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Abstract—Missing feature theory (MFT) has demonstrated
great potential for improving the noise robustness in speech recog-
nition. MFT was mostly applied in the log-spectral domain since
this is also the representation in which the masks have a simple
formulation. However, with diagonally structured covariance
matrices in the log-spectral domain, recognition performance
can only be maintained at the cost of increasing the number of
Gaussians drastically. In this paper, MFT can be applied for
static and dynamic features in any feature domain that is a linear
transform of log-spectra. A crucial part in MFT-systems is the
computation of reliability masks from noisy data. The proposed
system operates on either binary masks where hard decisions are
made about the reliability of the data or on fuzzy masks which use
a soft decision criterion. For real-life deployments, a compensation
for convolutional noise is also required. Channel compensation in
speech recognition typically involves estimating an additive shift
in the log-spectral or cepstral domain. To deal with the fact that
some features are considered as unreliable, a maximum-likelihood
estimation technique is integrated in the back-end recognition
process of the MFT system to estimate the channel. Hence, the
resulting MFT-based recognizer can deal with both additive and
convolutional noise and shows promising results on the Aurora4
large-vocabulary database.

Index Terms—Automatic speech recognition (ASR), channel
compensation, missing data techniques, noise robustness.

I. INTRODUCTION

N contrast to human listeners, automatic speech recogni-
I tion (ASR) systems are particularly sensitive to the presence
of background noises and acoustical variations in the speaking
environment. Speech signals processed by an ASR-system are
influenced by the way they are produced (e.g., differences in
speaker characteristics, speaking style, accent, dialect), by the
surrounding sounds that add noise to the signal, by the trans-
ducer used to capture the signal (e.g., the microphone character-
istics) and by the transmission channel (e.g., the room impulse
response). In this paper, it is assumed that speaking variations
and speaker variances are dealt with by the acoustic and lan-
guage model of the speech recognizer.
Robustness can be defined as the ability of the ASR to main-
tain its performance or degrade gracefully when exposed to a
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range of different environmental conditions. In realistic testing
situations, ASR-systems operate in environments with unknown
time-varying additive noise distortions, leading to a mismatch
between training and testing conditions. Considering and incor-
porating all possible noise mismatches, as aimed in a multi-con-
dition training approach, is not only an impractical task but also
it is often not guaranteed that the back-end model has adequate
discriminative power neither is one sure to cover all relevant
noise conditions. Even when the noisy environment resembles
the trained conditions and is sufficiently known beforehand, it
is not guaranteed that a multi-condition training approach is ef-
fective.

Hence, in the case of clean condition training, noise compen-
sation techniques are required to reduce the model mismatch of
the noisy speech by dealing with the unknown realistic noise
distortions. Several approaches have been proposed in the
literature which can be broadly divided into three categories.
An overview of these techniques can be found in [1]-[3]. The
first group of techniques aims to increase the noise robustness
by extracting speech features that are inherently less distorted
by the noise. Over the years, different robust feature extraction
methods attempting to derive noise resistant feature parameters
have been explored, e.g., perceptual linear prediction (PLP)
coefficients [4], possibly combined with the relative spectra
(RASTA) techniques [5], root-cepstrum coefficients (RCC)
[6], the modulation spectrograms [7], spectral peaks [8] and
Mel-frequency cepstral coefficients (MFCCs) [9], which later
became the standard feature set in ASR. Another type of
noise reduction technique operates in the feature domain by
applying a transformation to the degraded speech such that
the transformed speech closely resembles the clean speech.
Some examples of these speech enhancement techniques are
spectral subtraction [10], Wiener filtering [11], model-based
enhancement techniques [12], [13], subspace-based speech
enhancement methods [14], [15], and the vector Taylor series
(VTS) compensation algorithm [16]. Whereas feature enhance-
ment techniques try to remove the mismatch between the noisy
observation and the acoustic model by modifying the incoming
feature vector, a third category, namely the model compensa-
tion techniques modify the models learned by the recognizer
such that they resemble the distribution of the observed noisy
speech. Some model adaptation methods worth mentioning are
the hidden Markov model (HMM) decomposition technique
[17], parallel model combination (PMC) [18], maximum-likeli-
hood linear regression (MLLR) [19], and maximum a posterior
probability (MAP) compensation [20].

In real life situations, the statistics of the background noise are
not known beforehand and are difficult to predict, while model
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adaptation techniques rely on important assumptions about the
noisy conditions. Due to a lack of data and their associated com-
putational cost these techniques are rarely capable of incorpo-
rating all model parameters and thus to compensate for all noise
types. Most speech enhancement techniques aim to reduce the
noise by assuming that the noise is stationary over a relatively
large time window. Hence, these methods mostly fail for real-
istic nonstationary noise distortions. In contrast, robust feature
extraction makes only weak or no assumptions about the noise.
However, it appears to be difficult to find a representation that
is insensitive to a wide range of distortions.

It is well known that human listeners can cope with speech
degradations and are capable of recognizing it by utilizing the
partial information left in the distorted speech signal. From this
property of humans, the missing feature approach originated for
improving the robustness in ASR-systems. In a spectrographic
representation of noisy speech, some time—frequency regions
will be dominated by the noise and others are dominated by
the speech. Missing feature theory (MFT) [21] attempts to com-
pensate for additive noise distortions by first locating the cor-
rupted time—frequency regions and then performing recognition
on these partial or incomplete feature vectors. Therefore, MFT
is required to estimate a missing feature mask indicating the re-
liability of different spectral regions in the noisy data.

MEFT has already shown its effectiveness in dealing with ad-
ditive noise when applied in ASR, even in challenging realistic
conditions with nonstationary noise distortions. One of the rea-
sons for the success of MFT is its similarity with the human au-
ditory system in dealing with partly distorted data by exploiting
the redundancy of the speech signal. Another advantage is that,
in contrast to other noise robustness techniques, MFT does not
rely on important assumptions about the noise and is intrinsi-
cally suited to compensate for either stationary or nonstationary
noises. In practice however, the extent to which the performance
of the MFT approach is dependent on the noise type is deter-
mined by the mask estimation procedure involved.

The principles behind MFT-based recognition will be re-
stated in Section II. We will make a distinction between hard
and soft decisions for estimating the mask. When a masking
decision is hard, a binary missing data mask is produced which
indicates for each time—frequency cell that it is either com-
pletely reliable or else completely missing. In the recognition
process, the most commonly used approaches to deal with
these partial feature vectors are marginalization [21], [22]
and state-based data imputation [23], [24]. In marginalization,
recognition is performed by integrating out the missing fea-
tures, while in data imputation, a complete feature vector for
recognition is first estimated by reconstructing the missing
part from the reliable data using the HMM state distribution
as a prior. The latter technique will be further explored in
Section III since this is the technique that will be exploited
in the proposed MFT-based recognizer. For a comprehensive
overview of the different recognition strategies in the missing
feature framework and a comparison of various aspects of these
techniques, we refer to [3].

For reasons of accuracy, most ASR-systems operate in a do-
main that is a linear transformation of log-spectra. Therefore,
the data imputation technique needs to be extended to cover such
linear transformations. In [25], it has been shown that a higher
accuracy and robustness can be obtained by using missing data
techniques in the cepstral domain. The major drawback of this
approach is that it requires significantly more computation since
imputing the unreliable data requires the solution of a non-neg-
ative least squares (NNLSQ) problem. An alternative MFT for-
mulation was presented in [26] through the introduction of the
ProSpect features, such that the computational load is reduced
while maintaining the accuracy. These ProSpect features will
be redefined in Section III-B and the solution procedure of the
NNLSQ-problem will be provided in Section IV, together with
a discussion of the computational requirements in the cepstral
and ProSpect domain. A comparison between the performance
of the data imputation techniques in the log-spectral, cepstral
and ProSpect domain is made in Section VI, based on Aurora2
digit recognition experiments.

In contrast to binary masks, soft masking decisions result in
(real-valued) fuzzy mask vectors where a probability of being
reliable is estimated for each spectral component. A disadvan-
tage of the probabilistic decision framework is that the soft-
bounded marginalization approach [27], [28] is the only missing
feature technique that can cope with fuzzy masks, while only
the imputation-based approaches allow a linear transformation
of the log-spectral domain without the need of important ap-
proximations such as in [29]. Therefore, in [30], we have ex-
tended the imputation technique for binary masks to be applied
in the probabilistic masking decision framework. The formula-
tion of the optimization problem for fuzzy masks can also be
found in Section III and the solution strategy will be given in
Section III-B.

One of the shortcomings of MFT is that it only removes
additive noise distortions. Hence, a compensation for linear
filtering or convolutional noise (e.g., the mismatch between the
microphone characteristics in training and testing conditions)
is not present. Channel compensation in speech recognition
typically involves estimating an additive shift in the log-spectral
or cepstral domain and performing mean normalization. How-
ever, since some part of the data is considered as unreliable,
different normalization strategies are required in MFT-based
recognition. Therefore, the maximum-likelihood estimation
(MLE) technique of [31] will be integrated into the MFT-based
recognizer as will be explained in Section V.

This paper combines our recent findings about MFT that were
proposed in previous publications. The result is a MFT-based
recognizer that can deal with both additive and convolutional
noise. The extended benchmarks presented in this paper show
promising results. In Section VI, experimental results of the pro-
posed MFT-based recognizer are given on the Aurora4 large vo-
cabulary database for a priori and real masking strategies and
the effect of the MLE channel compensation method on the
word error rate is illustrated. Finally, conclusions can be found
in Section VII.
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II. OVERVIEW OF MISSING FEATURE THEORY
IN SPEECH RECOGNITION

Conventional ASR-systems consist of a front-end that per-
forms a feature extraction and a back-end that performs the
recognition of the uttered words based on the observed features
by combining the information of three knowledge sources: the
acoustic model, the language model and the lexicon. Let s;, n;,
and y, denote the vector of D log-Mel spectral features at a time
frame ¢ for the clean speech, the noise and the noisy signal, re-
spectively. These feature vectors are computed by a filter bank
with D channels through framing, windowing, FFT and filter
bank integration. To enhance the noisy speech, an acoustic en-
vironment model is required that describes the relation between
the noisy speech, the clean speech and the different sources that
cause degradations. In this paper, we will deal with the two most
important distortions sources: additive background noise n, and
convolutional noise denoted by the channel parameter h. By as-
suming that the additive noise is independent of the speech, the
relationship between the distorted speech y,, the additive noise
n¢, the channel h, and the clean speech s;, is then given by

y, =~ log(exp(s: + h) + exp(n,)) (1

This time-domain parametric model of the acoustic environment
is also shown in Fig. 1.

In conventional ASR, recognition is performed in the cepstral
domain which can be obtained by applying the discrete cosine
transform (DCT) matrix to the log-Mel feature vector y,. If C,,
denotes the x-by-D orthonormal DCT matrix, the cepstra (or
MFCCs) are defined as

¢ =CLy,. 2)
In the front-end, the noisy speech is transformed into a se-
quence of T observation vectors O = {¢1, ¢a, ..., cr}. The de-

coder in the back-end will then search for the word sequence
hypothesis W that maximizes the a posteriori probability

A

W = arg max P(W|0)

row)rw)

F0) 3)

arg max
g w

over all vocabulary word sequences W while exploiting the
acoustic model P(O|W) and the language model P(W). In
this paper, the acoustic model is assumed to have a main-
stream HMM-based architecture with Gaussian mixture models
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Fig. 2. Schematic representation of the proposed MFT-based recognizer.

(GMMs). If N represents a multivariate Gaussian distribution,
then the likelihood of the vth mixture component of HMM-state
q is given by

fletlv,q) = Nedlpy o 25 ) “)
where p,f,7 q and Z,iq are, respectively, the Gaussian mean and

covariance matrix of the mixture component expressed in the
cepstral domain as indicated by the superscript c. For reasons of
notational convenience, we will refer to the Gaussian mixture
component (v, ¢) by using the subscript 7. Key to the success of
MEFCC in ASR is that they are well modeled by a GMM with
diagonal covariance due to the property that the DCT matrix at-
tempts to decorrelate the log-spectra. Hence, the computational
load during acoustic model evaluation is significantly reduced
without sacrificing accuracy.

In MFT, recognition is based only on those regions in the
time—frequency representation of the speech data that are
matched with the recognizer’s model. This requires a solution
to the following problems: 1) locating of those matched regions
in the time—frequency plane; 2) adaptation of the ASR-system
to handle the unreliable speech information; and 3) dealing
with unreliable features in convolutional noise compensation.
Therefore, three important additions to the conventional archi-
tecture of the ASR are required, respectively a missing feature
detector (MFD), a speech reconstruction method which exploits
the recognizer’s acoustic model in the back-end (e.g., a data
imputation technique) and an alternative for the commonly
used cepstral mean normalization method. These modifications
are schematically represented in Fig. 2 and are described in the
following sections. The presence of the arrow from the decoder
to the channel compensation method will be explained later on.

A. Reliability Decisions

In MFT, it is assumed that reliable spectral regions can be
identified with a certain probability and that they remain mostly
undistorted by environmental noises. If we disregard the effect
of convolutional noise, the following assumption can then be
made for the noisy speech:

Y, X~ max(s;,n;) 5)

where the max-operator works element-wise over the log-Mel
spectral components. The MFD will then estimate for each spec-
tral component of the observation y, a probability that it is dom-
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inated by speech. This way, the ASR input stream of feature vec-
tors is augmented with spectral mask vectors indicating whether
the feature component is “reliable” or “unreliable” (missing).

Decisions about the reliability of the data can be determin-
istic or probabilistic resulting in a different type of the mask.
If a hard decision is made, the missing data mask is binary,
i.e., the component is either completely reliable or else com-
pletely missing. Ideal binary masks are obtained by comparing
the log-Mel spectra of clean speech and noise

m; = (s > ny +0)o/1 (6)

where (...)o/1 equals 1 (0) when the logical expression inside
the brackets holds (does not hold) and # is a constant threshold.
If 1 is assigned to a time—frequency cell, it is dominated by
speech, while the mask value 0 indicates that the cell is masked
by background noise. In realistic situations however, s; and n;
are unknown and the mask has to be estimated. The accuracy
of real binary masks is crucial since mask estimation errors will
cause a significant degradation in recognition performance.

The alternative is to use a soft decision criterion by estimating
for each spectral component a probability of being dominated by
the speech. The obtained mask is then called soft or fuzzy and
the fuzzy mask vector w; can be generated by the approach of
[27], i.e., by the substitution of (6) in a sigmoid function

1
Wi = <1 + exp(—p(s¢ — ny — 9))) @

with slope p. The mask vector of (7) now consists of continuous
values between 0 and 1. If the value is close to 1, the component
has a high probability of being dominated by speech.

Previous research ([32], [27], and [33]) has shown that soft
masking decisions give better results than hard decisions. An-
other argument in favor of fuzzy masks is that it is not guar-
anteed that binary masks identify a sufficient quantity of par-
tial information for recognition of the speech. However, fuzzy
masks also have some disadvantages. Experiments have shown
that the parameter p in (7), which expresses the slope of the sig-
moid function, is often highly sensitive to the noise type. An-
other drawback is that if the data imputation technique in the
back-end is applied in a domain that is a linear transform of the
log-Mel spectral domain, the solution strategy becomes compu-
tationally more complex. The discussion about the mask type to
be used will be continued in Section VI by interpreting the final
recognition results.

In most ASR-systems, the static feature vector y, is aug-
mented by its first- and second-order derivatives, i.e., a velocity
and acceleration feature vector. We have already shown in [34]
that MFT can also be applied on the dynamic features. In con-
trast to statics, dynamic spectra that are corrupted by noise can
result in a noisy observation value that is either larger or smaller
than the clean value. Hence, the MFD will need to generate a
ternary mask where

Amy = (st > 0y, + 0)o/1 +2(0s: < 9y, —0)o/1 (8)
where 0 denotes either the first or second order derivative oper-
ator. A graphical illustration of (8) is given in Fig. 3. Dynamic
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Fig. 3. Graphical illustration of the ternary decision for obtaining ideal delta
masks.

components are considered reliable if they deviate less than 6
from the clean values. These components have a mask value 0.
Unreliable dynamic feature components have mask values 1 or 2
and are, respectively, imputed with the constraints ds; < Jy, or
0s; > Oy,. This approach was successfully tested in [34] using
a priori masks derived from knowledge of the clean speech and
the noise. Here, it was also illustrated that (suboptimal) real dy-
namic masks can be obtained from an ad hoc derivation of the
binary static mask; hence,

07 1f0mt =0
Am,; = {1, if om, > 0
27 1f8mt < 0.

C))

The above equation can be interpreted as follows. The dynamic
spectra are a linear combination of the static spectra. The static
masks flag the fact that the noisy contribution to this linear com-
bination is less than the clean value. This noise contribution will
cause the value of the dynamic features to be higher (Am,; = 1)
or lower (A, = 2) than the clean value. If there are equal votes
for over and underestimation, i.e., when all features are reliable
or unreliable due to the noise corruption, the dynamic features
are considered as reliable and Am, = 0.

Examples of a binary and fuzzy static mask, together with the
masks for the dynamic features are shown in Fig. 4 for a noisy
utterance of the Aurora4 database mixed with airport noise at
10-dB SNR. The noisy time—frequency representation is per-
ceptually smoothed by a 22-channel Mel-scale filter bank, com-
puted every 10 ms using a frame window length of 32 ms. The
static masks of Fig. 4 are a priori masks. In the remainder of the
paper, we will mainly focus on the back-end of the MFT-based
recognizer. In Section VI, its performance will be evaluated in
terms of word error rate obtained with the real masks that were
proposed in [35]. Here, it was attempted to exploit as much a
priori speech knowledge as possible while restricting the noise
modeling to a minimum. A vector quantization (VQ) strategy
exploiting the harmonicity structure of speech was used. The
noise is assumed to contain only weak harmonicity structures
and is estimated using a harmonic tunneling approach [36]. The
noisy speech is segregated into a clean speech and noise stream,
which are subsequently compared to form a mask. To com-
pensate for linear channel distortions, the VQ-system will self-
adjust the codebook containing the codewords to the channel
during online recognition. For an overview of other mask es-
timation methods that were described in literature, we refer to
[37].
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Fig. 4. From top to bottom: the log-Mel spectrogram for the clean and noisy
utterance “Analysts haven’t focused on what happened to them.” of the Aurora4
database corrupted by airport noise at 10-dB SNR. The binary mask for the static
features created using a priori knowledge of the speech and the noise in (6) with
an SNR threshold ¢ of —3 dB. The corresponding fuzzy mask for the static
features obtained by (7) using a slope value p of 0.1. The mask for the velocity
features and for the acceleration features computed by the first and second-order
derivative of the binary mask.

B. Compensation for Unreliable Data

A second modification to the ASR-system needs to be made
during the evaluation of the acoustic model in the back-end
using MFT. Here, the probability of being reliable of each fea-
ture component should be taken into account while computing
the acoustic scores. A major drawback of MFT is that the
acoustic model must be expressed in the spectral domain since
this is also the representation in which the masks have a simple
formulation. While the cepstral domain is often used for rea-
sons of accuracy, conventional MFT-techniques like bounded
marginalization [21], [22], or the imputation techniques of [23],
[24], rely on GMMs with diagonal covariance expressed in the
log-spectral domain. Therefore, a data imputation technique
was introduced in [25] where the spectral representation can be
replaced by any linear transform of the log-spectra.

By using MFT-techniques with cepstra, a superior accuracy
and robustness relative to their spectral competitors is obtained.
The price to be paid is that the imputation of the missing data
is more complex: the evaluation of a Gaussian now requires
the solution of a non-negative least squares (NNLSQ) problem.
Through the introduction of the ProSpect features [26], the com-
putational load of the cepstral representation is alleviated while
their accuracy is maintained. These MFT-techniques were in-
troduced to be used with binary missing data masks and were
extended in [30] such that they can cope with fuzzy masks.

In Section III, the maximum-likelihood-based imputation
technique per Gaussian is restated. Here, the optimization
function will be formulated such that it can be solved in the
log-Mel spectral domain or in any other domain that is a linear
transformation of log-Mel spectral features. The procedure
for optimizing the cost function using ProSpect and cepstral
features is given in Section III-B. Here, a distinction will be
made between the solution strategy for binary and fuzzy masks.
The approach for compensating delta features in the MFT
framework will be discussed as well.

C. Dealing With Convolutional Noise

Missing Data Techniques were originally formulated as a
technique to compensate for additive noise distortions. For
real-life deployments, a compensation for unknown filtering is
also required. Convolutional noise is caused by variations in the
transmission channel, such as the use of a different microphone
than the one used during training, changes in the distance
between the microphone and the speaker or modifications in
the recording environment. Most of these variations can be
modeled as a linear filtering, i.e., convolutional noise, and as a
translation of the log-spectral features. In this paper, channel
variations are limited to short impulse responses and room
reverberation is not considered.

From the acoustic environment model (1) it is clear that
a GMM for s; that was trained on undistorted data, can be
matched to the distorted data by adding a shift h to the clean
speech means. The conventional strategy in ASR to compensate
for convolutional noise is to subtract the cepstral mean from the
observed speech data, i.e., cepstral mean subtraction (CMS).
Since cepstral and log-Mel spectral features are also related to
each other by a linear transform, this operation can also be done
in the log-Mel spectral domain (log-Mel MS). A disadvantage
of mean subtraction methods is when some log-Mel spectral
features are not attributed to speech, but to a different source,
as is done in MFT, simple averaging will create an important
bias and mean subtraction methods loose their effect. This
bias arises from the fact that the additive noise source will
also contribute to the mean value. This is undesirable for the
MFT-framework since it requires that the normalized reliable
speech regions match the clean speech on which the acoustic
model was trained. This problem can be solved in the MFT
framework by taking the information of the missing feature
mask into account. This way, the components that are distorted
by the noise can be left out of consideration in the computation
of the channel. Conventional techniques suffer from bias due
to noise. MFT offers—at least for oracle masks—to have a
bias-free estimation. As the examples of the Section VI will
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show, it can even handle narrowband data, i.e., when some
frequency regions are always missing. Conventional techniques
result in erroneous results in this case.

A method that is compatible with missing data has been pro-
posed in [38], in which the spectral features are normalized by
a factor computed only from the most intense regions of the
speech. However, when the data becomes band limited, such
as during conference interviews or other audio mining appli-
cations, no speech information will be available in certain fre-
quency regions and then the normalization method of [38] will
become inappropriate. Therefore, we have implemented a tech-
nique in our MFT-based recognition system that exploits the
back-end speech model to estimate the channel by means of an
MLE algorithm [31]. Here, the initial channel estimate is up-
dated by maximizing the log-likelihood of the optimal state se-
quence of the observation data.

The use of the back-end speech model, trained on clean
speech data, results in two main advantages compared to the
method of [38]: 1) the channel compensation method can
handle narrowband data and 2) it produces a channel estimate
with a negligible bias arising from the noise. An outline of this
method will be restated in Section V.

III. AcousTiC MODEL EVALUATION IN MFT

In this section, the data imputation strategy will be presented
as a Gaussian likelihood minimization problem such that it can
be applied in any feature domain that is a linear transform of
log-spectra. The optimization function is then investigated in
further detail in case of the log-spectral and cepstral domain.
ProSpect features will also be defined and their computational
advantages will be made clear in Section IV.

A. Data Imputation

For each time frame ¢, the maximum-likelihood based impu-
tation technique computes an estimate for the speech from the
information contained in the corresponding observation and the
mask vector, while using the acoustic back-end model as a prior.
Hence, the imputation technique produces a Gaussian-depen-
dent estimate for the speech. Afterwards, the acoustic scores are
computed by evaluating the Gaussians in the obtained speech
estimates.

If the mask is binary, the reliable components s;, of the
clean speech are approximated by their counterparts in the noisy
speech y, .., while the unreliable speech components s; ,, are
considered as unknown. Hence, the missing part of s; will be
estimated by minimizing the negative log-likelihood ® for each
Gaussian mixture component ¢ over s; [25]

1
Qi = g(st - Ni)/Pi(st - 1)

St Str =Yy, and s; ,, < Yt (10)
Here, P; is an inverse covariance or precision matrix of a
Gaussian that is expressed in the log-spectral domain or in
any other domain that is a linear transformation of log-spectral
features, e.g., cepstra or ProSpect features (see Section III-B).
Despite their performance differences, all these variants of

MFT have a known symmetric positive-definite precision
matrix. In (10), the mean of the Gaussian transformed into the
log-Mel domain is given by u,. Both parameters P; and p,; are
estimated on clean training data.

As mentioned in Section II-A, the type of the mask can be
fuzzy and dealing with this different source of reliability infor-
mation about the speech data will result in a different likelihood
function that has to be optimized during data imputation [30].
In a fuzzy masking approach, the data is not partitioned into
a reliable and unreliable part as is the case with binary masks.
Moreover, the soft reliability information has to be taken into ac-
count in the optimization function. Assuming the use of Gaus-
sians with a diagonal covariance matrix, this function should
have the property that 1) if the mask value is close to 1, the op-
timal point tends to the observation value, and 2) if the mask
value is close to 0, the optimal point tends to a value as close to
the Gaussian mean as permitted by the constraint s; < y,. Con-
dition 2) is fulfilled if the precision matrix P; in (10) is replaced
by

Qi = (Ip —Wy)iPi(Ip — W,)? (11)
where Ip denotes the D x D identity matrix and W, is the
D x D diagonal matrix with the elements of w; of (7) on the
diagonal. Note that the matrix multiplications in (11) preserve
the symmetry of P;. This modification together with the addi-
tion of the extra term (1)/(2)(s: — y,)W+(s: — y,), will meet
condition 1). The optimization problem for fuzzy masks then
becomes

1
U, = 2

1
+ 5(31 - yt)th(st - yt)

(8¢ — u,;)'Qt,,,;(st — ;)

st.s: <y, (12)
Note that all constraints are now inequality constraints, since
there is no evidence for a specific component of being reliable.

B. MFT in Different Feature Domains

The optimization of functions (10) and (12) has to be
performed for all different Gaussians of the acoustic model
to produce a Gaussian-dependent estimate 5, ; for the clean
speech. Hence, the computational complexity of the optimiza-
tion problem is an important concern in the MFT framework.
The MFT variants in the spectral, cepstral and ProSpect domain
are discussed next.

1) Log-Mel Spectra: In the spectral domain, the precision
matrix P; of Gaussian ¢ is the inverse of the log-Mel spectral
covariance matrix 37 of size D x D. The superscript s will be
used to indicate that the covariance matrix is expressed in the
spectral domain. Hence, (10) and (12) have a simple solution
since they can be decomposed in D independent problems. If the
mask is binary, each jth component of 3; ; at time ¢ for mixture
component ¢ is then computed as

ity > g,

oo L (L= ey g,
tnd otherwise.

Yt,j5
(13)
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The components of the optimal point 8;; that minimizes the
fuzzy mask optimization function (12) are given by

o By 1y > e,
g = {ym, otherwise (14)
where
fiei; = ( t,])ru’ ,J/ i,j t,jYt,j (15)

(1= we;)/07; +we,
and with o7 ; the jth diagonal element of 3.

2) Cepstra: The loss in accuracy due to the diagonal co-
variance matrix of the spectral features can be overcome by ex-
pressing the MFT problem in the cepstral domain. The precision
matrix of Gaussian ¢ is here defined as [26]

P, =C.[2]7'C, + €23 (16)
the second term is needed for regularization and € is a noncritical
constant. Without the regularization term, the precision matrix
would be rank-deficient (v < D) which causes the optimization
problem to be undetermined.

The optimization of (10) and (12) has now become computa-
tionally more complex since they are formulated as a NNLSQ-
problem, i.e., the constrained minimization of a quadratic. An
iterative solution strategy will be presented in Section I'V.

3) ProSpects: ProSpect features are an alternative represen-
tation to cepstral features and were presented in [26]. Just like
cepstra, they are computed by a linear transform of the logarithm
of the filter bank energies. While they can be applied in any
speech recognition system, they show especially a clear benefit
in MFT-based recognition since they reduce the computational
requirements over CMFT while the accuracy is maintained. This
will be illustrated in Section IV-B by comparing the computa-
tional complexity of solving problems (10) or (12) in the cepstra
and ProSpect domain.

If we consider a A-dimensional cepstral feature vector ¢; =
Cy,, the residual spectrum d; is

d; =y, — Cyer = (In — CLCy, a7
where C,C'y, is a projection matrix since C) is orthonormal.
Hence, d; is the projection of y, onto the space perpendicular
to the space spanned by the rows of C. The ProSpect features
are now defined as

e | _ C/\ _ C)\
P = d, - ID_C/)\C)\ Y = Di_ Y

In [26], it has been shown that these features can be modeled
well by a GMM with diagonal covariance, even for A as small
as 3. The likelihood of the vth mixture component of HMM state
q has the expression

(18)

(delpy g =5,)"  (19)

FPlvia) = N (edlws, 0 25,4) - N

where «y is a stream exponent and the superscripts ¢, d, and p
are, respectively, used to denote cepstral, residual or ProSpect

features. The means and covariances in a ProSpect model are
estimated using the EM algorithm where X7 = and »d g are di-
agonal and of size A x A and D X D, respectively.

Again using the subscript ¢ to denote mixture component
(v, q), the precision matrix for the Gaussian of (19) is then given
as [26]

- -1

P; =C,\[X]"'C\+Dx [=¢] Dx (20)

Hence, the ProSpect model defines a particular structure of the
precision matrix of the spectral features, containing only A + D

variance parameters (7 is fixed).

IV. SOLVING THE NNLSQ-PROBLEM

Since the precision matrices are non-diagonal in the cepstral
and ProSpect domain, the quadratic cost functions (10) and
(12) are associated with an equivalent non-negative least square
problem (NNLSQ), i.e., the minimization over vector x of

1

—(x—u)Alx —u)+b(x—u)+cst. x>0

7 1)

where A, b, u and c are given Gaussian-dependent constants. In
this section, we describe the procedure for solving the NNLSQ-
problem using the gradient descent method for the optimization
problems using binary static, fuzzy static and ternary dynamic
masks. Next, the involved computational requirements in the
cepstral and ProSpect domain will be compared.

A. Optimization Strategy

1) Binary Static Masks: To avoid costly matrix inversions,
the NNLSQ-problem will be solved by the gradient descent
method discussed in [26]. Therefore, the search is started from
the spectral MFT solution (13). In each iteration k, the initial
values are updated by

k+1 k
§L )_351)

ave ) (22)

where the step direction Vqﬁ(k.) is derived from the cost gradient

Vq)(k) =P, (sgkl) — p;) by zeroing out those components that
1) are labeled as Teliable or 2) where the gradient is negative and
the corresponding speech estimate is on the constraint boundary.
The optimal step size is given by

Vi) Vi
B pog® 23)
Ve Pve
and is reduced to & such that all components of s( +b satisfy
the constraint s(k+1) < y,; hence,
& = min [min (anbEi-)./yt — sgﬁ)) /V([)(k)] (24)

where -/ denotes the element-wise division. Since (10) is a
convex problem, the gradient descent method will always find
the optimal solution when enough iteration steps are applied.
Experiments have shown that the gradient descent method is
sufficiently converged in terms of recognition accuracy in 1 or
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Fig. 5. Graphical illustrations of the data imputation technique for binary
masks in case of a two-dimensional feature vector.

2 (= K) iterations [26]. More iterations could be required if
different initial values were chosen.

Finally, we obtain a clean speech estimate §;; = sglf) for
each Gaussian ¢, from which we can compute the corresponding
likelihood

| P; |
2rD

J(3eli) = ¢ 3By Piiip),

(25
A graphical illustration of the constrained minimization of
(10) is depicted in Fig. 5 in case of a two-dimensional feature
vector. Note that the shown Gaussians have a full covariance
matrix: they correspond to Gaussians in, e.g., the cepstral do-
main which are transformed back to the log-spectral domain.
The estimated speech, the solution of the constrained optimiza-
tion of (10), is indicated for three different situations in which
the constraints can be active (s, = y,. or s, = y,,) or passive
(su < ¥,). If the two components are labeled as unreliable,
both constraints are passive (top panel) and the speech is esti-
mated as the Gaussian mean since it lies in the feasible region
and thus minimizes (10). In case the second component is reli-
able, the corresponding constraint is active (bottom left panel)
and the optimal point has to lay on that boundary. Finally, if both
components are labeled as reliable (bottom right panel), they are
approximated by their corresponding observation values.

2) Fuzzy Static Masks: The optimization problem (12) is
also a constrained minimization of a quadratic; hence, a gra-
dient descent method similar to the one explained above is used
for solving the problem in the cepstral or ProSpect domain. A
good choice to initialize the search is to start from the log-Mel
spectral solution (14) or from the point

30 _

8;; = min(p; + we(y, — B;),Ys)- (26)
This starting point is then iteratively updated by the rule
s = s - Bl @7)

The step direction V'(/;y:}) is equal to the cost gradient

) +We (s ~w,)

for those components where the corresponding speech estimate
lies below the constraint boundary, otherwise the component of

Vo) = Q. (s - (28)

V¢ will be set to zero. The optimal step size is given by
p= o )
Vi, i (Qt,i + W)V,
and is reduced to ﬁ such that all components of s( +) satisfy
the constraint s(k+ ) < v,; hence,
$ = min [Imn (ﬂV'l/)t DYy — ) /V'l/)(k)] . (30)

Convergence is again reached after 1 or 2 iteration steps. Finally,
the likelihood of each Gaussian ¢ of the acoustic model is ob-
tained by the substitution of 8; ; in (25).

3) Ternary Dynamic Masks: The decorrelation properties of
the ProSpect representation hold equally well for the dynamic
features; hence, they are also modeled using a GMM with di-
agonal covariance matrices. As for binary static masks, the dy-
namic feature vector is divided into a reliable ds; , and unreli-
able part 09s; ,,. The maximum-likelihood estimate for the un-
reliable dynamic feature components are then found by mini-
mizing a cost function of form (10) but now subject to the con-
straints

0s¢.r 8yt " if Am; =0
8stu§8ytu+9 if Am, =1 (€2))
0844 > 0y, ,, — 0, if Am; = 2.

Similarly as in Section IV-A1, the step direction is derived from
the gradient of the cost function by zeroing out those com-
ponents that 1) are reliable or 2) are unreliable with Am,; =
1(Am,; = 2) and where the gradient is negative (positive) and
the corresponding speech estimate is on the constraint boundary
08 ~ Oy,.

B. Computational Complexity

The computational difference of solving the NNLSQ-
problem in the cepstral or ProSpect domain is due to the matrix
multiplication with the precision matrix (16) or (20) that is
involved in each gradient step. The multiplication is required
in the computation of the gradient and of the step size and can
be computed from the items listed in Table I. Here, the vector
z represents either (sgk) — ;) or Vo) and U is defined as
the number of feature components that are labeled as missing
in the binary masks (U < D). The computational requirements
are shown in terms of multiply-accumulate operations while
neglecting O(D), O(U), and O()) operations, e.g., multi-
plying with a diagonal matrix. The resulting cost in a practical
situation with D = 23,U = 16 (averaged measured on the
data) and A = 13 in case of cepstral features or A = 3 for
ProSpects, is given in the last row of the table. Note that in
a fuzzy masking strategy, all features are taken into account
during optimization and thus U = D. These results show that
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TABLE I
APPROXIMATION OF THE COMPUTATIONAL COST OF A SINGLE GRADIENT
ITERATION FOR THE BINARY AND FUzZzY MASK APPROACH IN
THE CEPSTRAL (A = 13) AND PROSPECT DOMAIN (A = 3)

. Binary masks Fuzzy masks
Operation
cepstra ProSpects cepstra | ProSpects

Chrz AU AU AD AD
c\[=]7lCy= AU AU A\D A\D
(Ip —C\Ch)z AD - AD
Dy [=¢]"'Diz - AU + D) - 2AD
Total per iteration ANU 2X\(3U +2D) 4D 10AD
in practice 832 564 1196 690

the computational cost can be reduced with approximately
30%—-40% by exploiting the structure of the precision matrix in
the ProSpect domain. The computational requirements for the
dynamic features using ternary masks are equivalent to those
of the binary static mask optimization problem.

V. CONVOLUTIONAL NOISE COMPENSATION

During the decoding process of the recognizer, the channel
parameters are estimated by maximizing the log-likelihood of
the optimal state sequence

A

Q = arg m(gxP(Q|Y) ={q1,92,.-.,q7} (32)
given T" successive observation vectors Y = {y;,¥ys,...,Yr}-
A proper choice for this 7" will be discussed later on. The log-
likelihood of Q can be approximated by considering for every
state ¢, only the most dominant Gaussian of the mixture, i.e., the
Gaussian with highest likelihood. This way, only one Gaussian
at each time ¢ has to be taken into account and the corresponding
Gaussian mean and precision matrix will be denoted by, respec-
tively, i, and P;. The MLE of the channel h can then be ob-
tained by minimizing the cost function L(h) over h

L(h)=Y"

t=1

(8t —py —h)'Pi(3, —p, —h)  (33)

N =

while evaluating each Gaussian of (33) in its optimal point §;,
namely the static clean speech estimate. This estimate was ob-
tained by the MFT technique as described in Section IV while
using the reliability information provided by the mask. This
way, the missing feature mask also has an impact on the channel
estimate by the influence it has on s;. Note that s; is a func-
tion of h and that L(h) depends on the sequence of dominant
Gaussians. Hence, iterative optimization is required. Using the
Newton—Raphson method, the estimate for the channel shift Ah
can be found as

Ah = (V?L(h)) 'VL(h) (34)
where VL(h) and V2L(h), respectively, denotes the gradient
and Hessian of L(h). This channel update should be applied re-
cursively until convergence, which would imply several recog-
nition passes for a given utterance. Fortunately, experiments
have shown that one iteration per 1" frames suffices to guarantee
convergence when the initial channel estimate is chosen as the

Decoding: search for optimal Select the dominant Gaussian
state sequence over T frames. in each state of the optimal
q ) state sequence.

5

word 3% {wordn }

A
|
|
\
\
1
i o
| .
1
\
‘\
L

{ word |

T frames

10

Acoustic Model

Minimize the sum of the dominant
Gaussian likelihoods:

Shift the mean
of all Gaussian
over the channel
estimate:

T 1 . .
L= Z i(sf — = h)'Py(3; — p, — h)
( t=1
to estimate the channel shift as:

M — p; — Ah

Ah = (VZL)AVL

Fig. 6. Diagram of the maximum-likelihood-based channel compensation
method used in the MFT-based recognizer.

mean over the first 200 log-Mel speech frames. A derivation of
the gradient and Hessian of (34) was outlined in [31] and is ex-
panded in Appendix I. Once Ah is obtained, we can compensate
for it during further evaluation of the acoustic model by incor-
porating the channel estimate in the Gaussian-based imputation
functions (10) and (12). This is equivalent to shifting the mean of
all Gaussians 7 by Ah. A diagram of the convolutional channel
compensation procedure is shown in Fig. 6.

Since only one Gaussian has to be evaluated per frame ¢, the
computational load to recompute s; is negligible compared to
the total time spent on the evaluation of all Gaussians during
recognition. Furthermore, as explained in Appendix I, (34) can
be efficiently computed by exploiting a QR-decomposition.

The length T" of the observation sequence is dynamically
chosen to ensure that we have collected a sufficient amount of
speech data such that the selected Gaussians are representative
for a variety of phonemes. This is a prerequisite to obtain a
reliable estimate for the channel. At the same time, it also
assures the nonsingularity of the Hessian matrix in practice.
In online applications, channel re-estimation is also postponed
until the optimal state sequence over 1" past frames becomes
independent of the current state in the decoder, which in
practice means after three to five words. The updating of the
channel is illustrated in Fig. 7 for the noisy sentence “However
investment income which represents thirteen percent of the
industry’s revenues rose eleven percent in the quarter reflecting
gains from the rising stock market” of the Aurora4 database
mixed with airport noise at 10-dB SNR. The initial channel was
estimated as the log-spectral mean over 200 speech frames.
The figure shows the log-Mel value of the 5th, 10th, 15th, and
20th frequency bin for the channel estimate h and their time of
update. For example, the initial channel was updated at frame
330, i.e., when the first part of the sentence is recognized. The
symbol # indicates that the Viterbi path corresponding to the
preceding words is fixed, i.e., it has become independent of the
rest of the sentence.
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Fig. 7. Illustration of the channel updates.

Since the optimization function L(h) exploits the clean
speech back-end model, the channel estimation method pro-
duces, if we disregard the influence of the noise on §; via
masking errors, a negligible bias arising from the background
noise. Experimental evidence for the success of this method
will be shown in Section VI.

VI. EXPERIMENTS

In this section, we will first give a qualitative comparison be-
tween the different MLE-based imputation techniques that were
described in Section III. Therefore experiments will be con-
ducted on the TI-Digits speech database of Aurora-2 for the
four noise types of test set A. The MFT-recognizer is based on
the HTK software package version 2.2 from Entropic [39]. The
digits are modeled as whole word left-to-right HMMs with 16
states per digit and 20 Gaussians with diagonal covariance ma-
trix per state. The optional inter-word silence is modeled by one
or three states with 36 Gaussians per state, while leading and
trailing silence have three states. The total number of Gaussians
is 3628. The ProSpect features were obtained by performing the
transformation matrix of (18) to the log-Mel spectral features.
Therefore, a Mel-scaled filter bank with D = 23 was used iden-
tical to the Aurora WI-007 implementation and K = 3 order
cepstra are used in the ProSpect feature vector.

The baseline results that were obtained by this recognizer
without the use of any noise compensation method, are shown
in Fig. 8. The graph indicates the recognition accuracy aver-
aged over the four noise types of Aurora2 test set A for dif-
ferent levels of SNR. From this figure it can be seen that it is
beneficial to use diagonal GMM:s in the cepstral domain (here
K = 13) rather than in the log-spectral domain. Only at low
SNRs, the ProSpect models show to be less accurate than cep-
stral models. However, this difference in performance does not
compensate for the reduction in the computational load that is
achieved by ProSpect features in MFT and the performance at
low SNR-levels is such that it cannot be considered in the prac-
tical employment of the recognizer anyway. Therefore, the use
of ProSpects will be preferred over cepstral features in all other
experiments in this paper.

100
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g < log-spectra
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@ 50 O ProSpects
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Fig. 8. Baseline results (averaged over the noise types) on the Aurora2 test
set A obtained by the recognizer using log-spectral, cepstral and ProSpect
models.
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Fig. 9. Performance comparison (averaged over the noise types) on the Au-
rora2 test set A for the MFT-based recognizer working in the log-spectral and
ProSpect domain using binary (BM) or fuzzy (FM) oracle masks.

In Fig. 9, the accuracy of a MFT-based recognizer working in
the log-spectral and ProSpect domain is illustrated for the same
test set. To ignore the effect of masking errors and to demon-
strate the potential of the MFT-based recognizer, a priori binary
(BM) and fuzzy masks (FM) were used. The dynamic mask for
velocity and acceleration features was computed as explained
in Section II-A. Besides the significant improvement over the
baseline results, the graph also shows that the MLE-based data
imputation with ProSpect features always outperforms the im-
putation in the log-spectral domain.

Experiments were also conducted on the Aurora4 large vo-
cabulary database, derived from the WSJO Wall Street Journal
Sk-word dictation task [40]. For each of the 2 x 7 test sets, all
330 utterances from eight different speakers, with a SNR-level
that ranges from 5 to 15 dB, are evaluated. Test sets 01-07 were
constructed by adding seven types of noise to the Sennheiser
close-talking microphone signal: no noise (set 01), car (set 02),
babble (set 03), restaurant (set 04), street (set 05), airport (set
06), and train (set 07). Test sets 08-14 were obtained by adding
these same noise types to recordings made with 18 different
types of microphones. The clean-condition training set contains
7138 utterances from 83 speakers, which is equivalent to 14
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hours of speech data. All recordings are made with the close
talking microphone and no noise is added.

The MFT-based recognizer was built by adding the required
MFT modifications (Section II) to the speaker-independent
large vocabulary continuous speech recognition (LVCSR)
system that has been developed by the ESAT speech group of
the K. U. Leuven. See [41] and [42] for a detailed description
of the system. This recognizer was preferred because of its fast
experiment turnaround time and good baseline accuracy.

In the MFT-based recognizer as depicted in Fig. 2, the
22-channel Mel filter bank spectra are transformed to the
ProSpect domain, where they are modelled with 4961 tied
states in the cross-word context-dependent models and with an
average of 200 Gaussians with diagonal covariance matrix per
state. A bigram language model for a 5k-word closed vocabu-
lary is provided by Lincoln Laboratory, while decoding is done
with a time-synchronous beam search algorithm. To compen-
sate for the channel mismatch, the MLE-channel estimation
method of Section V has been integrated into the recognizer.
The recognition performance will be expressed in terms of the
word error rate (WER) which is defined as the number of word
errors, i.e., insertions, deletion, and substitution errors, divided
by the total number of words in the reference transcription.

Real masks are produced by the MFD which exploits the VQ
masking strategy that was introduced in [35] and which can
deal with additive and convolutional noise distortions. Here,
the key idea was to estimate masks by making only weak as-
sumptions about the noise, while relying on a strong model for
the speech. The speech model exploited by the MFD uses the
a priori knowledge of the human voice, such as harmonicity,
voicing, onset, and a vector quantizer to confine the spectral
shape of speech signals to a constrained subspace. The involved
VQ-codebook was trained on features extracted from the clean
speech training set of Aurora4. The number of codebook entries
was limited to 500. During speech frames, the decoding seeks
to recover the original speech vector from the stored codewords.
This way, an estimate for the speech and the noise is generated,
which are then substituted in the masking decision criterion (6)
or (7) to produce a binary or fuzzy mask vector. To compensate
for linear channel distortions, the VQ-based MFD self-adjusts
its codebook to the channel during online recognition. More de-
tails about the VQ-masks can be found in [35].

Without any noise and channel compensation method, the
baseline recognizer runs in real time on a Dual Core AMD
Opteron Processor (2.4 GHz/1 MB L2 Cache). In case of
the optimization strategy (with 2 iteration steps) using binary
VQ-masks for the statics and their derivatives for velocity
and acceleration features, all applied in the ProSpect domain,
the MFT-based recognizer runs 22 times slower than real
time. If fuzzy masks are applied to compensate for the static
features, the recognizer is a factor 26 slower than real time.
With simple pruning techniques, the computational time of the
MFT-recognizer was reduced to a factor 12 and 14, respec-
tively. Therefore, the iterative process of Sections IV-A1l and
IV-A2 was gradually stopped for the Gaussians with too small
a posterior probability. From experiments not reported in this
paper, the pruning parameters were tuned such that computa-
tional load is maximally reduced without considerably affecting

the recognition performance (an absolute WER increase of 1%
was maximally allowed).

Table II presents the word error rate for the MFT-based rec-
ognizer where the binary and fuzzy VQ-masks are used for
the static features. The masking parameters § = 6 dB and
p = 1.0 are fixed for all test sets. Masking errors due to in-
correctly classifying noise-distorted regions as speech have a
higher detrimental effect on the performance of the recognizer
than wrongly masking reliable speech regions. This is a first ef-
fect that explains why a higher masking threshold (than oracle
masks) is desirable for most real masking strategies. A second
explanation arises from the fact that the VQ-based MFD un-
derestimates the noise with respect to (w.r.t.) the speech. To
compensate for the dynamic features, ternary masks were de-
rived from the binary masks as was described in Section II-A.
These results are compared with the baseline, e.g., when no
explicit noise and channel reduction algorithm are applied. As
can be seen from the table, the results of the VQ-based masks
are significantly better than the baseline results. Further poten-
tial of the MFT-approach is shown by applying oracle masks
(# = —3 dB) where the a priori knowledge of speech and
noise are exploited in the decision criterion (6) or (7). From
the results in the table, we cannot conclude that an optimization
strategy using fuzzy masks performs better than the one using
binary masks. The reason is that the fuzzy mask has been de-
rived from the binary masks instead of taking more probabilis-
tically founded decisions about the reliability of the data. How-
ever, it illustrates that fuzzy masking strategies can be dealt by
the proposed MFT-based speech recognizer without a loss in
accuracy due to a different optimization function. Finally, the
performance was compared with the results obtained by using
model-based feature enhancement (MBFE) of [13] as a noise re-
duction technique in the front-end. Here, the a priori knowledge
of the speech and the background noise is incorporated by ex-
ploiting a HMM with Gaussian observation probabilities for the
clean speech features and for the noise features. The MBFE-al-
gorithm uses a speech model with 256 fully connected Gaus-
sians trained on the clean speech, a 1-Gaussian noise model
trained on each noise type individually and an adaptive con-
volutional noise removal approach. Another difference is that
the acoustic models are expressed in the cepstral domain rather
than the ProSpect domain. From these results, we conclude that
the MFT-based recognizer using VQ-masks has a comparable
performance as MBFE without requiring important assumptions
about the noise type [35].

Experimental evidence for the -effectiveness of the
MLE-channel compensation method is given in Fig. 10.
Here, the word error rates for each of the 14 test sets of the
Aurora4 are presented when the channel is estimated by the
technique of Section V and using binary oracle masks. As a ref-
erence, the recognition results using log-Mel MS as a channel
compensation technique are included. Here, the channel is
estimated as the mean over the first 200 speech frames. This is
in fact also the initial channel estimate for the MLE-channel
compensation method. The second reference experiment can be
described as a “cheating” log-Mel MS method since the channel
is estimated from all the speech frames of the noise-free version
of the speech (i.e., before the artificial addition of the noise).
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TABLE II
‘WORD ERROR RATES (IN %) ON THE AURORA4 DATABASE WITHOUT NOISE COMPENSATION, MFT USING A PRIORI (AP) AND VQ-MASKS (VQ) FOR THE STATICS
AND THEIR DERIVED TERNARY MASK FOR THE DYNAMIC FEATURES. THE WER OF THE OPTIMIZATION STRATEGY USING BINARY (BM) AND Fuzzy (FM) STATIC
MASKS ARE BOTH SHOWN. THESE RESULTS ARE COMPARED WITH THE ONES OBTAINED BY A MBFE APPROACH TO COMPENSATE FOR NOISE DISTORTIONS

AURORAA4, 16kHz, clean condition training.
Close Talk
test set 01 02 03 04 05 06 07 micl
baseline 6.82 12.98 | 32.62 | 40.95 | 38.50 | 32.51 | 38.37 28.96
AP BM 6.54 8.82 13.19 | 1472 | 15.69 | 11.15 | 15.69 12.26
MFT FM 6.54 8.74 13.19 | 1422 | 15.79 | 11.53 | 15.49 12.21
vQ BM 6.91 11.64 | 20.44 | 28.73 | 2479 | 20.16 | 24.34 19.57
FM 7.02 11.40 | 19.24 | 29.63 | 24.75 | 2042 | 25.24 19.67
MBFE 5.19 8.61 21.13 | 29.35 | 23.41 | 23.20 | 22.70 19.08
Far Talk
test set 08 09 10 11 12 13 14 mic2 Avg.
baseline 21.35 | 30.51 | 47.71 | 53.26 | 55.52 | 46.95 | 55.41 44.39 | 36.68
AP BM | 1448 | 18.81 | 28.06 | 29.96 | 31.70 | 24.29 | 31.40 || 25.53 | 18.89
MFET FM | 15.04 | 19.02 | 26.04 | 28.38 | 30.95 | 24.30 | 29.68 2477 | 18.49
vQ BM | 1539 | 2238 | 35.59 | 40.78 | 40.59 | 33.72 | 39.38 32.55 | 26.06
FM | 1496 | 21.71 | 33.08 | 40.31 | 39.83 | 33.01 | 38.37 31.61 | 25.64
MBFE 17.41 | 2494 | 3845 | 43.38 | 42.01 | 40.80 | 39.83 3526 | 27.17
SioeeTalk back-end as a prior and from which the Gaussian likelihood is
40 evaluated. This MFT-technique can be applied in any feature
g 80 domain that is a linear transform of log-spectra such as cepstra.
& 20 However, since this requires the optimization of a non-negative
= 10 B least squares problem, ProSpect features were defined to reduce
00 02 03 04 05 06 07 avo. the computational complexity while maintaining the accuracy.
test set Two variants for the imputation technique were formulated to
Far Talk deal with either hard decisions (binary masks) or soft decisions
30 (fuzzy masks) about the reliability of each spectral component.
c % Moreover, this technique was extended to cope with ternary
€ 25 masks to apply MFT on dynamic feature vectors. To compen-
2 43 sate for channel distortions, a maximum-likelihood estimation
0 approach was integrated in the MFT-based recognizer to esti-
08 09 10 11 12 13 14 avg. L Lo
test set mate the channel offset by maximizing the log-likelihood of the
M log-Mel MS (BM) M cheating B MLE (BM) [ MLE (FM) optimal state sequence of the observation data.

Fig. 10. Word error rate (in %) on the Aurora4 test sets using MFT with bi-
nary oracle masks (BM) and using log-Mel MS, cheating log-Mel MS or the
MLE-based approach of Section V to compensate for the channel. For the latter
approach, the results obtained by the fuzzy oracle mask (FM) are also included.

The comparison of this method with the proposed MLE-based
method shows that the latter produces a channel estimation that
is hardly biased by the background noise. This can be explained
by the fact that the channel is estimated from the back-end
model trained on clean speech.

VII. CONCLUSION

Missing feature techniques were applied to large vocabulary
speech recognition to jointly compensate for additive and con-
volutional noise. To this end, MFT first requires a mask esti-
mation procedure in the front-end to estimate the reliability of
each spectral component of the noisy input speech. To incor-
porate the reliability information, the evaluation of the acoustic
model in the back-end needs to be modified. Therefore, we de-
scribed a per-Gaussian-based data imputation technique where
an estimate for the clean speech is computed from the informa-
tion provided by the mask while using the acoustic model in the

The results on the Aurora4 large vocabulary database signif-
icantly improve the baseline result and the MFT-based recog-
nizer has a comparable performance as a MBFE without taking
any a priori knowledge of the noise into account. Experimental
evidence was also given for the effectiveness of the MLE-based
approach of Section V as a channel compensation method. By
comparing with a cheating log-Mel MS method, we have shown
that the estimate of the channel is hardly affected by the back-
ground noise.

In future research, we would like to improve the recognition
performance of the MFT-based recognizer by increasing the ac-
curacy of the masking decisions to narrow the performance gap
with oracle and real masks. Therefore, we will aim to exploit
more refined models of the human voice while minimally ex-
ploiting the knowledge about the noise. So far, fuzzy masks were
constructed as a probabilistic version of the binary masks. It
would be interesting to explore masking strategies that estimate
more appropriate probabilities for each spectral component of
the noisy input speech. Further work is also required to reduce
the computational requirements of MFT. Therefore, a faster im-
plementation of the optimization algorithm of Section III is the
most important consideration.
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APPENDIX |
DERIVATION OF THE GRADIENT AND HESSIAN IN THE
MLE-BASED CHANNEL COMPENSATION METHOD

To derive an expression for the gradient and the Hessian of
the cost function L(h) in (33), we first define L;(h, s;)|s, as the
individual cost contribution for the Gaussian at time ¢ in (33)
evaluated in the log-Mel spectral speech estimate s;, such that

T
L(h)|s = > Ly(h,sy) (35)
t=1

54

The gradient of L;(h, s;) w.r.t. h at 8; is then given as

/
OL(h, 13) OL(h,
VLi(h,st)ls, = 7téh st) ) + (% A ) 73(& ) )
B b (36)
with
8Lt(h,st) BLt(h,st)
oh |, Ist |,
=—Pi8—p,—h)=-g, (3D

Here, s, is computed from the constrained minimization of (10)
when binary masks are used or from (12) in case of fuzzy masks.
While optimizing §;, some of the inequality constraints will
be active, i.e., the feasible $; that minimizes the cost functions
of (10) or (12) lies on that boundary (equality); others will be
inactive (strict inequality). Active inequality constraints there-
fore become equality constraints. Each equality constraint de-
fines a hyperplane (a D — 1-dimensional space) described by
its normal a;. Geometrically, §; is the point on the intersec-
tion of all hyperplanes that minimizes L(h). Hence, g, must be
perpendicular to all these hyperplanes, for if it would have a
nonzero projection in any plane, §; would not minimize L(h)
subject to the constraints. Therefore, g, € Span (A;) where
Ay = [ay,as, . .., ap; (M, is Gaussian dependent) or A}'g, =
0 with A;- a orthonormal matrix perpendicular to A;. To find an
expression for ds;/Jh evaluated in the point 8;, assume that h
changes with Ah, then §; changes with As; and g, with Ag,
such that with (37)

A Ag, = AF'P,(As; — Ah) = 0. (38)
We also know that $; has to move in the constraint hyperplane or
A;A@t = 0. Hence, there must exist a vector x; which satisfies

A3, = Az, (39)
After substitution of (39) in (38), we get
z, = (A P, A} AH P, AR (40)
and
Js As _
] = S,
41)

This yields

VLi(h,s1)ls, = —(Pe — P A (A PA) T A Py)

X (8 —py — h) (42)

and since A;”'g, = 0

VLi(h,st)ls, = —Pi(8; — p, — h) = —g,. (43)
This result can also intuitively be interpreted as follows: make
a perturbation of h; (the jth component of h), then §; must
change such that it remains in the hyperplane; hence, 05;/0h;
lies in all hyperplanes while we know that g, is perpendicular
to these hyperplanes. Hence, the last term in (36) must be zero.

After derivation of VIL;(h,s;) wr.t. h, the Hessian of
L(h, s;) can be expressed as

OV Ly(h,
VLl = TG
Ozt " OV Li(h, )
Oh St aSt 3

=P, — P A (A P,AS) AP, (44)
Note that V2L, (h, ;) is positive semi-definite. Since we know
that P, is symmetric and positive semi-definite (see Section III),
we can write P, = P}/ (P, / %)’ and by making use of the
QR-decomposition

(P/?) 14" Al=QR: 45)
where
QR =[Q;1 Q5] {Ra’l Igi} (46)

and with R;; and R;» upper triangular matrices. Since the
columns of A; are mutually perpendicular, matrix [A,L Ay] is
orthonormal. From (45) and (46) it can be seen that

/
(P?) At = QiR (7)
and since @, is orthonormal, we can write
QQ:=Q,,Q:,+Q,,Q;>=1Ip. (48)

After substituting (47) and (48) in (44), the Hessian
V2Li(h, 8:)|s, can be written as

!
V2Li(hs)ls, = Pi7Q0Qh, (P) . (49)

From

Qo (P17) (AR AL = 1Q12Qus Q10Q]

[Rm M

0 Rtﬂ] =[0 R;2] (50
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we can derive the expression

/
Q2 (P)?) =0 Rol[4F A
— Ry A, (51)
such that (49) can efficiently be computed as
V2Li(h,s¢)s, = AtR; 5 Ry 2 A} (52)
After summation of (43) and (52) over all dominant Gaus-
sians of the optimal path, the final expressions of the gradient

and the Hessian of L(h) for computing the channel estimate in
(34) are now given as

T
VL(R)|s ==Y Pi(3 — u, — h)
t=1
T
VPL(h)|s =Y AR} ,R; 2 A}, (53)
t=1

Note that the conditions for 7' that we have formulated in
Section V also assure the nonsingularity of the Hessian matrix
in practice.
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