned by the neural net-
work. At the same time, an image can be divided into several 512 × 512-pixel local images 
to enhance the amount of data. Eventually, the total of 2353 images collected by different 
mobile devices were divided into 77,152 smaller 512 × 512-pixel images. (2) Image filtering. 
Since the proportion of targets in the original images is usually less than 100%, i.e., not all 
the original images contain target pixels, there will be a considerable proportion of pure 
background images after image division. To strengthen the generalization ability of the 
model, 43,914 background images were deleted, 1500 were retained, and, as a result, the 
total number of images changed from 77,152 to 33,238. 

The steps of the dataset generation process are shown in Figure 2. 

 
Figure 2. CDTS dataset production steps. 

The entire dataset is divided into training set (60%), validation set (20%) and test 
set (20%). The resolution of all images is 512 × 512, the training set has 19942 images, the 
validation set has 6648 images, and the testing set has 6648 images. 

2.3. U-Net 
The encoder-decoder structure first proposed in the U-Net model is very effective for 

image segmentation. In this study, a U-Net model was also found the best among the three 
considered models (pyramid scene parsing network (PSPNet), DeepLabv3, and U-Net). 
Ronneberger et al. [13] proposed the U-Net model to effectively solve the semantic seg-
mentation problem in medical images. The U-Net structure consists of two parts: an en-
coding module and a decoding module, namely, the contraction path that captures the 
context, the encoding layer, and the symmetric expansion path that can be accurately lo-
cated, the decoding layer. The encoding layer performs a series of convolution operations 

Figure 2. CDTS dataset production steps.

The entire dataset is divided into training set (60%), validation set (20%) and test set
(20%). The resolution of all images is 512 × 512, the training set has 19,942 images, the
validation set has 6648 images, and the testing set has 6648 images.

2.3. U-Net

The encoder-decoder structure first proposed in the U-Net model is very effective
for image segmentation. In this study, a U-Net model was also found the best among
the three considered models (pyramid scene parsing network (PSPNet), DeepLabv3, and
U-Net). Ronneberger et al. [13] proposed the U-Net model to effectively solve the semantic
segmentation problem in medical images. The U-Net structure consists of two parts: an
encoding module and a decoding module, namely, the contraction path that captures
the context, the encoding layer, and the symmetric expansion path that can be accurately
located, the decoding layer. The encoding layer performs a series of convolution operations
and includes a maximum pooling layer, while the decoding layer performs a series of
convolution and transpose convolution operations. To combine features between different
levels, U-Net adopts a layer-hopping connection mechanism, which combines the features
not compressed by the encoder with features corresponding to the same layer in the decoder
to better fuse different semantic information.
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The training strategy of the U-Net model is to use image enhancement technology to
effectively learn from a small number of annotated sample images. After training with 30
molecular images through microscopic imaging, the U-Net model won the 2015 ISBI Cell
Tracking Challenge Competition by a large margin.

2.4. PSPNet

The multi-scale analysis is a powerful concept in image processing and is deployed in
many neural network architectures. Zhao et al. [14] proposed the PSPNet, which can better
learn from the global context information of scene reaction.

Alongside an extended network, the multi-scale model uses a residual network to
extract features from the input images. The obtained feature maps are fed into the pyramid
pool model to distinguish features of different scales. A feature map is pooled into four
different scale features, where each scale corresponds to a pyramid layer, and then a
1 × 1 convolution kernel is used to reduce their size. The output of the pyramid network
in each layer is upsampled and then merged with the original feature map to obtain local
and global context information. Finally, the prediction results at the pixel level are obtained
in the convolution layer.

2.5. DeepLabv3

The dilated convolution introduces another parameter of the convolutional layer, the
dilated coefficient. A 3 × 3 convolution kernel with an expansion coefficient of 2 has the
same receptive field as a 5 × 5 convolution kernel with only 9 parameters. Therefore, the di-
lated convolution enlarges the receptive field without increasing the computational burden.

Chen et al. [15] proposed DeepLabv3, which combines cascade and parallel modules
in a dilated convolution. Parallel convolution modules are grouped in a void-space con-
volution pooling pyramid, and a 1 × 1 convolution and batch standardization operation
are added. The convolution pooling pyramid in the void space uses filters to detect the
incoming convolution feature layers at different sampling rates, which can better capture
the context information of objects and multi-scale images to steadily segment objects at
multiple scales. All the outputs are merged and then subjected to a 1 × 1 convolution
operation to output the logistic regression results of each pixel.

2.6. Octave-UNet

For ordinary convolution, all input and output feature maps have the same spatial
resolution, and some feature maps reflecting low-frequency information are spatially
redundant and thus unnecessary. In order to reduce the redundant spatial features, Chen
et al. [16] proposed a convolution of octave feature representation, which can directly
decompose the feature map vector into a group of high- and low-frequency features.

The octave convolution is designed to efficiently process the frequency tensors cor-
responding to high and low frequencies while effectively integrating the information
YH→H YA→B between the two frequencies. Let X and Y be the input and output ten-
sors, respectively. The output Y =

{
YH , YL} of feature map is composed of the output

YH = YH→H + YL→H of the high frequency and the output YL = YL→L + YH→L of the
low frequency, respectively. YA→B represents that the convolution of group A feature
map is updated to the convolution of group B feature map. Specifically, YH→H and YL→L

represent the intra-frequency update, and YH→L and YL→H represent the inter-frequency
information fusion.

To obtain a more accurate feature, the model adopts average pooling, which helps to
mitigate the inconsistency of fused information from different scales. Therefore, after aver-
age pooling is used during downsampling, output Y =

{
YH , YL} of the octave convolution

can be expressed as follows:

YH = f
(

XH ; WH→H
)
+ upsample

(
f
(

XL; WL→H
)

, 2
)

(1)
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YL = f
(

XL; WL→L
)
+ f

(
pool

(
XH , 2

)
; WH→L

)
(2)

where f(X;W) represents a convolution with number of parameters W, pool(X,k) is an average
pooling with convolution size k × k and step size k, and upsample(X,k) is an upsampling with
factor k and interpolation method as nearest neighbor interpolation.

The Octave-UNet module is built on the basis of U-Net network [17], and the idea
is to replace all ordinary convolutions with the octave convolutions based on the U-Net
network architecture.

3. Results
3.1. Experimental Setup

In this study, a GPU cluster server with a Linux operating system, 7-core GPU, 262 In-
tel(R) Xeon(R) CPU E5-2680 V4@2.40 GHz, and TITAN Xp GPU was used. All models were
trained, verified and tested in a single graphics card mode.

The number of training generations of all models was 100, the initial learning rate was
2 × 10−5, and the batch size was 8. An Adam optimizer was used in training by adjusting
the learning rate mechanism. Each generation was updated once, and the multiplication
factor of the updated learning rate, γ, was 0.96. The training error evolution curves are
shown in Figure 3, where it can be seen that after 100 iterations, the four models converged
and stabilized. The epochs with best performance on the validation set were selected for
each model, i.e., the 74th epoch of the PSPNet, which had the training error of 0.237, and
the validation error of 0.243, the 67th epoch of the DeepLabv3 model (training error of
0.209 and validation error of 0.217), the 100th epoch of U-Net model (training error of 0.193
and validation error 0.208), and the 99th epoch of the Octave-UNet model (training error of
0.179 and validation error of 0.193).
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3.2. Performance Metrics

In semantic segmentation, a true positive (TP) is an outcome in which the actual object
belongs to a positive class and the algorithm also predicts it as belonging to a positive class.
A false positive (FP) is defined as a situation when the object belongs to a negative class but
a positive class is returned by the algorithm. Those objects labeled as positive but judged as
negative by the algorithm are defined as false negative outputs. If the actual object belongs
to a negative class and the algorithm prediction is also negative, it is a true negative. In this
study, precision, recall, and intersection over union (IoU) were used as model evaluation
criteria for each category, and the mean intersection over union (MIoU) was used as the
overall criterion. The mean pixel accuracy (MPA) and accuracy were used as the evaluation
indices of the total sample.

Precision refers to the proportion of the data with a positive classification predicted
correctly by the model (TPs) to all positive outcomes of the model (TPs and FPs). The
calculation formula is as follows:

Precision =
TP

TP + FP
(3)

Recall, also known as sensitivity, refers to the proportion of data with a positive
classification predicted correctly by the model (TPs) to all actual positive samples. The
calculation formula is as follows:

Recall =
TP

TP + FN
(4)

The IoU ratio refers to the ratio between the intersection and the union of the predicted
results of the model and the actual classes for a given category. The calculation formula is
as follows:

Iou =
TP

TP + FP + FN
(5)

When calculating the metrics of the entire sample, we assumed that the number of
categories was k + 1, pij was the number of pixels that were actually in category i but were
predicted to be in category j, pji was the number of pixels that were actually in category j
but were predicted to be in category i, and pii was the number of pixels that were actually
in category i and were predicted to be in category i.

The MIoU ratio was calculated by summing the ratios of the intersection and union of
the prediction results of each class and the real values and then averaging. The calculation
formula is as follows:

MIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(6)

The MPA refers to the proportion of pixels correctly predicted by the model in each
category and averaged for all categories. The calculation formula is as follows:

MPA =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij

(7)

Accuracy refers to the proportion of samples correctly predicted by the model to the
total number of samples in all categories. The calculation formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)



Agronomy 2022, 12, 2933 8 of 11

3.3. Segmentation Results for Each Class

Table 1 shows the segmentation performance of each model on the three categories
measured by IoU, recall, and precision.

Table 1. Segmentation results of four models for three categories.

Classes Model IoU (%) Recall (%) Precision (%)

Background

PSPNet 97.85 98.72 99.11
DeepLabv3 98.09 98.83 99.24

U-Net 98.04 98.53 99.49
Octave-UNet 98.22 98.68 99.53

Spore

PSPNet 56.41 93.09 58.58
DeepLabv3 60.02 93.74 62.52

U-Net 62.9 92.73 66.17
Octave-UNet 64.03 94.05 66.73

Leaf

PSPNet 84.16 86.87 96.42
DeepLabv3 86.18 88.78 96.71

U-Net 87.6 90.92 96
Octave-UNet 88.08 91.01 96.48

For the background class, the highest IoU score of 98.22% was achieved by Octave-
UNet, and it was 0.18% higher than U-Net (98.04%), 0.13% higher than DeepLabv3 (98.09%,),
and 0.37% higher than PSPNet (97.85%). DeepLabv3′s 98.83% recall was 0.15% higher than
that of Octave-UNet (98.68%), 0.3% higher than that U-Net (98.53%), and 0.11% higher
than that of PSPNet (98.72%). Octave-UNet had the highest precision of 99.53%, which
was 0.04% higher than U-Net (99.49%), 0.29% higher than DeepLabv3 (99.24%), and 0.42%
higher than PSPNet (99.11%).

For the spore class, the Octave-UNet model achieved the best IoU ratio, recall, and
precision. Octave-UNet’s IoU ratio was 64.03%, which was 1.13% higher than U-Net’s
(62.9%), 4.01% higher than DeepLabv3′s (60.02%), and 7.62% higher than PSPNet’s (56.41%).
Octave-UNet’s recall was 94.05%, and was 1.32% higher than that of U-Net (92.73%), 0.31%
higher than that of DeepLabv3 (93.74%), and 0.96% higher than that of PSPNet (93.09%).
Octave-UNet achieved a precision of 66.73%, which was 0.56% higher than that of U-Net
(66.17%), 4.21% higher than that of DeepLabv3 (62.52%), and 8.15% higher than that of
PSPNet (58.58%).

For the leaf category, Octave-UNet achieved the best IoU and recall metrics, while
DeepLabv3 the best precision. Specifically, the IoU ratio of Octave-UNet was 88.08%, which
was 0.48% higher than that of U-Net (87.6%), 1.9% higher than that of DeepLabv3 (86.18%),
and 3.92% higher than that of PSPNet (84.16%). The recall rate of Octave-UNet was 91.01%,
which was 0.99% higher than that of U-Net (90.02%), 2.23% higher than that of DeepLabv3
(88.78%), and 4.14% higher than that of PSPNet (86.87%). The precision of DeepLabv3
(96.71%) was 0.23% higher than that of Octave-UNet (96.48%), 0.71% higher than that of
U-Net (96%), and 0.29% higher than that of PSPNet (96.42%).

3.4. Overall Segmentation Results

The segmentation performances of PSPNet, DeepLabv3, U-Net, and Octave-UNet
models were then evaluated on the testing set. The evaluation results are shown in Table 2.

Table 2. Overall segmentation results for the four models.

Methods MIoU (%) MPA (%) Accuracy (%)

PSPNet 79.38 92.9 94.77
DeepLabv3 81.43 93.78 95.46

U-Net 82.85 94.06 95.87
Octave-UNet 83.44 94.58 96.06
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As can be seen in Table 2, the mean IoU ratio of Octave-UNet was 83.44%, which was
0.59% higher than that of U-Net (82.58%), 2.01% higher than that of DeepLabv3 (81.43%),
and 4.06% higher than that of PSPNet (79.38%). Octave-UNet also achieved the highest
MPA of 94.58%, which was 0.52% higher than U-Net (94.06%), 0.8% higher than DeepLabv3
(93.78%), and 1.68% higher than PSPNet (92.9%). In terms of accuracy, Octave-UNet
also achieved the highest value of 96.06%, which was 0.19% higher than that of U-Net
(95.87%), 0.6% higher than that of DeepLabv3 (95.46%), and 1.29% higher than that of
PSPNet (94.77%). Overall, the Octave-UNet model achieved the highest scores in all three
evaluation metrics.

3.5. Model Prediction Visualization

A part of the images showing infected leaves were selected for analysis by the four
models. The corresponding manual labeling and predictions are displayed in Figure 4,
where it can intuitively be seen that Octave-UNet provided the best predictions.

Agronomy 2022, 12, x FOR PEER REVIEW 10 of 12 
 

 

PSPNet (94.77%). Overall, the Octave-UNet model achieved the highest scores in all three 
evaluation metrics. 

3.5. Model Prediction Visualization 
A part of the images showing infected leaves were selected for analysis by the four 

models. The corresponding manual labeling and predictions are displayed in Figure 4, 
where it can intuitively be seen that Octave-UNet provided the best predictions. 

 
Figure 4. Four models predict results. 

4. Discussion 
At present, there are few studies on quantifying the spore area ratio of stripe rust in 

wheat, but the quantitative data is very important for disease assessment and genetic ex-
periment verification. In this paper, a large-scale segmentation dataset for wheat stripe 
rust was proposed for the first time, and a new segmentation paradigm was defined. 
Training on this dataset enabled the model to learn how to distinguish between spores 
and spots, so as to obtained the area ratio of spores to leaves. The proposal of this dataset 
had promoted the research progress of spore quantification data acquisition. In addition, 
this dataset presented the challenge of fine distinction of edge contours, which can pro-
vide a pre-trained model for solving similar disease segmentation. These confirm the im-
portance and necessity of establishing the CDTS dataset. 

It can be seen from the overall and individual category segmentation results that the 
U-Net model equipped with octave convolution had the best performance, demonstrated 
by its higher accuracy for small-area semantic segmentation. This happened because the 
volume in each layer was in the integration operation and semantic fusion of high-fre-
quency information and low-frequency information occurred. The fusion of information 

Figure 4. Four models predict results.

4. Discussion

At present, there are few studies on quantifying the spore area ratio of stripe rust
in wheat, but the quantitative data is very important for disease assessment and genetic
experiment verification. In this paper, a large-scale segmentation dataset for wheat stripe
rust was proposed for the first time, and a new segmentation paradigm was defined.
Training on this dataset enabled the model to learn how to distinguish between spores and
spots, so as to obtained the area ratio of spores to leaves. The proposal of this dataset had
promoted the research progress of spore quantification data acquisition. In addition, this
dataset presented the challenge of fine distinction of edge contours, which can provide a
pre-trained model for solving similar disease segmentation. These confirm the importance
and necessity of establishing the CDTS dataset.
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It can be seen from the overall and individual category segmentation results that the
U-Net model equipped with octave convolution had the best performance, demonstrated
by its higher accuracy for small-area semantic segmentation. This happened because
the volume in each layer was in the integration operation and semantic fusion of high-
frequency information and low-frequency information occurred. The fusion of information
can help distinguish spores from lesions, and at the same time reduce the redundancy of
low-frequency information, improving the segmentation performance.

Wheat is the main food crop in the world and is therefore of great significance to
humankind. Wheat stripe rust is a major fungal disease that endangers the safety of wheat
crops. Any occurrence of the disease will lead to a severe grain production reduction
and cause serious economic losses. When the disease incidence rate exceeds 5%, there
are currently no better control measures than destroying the affected crops. Therefore,
accurate detection and monitoring of wheat stripe rust will be beneficial for disaster
prediction and forecasting, and can proactively prevent or reduce losses. Using deep
learning to semantically segment the collected images of wheat leaves with stripe rust
signs and automatically calculate the ratio of spores in the total leaf area can effectively
address the shortage of agricultural experts and delays and misjudgments of artificial
visual recognition systems.

5. Conclusions

This paper studied a semantic segmentation task for wheat stripe rust images. The
main contributions of this study are as follows:

(1) Development of the first large-scale public dataset of wheat stripe rust images in
Qinghai province, including field and greenhouse cultivation images, comprising a total of
33,238 images with a 512 × 512-pixel resolution, with a significant similarity between the
targets and background. The characteristics of the target distribution provide data support
for small-area, high-similarity semantic segmentation using deep-learning algorithms.

(2) The first to propose a segmentation paradigm that distinguished spores from spots,
and obtained quantitative data of the ratio of spores to leaf area.

(3) Given the difficulty in distinguishing wheat stripe rust spores from disease spots,
experiments confirmed that the octave convolution was adopted within a U-Net model to
enable semantic fusion between high- and low-frequency information and more accurate
capturing of the spore edges, learning the details and local information, reducing the
redundancy of low-frequency information, and more accurate semantic understanding and
segmentation of edge contours. Model performance evaluation was conducted using the
established wheat stripe rust image dataset. The MIoU ratio of the Octave-UNet model was
83.44%, the MPA rate was 94.58%, and the accuracy was 96.06%, i.e., better than those of the
remaining three models. The model was robust and realized the intelligent segmentation
of wheat stripe rust images.
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