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A two-stage linear discriminant analysis technique is proposed that utilizes both the null space and range
space information of scatter matrices. The technique regularizes both the between-class scatter and
within-class scatter matrices to extract the discriminant information. The regularization is conducted
in parallel to give two orientation matrices. These orientation matrices are concatenated to form the final
orientation matrix. The proposed technique is shown to provide better classification performance on face
recognition datasets than the other techniques.
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1. Introduction range� �

Linear discriminant analysis (LDA) is a well known technique

for dimensionality reduction and feature extraction (Duda et al.,
2000; Sharma and Paliwal, 2006, 2008, 2010, 2012; Chen et al.,
2000; Lu et al., 2003a,b, 2005; Yang et al., 2003; Yu and Yang,
2001; Swets and Weng, 1996; Belhumeur et al., 1997; Ye, 2005;
Guo et al., 2007; Thomaz et al., 2005; Huang et al., 2002; Tian
et al., 1986; Zhao et al., 2003; Jiang et al., 2008; Gao and Davis,
2006; Paliwal and Sharma, 2010, 2011; Mandal et al., 2010).
Dimensionality reduction plays crucial role in the face recognition
problem. It is generally applied for improving robustness (or gen-
eralization capability) and reducing computational complexity of
the face recognition classifier. In the LDA technique, the orientation
matrix W is computed from the eigenvalue decomposition (EVD) of
S�1

W SB (Duda et al., 2000), where SW 2 Rd�d is within-class scatter
matrix, SB 2 Rd�d is between-class scatter matrix and d is the
dimensionality of feature space. In the face recognition problem,
the matrix SW becomes singular and its inverse computation be-
comes impossible. Several techniques are reported in the literature
that overcome this drawback of LDA (Chen et al., 2000; Lu et al.,
2003a,b, 2005; Yang et al., 2003; Yu and Yang, 2001; Swets and
Weng, 1996; Belhumeur et al., 1997; Ye, 2005; Guo et al., 2007;
Thomaz et al., 2005; Sharma and Paliwal, 2010, 2012; Huang
et al., 2002; Tian et al., 1986; Zhao et al., 2003; Jiang et al., 2008;
Paliwal and Sharma, 2010, 2011; Mandal et al., 2010).

In LDA, there are four informative spaces namely, null space of

SW Snull
W

� �
, range space of SW Srange

W

� �
, null space of SB Snull

B

� �
and
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range space of SB SB . All these four individual spaces have sig-
nificant discriminant information (refer Appendix I for empirical
demonstration). To approximate the inverse computation of SW,
different combinations of these spaces are used in the literature
for finding the orientation matrix W. For an instance the pseudo-
inverse technique (Tian et al., 1986) uses Srange

W and Srange
B to com-

pute the orientation matrix. The regularized LDA technique (Zhao

et al., 2003) uses Snull
W ; Srange

W and Srange
B . However, due to the use of

small value of regularization parameter (compared to the large
eigenvalues of SW), the Srange

W gets de-emphasize in the inverse oper-
ation of SW. Therefore, the influential spaces in the regularized LDA

technique are Snull
W and Srange

B . Similarly, the null LDA technique

(Chen et al., 2000) uses Snull
W and Srange

B . These techniques basically
utilize two spaces in the orientation matrix computation and dis-
card the other two spaces. Since the individual spaces contribute
crucial discriminant information for classification, discarding some
spaces would sacrifice the classification performance of the classi-
fier. Theoretically, if all the four spaces can be inherited appropri-
ately in the computation of orientation matrix W then the
classification performance can be improved further.

In this paper, we exploit ways of utilizing all the four spaces. The
inclusion of all the spaces of scatter matrices is done in two analy-
ses. Fig. 1 illustrates the proposed strategy. The orientation matrix
can be computed from the input data by carrying out two discrim-
inant analyses in parallel. In the first analysis, the orientation matrix
W1 is computed by retaining top eigenvalues and eigenvectors of
S0�1

W SB , where non-singular matrix S0 is the approximation of singu-
lar matrix S. This will retain Snull

W and Srange
B . In the second analysis,

the orientation matrix W2 is obtained by retaining top eigenvalues
and eigenvectors of S0�1

B SW . This will retain Srange
W and Snull

B .
The orientation matrices obtained by these two analyses are
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Fig. 1. The proposed strategy.
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concatenated to get the final orientation matrix W, i.e.,
W = [W1,W2]. For brevity we call the proposed technique the two-
stage LDA technique. The non-singular approximation S0 of singular
matrix S can be evaluated in two ways: (1) using regularized LDA
technique (Zhao et al., 2003) where S0 = S + aI (a is the regulariza-
tion parameter); and, (2) using extrapolation technique (Jiang
et al., 2008; Sharma and Paliwal, 2010) where eigenvalues of S are
extrapolated by applying curve fitting or some criterion function.
In this paper we show that the resulting orientation matrix W pro-
vides better classification results than other existing techniques.

2. Notations and descriptions

Let us denote the n linearly independent training samples (or
feature vectors) in d-dimensional space by —v ¼ x1; x2; . . . ; xn, having
class labels X = {x1,x2, . . . ,xn}, where xi 2 {1,2, . . . ,c} and c is the
number of classes. The set —v can be subdivided into c subsets
—v1;—v2; . . . ;—vc where each subset —vj belongs to a particular class la-
bel and consists of nj number of samples such that:

n ¼
Xc

j¼1

nj

and —vj � —v and —v1 [—v2 [ � � � [—vc ¼ —v.
Let lj be the centroid of —vj and l be the centroid of —v, then the

between class scatter matrix SB, within-class scatter matrix SW and
total-scatter matrix ST are defined as (Duda et al., 2000)

SB ¼
Xc

j¼1

njðlj � lÞðlj � lÞT ð1Þ

SW ¼
Xc

j¼1

Sj ð2Þ

where

Sj ¼
X
x2—vj

ðx� ljÞðx� ljÞ
T

and

ST ¼
X
x2—v
ðx� lÞðx� lÞT ð3Þ

Since in the face recognition task d > n, the scatter matrices SB, SW

and ST will be singular with ranks rb = c � 1, rw = n � c and rt = n � 1,
respectively. The null space of ST carries no discriminative informa-
tion (Huang et al., 2002), therefore, the dimensionality can be re-
duced from d-dimensional space to rt = n � 1 dimensional space
by applying principal component analysis (PCA) as a pre-processing
step to remove the null space of ST. This would make the technique
computationally faster. The range space of total scatter matrix
UTR 2 Rd�rt will be used as a transformation. This will give us trans-
formed within-class scatter matrix bSW 2 Rrt�rt and transformed be-
tween-class scatter matrix bSB 2 Rrt�rt . These matrices can be
decomposed as
bSW ¼ UW D2
W UT

W ð4Þ

andbSB ¼ UBD2
BUT

B ð5Þ

where DW 2 Rrt�rt and DB 2 Rrt�rt are diagonal matrices whose ele-
ments (arranged in descending order) are the square-root of the
eigenvalues of bSW and bSB, respectively; and UW 2 Rrt�rt and
UB 2 Rrt�rt are orthogonal matrices consisting of the corresponding
eigenvectors as columns. Since the rank of bSW is rw, the matrix UW

can be formed as UW = [UWR,UWN] where UWR 2 Rrt�rw corresponds
to the range space of bSW and UWN 2 Rrt�ðrt�rwÞ corresponds to the
null space of bSW . In a similar way, we can write UB = [UBR,UBN]
where UBR 2 Rrt�rb corresponds to the range space of bSB and
UBN 2 Rrt�ðrt�rbÞ corresponds to the null space of bSB.

3. Two-stage LDA technique

It is well known in the literature that the null space of bSW con-
tains crucial information for classification (Chen et al., 2000; Ye,
2005). The null space based LDA techniques retain the null space
information of bSW , however, they discard the range space informa-
tion of bSW . It has been seen that the range space information of bSW

is also important for classification (Swets and Weng, 1996; Bel-
humeur et al., 1997) and by discarding it could penalize classifica-
tion performance. Some techniques (e.g. Guo et al., 2007; Zhao
et al., 2003; Jiang et al., 2008; Sharma and Paliwal, 2010) estimates
non-singular within-class scatter matrix bS 0W by adding a small po-
sitive constant (known as regularization parameter) to the eigen-
values of bSW (Guo et al., 2007; Zhao et al., 2003) or by
extrapolating the eigenvalues of bSW in its null space (Jiang et al.,
2008; Sharma and Paliwal, 2010). Thereafter, obtaining the eigen-
vectors corresponding to the top eigenvalues of bS 0�1

W
bSB. In these

techniques the null space information of bSW and the range space
information of bSB are effectively retained. Although, the range
space information of bSW is utilized in these techniques, it has very
less influence as it is de-emphasized in the inverse operation of bSW

(see Fig. 2). Nonetheless, theoretically the latter implementation
would contain more information than the former techniques. To
see the qualitative contribution of bS 0�1

W
bSB in obtaining the orienta-

tion matrix, we decompose bS 0W into its eigenvalues and eigenvec-
tors asbS 0W ¼ UW

bD2
W UT

W ð6Þ

where diagonal matrix bDW ¼
RW 0
0 bRW

� �
; RW 2 Rrw�rw and

bRW 2 Rðrt�rwÞ�ðrt�rwÞ is the estimation or regularization of eigen-
values RW.

From Eq. (5), bSB can be formed as

bSB ¼ ½UBR;UBN�
R2

B 0
0 0

" #
UT

BR

UT
BN

" #
¼ UBRR

2
BUT

BR ð7Þ

where RB 2 Rrb�rb .
From Eqs. (6) and (7), we can writebS 0�1

W
bSB ¼ UW

bD�2
W UT

W UBRR
2
BUT

BR ð8Þ

The EVD of Eq. (8) can be computed and the range space informa-
tion of bS 0�1

W
bSB can be used in the formation of orientation matrix.

Three things can be observed here:

(1) The null space of bSB is discarded.
(2) The range space information of within-class scatter matrix

in the inverse operation is de-emphasized.
(3) The null space of the product bS 0�1

W
bSB is discarded.



Fig. 2. This figure uses regularization method to get non-singular estimate bS 0W from the singular matrix bSW and illustrates the de-emphasis of the range space information ofbSW in its inverse operation. The terms rw and rt are the ranks of bSW and bST , respectively. The region between 1 and rw is the range space of bSW and the region between rw and rt

is the null space of bSW . The eigenvalues of bSW are added by the regularization parameter a which gives the eigenvalues of bS 0W (i.e., bS 0W ¼ bSW þ aIÞ. The regularization
parameter is usually a small quantity obtained by performing cross-validation procedure on the training feature vectors. This parameter addition helps in defining the
eigenvalues of bS 0W in the null space region. Thereby enabling the inverse operation of bS 0W . The small eigenvalues of bS 0W (in the null space) get emphasized in the inverse
operation. These eigenvalues are used as weighting coefficients for their corresponding eigenvectors and therefore the eigenvectors of bS 0W in the range space are de-
emphasized.

1 Regularization of bSB can be done in a similar manner as we have done
regularization of bSW matrix. An example of this can be viewed from Fig. 2 by
replacing the matrix bSW by matrix bSB and by replacing the rank rw by rank rb.
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It is known that though the null space of bSB is less effective, it
contains some useful information for classification (Gao and Davis,
2006; Paliwal and Sharma, 2010, Appendix I). Therefore, theoreti-
cally if the null space of bSB is included in computing the orientation
matrix then the classification performance can be improved.
Furthermore, if the range space of bSW can be utilized effectively
then it can help in retaining more information. Next, if the eigen-
vectors of bS 0�1

W
bSB are represented by E = [ER,EI] (where ER 2 Rrt�rb

and EI 2 Rrt�ðrt�rbÞÞ then it is possible that some eigenvalues (which
are not in the range space of bS 0�1

W
bSBÞ are complex valued which

would give complex eigenvectors as columns of EI 2 Rrt�ðrt�rbÞ and
cannot be included in the formation of orientation matrix. Some
of the eigenvalues of a singular matrix can become complex due
to limited size of the hardware (Golub and Loan, 1996). Since the
matrix bS 0�1

W
bSB is positive semi-definite and singular (with rank rb),

then theoretically it should produce rb positive eigenvalues and
the remaining eigenvalues should be zero. However, due to the
hardware limitations, it may produce some very small non-zero
eigenvalues (positive or negative). The small negative eigenvalues
will lead to complex eigenvectors. For example, if the size ofbS 0�1

W
bSB is 10 � 10 and its rank is 3 then it will give 3 eigenvectors

corresponding to the positive eigenvalues which are defined as its
range space ER. The remaining 7 eigenvectors define the null space
EI, some of its eigenvectors corresponding to very small negative
eigenvalues will be complex valued. In our implementation we
use only the ER and discard EI.

In order to retain more information for the purpose of improv-
ing the classification performance further, we investigate a strat-
egy to: (1) include the null space of bSB, (2) include the range
space of bSW , and (3) extract the null space information of bS 0�1

W SB.
One strategy would be to estimate eigenvalues for the null

space of bSB (as done e.g. for bSW in regularized LDA technique)
and perform eigenvalue decomposition of bS 0�1

W
bS 0B. The term bS 0B is

the regularized or estimated matrix of bSB and can be defined asbS 0B ¼ UB
bD2

BUT
B ð9Þ
where bDB ¼
RB 0
0 bRB

� �
and bRðrt�rbÞ�ðrt�rbÞ

B is the estimation of eigen-

values in the null space of bSB. This strategy may satisfy above points
1 and 3. However, it could have either no effect on classification
performance or can deteriorate the classification performance. See
Appendix II for details.

In order to satisfy the above three points we can do as follows.
Consider a matrix C which has leading and lagging eigenvectors rep-
resented by L and G, respectively. Then the leading and lagging
eigenvectors of C�1 can be given by G and L, respectively. Therefore,bSB can be estimated to be non-singular matrix bS 0B to retain its null
space1 which can be used to approximate the null space of bS 0�1

W
bSB by

obtaining the range space of bS 0�1
B
bSW . The eigenvectors of bS 0�1

B
bSW can

be denoted by bE ¼ ½bER; bE I� (where bER 2 Rrt�rw and bE I 2 Rrt�ðrt�rwÞÞ.
Since the rank of bSB is rb < rw, only leading rb eigenvectors (i.e., eigen-
vectors corresponding to largest eigenvalues) of bER can be considered
to form an orientation matrix. The remaining rw � rb eigenvalues
could be noisy which would give erroneous corresponding weighted
eigenvectors. If the leading eigenvectors of bER is denoted bybERL 2 Rrt�rb then it can be considered as approximated null space ofbS 0�1

W
bSB. Since the range space of bS 0�1

W
bSB is ER and its approximated null

space is bERL, the orientation matrix in rt-dimensional space would becW ¼ ½ER; bERL� 2 Rrt�2rb or in d-dimensional space would be
W ¼ UTR

cW 2 Rd�2rb . Theoretically, this strategy would include all
the four spaces and retrieve the null space information of bS 0�1

W
bSB.

The summary of the algorithm is depicted in Table 1.
4. Computational considerations

The computational complexity of the two-stage LDA technique
is higher than other techniques like null space based technique



Table 1
The algorithm.

Step 1. Pre-processing stage: apply PCA to find range space UTR 2 Rd�rt of
total scatter matrix ST and apply it to find transformed within-class

scatter matrix bSW 2 Rrt�rt and between class scatter matrixbSB 2 Rrt�rt (where rt is the rank of ST)
Step 2. Estimate non-singular matrices bS 0W and bS 0B from singular matricesbSW and bSB , respectively, by using either regularization technique or

extrapolation technique
Step 3. Decompose bS 0�1

W
bSB into its eigenvalues and eigenvectors, and find

the leading rb number of eigenvectorscW 1 2 Rrt�rb (i.e., eigenvectors
corresponding to largest eigenvalues), where rb is the rank of
between-class scatter matrix

Step 4. Similarly (as Step 3) find leading rb number of eigenvectorscW 2 2 Rrt�rb from the eigenvalue decompose of bS 0�1
B
bSW

Step 5. Form cW ¼ ½cW 1;cW 2� and compute orientation matrix

W ¼ UTR
cW 2 Rd�2rb

Table 2
Performance of the techniques in terms of average recognition accuracy over multiple
runs of N-fold cross-validation on ORL, AR, Yale and FERET databases.

Techniques ORL
(%)

AR
(%)

Yale
(%)

FERET
(%)

DLDA (Yu and Yang, 2001) 89.5 80.8 93.5 92.9
Null space based technique (OLDA) (Ye, 2005) 91.5 80.8 97.3 97.1
PCA plus LDA (Swets and Weng, 1996;

Belhumeur et al., 1997)
86.0 83.4 98.0 95.7

Regularized LDA (Zhao et al., 2003) 91.5 75.4 97.9 97.3
Regularized LDA based on DLDA framework (Lu

et al., 2005)
89.8 81.6 94.7 94.5

MLDA (Thomaz et al., 2005) 92.0 76.2 97.9 97.8
Eigenfeature regularization technique (Jiang

et al., 2008)
92.3 81.8 98.6 97.7

Two-stage LDA technique 92.6 87.8 98.7 98.0
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(OLDA) (Ye, 2005), PCA plus LDA (Swets and Weng, 1996; Belhum-
eur et al., 1997) and DLDA (Yu and Yang, 2001) as eigenvector com-
putation is required both in the null space as well as in the range
space of scatter matrices. However, by applying PCA as a pre-pro-
cessing step the computational complexity would be reduced by
removing the null space of total scatter matrix and then transform-
ing feature vectors on the rt-dimensional space. The computational
complexity of the pre-processing step (Step 1) would be O(dn2),
where d is the dimensionality of feature vectors and n is the num-
ber of training feature vectors. The computational complexity of
eigenvalue decomposition of the scatter matrices in Step 2 would
be around O(n3). Some additional computational complexity will
be required to estimate eigenvalues in the null space of scatter
matrices depending upon the technique used. The computational
complexity of Steps 3 and 4 would be O(n3) and of Step 5 would
be O(dn2).

5. Experimental setup and results

Four commonly known datasets namely ORL database (Samaria
and Harter, 1994), AR database (Martinez, 2002), Yale (Belhumeur)
and FERET (Phillips et al., 2000) are utilized for the experimenta-
tion. The ORL database contains 400 images of 40 people having
10 images per subject. The dimensionality of the original feature
space is 10304. The AR database contains 100 classes. We use a
subset of AR database with 14 face images per subject. The dimen-
sionality is 4980. The Yale database contains 165 images of 15 sub-
jects. There are 11 images per subject, one for each of the following
facial expressions or configurations: center-light, with glasses,
happy, left-light, with no glasses, normal, right-light, sad, sleepy,
surprised and wink (Belhumeur). All the images are first cropped
to 65 � 51, therefore, the dimensionality is 3315. For FERET data-
base, we used 6 images per subject. In total, 85 subjects are utilized
for the experiment. The image is first cropped to 84 � 64; i.e., the
dimensionality is 5796. The proposed technique is compared with
the following techniques: DLDA (Yu and Yang, 2001), PCA plus LDA
technique (Swets and Weng, 1996; Belhumeur et al., 1997), null
space based technique (OLDA) (Ye, 2005), regularized LDA tech-
nique (Zhao et al., 2003) (the regularization parameter was esti-
mated by using leave-one out cross-validation procedure on
training set.), regularized LDA based on DLDA framework (the g
parameter was estimated by using leave-one out cross validation
procedure on training set) (Lu et al., 2005), maximum uncertainty
LDA (MLDA) technique (Thomaz et al., 2005) and eigenfeature reg-
ularization technique (Jiang et al., 2008). Table 2 shows the average
recognition accuracy on four datasets using all the techniques. For
the two-stage LDA technique, we use here the extrapolation
technique (Sharma and Paliwal, 2010; Jiang et al., 2008) for com-
puting non-singular estimates of scatter matrices. The results for
regularization technique (Zhao et al., 2003) are given later in this
section. The nearest neighbor classifier using Euclidean distance
measure is used for classifying a test vector. Multiple runs (5 runs)
of N-fold cross-validation are applied to find the average recogni-
tion accuracy, where N = 2. We can see from Table 2 that the
two-stage LDA technique outperforms the other techniques.

We have already shown in Appendix I that null space of SB con-
tains useful information for classification. In order to show
whether this space provides additional and complementary infor-
mation over the three other spaces (range space of SW, null space
of SW and range space of SB), we report here the results for the
two-stage LDA technique with and without the null space of SB.
For the two-stage LDA technique with the null space of SB, the pro-
cedure is same as described in Table 1. For using the two-stage LDA
technique without the null space of SB, we modified the procedure
given in Table 1 as follows. Instead of using the range space ofbS 0�1

B
bSW , we use the range space of bSW in Step 4. Multiple runs of

N-fold cross-validation are carried out on all the four datasets
and the resulting average recognition accuracies with the null
space of SB and without the null space of SB are depicted in Table
3. It can be observed from this table that the null space of SB does
provide complementary information over the other three spaces
and plays a useful role in the proposed two-stage LDA technique.

So far we have provided results where the two-stage LDA tech-
nique is used to reduce the dimensionality to 2rb. Now we show its
performance as a function of dimensionality. To demonstrate this,
we varied the dimensions from 5 to 2rb (where, 2rb = 2(c � 1) and c
is the number of classes) and computed the average recognition
accuracy by doing multiple runs of N-fold cross-validation tech-
nique (as above). The results are demonstrated in Table 4. It can
be seen from this table that the recognition performance improves
by increasing the dimensionality.

In the experiments described above, we have used the extrapo-
lation procedure for obtaining the non-singular estimates of scatter
matrices in the two-stage LDA technique. Now we use the regular-
ization method to obtain the non-singular estimate of these matri-
ces. In order to do this, we vary the regularization parameter a in
the following manner. For estimating within-class scatter matrix
in full space we define regularization parameter a = d ⁄ kW, where
kW is the maximum eigenvalue of within-class scatter matrix and
d is a small positive number. Similarly, for estimating between-
class scatter matrix in full space we define a = d ⁄ kB, where kB is
the maximum eigenvalue of between-class scatter matrix. The
average recognition accuracy is then obtained by conducting mul-
tiple runs of N-fold cross-validation on the four face recognition
datasets. The results are shown in Table 5. We can see from this ta-
ble that the recognition performance can be improved by choosing
the regularization parameter appropriately. However, it must be



Table 3
Average classification accuracy with and without the null space of SB.

Datasets With null space of SB Without null space of SB

ORL (%) 92.6 90.6
AR (%) 87.8 71.0
Yale (%) 98.7 91.5
FERET (%) 98.0 93.6

Table 4
Recognition performance as a function of number of features (dimensions).

Dataset Dimensions/number of features

5 10 20 25 50 100 rb 2rb

ORL (%) 81.0 86.7 89.2 89.6 92.3 – 91.9
(rb = 39)

92.6
(2rb = 78)

AR (%) 26.6 47.3 63.2 67.0 77.8 86.9 87.0
(rb = 99)

87.8
(2rb = 198)

Yale
(%)

84.1 95.1 98.8 98.8 – – 98.8
(rb = 14)

98.7
(2rb = 28)

FERET
(%)

46.7 67.3 84.3 87.5 94.2 97.3 97.1
(rb = 84)

98.0
(2rb = 168)

Table 5
Recognition performance by varying the value of regulation parameter.

Datasets d = 0.001 d = 0.1 d = 0.3 d = 0.5 d = 0.7 d = 0.9 d = 1.0

ORL (%) 86.5 87.5 90.3 90.8 90.8 91.0 90.8
AR (%) 62.9 74.4 72.7 71.7 71.0 70.4 70.3
Yale (%) 94.3 93.9 93.3 91.9 90.8 89.7 89.7
FERET (%) 91.6 95.5 95.7 94.3 93.9 93.7 93.7

Table A1
Classification accuracy using Snull

W ; Srange
W ; Srange

B and Snull
B .

Dataset Snull
W ð%Þ Srange

W ð%Þ Srange
B ð%Þ Snull

B ð%Þ

ORL (Samaria and Harter, 1994) 91.0 87.0 88.5 43.0
AR (Martinez, 2002) 81.6 70.1 70.4 41.0
Yale (Belhumeur) 98.9 84.4 92.2 63.3
FERET (Phillips et al., 2000) 96.9 90.6 94.1 62.4
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noticed (by comparing Tables 4 and 5) that the performance of the
two-stage LDA technique with extrapolation procedure is in gen-
eral better than that with the regularization procedure.

6. Conclusion

We have proposed a two-stage LDA technique that includes
both the null space and range space information of between-class
scatter and within-class scatter matrices. The regularization is
done in parallel to give two orientation matrices. These orientation
matrices are concatenated to form the final orientation matrix. The
proposed technique is shown to provide better classification per-
formance on several face recognition datasets than the other
techniques.

Appendix I

In this appendix we describe (pragmatically) that all the four

spaces namely, null space of SW Snull
W

� �
, range space of SW Srange

W

� �
, null

space of SB Snull
B

� �
and range space of SB Srange

B

� �
contain information

for discriminant analysis. In order to demonstrate this, first we
project the original feature vectors onto the range space of total scat-
ter matrix as a pre-processing step. Then all the spaces are utilized
individually to do dimensionality reduction and to classify a test fea-
ture vector, the nearest neighbor classifier is used. For this experi-
ment the datasets have been approximately equally divided into
training samples and test sample. Table A1 depicts the classification
accuracy. It can be observed from the table that individual spaces

(Snull
W ; Srange

W and Srange
B Þ contain significant discriminant information.

Though the Snull
B is less effective, it still contains some information.

Appendix II

In this appendix we will show that by doing eigenvalue decom-
position of bS 0�1

W
bS 0B could result in noisy eigenvectors (where the full

rank scatter matrices bS 0W and bS 0B are the estimates of singular scat-
ter matrices bSW and bSB, respectively). From Eqs. (6) and (9) of the
text, Q ¼ bS 0�1

W
bS 0B can be expressed as

Q ¼ ½UWR;UWN�
R�2

W 0
0 bR�2

W

" #
UT

WR

UT
WN

� �
½UBR;UBN�

R2
B 0

0 bR2
B

" #
UT

BR

UT
BN

� �
¼ P þ UWN

bR�2
W UT

WN

� �
UBN

bR2
BUT

BN

� �
where P is the remaining sum of products. If the diagonal entries ofbRW is k̂j > 0 (for j = 1, . . . , (rt � rw)) and bRB is ĉk > 0 (for
j = 1, . . . , (rt � rb)), and the corresponding column vectors of UWN is
uj and UBN is vk then

¼ P þ
Xrt�rw

j¼1

ujuT
j =k̂

2
j

 ! Xrt�rb

k¼1

vkvT
k

� �
ĉ2

k

 !
ðA1Þ

Since k̂2
j and ĉ2

k are lagging eigenvalues of bS 0W and bS 0B, respectively,
the eigenvalues will be small and noisy. It is reasonable to assume
that the values of k̂j (for all j) are closely equal and similarly the val-
ues of ĉk (for all k) are closely equal; i.e., k̂1 � k̂2 � � � � k̂rt�rw and
ĉ1 � ĉ2 � � � � ĉrt�rb

. Therefore, Eq. (A1) can be written as

� P þ ĉ2

k̂2

Xrt�rw

j¼1

ujuT
j

 ! Xrt�rb

k¼1

vkvT
k

 !
ðthe subscript of eigenvalues

are removedÞ

Let the eigenvalue ĉ consists of true eigenvalue ĉ0 and additive
noise rb, where jrbj 6 b and b is a positive constant. Similarly, let
k̂ ¼ k0 þ rw, where jrwj 6 w and w is a positive constant. Let e
denotes the ratio ĉ2=k̂2. The ratio e could be in the range 0 < e <1
and if noise rb and rw are dominant factors then this will lead to
serious erroneous value of Q and the orientation matrix.
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