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Remote Sensing of 3-D Geometry and Surface
Moisture of a Peat Production Area Using
Hyperspectral Frame Cameras in Visible to

Short-Wave Infrared Spectral Ranges Onboard a
Small Unmanned Airborne Vehicle (UAV)

Eija Honkavaara, Matti A. Eskelinen, Ilkka Pölönen, Heikki Saari, Harri Ojanen, Rami Mannila, Christer Holmlund,
Teemu Hakala, Paula Litkey, Tomi Rosnell, Niko Viljanen, and Merja Pulkkanen

Abstract—Miniaturized hyperspectral imaging sensors are be-
coming available to small unmanned airborne vehicle (UAV) plat-
forms. Imaging concepts based on frame format offer an attractive
alternative to conventional hyperspectral pushbroom scanners
because they enable enhanced processing and interpretation po-
tential by allowing for acquisition of the 3-D geometry of the
object and multiple object views together with the hyperspectral
reflectance signatures. The objective of this investigation was to
study the performance of novel visible and near-infrared (VNIR)
and short-wave infrared (SWIR) hyperspectral frame cameras
based on a tunable Fabry–Pérot interferometer (FPI) in measur-
ing a 3-D digital surface model and the surface moisture of a peat
production area. UAV image blocks were captured with ground
sample distances (GSDs) of 15, 9.5, and 2.5 cm with the SWIR,
VNIR, and consumer RGB cameras, respectively. Georeferencing
showed consistent behavior, with accuracy levels better than GSD
for the FPI cameras. The best accuracy in moisture estimation was
obtained when using the reflectance difference of the SWIR band
at 1246 nm and of the VNIR band at 859 nm, which gave a root
mean square error (rmse) of 5.21 pp (pp is the mass fraction in
percentage points) and a normalized rmse of 7.61%. The results
are encouraging, indicating that UAV-based remote sensing could
significantly improve the efficiency and environmental safety as-
pects of peat production.
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I. INTRODUCTION

R EMOTE sensing using small unmanned airborne vehicles
(UAVs) is a rapidly emerging technology. UAV-based

remote sensing offers possibilities for cost-efficient data collec-
tion with desired spatial and temporal resolutions, which opens
up completely new remote sensing applications and new possi-
bilities to perform scientific studies in our environment [1], [2].

An appropriate sensor is a fundamental component of a
UAV remote sensing system. The first operational, civil, and
lightweight UAV imaging systems typically used commer-
cial video cameras or still cameras operating in three wide-
bandwidth bands in red, green, blue (RGB) and/or near-infrared
spectral regions [3]–[5]. Miniaturized hyperspectral sensors
have become available to UAV platforms, offering enhanced
possibilities for remote sensing applications. Hyperspectral re-
mote sensing employs tens to hundreds of contiguous bands to
accurately reconstruct the spectral signature of the target of in-
terest [6]. The first miniaturized sensors operated in the visible
to near-infrared spectral (VNIR) range extending to approxi-
mately 400–1000 nm. Several pushbroom-type hyperspectral
sensors have recently been implemented in UAVs [7]–[11].
Researchers have also implemented point-based spectrometers
in UAVs [12], [13]. Lately, novel hyperspectral cameras op-
erating in a frame format principle have entered the market,
such as the Rikola Hyperspectral Camera (http://www.rikola.fi),
Cubert UHD 185-Firefly (http://cubert-gmbh.de/), or the IMEC
SM5X5 (http://www2.imec.be). The frame sensors can be fur-
ther classified based on the imaging principle as ones capturing
all bands simultaneously (snapshot imaging) or as those captur-
ing unregistered bands [14]. The methods for capturing images
with unregistered bands include the time-sequential principle or
multiple cameras.

When considering different sensing principles, the advan-
tages of the frame imaging approach include the possibility to
collect image blocks with stereoscopic multiple object views
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Fig. 1. (a) Principle of the optical system of FPI SWIR camera prototype 2014. (b) Components of the FPI SWIR imaging system.

and the geometric and radiometric constraints provided by the
rigid rectangular image geometry and multiple overlapping
images [14], [15]. These can be seen as important advan-
tages in comparison to classical hyperspectral imaging methods
based on the pushbroom scanning technology or on point-based
spectral measurements. This is valuable in particular for UAV
applications, which typically operate under dynamic, vibrating,
and turbulent conditions. Furthermore, in many applications,
3-D information is a significant feature parallel to spectral
information.

This study investigates novel hyperspectral imaging technol-
ogy based on a variable air gap Fabry–Pérot interferometer
(FPI). The FPI technology makes it possible to manufacture
a lightweight frame format hyperspectral imager operating on
the time-sequential principle. The first prototypes of the FPI-
based cameras were operating in the VNIR spectral range
[16]–[18], and recently, a short-wave infrared (SWIR) region
prototype operating in the spectral range of 1100–1600 nm was
presented [19]. The FPI technology has also become commer-
cially available in the VNIR range (http://www.rikola.fi). In the
UAV operation, the camera is operated using photogrammetric
principles, capturing image blocks with stereoscopic overlaps.
It is crucial to emphasize the data postprocessing steps that
are required to transform these huge amounts of images into
products that allow the objects’ geometric and spectral char-
acteristics to be interpreted on a quantitative geometric and
radiometric basis. Recently, the usability of stereoscopic frame
images has improved to a new level due to the development of
the structure-from-motion-based image orientation techniques
[20] and the dense digital matching technologies generating
accurate 3-D point clouds and digital surface models (DSMs)
[21]–[26]. These modern computer vision and photogrammet-
ric techniques are capable of providing high-quality 3-D geo-
metric data in a highly automated way.

Surface moisture is one of the key parameters in various
environmental and hydrological applications, such as agricul-
tural water management and catchment management [27]–[29].
This work investigates the potential of FPI sensors in estimating
surface moisture of a peat production area aiming at improving
the efficiency and safety aspects of peat production. When
harvesting peat for energy production, peat surface moisture
is a critical parameter [30]. Peat is used in energy production
mainly in countries where large mires can be found, such as

Finland, Sweden, Russia, and Ireland. Before using peat in
a burner, it is first ground from the mire surface. When the
peat grind is dry enough, it is harvested in large stacks to
wait for transportation to the heating plant. Peat should be
suitably dry to improve combustion at the heating plant, while
avoiding spontaneous combustion in the stack. Currently, the
moisture measurements are carried out by collecting samples
of peat and measuring the wet and dry weight of the samples,
lasting for at least 24 h. With the UAV remote-sensing-based
method, the speed and efficiency of peat moisture measurement
could be remarkably improved. Previous investigation showed
that peat spectra had several features particularly in the SWIR
region supporting classification of moisture and humification
levels of peat [31]. Thermal imaging is also a potential technol-
ogy for surface moisture estimation. Laboratory measurements
have indicated good potential of this technology, but previous
experimental results with a thermal camera from a manned
aircraft platform showed weak correlation of surface moisture
and temperature [30].

The objective of this investigation was to study the per-
formance of novel FPI-based VNIR and SWIR hyperspectral
frame cameras in generating a DSM and measuring surface
moisture of a peat production area. The expectation was that the
SWIR range data are more suitable for moisture estimation than
the VNIR data, but it was of interest to compare both spectral
ranges. We depict the FPI camera technology in Section II. We
describe the test setup used for the empirical investigation in
Section III, present the empirical results in Section IV, and
discuss them in more detail in Section V.

II. FPI SPECTRAL CAMERA TECHNOLOGY

A. Principle of FPI-Based Spectral Imager

The hyperspectral camera developed at the VTT Technical
Research Centre of Finland (VTT) [16]–[19] is based on the
use of multiple orders of a variable air-gap FPI. When the FPI
is placed in front of the sensor, the wavelength of the light
passing the FPI is a function of the interferometer air gap (see
Fig. 1). By changing the air gap, it is possible to acquire a new
set of wavelengths. The final spectral response is dependent
on the light passing the FPI and the spectral characteristics
of the detector. The spectral bands can be selected according
to the requirements of the remote sensing task. In various

http://www.rikola.fi
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implementations, three-color [15]–[18] or single-color sensors
have been used (http://www.rikola.fi). The number of transmis-
sion peaks passing the FPI is one to three; thus, exposure with a
single gap width provides one to three different spectral bands,
when a three-color sensor is used [16]–[18]. With a single-color
sensor, one spectral band is obtained for each air-gap value. The
first FPI cameras operated in the VNIR range, and recently,
Mannila et al. [19] presented the first implementation of the
FPI technology in the SWIR range. The first photogrammetric
and remote sensing data analyses with the FPI hyperspectral
imaging technology have shown that it has excellent potential
in remote sensing [15], [32]–[35].

During data collection, a predefined sequence of air-gap
values is applied to capture the full spectral range. The hy-
perspectral data cube is thus formed in the time-sequential
imaging principle. When using this technology on a moving
platform, each band in the data cube exposed to a different
air-gap value has a slightly different position and orientation,
which has to be taken into account in the postprocessing phase.
During the flight, the integration time, gain, and FPI air-gap
information are stored. FPI cameras are equipped with a Global
Positioning System (GPS) receiver that records the exact time
of the beginning of each data cube; furthermore, the sensor
electronics output the synchronization pulse of each exposure
(which have not been utilized thus far). An irradiance sensor
based on the Intersil ISL29004 photodetector with a spectral
sensitivity range of 400–1000 nm is integrated in the camera to
measure the irradiance during each exposure. The sensor is not
calibrated; thus, relative broadband irradiance intensity values
are obtained [15], [36]. The dark signal is collected before the
flight. All data are applied to the images after the flight in the
postprocessing phase, as described in Section III-C–E.

B. Cameras Used in This Investigation

The FPI camera prototype 2012b belonging to the Finnish
Geospatial Research Institute was used to capture VNIR images
[15], [18]. It is equipped with custom optics having a focal
length of 10.9 mm and an f-number of 2.8. The camera has
a CMOSIS CMV4000 RGB image sensor with an electronic
shutter. The time difference between adjacent exposures is
0.075 s, giving a time difference between the first and last
exposures in a data cube with 24 bands of 1.8 s. The sensor
is used in a twice binned mode, providing an image size of
1024 × 648 pixels with a pixel size of 11 μm. The field of view
(FOV) is ±18◦ in the flight direction, ±27◦ in the cross-flight
direction, and ±31◦ at the format corner. The entire camera
system weighs less than 700 g.

The SWIR range spectral imager consists of the commercial
indium gallium arsenide (InGaAs) camera—the Xenics
Bobcat-1.7-320, the imaging optics, the FPI module, control
electronics, a battery, a GPS sensor, and an irradiance sensor
(see Fig. 1) [19]. The Xenics Bobcat-1.7-320 is an uncooled
InGaAs camera, with a spectral band of 0.9–1.7 μm and 320 ×
256 pixels and a pixel size of 20× 20 μm. The FPI, optics, and
electronics are designed and built at VTT. The focal length of
the optics is 12.2 mm, and the f-number is 3.2; the FOV is ±13◦

in the flight direction, ±15.5◦ in the cross-flight direction,

Fig. 2. Flight lines, ground control points (GCPs), and distribution of peat
samples.

and ±20◦ at the format corner. The time between adjacent
exposures is 10 ms plus exposure time; capturing single data
cube with 32 bands and using 2-ms exposure time takes 0.384 s.
The mass of the spectral imager unit is approximately 1200 g.

III. MATERIALS AND METHODS

A. Test Area and Flight Campaign

Test flights were carried out in Okssuo in southern Finland
(60◦49′24.534′′, 23◦56′12.325′′) on 11 September 2014. The
study site is the peat production area of Vapo Oy, having a
flat topography with parallel ditches and covered by spectrally
homogeneous peat (see Fig. 2). The size of the area of interest
was about 150 m × 150 m. Weather conditions were sunny,
clear, and windless.

Image blocks with six image strips (see Fig. 2) were collected
using three different cameras: the FPI VNIR camera prototype
2012b, the new FPI SWIR camera prototype, and a commercial
RGB camera, the Samsung NX300. Samsung NX300 has a
23.5 × 15.7 mm CMOS RGB sensor with 20.3 megapixels
and a 16-mm lens; it was used to collect high-spatial-resolution
stereoscopic data for comparison and reference purposes.

For the FPI SWIR camera, we used an 8-rotor UAV, based on
the MikroKopter autopilot and the Droidworx AD-8 extended
frame with a 1.5-kg payload capacity. The camera was rigidly
mounted to the landing gear of the UAV [see Fig. 3(a)]. The
Samsung NX300 and FPI VNIR cameras were simultaneously
operated using a hexacopter with a Tarot 960 foldable frame
with Tarot 5008 (340 KV) brushless electric motors having a
4-kg payload capacity. The autopilot was Pixhawk equipped
with Arducopter 3.15 firmware. Both cameras were rigidly
mounted to the payload rails of the hexacopter [see Fig. 3(b)].
In practical operation, it is recommended to install the cameras
on stabilized mount to compensate for impacts of the platform

http://www.rikola.fi
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Fig. 3. (a) Lightweight SWIR camera installed in an octocopter UAV. (b) VNIR
and Samsung NX300 cameras installed in a hexacopter UAV.

TABLE I
DETAILS OF THE IMAGE BLOCKS. F: FLIGHT DIRECTION;

CF: CROSS-FLIGHT DIRECTION; FOV: FIELD OF VIEW

vibrations and fast movements in the image quality. The use of
stabilized mount was not possible in this investigation due to
experimental setups.

The photogrammetric block setup was designed for the
SWIR camera at a flying height of 90 m above ground level.
The resulting ground sample distance (GSD) was 15 cm for the
SWIR camera, 9.5 cm for the VNIR camera, and 2.5 cm for
the RGB camera. In the case of the SWIR camera, the size of
the image footprint was 38 m × 47 m, the forward overlap was
77%, and the side overlap was 43% on average. For the FPI
VNIR camera and the RGB camera, the overlaps were larger
(see Table I).

The spectral settings of the FPI VNIR and SWIR cameras
were selected so that the spectral range was covered quite

evenly (see Table II). A total of 32 spectral bands were collected
by the FPI SWIR camera in the spectral range 1100–1600 nm
with the full width of half maximum (FWHM) ranging from
20 to 30 nm and with an exposure time of 2 ms. With the
VNIR camera, 38 bands were collected on a spectral range of
500–900 nm having an FWHM of 11–31 nm and an exposure
time of 15 ms. The long exposure time was used to obtain
a good dynamic range in the relatively dark peat surface
(reflectance < 0.3). The bright reflectance panels with the nom-
inal reflectance of 0.5 were saturated with this setting; hence,
it is not suitable for applications having reflectance values
brighter than 0.5, for example, vegetation remote sensing. The
long exposure time could also cause image quality reduction
due to motion blur. However, the movement of the platform
was less than the GSD during the exposure, and the weather
conditions were excellent, i.e., low winds and no turbulence;
thus, no significant motion blur was expected. Visual inspection
of images did not show noticeable motion blur.

B. Ground Reference

We deployed 13 GCPs targeted with circular targets with
a diameter of 30 cm (see Fig. 2). Their coordinates were
measured using the virtual reference station real-time kinematic
GPS (VRS-GPS) method with accuracy levels [root mean
square error (rmse)] of approximately 3 cm in X and Y and
4 cm in Z coordinates [37].

For reflectance transformation purposes, reflectance panels
of size 1 m × 1 m and with nominal reflectivity of 0.03, 0.1,
and 0.5 were installed in the area. Materials of the panels were
carefully selected to provide uniform reflectance properties and
low anisotropy; black and dark gray panels were made of car-
pet, whereas the brightest panel was a painted panel [38]. The
reference reflectance values were measured in a laboratory with
an estimated accuracy level of 2%–5% using the FIGIFIGO
goniospectrometer [39].

Altogether, 44 peat samples of size 0.05 m × 0.05 m ×
0.03 m were taken and measured for reflectance and moisture in
the laboratory. Spatial locations of samples (XYZ coordinates)
were measured with VRS-GPS. Moisture content (MC [%]) of
the samples was determined based on wet weight (wwet) and
dry weight (wdry), i.e.,

MC = 100 wwet/(wdry + wwet)[%]. (1)

Sample moisture varied from 50.0% to 78.4%, and the
average moisture was 67.4%.

C. Data Processing

Hundreds of small-format UAV images were collected to
cover the area of interest. Rigorous processing was required to
derive quantitative information from the imagery. The process-
ing of FPI camera images is similar to any frame format
camera images; the major difference is the processing of the
nonoverlapping spectral bands. The FPI data processing line for
MC estimation contained the following steps:

1) applying laboratory calibration corrections to the images;
2) determination of the geometric imaging model, including

interior and exterior orientations of the images;
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TABLE II
SPECTRAL SETTINGS OF THE FPI VNIR AND SWIR CAMERAS. L0: CENTRAL WAVELENGTH; FWHM: FULL WIDTH AT HALF MAXIMUM;

DT: TIME DIFFERENCE TO THE START OF THE DATA CUBE; DS: COMPUTATIONAL SPATIAL DISTANCE TO THE START OF THE DATA CUBE

3) using dense image matching to create a DSM;
4) determination of a radiometric imaging model to trans-

form the digital numbers (DNs) data into reflectance;
5) calculating the hyperspectral image mosaics;
6) estimating surface moisture.

The processing of FPI VNIR images is a well-developed
process [15], whereas the FPI SWIR sensor is a new proto-
type, and the processing required additional development. In
the following sections, the geometric (2, 3) and radiometric
(1, 4, 5) processing steps and estimation process (6) used in
this investigation are described.

D. Geometric Processing

Geometric processing determines the image orientations and
creates point clouds and DSMs. Because the orientation of each
band of the FPI data cube (typically 20–40 bands) would be
computationally heavy, we have developed an approach that
determines the orientations of selected reference bands and
uses a less demanding band-matching procedure for the rest
of the bands [15]. The reference bands are selected so that
the temporal range of the images is covered as uniformly as
possible. Different subsets of data were processed as follows.

1) Single FPI VNIR camera channel 16 (central wavelength
of the band: L0 = 631 nm; spatial difference to the be-
ginning of the data cube: ds = 0.6 m) was processed to
study the geometric performance of single FPI camera
band data (118 images).

2) The RGB images and three FPI VNIR camera bands 4
(L0 = 521 nm; ds = 4.5 m), 12 (L0 = 590 nm; ds =
6.9 m), and 16 (L0 = 631 nm; ds = 0.6 m) were si-
multaneously processed to provide the most accurate
orientations for the FPI reference bands (589 images).

3) Five bands of the FPI SWIR camera were simulta-
neously processed to provide orientations for the SWIR
data cubes and SWIR DSM (983 images). The bands
were 3 (L0 = 1184 nm; ds = 0.1 m), 8 (L0 = 1261 nm;
ds = 0.3 m), 11 (L0 = 1313 nm; ds = 0.5 m), 24 (L0 =
1504 nm; ds = 1.1 m), and 28 (L0 = 1553 nm; ds =
1.3 m).

4) The RGB images were used to create an accurate
DSM that was used as reference for other data sets
(235 images).

Agisoft PhotoScan Professional commercial software
(AgiSoft LLC, St. Petersburg, Russia) was used to determine
the image orientations and to generate dense point clouds over
the object area. Its excellent performance has been validated
in previous studies [24], [35]. PhotoScan performs photo-
based 3-D reconstruction using feature detection and dense
matching. In each data set, the images were automatically
oriented without a priori orientation information. The GPS
flight trajectory information could also be used to provide the
approximate orientations, which could make the processing
faster. In the orientation processing, the PhotoScan quality
setting was set to “high”; settings for the number of key points
per image were 40 000 and those for the final number of tie
points per image were 1000; an automated lens calibration was
simultaneously performed. According to our experiences, these
settings are suitable for the FPI images to provide accurate
results and reasonable processing time. An automatic outlier
removal was performed using the tools of the software on
the basis of the reprojection error (10% of points with the
largest errors were removed) and reconstruction uncertainty
(10% of points with the largest errors were removed). Finally,
some points were manually removed from a sparse cloud,
particularly points up in the air or underground. This pro-
cessing provided the orientation of the images and sparse point
clouds in the internal coordinate system of the software.

The object reference coordinate system information was used
to transform the image orientations into the desired coordinate
system. We used different control data configurations to eval-
uate if the system has a consistent geometric performance and
to study optimal georeferencing configurations: 1) 13 GCPs;
2) positions for images measured by the autopilot’s GPS and
no GCPs; 3) GPS and one GCP close to the takeoff location;
4) GPS and four GCPs in block corners; 5) GPS and five GCPs
(four in block corners and one in the center of the block); 6) four
GCPs in block corners; and 7) five GCPs (four in block corners
and one in the center of the block). In practical operation,
the configurations with a minimum number of GCPs are the
most efficient. The standard deviation settings for the GCPs
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were σGCP_XYZ = 0.001 m, and for the GPS coordinates, we
used a standard deviation of σGPS_XYZ = 3 m. The projection
accuracy was set to 0.1 pixels, and tie point accuracy was
set to 4 pixels. The outputs of the final self-calibrating block
adjustment were the camera calibrations, and the image exterior
orientations and sparse point clouds in the ETRS TM35FIN
coordinate system.

In the dense point cloud generation process, for VNIR and
SWIR camera images, the full-resolution images were used,
and for the RGB point cloud generation, four times downscaled
images were used. Depth filtering was used to filter out outliers
in the point clouds. For the SWIR data, the PhotoScan quality
setting “mild” was used, performing the least filtering. For
the VNIR data and for the RGB data, the setting “moderate”
was used, assuming a flatter object and to eliminate more
height points.

A band-matching procedure was used for the bands that
were not included in the orientation processing. Band matching
was carried out using a feature-based matching algorithm, and
an affine transformation was used to map the bands to the
reference bands. In the previous investigations, the accuracy
of this approach has been shown to be on the level of a pixel
in flat areas [15]. In this matching, the spatial difference to the
reference band (derived from ds; Table II) is an important factor
impacting the quality of band matching. For the VNIR camera,
we used the reference band for each major spectral color range
corresponding to the bands that were oriented by PhotoScan:
band 4 (L0 = 521 nm; ds = 4.5 m), band 16 (L0 = 631 nm;
ds = 0.6 m), and band 29 (L0 = 764 nm; ds = 4.5 m). For the
SWIR camera, we used the same five reference bands (3, 8,
11, 24, and 28) that were oriented in the PhotoScan processing
and matched each unoriented band to the temporally closest
reference band. For the noisiest bands in the atmospheric ab-
sorption region (bands 15–21; L0 1379–1467 nm), we interpo-
lated the orientations from the orientation trajectory determined
photogrammetrically in the PhotoScan processing because the
matching would not have provided a reliable result.

The geometric accuracy was evaluated by using independent
check points and evaluating the DSMs. The 3-D point deter-
mination accuracy was assessed using the GCPs that were not
included in the georeferencing and VRS-GPS coordinates of
the peat sample points as check points. Height accuracy and
deformations of the VNIR and SWIR DSMs were assessed by
using the RGB DSM as reference. The accuracy of alignment of
bands of final image mosaics was evaluated by using an image
correlation technique, by matching all the bands to a reference
band, and by calculating discrepancies.

E. Radiometric Modeling and Reflectance Mosaic Generation

Radiometric modeling includes the sensor corrections, the
atmospheric correction, correction for the illumination changes
and other nonuniformities, and the normalization of illumina-
tion and viewing-direction-related nonuniformities by utiliz-
ing the bidirectional reflectance distribution function (BRDF)
correction.

The sensor corrections for the FPI images include spectral
smile correction, photon response nonuniformity correction

(PRNU), and dark signal correction [15], [16]. The PRNU
and smile corrections were determined at the laboratory of
VTT [16]. The dark signal correction is calculated using a
black image collected right before the data capture. In this
investigation, all these correction steps were used for the
FPI VNIR camera. For the FPI SWIR camera, only the dark
signal correction was used; developing laboratory calibration
procedures for the prototype sensor was not possible in this
investigation. As the SWIR images showed significant sensor-
related nonuniformities, we developed a series of empirical
corrections, as described in Section III-E1.

The reflectance transformation was carried out using the
empirical line method [40] with the aid of the reflectance
panels in the area. For the SWIR images, all panels with
nominal reflectance of 0.03, 0.10, and 0.5 were used. For the
VNIR images, the brightest panel was not used because it was
saturated in most of the bands. The model was

DN = aabsRefl+ babs (2)

where aabs and babs are the parameters for the empirical line
model for transforming the reflectance (Refl) to DN. The
transformation was calculated using the image where the pan-
els were the closest to the image center to avoid impacts of
reflectance anisotropy in the reference reflectance.

To correct for the atmospheric instability and the impacts
of BRDF, a radiometric block adjustment approach was used
[15]. The basic principle of the approach is to use the DNs
of the radiometric tie points in the overlapping images as
observations and to determine the parameters of the radiometric
model indirectly via the least squares principle. The model for
a DN is

DN = arel_j (aabs
Rjk(θi, θr, ϕ) + babs) (3)

where Rjk(θi, θr, ϕ) is the bidirectional reflectance factor of
the object point, k, in image j; θi and θr are the illumination
and reflected light (observation) zenith angles; ϕi and ϕr are
the azimuth angles, respectively; ϕ = ϕr − ϕi is the relative
azimuth angle; and arel_j is the relative image-wise correction
parameter. The linear BRDF model by Walthall [41] was used
to correct the BRDF effects. The estimated nadir reflectance
(Rnadir) is

Rnadir=(DN/arel_j−babs)/
(
aabs

(
a′θ2r+b′θr cosϕ+1

))

(4)
where a′ and b′ are adjustable BRDF model parameters.
Homogeneous distribution of radiometric tie points was gen-
erated, with approximately 70 tie points in each image; the DN
observation of tie points was calculated in an image window of
size 3 m × 3 m (see details in [15]).

In this investigation, the final image output was a reflectance
mosaic. Image mosaics were resampled with a 20-cm GSD
from the image block data with the aid of the image orientations
and DSM and applying the radiometric model. The reflectance
values were taken for each mosaic pixel from the image where
the image ray had the smallest difference to the vertical di-
rection. For the VNIR images, we used the full model (4) to
calculate reflectance values. We carried out several empirical
corrections for the SWIR images (see below), and because
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Fig. 4. Sample images of FPI SWIR bands (a) 21 and (b) 30.

of this, it was feasible to estimate only the relative parame-
ters (arel_j) in the radiometric block adjustment. It was not
possible to solve the BRDF parameters because the empirical
corrections strongly correlated with the BRDF effects; thus, de-
fault values a′ = b′ = 0 were used. The irradiance observations
could be used to calculate the arel_j parameters [36], but in this
study, the irradiance values were not used.

1) Empirical Radiometric Calibration of the FPI SWIR
Camera: The first analysis of the spectra and image mo-
saics calculated of the FPI SWIR camera images without any
corrections indicated that the radiometric calibration was not
accurate enough. The mosaics were not homogeneous due to
the missing lens falloff calibration. Second, there appeared a
decrease in image intensity during the flight and negative DN
values. The most probable reason for this distortion was the
change in the dark signal during the flight due to sensor cooling.
Furthermore, there was a relatively high level of noise in the
images (see Fig. 4).

A series of empirical corrections was applied to the images to
eliminate these distortions. These corrections were calculated
by assuming that the target area had uniform reflectance on
average in each spectral band. The wetland area in the northern
part of the area was not included in these calculations. All the
corrections were calculated separately for each band. To elimi-
nate the impacts of the changes in the dark signal, a strip-wise
additive dark current correction was calculated by assuming
that the average reflectance of each strip should be the same.
The correction was calculated based on the average DNs of each
strip in comparison to the average DN of the reference strip (in
this case, the first strip). A median-image-based approach was
used to eliminate the lens falloff. The assumption was that the
median image calculated using all images (except the wetland
area) should show uniform intensity, whereas the nonunifor-
mity of the median image indicates systematic radiometric
distortions. A multiplicative pixel-wise correction coefficient
LFC(l,m) with respect to the central pixel of the median
image (med_image(rowc, colc)) was calculated for each pixel
(l,m), i.e.,

LFC(l,m)=med_image(rowc, colc)/med_image(l,m). (5)

The corrected DN is

DNcal(l,m) = LFC(l,m)DN(l,m). (6)

F. Remote Sensing of Surface Moisture

The albedo of peat is known to decrease nonlinearly on
wetting, with additional changes in the shape of the spectrum

TABLE III
STATISTICS OF GEOMETRIC PROCESSING: NUMBER OF IMAGES, TIE
POINTS, AND PROJECTIONS; REPROJECTION ERROR AND NUMBER

OF POINTS AND POINT DENSITY IN DENSE POINT CLOUD

particularly near the water absorption features. However, in
the range of MCs measured, the changes in albedo could
be expected to be approximately linear [31]. We studied the
usefulness of spectral features for moisture estimation by cal-
culating linear correlations between the features and moisture
and by employing machine learning for the study of nonlinear
dependence relations. The data sets used in the study of peat
moisture estimation were the VNIR mosaic with BRDF and
relative image-wise corrections; the SWIR mosaic with dark
signal correction, median-image-based calibration, and relative
image-wise corrections; and the RGB mosaic with standard
PhotoScan processing scaled to range 0–1 by dividing the DNs
by 255.

Single-pixel reflectance spectra were collected from the mo-
saics from the locations corresponding to the collected samples
(20 cm × 20 cm area); tests using larger sample areas showed
reduced correlation with the measured moisture. Reflectance
differences (Ri −Rj) and ratios (Ri/Rj) were calculated for
each pair of bands of the concatenated RGB, VNIR, and SWIR
spectra of each sample. Linear correlation of the individual
bands, band differences, and ratios to the MC was examined
using the MATLAB function corr to calculate the Pearson cor-
relation for each set of features. A machine-learning approach
based on a support vector machine (SVM) was employed for
moisture estimation to take into account possible nonlinearities.
A leave-one-out approach was used to estimate the performance
of different data sets for the SVM machine learning model gen-
eration. The SVM was trained for each set of feature vectors and
moistures corresponding to 43 samples and then used to predict
the moisture of the remaining sample. The process was repeated
for each sample with the individual prediction errors collected
together and used to calculate the performance statistics for
each data set. SVM training and prediction was performed
using ν—SVR (support vector regression) with libSVM [43].
Optimum C and γ parameters for the SVM were determined for
a grid of parameters in the log2 C × log2 γ space, and selecting
for each data set the parameters that resulted in the lowest mean
square error in the procedure.

IV. RESULTS

A. Geometric Performance

Statistics of the geometric processing indicated accurate
results (see Table III). The reprojection errors were on the level
of 5–7 μm in image coordinates for all calculations (about
0.5 pixels for the FPI VNIR, 0.3 pixels for FPI SWIR, and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE IV
ERROR STATISTICS OF THE VARIOUS GEOMETRIC PROCESSING CONFIGURATIONS FOR FPI VNIR IMAGES. N GCP: NUMBER

OF GCPS; GPS: YES = GPS SUPPORT USED, NO = GPS SUPPORT NOT USED; N CP: NUMBER OF CHECK POINTS

Fig. 5. Differences to the reference DSM in meters: (a) RGB—VNIR and
(b) RGB—SWIR.

one pixel for RGB cameras). The point densities in dense point
clouds were about 100 points/m2 for RGB and FPI VNIR
cameras and 45 points/m2 for FPI SWIR camera. Processing
of the SWIR images was less stable than processing of VNIR
and RGB cameras, which was due to the poorer block structure,
smaller image format, and worse image quality.

The 3-D point determination accuracy of an FPI VNIR data
set processed with different georeferencing configurations was
studied using the GCPs that were not included in the orientation
as check points (see Table IV); the visibility of GCPs was poor
in SWIR images because of the larger GSD and the noisier
image quality; thus, SWIR images were not analyzed. The best
rmse was on the level of 2–3 cm in the X and Y coordinates
and 5–6 cm in height. This accuracy level was obtained when
using four GCPs with the autopilot’s GPS support or five or
more GCPs without the GPS support. The case with the GPS
support and no GCPs was of quite low geometric quality, with
an rmse of about 0.2 m in X and Y and 0.8 m in Z.

The results of DSM accuracy assessment are shown in
Fig. 5 when using all 13 GCPs in georeferencing and no GPS
support; these results represent the best achievable accuracy.
The results suggested that the VNIR DSM had a slight tilt
(less than 20 cm) to the reference surface; the west side was
higher than the east side [see Fig. 5(a)]. The SWIR DSM had
more deviation from the reference surface with south–north-
aligned distortion, which was less than 40 cm [see Fig. 5(b)].
In particular, the VNIR DSM was not significantly deformed
in the area surrounded by GCPs. When using the peat sample

points as check points, the height rmses were approximately
10–12 cm, at best, for all of the materials (see Table V). The
mean errors showed a moderate negative bias of 9–11 cm,
which could be due to the difference in measuring the height
of the peat surface in the field and from the image. The height
standard deviations were on the level of 4 cm for the RGB and
FPI VNIR cameras and about 8 cm for the FPI SWIR camera.
Height rmses were 2–5 cm for the GCPs, indicating that the
DSM fitted very well to these points. One potential explanation
for the better height accuracy results with the GCPs is the better
measurement accuracy of the well-defined surface of the GCP.

Analysis of the impact of the ground control configuration in
the DSM height error is presented in Figs. 6 and 7. In the case
of the SWIR data set, the DSM did not show significant defor-
mation [see Figs. 5(b) and 6(f)] when using the configurations
with 5 or 13 GCPs and no GPS support; these cases provided
also a good height rmse in the peat sample points, on the level of
11 cm (see Table V). In all cases with the GPS support, the
SWIR DSM surface was deformed [see Fig. 6(a)–(e)], and
the height rmses were large, 0.35–3 m in check points (see
Table V); the most likely explanation for the poor results is
the low quality of the autopilot GPS solution during the SWIR
flight. For the VNIR data, the different GCP configurations pro-
vided consistent results with the previous analysis when using
GCPs as reference (see Tables IV and V and Fig. 5). The DSM
did not show deformations in the cases where the rmses were
low [see Figs. 5(a) and 7(c), (d), and (f)]; for the cases with poor
rmses, the DSMs were deformed [see Fig. 7(a), (b), and (e)].

Assessment of the quality of alignment of individual spectral
bands of the mosaics showed good results. For the VNIR data,
the mosaic of band 4 was used as reference for all the bands.
The discrepancies in the X and Y coordinates were less than
1 pixel in 90%–99% of the matched points in bands 1–34
and in 85%–90% of the matched points in bands 35–38. For
the SWIR data, mosaics of bands 3 and 28 were used as
reference. In most of the bands, the discrepancies were less
than 1 pixel in X and Y coordinates in 80%–99% of matched
points; in bands 12–14, the discrepancies were less than 1 pixel
in 70%–80% of matched points. In the bands in the atmospheric
absorption region for which the orientations were interpolated
(bands 15–21), a majority of discrepancies were on the level of
3 pixels and less. These results showed that the individual bands
were well aligned.
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TABLE V
STATISTICS OF THE DSM ASSESSMENT FOR THE VARIOUS GEOMETRIC PROCESSING CONFIGURATIONS WHEN USING THE 44 INDEPENDENT

CHECK POINTS (CP) AND 13 GCPS AS THE REFERENCE. MEAN, STANDARD DEVIATION (STD), AND RMSE OF ERRORS

(ERROR = REFERENCE − INTERPOLATED FROM DSM). N GCP: NUMBER OF GCPS;
GPS: YES = GPS USED, NO = GPS NOT USED

Fig. 6. Differences (in meters) between the FPI SWIR DSMs and the reference DSM (RGB—SWIR) when using different georeferencing configurations:
(a) GPS; (b) GPS, 1 GCP; (c) GPS, 4 GCPs; (d) GPS, 5 GCPs; (e) no GPS, 4 GCPs; (f) no GPS, 5 GCPs.

Fig. 7. Differences (in meters) between the FPI VNIR DSMs and the reference DSM (RGB—VNIR) when using different georeferencing configurations:
(a) GPS; (b) GPS, 1 GCP; (c) GPS, 4 GCPs; (d) GPS, 5 GCPs; (e) no GPS, 4 GCPs; (f) no GPS, 5 GCPs.

B. Radiometric Processing

The incomplete radiometric calibration was visible in the
SWIR mosaics without any radiometric corrections (see Fig. 8,
left). The dark signal change was visible particularly in band
21 [see Fig. 8(a)]. The dark signal correction and the median-
image-based lens falloff correction compensated for most of the
mosaic nonuniformity (see Fig. 8, center). However, some part
of the nonuniformity still remained. This could be due to the
fact that the strip-wise dark signal correction was not accurate
(most likely the dark signal changed continuously due to the
temperature changes). After the radiometric block adjustments
using the relative image-wise corrections (arel_j), the mosaics
were uniform (see Fig. 8, right) and suitable for the following
remote sensing analysis. A three-band SWIR mosaic is shown
in Fig. 9(a).

The BRDF correction and the relative image-wise correc-
tions (arel_j) were used when calculating the VNIR mosaics.

The relative corrections were on the level of 10%. The view
angle range in the FPI VNIR images is 0 to ±31◦ from the
nadir, which is expected to cause BRDF effects in images. The
hemispherical directional reflectance factor plot of an area of
about 150 m × 150 m with a point interval of 10 m indicated
that the peat surface was backward scattering with decreasing
reflectance toward a forward scattering direction (see Fig. 10).
The reflectance anisotropy was about 10% with a view angle
range of 0 to ±25◦ and about 20% from maximum to minimum.
The output mosaics of VNIR data had uniform data quality [see
Fig. 9(b) and (c)].

C. Peat Spectra and Moisture Estimation

The use of spectral information in the assessment of the peat
moisture is based on the fact that the more moist the peat is,
the darker it is. Some fluctuations appeared in the peat spectra,
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Fig. 8. Examples of reflectance mosaics with different processing options for
SWIR bands (a) 21 and (b) 30. Processing versions from left: original images
without corrections; dark signal correction and median image calibration; dark
signal correction, median image calibration, and relative correction.

Fig. 9. Hyperspectral reflectance mosaic from (a) SWIR data (bands at
1184, 1331, and 1553 nm) and (b) VNIR data (bands at 520.80, 630.70, and
763.70 nm). (c) 3-D perspective visualization of the VNIR mosaic.

but the overall form of the spectra was consistent, showing an
increase from green toward NIR wavelengths, a drop at the
water absorption region (1350–1450 nm) and a linear increase
toward longer wavelengths [see Fig. 11(a)]. Assessment of the
reflectance spectra of individual bands with respect to the target
moisture indicated correlations of up to 0.63 at highest for
SWIR band 7 at 1246 nm; typical correlations were 0.5–0.6
with VNIR and SWIR data sets [see Fig. 11(b)]. For the RGB
camera, the correlations were lower, i.e., less than 0.5. The

Fig. 10. Reflectance factor observations as the function of the view and
illumination angles (left) and fitted BRDF surface (right) for near-infrared band
L0 = 764 nm.

Fig. 11. (a) Spectra of peat samples with the minimum, maximum, and median
MC. (b) Reflectance spectra of all the samples and the correlations of each
band with the measured MC for the RGB, VNIR (FPI), and SWIR data sets.
The rows and columns correspond, respectively, to different samples and bands.
The spectra in each data set are normalized to fill the interval [0, 1], and the
samples are arranged by their measured MC.

plot shows quite consistent darkening as the MC increased.
In cases where correlation is high (such as SWIR band 7),
there appeared quite linear change in reflectance. In the water
absorption region (1350–1450 nm), the spectra appeared noisy,
and the correlations were low.

The correlation coefficients and the associated P-values of
the MC and the reflectance differences (Ri −Rj) and ratios
(Ri/Rj) were collected into square matrices and color coded
(see Fig. 12). The highest correlations (with r=0.66, p<10−6)
were obtained using the reflectance difference of SWIR band 7
(L0 = 1246 nm) and VNIR band 36 (L0 = 859 nm).

Table VI lists the results of the remote sensing analysis of
surface moisture by the SVM. The data sets RGB, VNIR,
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Fig. 12. Pearson correlation coefficients and associated P-values between the
MC and (a) band differences Ri − Rj and (b) band fractions Ri/Rj calculated
using the RGB, VNIR (FPI), and SWIR data sets. Black lines were added to
separate the bands corresponding to different data sets.

TABLE VI
RESULTS OF THE SVM LEAVE-ONE-OUT ANALYSIS. THE ERROR IS

COMPUTED FOR EACH SAMPLE AS THE DIFFERENCE OF THE REFERENCE
AND THE PREDICTED MC (MCREF − MCPRED ; IN PERCENTAGE

POINTS PP). THE STATISTICS INCLUDE MEAN ERROR, STANDARD

DEVIATION, RMSE, AND NRMSE (RMSE NORMALIZED

BY THE MEAN MEASURED MC)

and SWIR refer to the spectral vectors for each sensor. The
RGB+VNIR+SWIR data set is the set of concatenated spectral
vectors from the respective data sets. The SWIR7-VNIR36
data set is the vector of reflectance differences of SWIR
band 7 (L0 = 1246 nm) and VNIR band 36 (L0 = 859 nm)
for each sample. The best accuracy was obtained when using
the reflectance difference of SWIR band 7 and VNIR band 36,
which gave the rmse of 5.21 pp (pp is the mass fraction in
percentage points) and a normalized rmse (nrmse) of 7.61%.
When using individual cameras, the rmses were 6.39, 5.87, and
5.68 pp, and the nrmses were 9.48%, 8.71%, and 8.44% for the
RGB, VNIR, and SWIR cameras, respectively.

V. DISCUSSION

This investigation studied the performance of two novel
lightweight frame format hyperspectral cameras onboard a
small UAV in measuring the 3-D surface model and surface
moisture of a peat production area. The VNIR FPI camera was

shown to be operational in previous studies [15], [32]–[35]. The
SWIR FPI camera [19] was a completely new prototype cam-
era. The UAV system was also equipped with a high-spatial-
resolution customer RGB camera. Data sets were captured over
a peat production area using a flying height of 90–94 m with
GSDs of 2.5, 9.5, and 15 cm for the RGB, VNIR, and SWIR
cameras, respectively.

A. Considerations on Geometric Performance

As the FPI-based imager captures spectral data cubes using
the time-sequential principle, the individual bands of the data
cubes are unregistered. We used a methodology where several
bands of the set of unregistered data cubes were simultaneously
oriented in the self-calibrating bundle block adjustment. The
success of this approach is dependent on the invariance of
the matching algorithm to the spectral differences in im-
ages. The commercial Agisoft PhotoScan software was quite
tolerable to the spectral differences within visible range
(400–650 nm) and SWIR range (1100–1600 nm) and provided
accurate integrated orientation result. The procedure is based on
interest points, which are stable under viewpoint and lighting
variations and their descriptors based on each points’ local
neighborhood. Other software programs have similar algo-
rithms [24], and they are expected to be functional as well;
however, each method needs to be confirmed. The use of several
bands in the processing simultaneously made the processing
more robust by providing better overlaps between the images
of the block. The bands that were not included in the block
adjustment were successfully registered to the oriented bands
by a band-matching process. A majority of the discrepancies
between the bands were one pixel or less; these results were
consistent with previous studies performed with the VNIR
camera in areas with flat topography [15].

We validated the geometric performance of the FPI cameras
by using different sets of ground reference data, including vari-
able configurations of GCPs and autopilots’ GPS observations.
The detailed analysis using the accurate targeted XYZ control
points was possible for VNIR imagery. The best results were
on the level of 2–3 cm in X and Y coordinates and 5–6 cm
in height. The cases based only on the autopilot’s GPS data
showed quite low geometric accuracy, which is in line with
expected quality when using navigation-grade GPS reference
[44]. The best height accuracy levels were approximately
10–12 cm for all of the data sets in the independent check
points located in the swamp surface. This estimate included the
uncertainty of peat surface measurement and the quality of the
measurement method.

The geometric performance of the SWIR data set was worse
than that of other cameras, which was due to the poorer block
structure (lower image and strip overlaps), potentially lower
accuracy of the autopilot’s GPS data, smaller image size, and
lower image quality. In this investigation, the block structure
was optimized for the SWIR camera, flat object, and mosaic
calculation; thus, the overlap of 40%–45% was used between
the image strips; as the flight trajectory was the same for the
RGB and VNIR cameras that had larger FOVs, the resulting
block geometry was better for those data sets. The assessment
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showed that the FPI-based sensors were capable of providing
good DSMs. When concerning with the geometric performance
of the new sensors, the potential deficiency with hyperspec-
tral cameras in comparison to good-quality customer digital
color cameras is the smaller number of pixels (poorer spatial
resolution), smaller image size, and lower signal-to-noise ratio
(because of measuring narrower spectral bands). Furthermore,
in the SWIR range, the decreasing level of solar illumination
sets additional demands on the sensor when a high signal-
to-noise ratio is anticipated [42]. In the end, the propagation
of errors will follow the photogrammetric theories [45]. Most
importantly, the block structure (overlaps, cross-strips, GCPs)
and the quality of the direct orientation observations impact the
accuracy of orientations, and the level of signal-to-noise ratio
impacts the quality of matching [22], [46]. To obtain high DSM
quality, the overlaps within and between the strips should be
at least 80% and 60%, respectively, and crossing flight strips
are advantageous. In the practical operation, the recommended
approach is to integrate a high-spatial-resolution RGB camera
with a hyperspectral sensor, to obtain the most accurate DSM
and desired spectral properties, if this is possible with the UAV
platform in use.

B. Aspects of Spectral Measurement Quality

The new SWIR prototype had some shortcomings in the
spectral measurement quality, which will be improved in the
next versions of the camera. These included the missing PRNU
calibration as well as the change in the dark signal during
the flight. For the miniaturized sensors, temperature calibration
together with a correction algorithm based on a model of the
sensor behavior is likely the best approach to eliminate tem-
perature effects, since stabilization of sensor temperature might
be challenging due to the weight limitations. Several other
researchers have also pointed out the importance of calibrating
small hyper- and multi-spectral cameras accurately [7], [9],
[14], [34], [47]. Dark signal correction based on the dark image
collected before the flight appeared to be inaccurate because
of the changes in the sensor temperature during the flight. A
simple improvement to this procedure would be to capture
the dark image before and after the campaign. More rigorous
approaches would be determining the temperature impacts on
the dark image in controlled conditions or integrating dark
signal measurement to the data capture process. The empirical
processing steps tailored for this data set were capable of
compensating for these limitations and provided suitable data
quality for further processes. The radiometric block adjustment
approach was functional in eliminating the remaining radiomet-
ric nonuniformities in the image mosaics [15]. The accurate
radiometric processing in difficult conditions will be an im-
portant step in the UAV-based hyperspectral remote sensing. In
the future, the radiometric quantities in UAV remote sensing
need to be carefully considered [42], [48], for example, are the
images processed to reflectance or some other quantities and
are the anisotropic reflectance effects compensated for. Fur-
thermore, comprehensive studies concerning the performance
of different radiometric correction approaches should be
carried out.

In comparison to conventional pushbroom technology, the
interesting feature of the frame format hyperspectral cameras
is the possibility to collect hyperspectral image blocks with
stereoscopic multiview overlaps. On the other hand, for the
first-generation frame format hyperspectral cameras, the spec-
tral resolution is still poorer (FWHM on the level of 10–30 nm),
and the number of spectral bands is lower (20–40) than that of
more mature pushbroom techniques, which typically provide
hundreds of spectral bands with FWHMs of 2–10 nm [7]–[11].
The spectral performance of the FPI cameras is expected to
improve in future systems, and the latest commercial cameras
already offer improved performance (www.rikola.fi).

C. Remote Sensing of Surface Moisture

We evaluated the performance of UAV remote sensing with
the RGB camera and the FPI-based VNIR and SWIR cameras
in the measurement of surface moisture of a peat production
area. The results indicated good agreement of the reflectance
signatures in images with the moisture of the object. The peat
moisture estimation was more accurate with the FPI SWIR
camera than with the FPI VNIR or traditional RGB camera.
The best accuracy was obtained when using the reflectance
difference of SWIR band 7 (L0 = 1246 nm) and VNIR band
36 (L0 = 859 nm), which gave an rmse of 5.21 pp and an
nrmse of 7.61%. Based on our experiences in using a series
of peat samples with controlled moisture levels in a labo-
ratory setting, higher accuracy moisture estimation from the
spectra should be possible. In particular, the low reflectance
and the noisiness of the UAV SWIR spectra near the main
water absorption at 1400-nm feature limited the accuracy of the
estimation.

Here, the training of the SVM was based on samples from the
imaged mire. Due to the nonlinear effects of humification and
the differences in the chemical composition of the peat [31],
[49], it is not expected that an empirical model trained on one
mire is generalizable to other mires. The next steps in research
would be gathering a series of training material from different
humification levels of peat and performing laboratory testing to
separate the effects of humification and moisture on the spectra.
To summarize, the major uncertainty components in our ex-
periment included sample gathering, accuracy of positioning,
accuracy of moisture measurement system, and humification
level. When these factors are well controlled, we assume that
the general accuracy of estimation is higher.

The presented technology allows many further improve-
ments. We did not utilize the gathered 3-D geometry in the
moisture estimation; it is expected that the topographic infor-
mation would support the estimation of the surface and below-
surface moisture in the peat mire. We used the most nadir
approach in the analysis of the reflectance data, but in the future,
the multiview information should be used more efficiently.
The potential of multidirectional observations (BRDF) and
a physical-radiative-transfer-based approach in estimating the
MC needs further study, to develop general methods that do not
require in situ reference. The future autonomous UAV systems
are feasible for repetitive data acquisition and multitemporal
analyses, which might improve the estimation accuracy levels.

https://www.rikola.fi
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Moreover, the potential of other spectral ranges, particularly
multitemporal thermal imaging, should be studied [29], [30].

D. Outlook

Based on the results, the FPI hyperspectral technology
follows the principles of central perspective imaging, thus
enabling the utilization of latest innovations in mainstream
computer vision and photogrammetric technologies in devel-
oping highly automatic and autonomous applications [1], [2],
[20]–[26]. In this investigation, the geometric, radiometric, and
peat surface moisture reference were based on field measure-
ments. It will be important to develop reliable methods that do
not require interactive field measurements to allow automatic
and autonomous operation in the future. These methods will re-
quire accurate geometric and radiometric calibration of sensors
[9], [14], [34], accurate satellite positioning methods [2], [25],
automatic radiometric correction, and detailed understanding of
the remote sensing task. When small differences in object char-
acteristics, such as the MC, are of interest, the requirements for
the spectral and geometric quality of the remote sensing data are
high. This means that the spectral and topographic information
has to be accurate and unbiased; the detailed requirements for
the data quality need to be studied in the future investigations.

Peat production areas form an environmental risk factor due
to the threat of self-ignition. Furthermore, efficiency of peat
production could be improved if using efficient remote-sensing-
based techniques in estimating optimal time for harvesting
and managing the area. Our results indicated that the UAV
techniques could be an efficient tool for further optimizing and
monitoring of the environmental impacts of peat production. In
addition to monitoring peat production areas, the presented ap-
proach can be applied for any other application requiring repet-
itive monitoring in relatively flat surfaces, such as in precision
agriculture [15]. The technology has also been demonstrated in
large areas (several km2) (unpublished results) and in a complex
3-D environment in forest [35]; the technology is also suitable
in these applications, but in complex environments, a more
complicated overall solution is required.

VI. CONCLUSION

This paper has studied the performance of two novel light-
weight FPI-based hyperspectral frame format cameras in mea-
suring the 3-D surface model and surface moisture of a peat
production area. The SWIR range camera was a new proto-
type, whereas the visible to near-infrared range camera was
more mature technology. Moreover, a high-spatial-resolution
consumer RGB camera was used. More rigid image geometry
as well as the possibility for stereoscopic measurements and
multiple object views are important advantages of the frame
format geometry in comparison to conventional hyperspectral
imaging technology based on pushbroom geometry.

The results were promising, indicating that UAV-based re-
mote sensing could significantly improve the efficiency and the
environmental safety aspects of peat production. In addition to
monitoring peat production areas, the technology is functional
in various remote sensing applications. As the FPI technology

follows the theories of central perspective imaging, it is also
well suited for developing automatic and autonomous appli-
cations utilizing the latest innovations in photogrammetry and
computer vision.
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