
Citation: Wang, S.; Qi, P.; Zhang, W.;

He, X. Development and Application

of an Intelligent Plant Protection

Monitoring System. Agronomy 2022,

12, 1046. https://doi.org/10.3390/

agronomy12051046

Academic Editor: Roberto Marani

Received: 12 April 2022

Accepted: 26 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Development and Application of an Intelligent Plant Protection
Monitoring System
Shubo Wang 1,2,3 , Peng Qi 1,2,3, Wei Zhang 4 and Xiongkui He 1,2,3,*

1 Centre for Chemicals Application Technology, China Agricultural University, Beijing 100193, China;
wangshubo@cau.edu.cn (S.W.); qp@cau.edu.cn (P.Q.)

2 College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, China
3 College of Science, China Agricultural University, Beijing 100193, China
4 Anhui Zhongke Intelligent Perception Industrial Technology Research Institute Co., Ltd.,

Wuhu 241000, China; zhangw@zkzngz.com
* Correspondence: xiongkui@cau.edu.cn

Abstract: Facing the need of modern agriculture to accurately grasp the information of farmland
diseases and pests, this paper proposes an intelligent plant protection system. The system is composed
of a wireless lens, temperature and humidity sensor, intelligent information terminal, and probe
rod to realize the collection of plant images and meteorological information. At the same time, a
software based on the mobile terminal and the computer terminal was developed. The plant images
and meteorological data are transmitted to the server through Wi-Fi transmission. Combined with
the expert knowledge model, a solution is generated, and the user can identify the current diseases
and pests and obtain solutions at any time. The system can remotely and automatically monitor and
warn of mainstream diseases and pests of field crops such as rice and wheat and provide support for
fine plant protection management.

Keywords: farmland information; disease and pest identification; temperature and humidity acquisi-
tion; mobile monitoring

1. Introduction

Diseases, pests, and weeds are the great enemies of crop growth. They occur in the
entire growth period of crops, which can cause a large reduction in crop production [1,2].
The application of chemical pesticides can greatly reduce agricultural losses, but the “three
causes” caused by the use of chemical pesticides (referring to the mutagenic, carcinogenic,
and teratogenic effects of pesticides on higher animals), pesticide residues, environmental
pollution, and other negative effects are becoming increasingly prominent. In addition to
experienced experts, for non-professional researchers, especially farmers, identifying crop
diseases through picture comparison or text description often leads to human judgment
errors [3,4]. In this way, it is difficult to accurately and timely apply pesticides, resulting in
a large reduction in crop production. More and more signs also show that the contradiction
between the increasing demand for pest identification and the relatively few plant protec-
tion experts has become increasingly serious [5]. It is of great significance to find new ways
to solve the problem of diseases and pests identification.

With the rapid development of digital image processing, the increasingly wide appli-
cation of computer vision, and the maturity of various pattern recognition technologies,
the purpose of intelligent recognition can be achieved by processing the images of crop
diseases, pests, and weeds and extracting characteristic parameters. Many scholars have
studied the intelligent perception of diseases, pests, and weeds. In terms of methodology,
machine learning models for agricultural monitoring are widely developed and used at
this stage [6,7]. Nagasubramanian et al. [8] developed an analytical statistics model for
plant growth and disease patterns based on a convolutional neural network (CNN) and
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support vector machine (SVM). This framework supported irrigation, nutrition planning,
and environmental compliance. Albanese et al. [9] presented an embedded system en-
hanced with ML functionalities, ensuring the continuous detection of pest infestation inside
fruit orchards. In their work, three different machine learning (ML) algorithms had been
trained and deployed. Mishra et al. [10] proposed a multi-node plant disease-monitoring
strategy, collected plant images through nodes, and used the proposed sine cosine algo-
rithm based on the rider neural network to identify diseases. The large-scale monitoring of
farmland could be realized by using a multi-node method. Liu et al. [11] proposed a novel,
deep learning-based automatic approach using hybrid and local activated features for pest
monitoring. The authors tested their algorithm in seven years of large-scale pest data set
containing 88,600 images (16 types of pests) with 582,100 pests and achieved good results.

In terms of hardware, there are ground-monitoring platforms and air-monitoring
platforms [12–15]. For ground-monitoring platforms, Trilles et al. [16] developed a low-cost
sensorized platform, capable of monitoring meteorological phenomena following the Inter-
net of Things paradigm, with the goal to apply an alert disease model on the cultivation of
the vine. However, the platform could only carry out meteorological monitoring, and it
was difficult to support the implementation of intelligent agriculture due to insufficient
information. Methun et al. [17] proposed an efficient carrot disease identification and clas-
sification method using a deep learning approach, especially VGG16, VGG19, MobileNet,
and Inception v3. The accuracy achieved by Inception v3 was 97.4%. Udutalapally et al. [18]
developed a disease prediction system disease prediction by trained a convolutional neural
network (CNN) model. Considering the power problem of field environment, the solar
sensor node was used for power supply. Khattab et al. [19] collected the environmental
and soil information from a wireless sensor network installed in the planted area. It also
provided an expert system that sent warning messages to the users before the outbreak of
a disease. Mekala et al. [20] proposed a cloud-enabled CLAY-MIST measurement (CMM)
index based on temperature and relative humidity to assess the comfort levels of a crop.

For an air-monitoring platform, He et al. [21] used multiangle remote sensing and
hyperspectral remote sensing to monitor wheat powdery mildew (WPM). Dong et al. [22]
developed an automatic system based on the Web GIS platform. At the same time, the
author used it to predict wheat stripe rust and East Asian migratory locust and achieved
good accuracy. Kim et al. [23] proposed an onion field monitoring system which composed
of a Pan Tilt Zoom (PTZ) camera, a motor system, wireless translator, and image-logging
module. Through pixel-level classification and location, six categories of disease recognition
were realized.

In addition to ground systems and air systems, it is also a trend to integrate them
for collaborative monitoring. Gao et al. [24] realized the joint detection of environmental
information by ground sensors and UAVs. IoT and UAV could monitor the incidence of
crop diseases and pests from the ground micro and air macro perspectives, respectively.
Zhang et al. [25] proposed to use high-resolution remote sensing data to identify infected
trees for controlling pine wilt disease (PWD). By processing the captured spectral, temporal,
and spatial features, this paper effectively distinguished the withered pine from other easily
confused objects.

In view of the above research status, as shown in the Figure 1, this paper has developed
a variety of crop diseases and pests monitoring systems, taking into account meteorological
conditions, plant images, and expert systems. The lower half of Figure 1 shows the
acquisition of images and meteorological data. The wireless lens collects the crop images,
and the Bluetooth temperature and humidity sensor collects the environmental information
in real time. The upper half of Figure 1 shows the data upload and discrimination results.
The obtained images are uploaded to the cloud expert system to realize the classification
of diseases and pests. Additionally, the expert system can release prevention and control
suggestions for users. The main contributions of this work are:

(1) A complete set of monitoring systems is constructed, including the software and
hardware of the system.
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(2) The system can collect meteorological data and plant images at the same time and
realize the identification and counting of pests and diseases based on Yolo v3. A
timely solution can be given through the expert system.

The rest of the paper is organized as follows. Section 2 introduces the diseases and
pests identification. In Section 3, the hardware system is developed and applied. In
Section 4, software systems based on terminal and computer are developed. Section 5
describes the detailed acquisition method and representative results. Section 6 concludes
the paper.
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Figure 1. Overview of intelligent plant protection monitoring system.

2. Diseases and Pests Identification
2.1. Image Acquisition and Coding of Diseases and Pests in Macro Mode

As shown in Table 1, the names of diseases and pests are set to a number with a length
of five. The combination of the first and second bits indicates the crop type; the third bit
indicates diseases or pests; and the combination of the fourth and fifth bits indicates the
specific kinds of diseases and pests.

Table 1. Coding table of diseases and pests with different crops.

Crop Pests and
Diseases Specific Diseases and Pests Coding

11: Wheat

1: Pest

11: Wheat spider 11111

21: Aphid, wheat long tube aphid or
wheat binary aphid (green) 11121

22: Aphid, rhopalosiphus (black) 11122

23: Aphids (red) 11123

31: Slime worm 11131

2: Disease

11: Normal wheat ears 11211

12: Scab 11212

21: Powdery mildew 11221

31: Wheat leaf rust 11231

41: Wheat stripe rust 11241
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Table 1. Cont.

12: Rice

1: Pest

11: Rice planthopper 12111

21: Normal rice leaves 12121

22: Rice-leaf roller 12122

31: Striped rice borer 12131

2: Disease

11: Sheath blight 12211

21: Flax spot 12221

31: Rice-false smut 12231

41: Rice blast (leaf) 12241

42: Rice blast (panicle) 12242

51: Bacterial streak 12251

13: Rape

1: Pest 11: Aphid 13111

2: Disease

11: Sclerotinia (rhizome) 13211

12: Sclerotinia (leaf) 13212

21: Downy mildew 13221

2.2. Identification Based on Neural Network

This paper presents an integrated framework of diseases and pests identification based
on YOLO V3 [26]. The YOLO algorithm has been optimized and iterated, and it is better
than Single Shot MultiBox Detector (SSD), Faster RCNN, and other algorithms in detection
performance. In terms of network structure, YOLO V3 integrates YOLO V2, Darknet-19,
and other new residual networks, composed of continuous 3 × 3 and 1 × 1 convolutional
layers. The YOLO V3 network preprocesses the remote sensing image, scales it to 416 × 416,
and sends it to the convolutional neural network for inference. Then, the non-maximum
suppression (NMS) and classification recognition of the detection results are carried out
according to the confidence of the network model. The YOLO V3 network divides the input
image into S × S grids. If there is a target object in the center of a grid, this grid is responsible
for predicting the object. Each grid predicts the four offset coordinates of the bounding box
of the detected object and the confidence score. The YOLO V3 network makes predictions
on three different scales, namely 13 × 13, 26 × 26, and 52 × 52. Three bounding boxes are
predicted for each scale, and the network structure is shown in the Figure 2.Agronomy 2022, 11, x FOR PEER REVIEW 5 of 16 
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conv: convolution.
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First, the input image is divided into 13 × 13 cells. Then, each cell will generate
detection boxes, which are each composed of a five-dimensional prediction parameter,
including the center point coordinate (x, y), width and height (w, h), and confidence score
si. The confidence score is calculated as

si = P(Ci

∣∣∣Oobject)× P(Oobject)× IOU(kT , kp) (1)

where P(Ci

∣∣∣Oobject) represents the conditional probability of predicting class i in the cell
when there are diseases and pests in the detection frame; and P(Oobject) indicates the
possibility of diseases and pests in the detection box of the current cell. If there are diseases
and pests, the value is 1; otherwise, the value is 0. IOU(kT , kp) is the intersection and union
ratio of prediction detection frame and real annotation frame.

Then, the NMS algorithm is used to retain the target detection box with a high confi-
dence score. The NMS algorithm formula is

si =

{
si IOU(M, bi) < Ni
0 IOU(M, bi) ≥ NI

(2)

where M is the detection box with the highest confidence score in the current area;
IOU(M, bi) is the intersection and union ratio of M and the adjacent overlapping frame bi;
NI is the set overlap threshold.

In this paper, the loss function CIOU is used to calculate the regression loss value of
the prediction frame, and the formula is as follows:

LossCIOU = 1− IOU +
ρ2(a, agt)

b2 + αv (3)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
) (4)

α =
v

1− IOU + v
(5)

where α, agt, w, wgt, h, hgt are the center position coordinates, width, and height of the
prediction box and the dimension box, respectively; ρ represents the Euclidean distance
between the centers of the two frames; b represents the diagonal length of the smallest
rectangle containing the prediction box and dimension box; αv represents the penalty item
including the width and height of the prediction box and the dimension box; α is the weight
parameter; and v represents the calculation item including the width and height of the
prediction box and dimension box.

After using the loss function α, agt, w, wgt, h.hgt, the optimization direction can still be
given when the overlapping area of the prediction box and the annotation box is equal,
disjoint, or included. This makes the prediction box close to the center of the annotation
box and speeds up the convergence speed of network training.

Farmers would use mobile phones and other terminal devices to take pictures or
videos and send them to the server through the Wi-Fi. After obtaining the pictures, the
server uses the identification network proposed in this section combined with the expert
database system to return the diseases and pests information and solutions to farmers.

2.3. Data Reporting and Location Information Acquisition

In this section, Geographic Information System (GIS) technology is further used to
establish a geographic information system database to display the occurrence degree,
transmission, and geographical distribution of crop diseases, pests, and weeds in the
form of a map. Through the collected meteorological, crop varieties, pest information,
control measures, and other information, combined with the mathematical model in the
later stage, the temporal and spatial dynamics and law of pest and grass occurrence are
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analyzed. Finally, the occurrence trend of diseases and pests are predicted by evaluating
the environmental and influencing factors.

3. Hardware System Development and Application

As shown in Table 2, the product type is selected according to the characteristics of
crop objects. The macro mode is suitable for photographing diseases and pests with a very
small size; The handheld probe mode is suitable for shooting close to the photographer; The
support frame mode is suitable for shooting in a far and high range from the photographer.

Table 2. Hardware development and composition under different modes.

Pattern
Form Wireless

Lens Probe Rod Kit Intelligent
Information Terminal

Temperature and
Humidity Sensor

Support
Frame

Macro
Lens

Macro mode
√ √ √ √

Handheld probe mode
√ √ √ √

Support frame mode
√ √ √ √ √

Note: The probe rod kit consists of a hand-held probe rod, a vientiane folding rod, a lens connecting seat, a
temperature and humidity sensor fixing seat, and an intelligent information terminal-fixing frame.

3.1. Perception Module Construction

As shown in Figure 3, the hardware system mainly includes temperature and humidity
Bluetooth sensor, intelligent information terminal, wireless lens, and other firmware.

Agronomy 2022, 11, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Hardware system module. 

The temperature and humidity sensor measures the temperature and humidity in-
formation, connects with the intelligent information terminal through Bluetooth, and 
transmits information to the terminal to realize the real-time environmental information 
recording of farmland. The system adopts a waterproof and dustproof grade not lower 
than IP65 and has good drop resistance. The temperature measurement range is −20 °C to 
50 °C, and the humidity is 0–100%. The detection accuracy of the temperature and humid-
ity sensors are: humidity ±0.5% and temperature ±0.5 °C. 

The intelligent information terminal includes a microprocessor, data memory, satel-
lite positioning module, Wi-Fi communication module, Bluetooth communication mod-
ule, power module, and display module. The Android version is not less than 6.0, and the 
rear camera is not less than 10 million pixels. It supports 4G wireless communication net-
work communication, and the storage memory is 16G. The required image of plant dis-
eases and pests can be clearly collected through the camera and supporting wireless cam-
era carried by the intelligent information terminal and can be transmitted to the network 
service background together with GPS information through a communication protocol for 
further processing. The image shooting supports real-time shooting and real-time view-
ing. 

The wireless lens realizes the front-end HD image acquisition and transmits it to the 
intelligent information terminal for data processing through Wi Fi, which can adapt to the 
harsh working environment of high temperature and humidity. The camera is 10 million 
pixels, supports single autofocus, and can clearly shoot single diseases and pests with a 
size of 1 mm–10 cm. 

The telescopic probe rod can be extended to a maximum length of 2.5 m to ensure 
that it can collect pest images and climate information within 2.5 m away from the opera-
tor. At the same time, the long probe rod can ensure that the collection range of pests 
cannot be disturbed by human beings, and the collection point can represent the charac-
teristics of typical farmland. 

  

Figure 3. Hardware system module.

The temperature and humidity sensor measures the temperature and humidity infor-
mation, connects with the intelligent information terminal through Bluetooth, and transmits
information to the terminal to realize the real-time environmental information recording of
farmland. The system adopts a waterproof and dustproof grade not lower than IP65 and
has good drop resistance. The temperature measurement range is −20 ◦C to 50 ◦C, and the
humidity is 0–100%. The detection accuracy of the temperature and humidity sensors are:
humidity ±0.5% and temperature ±0.5 ◦C.
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The intelligent information terminal includes a microprocessor, data memory, satellite
positioning module, Wi-Fi communication module, Bluetooth communication module,
power module, and display module. The Android version is not less than 6.0, and the rear
camera is not less than 10 million pixels. It supports 4G wireless communication network
communication, and the storage memory is 16G. The required image of plant diseases and
pests can be clearly collected through the camera and supporting wireless camera carried
by the intelligent information terminal and can be transmitted to the network service
background together with GPS information through a communication protocol for further
processing. The image shooting supports real-time shooting and real-time viewing.

The wireless lens realizes the front-end HD image acquisition and transmits it to the
intelligent information terminal for data processing through Wi Fi, which can adapt to the
harsh working environment of high temperature and humidity. The camera is 10 million
pixels, supports single autofocus, and can clearly shoot single diseases and pests with a
size of 1 mm–10 cm.

The telescopic probe rod can be extended to a maximum length of 2.5 m to ensure that
it can collect pest images and climate information within 2.5 m away from the operator. At
the same time, the long probe rod can ensure that the collection range of pests cannot be
disturbed by human beings, and the collection point can represent the characteristics of
typical farmland.

3.2. Positioning and Communication Module

The system positioning information includes the time, longitude, latitude, and other
positioning status information corresponding to the collected image. The hardware devel-
oped in this paper can store the positioning information in the terminal and upload it to
the monitoring center through wireless communication.

System communication modes include communication between camera, sensor, and
intelligent terminal and communication between intelligent terminal and back-end service
platform. The camera and the intelligent information terminal can be connected together
to transmit the collected images; the environmental sensor can be connected with the
intelligent information terminal to transmit the collected environmental data; and the
intelligent information terminal and the back-end service platform transmit data using
a wireless network. The camera communicates with the intelligent information terminal
through a Wi-Fi network; the environmental sensor communicates with the intelligent
information terminal through a Bluetooth network; and the intelligent information terminal
communicates with the network service platform through 3G and 4G networks. The
terminal sends pictures, environmental data, and other relevant data to the network service
platform for analysis and processing through TCP/IP protocol.

4. Software System Development

According to the different needs of users, the software system developments of two
platforms are carried out in this work. The software can be obtained through the website
(www.zkzngz.com, accessed on 20 April 2022). At this stage, it is only available in Chi-
nese. The team is developing versions in English and other languages to provide users in
different regions.

4.1. Development of Mobile Terminal Software System

The terminal adopts a Wi-Fi connection with a wireless lens and sensor, and the system
interface form is shown in Figure 4a. By clicking the environmental sensor and camera that
need to be linked, the link between the mobile phone and device can be realized so as to
establish wireless transmission. In the system design, the intelligent identification of plant
diseases and pests is mainly divided into four steps: wireless shooting, image uploading,
intelligent identification, and system storage. In the process of wireless shooting, the plant
phenotype can be obtained at a macro distance through the connected wireless lens and
the operation of retracting and stretching the lens, as shown in Figure 4b. After shooting,

www.zkzngz.com
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the obtained plant image is recognized by jumping the network link. In the recognition
process, one or more pictures can be recognized continuously, and crop type and growth
period need to be selected at the same time. The software system can also record the history
of identification. At the same time, the recognition result of the collected image will be sent
back to the user, and the solution of this kind of pest will be given.
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4.2. Development of Computer Terminal Software System

In order to record and analyze various diseases and pests in the field, it is necessary to
set up multiple mobile monitoring systems in different regions and record and count the
disease and pest information and environmental data obtained by the mobile monitoring
system. The project has further developed the computer software system, which can
accept and record the data of multiple mobile monitoring systems and display the regional
location, intensity, and trend of diseases and pests.

5. Experiment and Discussion
5.1. Image Collection of Diseases and Pests

When using the mobile intelligent device for image acquisition, the user should see a
relatively clear picture on the screen (i.e., the lens focusing is completed) and then click the
shooting button to avoid dithering and fuzzy image data.

In the test experiments in this section, there were six kinds of common diseases and
pests: rice planthopper, rice-leaf roller, wheat spider, wheat aphid, wheat scab, and sheath
blight. For the area where each pest of rice or wheat gathers on the plant, the area where
the disease occurs on the plant, and the significant characteristic area of different seedling
conditions, the camera shall aim at the characteristic area for multi-angle shooting (such as
side, top, middle, local, etc.), and the specific shooting standards are shown in Table 3.
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Table 3. Collection mode under different crops with diseases and pests.

Type Name Viewfinder Range Angle and Distance

Pest

Rice planthopper

The side is facing the aggregation area of rice
planthopper above the rice root.

The lens vertically penetrates into the cluster
and overlooks the aggregation area of rice

planthopper above the root.

Angle: 0~30◦.
Distance: 5~10 cm, 10~15 cm,
mainly in a clear state with a

distance of 5~10 cm.

Rice-leaf roller
The viewfinder shall mainly focus on the
side images of rice leaves, which can be

distinguished by the naked eye.

Angle: 30~60◦.
Distance: 10~20 cm, 20~30 cm,
mainly in a clear state with a

distance of 20~30 cm.

Wheat spider
The lens is close to the ground in the winter

and perpendicular to the ground in the
spring.

Angle: 0~90◦.
Distance: 5~10 cm, 10~15 cm,
mainly in a clear state with a

distance of 5~10 cm.

Wheat aphid

The whole wheat plant shall be
photographed before jointing, and the

middle and upper parts of the wheat plant
shall be photographed after booting.

Angle: 0~30◦.
Distance: 5~10 cm, 10~15 cm,
mainly in a clear state with a

distance of 5~10 cm.

Others

Other pests, such as striped borer, leaf cicada,
rice borer sandfly, and armyworm, can be

photographed according to the actual
situation of the investigation.

According to the survey
characteristics, refer to the

above form.

Disease
Sheath blight The middle and lower part of rice is

photographed (one side is used).

Angle: 0~30◦.
Distance: 10~20 cm, 20~30 cm,
mainly in a clear state with a

distance of 10~20 cm.

Leaf rust
The viewfinder shall mainly focus on the

side image of wheat ear (which can be
distinguished by naked eyes).

Angle: 30~60◦.
Distance: 10~20 cm, 20~30 cm,
mainly in a clear state with a

distance of 20~30 cm.

Others

Other diseases, such as bacterial stripe
disease, rice false smut, and ear neck blast,

can be photographed according to the actual
situation of the investigation and with

reference to the above types.

According to the survey
characteristics, refer to the

above form.

Seedling growth

According to the significant characteristic
areas of different growth periods, the

viewfinder should mainly focus on the side
image of crop seedling.

Angle: 30~60◦.
Distance: 10~20 cm, 20~30 cm,
mainly in a clear state with a

distance of 20~30 cm.

5.2. Analysis of Acquisition Results

The six most common diseases and pests (rice planthopper, rice-leaf roller, rice sheath
bright, wheat spider, wheat aphid, and wheat leaf rust) were selected for statistical analysis
by different methods. The sample size of each kind of diseases and pests was 200, and
the rice images were collected in Liyang, Jiangsu, China (119.67◦ E, 31.49◦ N); Huaiyuan,
Anhui, China (117.04◦ E, 32.97◦ N); and Changsha, Hunan, China (113.33◦ E, 28.05◦ N).
The wheat images were collected in Xuchang, Henan, China (113.77◦ E, 34.05◦ N); Baoding,
HeBei, China (115.28◦ E, 38.89◦ N); and Linyi, Shandong, China (118.259◦ E, 35.19◦ N). The
collection method is shown in Table 3. In the experiment, the average precision (AP) was
used to evaluate the effects of different methods. The results are shown in Table 4. The AP
is defined as

AP =
∫ 1

0
P(R)dR (6)
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R =
TP

TP + FN
(7)

P =
TP

TP + FP
(8)

where AP is the average detection accuracy, R is the recall rate, P is the accuracy, TP
represents the positive samples predicted as positive, FN represents the positive samples
predicted as negative, and FP represents the negative samples predicted as positive.

Table 4. Average precision (AP) of different methods on different diseases and pests.

Rice Planthopper Rice-Leaf Roller Rice Sheath Blight Wheat Spider Wheat Aphid Wheat Leaf Rust

Ours (Yolo V3) 83.32% 85.34% 82.03% 86.32% 85.53% 87.01%

Yolo V2 [27] 78.13% 80.78% 78.89% 81.32% 80.56% 83.65%

Faster RCNN
[28] 75.52% 77.45% 76.76% 75.89% 73.20% 79.32%

SSD [29] 72.32% 75.32% 77.27% 74.12% 71.32% 74.78%

As shown in Table 4, the Yolo V3 method used in this paper had a higher accuracy
than other detection methods for different diseases and pests. Yolo V3 had an average
improvement of 10% compared with SSD in the detection of all diseases and pests; Yolo V3
had an average improvement of 5% compared with Yolo V2. The experimental statistical
results show that Yolo V3 had a better perception and learning ability for diseases and pests
images. The statistical methods and identification effects for different diseases and pests
are as follows.

5.2.1. Rice Planthopper

The monitoring of rice planthopper should be conducted once every five days after
the transplanting field returns to green. The direct seeding field starts from 30 days after
rice sowing until the end of rice yellow maturity. During the experiment, two rows were
chosen on each side of each field for a total of eight rows, one meter per row, and a total of
eight meters. The front end of the camera of the mobile acquisition terminal went deep into
the rice bush. The lenses were 5 cm–10 cm away from the rice base and aimed at the middle
and lower part of the rice. One picture was taken at an interval of 20 cm, five pictures were
taken in each line, and forty pictures were taken in each field. The number of shots per line
can also be adjusted according to the actual situation. In principle, there is no remake or
missed shot, or one shot per cluster. As shown in Figure 5, the server intelligently identifies
the rice planthopper and counts it automatically.
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5.2.2. Rice-Leaf Roller

The monitoring of the rice-leaf roller begins with adults in the field, driving moths, and
taking photos day by day. Three representative paddy fields were selected and investigated.
The researchers caught moths every morning, checked 10 m along the edge of each field,
walked against the wind, slowly moved the rice plant with a pole, and counted the number
of rice-leaf roller moths flying at the same time. The specific experimental operations
were as follows: (1) Pest collection: one person drives moths, and the other takes photos
immediately after them. When the person in front drives every square meter of rice, and the
adults fly up, the person behind takes photos immediately. (2) Collection of leaf curl rate:
five points are randomly sampled from each field; more than one third of the rice leaves are
photographed at each point; and the damage status of the rice-leaf roller is photographed.
The identification results are shown in Figure 6.
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5.2.3. Rice Sheath Blight

The monitoring of sheath blight began at the tillering stage of rice and was investigated
every five days until the end of the milk ripening of the rice. Three representative types of
fields were selected for the experiment. The four sides of each field were 2 m away from the
side of the field. Two rows were taken along the ridge and rice-transplanting row. Each length
was 1 m, and a total of 8 m was checked. The camera of the mobile acquisition terminal went
deep into the rice bush; the lower end of the camera was 10–20 cm away from the rice base;
and the camera was aimed at the middle and lower parts of the rice (one-side shooting was
adopted). One photo was taken every 20 cm; five photos were taken in each line; and forty
photos were taken in each field. The recognition results are shown in Figure 7.

Agronomy 2022, 11, x FOR PEER REVIEW 13 of 16 
 

 

the rice (one-side shooting was adopted). One photo was taken every 20 cm; five photos 
were taken in each line; and forty photos were taken in each field. The recognition results 
are shown in Figure 7. 

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Figure 7. Rice sheath blight. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2) 
are the recognition results. 

5.2.4. Wheat Spider 
Wheat spiders need to be monitored in the winter and spring. The collection was 

carried out every day from 2:00 p.m. to 3:00 p.m. in the winter and from 3:00 p.m. to 4:00 
p.m. in the spring, once every five days. Three representative wheat fields of different 
types were selected, and the area of each field was not be less than 667 m2. Two persons 
were required to cooperate in each data acquisition, one taking photos and one investi-
gating data. Each field was photographed along a row of wheat in the middle of the field. 
The first photographing point was 2 m away from the field head. Later, 1 photo was taken 
every 2 m, and a total of 20 photos was taken. When taking pictures, the camera clung to 
the right ridge and took pictures to the left ridge. The lens was attached to the ground in 
the winter and 5 cm–10 cm away from the ground in the spring (the lens faces the wheat). 
When taking photos with mobile intelligent acquisition equipment, the lens was placed 
vertically. The collected pictures and recognition results are shown in Figure 8. 

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Figure 8. Wheat spider. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2) are 
the recognition results. 

5.2.5. Wheat Aphid 
The investigation was to be conducted once every seven days from the green jointing 

stage to the milk ripening stage of wheat. When the number of aphids rose sharply and 

Figure 7. Rice sheath blight. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2)
are the recognition results.



Agronomy 2022, 12, 1046 12 of 15

5.2.4. Wheat Spider

Wheat spiders need to be monitored in the winter and spring. The collection was
carried out every day from 2:00 p.m. to 3:00 p.m. in the winter and from 3:00 p.m. to 4:00
p.m. in the spring, once every five days. Three representative wheat fields of different types
were selected, and the area of each field was not be less than 667 m2. Two persons were
required to cooperate in each data acquisition, one taking photos and one investigating
data. Each field was photographed along a row of wheat in the middle of the field. The
first photographing point was 2 m away from the field head. Later, 1 photo was taken
every 2 m, and a total of 20 photos was taken. When taking pictures, the camera clung to
the right ridge and took pictures to the left ridge. The lens was attached to the ground in
the winter and 5 cm–10 cm away from the ground in the spring (the lens faces the wheat).
When taking photos with mobile intelligent acquisition equipment, the lens was placed
vertically. The collected pictures and recognition results are shown in Figure 8.
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5.2.5. Wheat Aphid

The investigation was to be conducted once every seven days from the green jointing
stage to the milk ripening stage of wheat. When the number of aphids rose sharply and the
daily increase of aphids exceeded 300, the investigation was to be conducted once every
five days. More than 10 representative wheat fields were selected according to sowing
date, variety, growth, and other conditions. Samples were taken at five diagonal points of
each field; 50 plants were investigated at each point before jointing; and 20 plants were
investigated at each point after booting. The lenses were 5 cm–10 cm away from the wheat
plant, close to the right ridge, and took photos to the left ridge. The whole wheat plant was
to be photographed before jointing, and the middle and upper parts of the wheat plant
were to be photographed after booting. The 5 photos were to be photographed for each
field, and more than 50 photos were to be photographed for each survey. The collected
pictures and recognition results are shown in Figure 9.

5.2.6. Wheat Leaf Rust

The investigation was conducted every five days from the jointing stage of wheat to
the end of milk maturity of wheat. Each field was sampled in parallel at five points, and
two pictures were taken at each point with an interval of 1 m for a total of 10 m. The lens
of the equipment was aimed at more than one third of the wheat for photographing. The
collected pictures and recognition results are shown in Figure 10.
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6. Conclusions

The intelligent pest detection kit serves plant protection management through “sensing
+ artificial intelligence” technology to realize the accurate collection and mobile monitoring
of plant information and data. The equipment has been loaded with more than 500 users in
Qinghai, Jiangxi, Anhui, Zhejiang, Shanxi, and other places in China. The suite provides
users with tools and means for plant protection image and microenvironment acquisition
to help users implement more-refined plant protection management. Through artificial
intelligence to identify diseases and pests of crops, the plant protection operation is easier,
more accurate, and more efficient, so anyone can have a plant protection expert with him.
At this stage, this project only identifies the main diseases and pests of wheat, corn, rice,
and other major field crops and continues to increase the sample types to realize more
crop disease and pest monitoring, which is the further research direction of intelligent
agricultural monitoring.
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