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Abstract

Skin cancer is considered to be the most common human malignancy. Around 5 million new

cases of skin cancer are recorded in the United States annually. Early identification and

evaluation of skin lesions are of great clinical significance, but the disproportionate dermatol-

ogist-patient ratio poses a significant problem in most developing nations. Therefore a novel

deep architecture, named as SkiNet, is proposed to provide faster screening solution and

assistance to newly trained physicians in the process of clinical diagnosis of skin cancer.

The main motive behind SkiNet’s design and development is to provide a white box solution,

addressing a critical problem of trust and interpretability which is crucial for the wider adop-

tion of Computer-aided diagnosis systems by medical practitioners. The proposed SkiNet is

a two-stage pipeline wherein the lesion segmentation is followed by the lesion classification.

Monte Carlo dropout and test time augmentation techniques have been employed in the

proposed method to estimate epistemic and aleatoric uncertainty. A novel segmentation

model named Bayesian MultiResUNet is used to estimate the uncertainty on the predicted

segmentation map. Saliency-based methods like XRAI, Grad-CAM and Guided Backprop

are explored to provide post-hoc explanations of the deep learning models. The ISIC-2018

dataset is used to perform the experimentation and ablation studies. The results establish

the robustness of the proposed model on the traditional benchmarks while addressing the

black-box nature of such models to alleviate the skepticism of medical practitioners by incor-

porating transparency and confidence to the model’s prediction.

Introduction

Skin cancer is the out-of-control growth of abnormal cells in the outermost skin layer known

as epidermis [1]. According to the World Health Organization (WHO), skin cancer accounts

for one-third of all cancers, and one out of every five Americans will be diagnosed with it by

the age of 70 [2, 3]. There are three main types of skin cancer viz. basal cell carcinoma (BCC),
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squamous cell carcinoma (SCC), and melanoma. BCC and SCC are the most common forms

of skin cancer, with an estimated 4.3 million and 1 million cases reported each year in the US,

respectively [4]. BCC and SCC are highly curable, while melanoma is the deadliest form of

skin cancer, with 132,000 melanoma skin cancer cases diagnosed worldwide and causing

approximately 9000 deaths annually in the US [2, 4–7]. In 2020 alone, 1,198,073 new cases of

non-melanoma skin cancer have been reported causing 63,731 deaths [8, 9]. In the year 2021,

the number of newly diagnosed melanoma cases in the US is predicted to be 106,110, with

7,180 deaths [10]. In Australia, skin cancer accounts for up to 80% of all newly diagnosed can-

cers, with two out of every three people diagnosed by the age of 70 [11]. In addition, the rate of

non-melanoma and melanoma skin cancers per 100,000 persons in Australia is the highest in

the world [11]. In Australia, 16,878 new cases of melanoma were diagnosed in 2021, with 1,315

deaths recorded so far [12]. Internationally, skin cancer also poses a significant threat to public

health, with 100,000 new cases of diagnosed melanoma in Europe, and it also accounts for 2-

4% of all Asian cancers [2, 13, 14].

Early diagnosis of skin cancer is a cornerstone to combat the rising mortality as the chances

of survival drop from 99% to 5% during its progression to the advanced stage [4]. The survival

rate of skin cancer is increased by 95% when it is detected early [7, 15, 16]. Conventional clini-

cal approaches such as the ABCD rules [17–19], 3-point checklist [20], and 7-point checklist

[21] have been used previously to diagnose skin cancer. However, these strategies are con-

strained by a number of factors, including the lack of expertise, limited resources, and a lack of

time. Further, there is a dearth of dermatologists globally, and in particular, some of the devel-

oping nations like Australia and New Zealand suffer from a serious shortage of trained practi-

tioners [5]. With the advent of dermoscopy, a non-invasive imaging technology for providing

high-resolution images of lesions, in recent years, clinicians have been adopting it to perform

diagnosis. Dermoscopic image analysis by trained medical practitioners achieved clinical accu-

racy close to 75% [22]. The research community has made significant efforts to develop a com-

puter-aided diagnosis (CAD) system to detect skin diseases from dermoscopy images to

provide a second opinion, overcome the limited supply of experts, and provide faster screening

solutions. By reducing inter-observer variability and addressing the limited availability of qual-

ified experts, CAD systems strive to improve the performance of human experts in terms of

diagnostic accuracy, speed. and reduce the manual inspection [23].

The use of Deep Learning (DL) based CAD tools as a diagnostic aid is a growing trend in

dermatology. Further, the advent of Convolutional Neural Networks (CNNs) stimulated the

research in various aspects of visual recognition tasks which were highly relevant in the context

of medical image analysis [24]. The two building blocks of the CAD system used for this pur-

pose are lesion segmentation and lesion classification. CNNs integrating disease taxonomy

were developed to automate both the segmentation and classification task for skin lesion diag-

nosis. While these systems improved the accuracy significantly, the faith of doctors on these

systems did not witness any major upward trend owing to the black-box nature of such CNN

based models.

The last decade saw rapid progress of DL research in healthcare across various domains

with diverse applications however only a few examples of such techniques are successfully

deployed into clinical practice. Medical practitioners must be convinced about the efficacy and

accuracy of these systems, however, these models need to suffice at least two primary criteria

to gain their trust. The model should have the capability to denote the confidence in each pre-

diction and should be interpretable, i.e., it should clearly represent the features that contrib-

uted to the prediction [25]. The model performance is usually presented in terms of metrics

related to the discriminative power of the models such as sensitivity, specificity, or ROC curves

[26]. However, it is important to understand how confident or certain the model is about a
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prediction, particularly in clinical practice where diagnostic errors have close to zero tolerance

and sometimes difficult cases can require expert review. Estimation of uncertainty can be used

not only to determine which samples are difficult to classify, thereby requiring more expert

analysis, but also to detect samples that deviate from the data used for model training. The net-

work still can make high assurance predictions when the distribution of training and test data

varies. This issue of out of distribution (OOD) sample is an open problem in the domain of

DL. Often a crucial problem in the medical setting is deciding whether a model is being used

in a environment other than the study.

The machine learning community has traditionally built models that achieve high classifica-

tion accuracy on a test set, supposedly derived from the same distribution on which the model

is being trained. In reality, however, the data the model is being trained on, usually varies from

the data on which the model is being deployed [27]. Patients population vary in demographics

and in disease presentation between different locations, and these characteristics change with

time. Furthermore, datasets are mostly obtained from a few sites with specific procedures for

the acquisition of images that may not generalize to other sites [28]. For this reason, it is

important to comprehend, how a model makes predictions, beyond optimizing performance

on a predefined test set. This provides clinicians with insight as to, when the model will fail.

Such intuition enables better model development by targeting data collection to challenge out-

of-distribution samples, or by modifying model architectures or by using loss functions to

reduce these errors. Moreover, when the model makes a prediction for an inappropriate rea-

son, instead of showing the prediction, the system may refer patients to clinicians. Saliency

maps have become a common post-hoc interpretability method for CNNs. These maps are

designed to highlight the salient components of medical images which are critical for predic-

tion of the model. This article presents a framework for the segmentation and multiclass classi-

fication of skin lesion images by incorporating uncertainty estimation and explainability.The

proposed framework called SkiNet will delve into these pertinent issues. The main contribu-

tions of the work are as follows:

• Evaluated various methods like U-Net, and MultiResUnet for skin lesion segmentation.

Bayesian variant of MultiResUNet is proposed, which provides an uncertainty estimate

along with the segmentation map.

• Evaluated the effectiveness of various off-the-shelf CNN models for lesion multiclass classifi-

cation. We have analysed the performance of Bayesian variants of the top performing classi-

fication models.

• Studied the impact of epistemic and aleatoric uncertainty estimation for the top performing

classification model.

• Explainability is built into the proposed framework in the form of saliency maps to build the

confidence and trust of the medical community in using such models. Comparative analysis

of various saliency methods is performed to understand the optimal technique for post-hoc

interpretation of skin lesion diagnosis.

• Evaluated the effectiveness of the two-stage SkiNet framework.

The proposed study is beneficial in terms of generalisation and out-of-distribution data

since, during training, the interpretability study can clearly aid to identify the important

regions that the model is focusing on, rather than the model’s decision being purely coinciden-

tal. It aids generalisation in the long term since the model concentrates on the same salient

regions even when out-of-distribution data is provided.
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This paper is organised as follows. The Related Works section provides an overview of

various skin lesion segmentation and classification methods. The Materials and Methods dis-

cusses the methods employed in our SkiNet pipeline along with the dataset used for experi-

mentation. The different metrics used in order to measure the performance of our proposed

SkiNet pipeline are discussed in the Experiments section. This is followed by the Results sec-

tion, which presents a comprehensive analysis of various experiments of the SkiNet framework

and demonstrates the robustness of the proposed framework. The Discussion section illus-

trates the effectiveness of the proposed SkiNet framework. Finally, a brief conclusion and its

future scope, is given in the Conclusion section.

Related works

A significant amount of research has been conducted over the past few decades in the field of

medical image processing especially for early skin cancer diagnosis. In this section we will first

discuss about some traditional techniques that were initially used for skin cancer diagnosis,

then we’ll further discuss about the new techniques that were pioneered with the advent of

deep learning. We also explore uncertainty estimation and explainable AI, and how they’re

changing the landscape.

Traditional techniques

The earliest CAD system for the diagnosis of skin cancer can be traced back to the late 1980s

when researchers used hand-crafted feature extraction techniques based on the ABCD dermo-

scopy rules, where the skin lesions were characterized based on Asymmetry, Border irregulari-

ties, Color distribution, and Dermoscopic structures [17, 18, 29]. Border detection, semi-

translucence detection, telangiectasia identification, and ulcer/crust detection were among the

hand-crafted feature extraction techniques [29]. Lesion segmentation and classification are the

two most vital tasks that researchers study to develop CAD systems. The lesion regions are

localized and the boundaries of the infected part are drawn in the segmentation task, whereas

the localized lesions are classified into the corresponding category in the classification job (i.e.,

melanoma, benign keratosis, etc). These tasks are challenging due to the variations in the

shape, colour, size, and location of lesions, as well as inter and intra-type lesions similarity [10,

30, 31]. Some other factors like low contrast between infected skin lesion pixels and surround-

ing areas, lesions from different classes having similar signs, and artefacts such as hair, air bub-

bles, etc., usually act as barriers to segmentation and classification steps [10, 32, 33].

Deep learning based techniques

Several techniques are introduced in the literature for lesion segmentation and classification.

For instance, recently, Bhageri et al. [32] introduced a three-stage segmentation scheme, where

in the first stage, off-the-shelf segmentation technique Mask RCNN [34] was used to detect

and segment lesions from various modes of an input skin image. In the second stage, a multi-

atrous full convolutional neural network was employed to combine the outputs of the Mask

RCNN and the input image to present more accurate segmentation results. Finally, in the third

stage, a geodesic method was used to modify the boundaries of the lesions. In [2] a DL based

saliency segmentation method and CNN feature optimization technique using an improved

moth flame optimization algorithm were employed for lesion segmentation and classification.

Khan et al. [35] introduced a unique skin lesion detection and classification technique based

on probabilistic distribution and feature selection. In the article to segment the lesion region,

normal and uniform distributions have been used. The features were then taken from the seg-

mented images and combined using a parallel fusion approach. The entropy-based technique
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has been integrated with the Bhattacharyya distance and variance formulation for feature

selection. Al-Masni et al. [36] proposed a hybrid model for the classification and segmentation

of numerous skin lesions. For segmentation of lesion components, a full-resolution convolu-

tional network was used, wherein off-the-shelf deep CNN architectures have been incorpo-

rated to classify the segmented skin lesions. Yu et al. [37] designed a hybrid deep learning

network with local descriptor encoding wherein deep ResNet features were combined with

statistical fisher representations to discriminate between distinct skin lesions using an SVM

classifier with a Chi-squared kernel. Recently, Kadry et al. [38] employed VGG-SegNet archi-

tecture to extract the melanoma regions from the given dermoscopy images.

Recently [10] introduced a two-stream deep neural network information fusion framework

for multiclass skin cancer classification. The proposed method is divided into two parts

wherein the first stream, a fusion-based contrast enhancement technique, have been proposed,

which feeds enhanced images to the pretrained DenseNet-201 architecture, and features were

then improved using a modified moth–flame optimization approach. A finetuned pretrained

MobileNetV2 is used in the second stream. Finally, using a new parallel multimax coefficient

correlation approach, the most discriminating features from both networks are merged. Khan

et al. [39] created a hybrid approach that combined the binary images produced by their pro-

posed 16-layered CNN with a higher-dimensional contrast transform-based saliency segmen-

tation. On the segmented lesion images, a pre-trained DenseNet-201 model was finetuned for

classification. After that, using the t-distribution stochastic neighbour embedding (t-SNE)

approach, the collected features from the two completely linked layers were down-sampled.

Finally, using a multi canonical correlation (MCCA) technique, these features are fused and

given to a multiclass Extreme Learning Machine (ELM) classifier. [16] performed segmenta-

tion using DarkNet-19 and image fusion-based approach. They extracted features from the

segmented masks using DarkNet-53 architecture, and feature fusion was performed using the

Parallel Entropy Correlation technique. The softmax classifier was used to predict the lesion

class using the entropy kurtosis controlled whale optimizer feature selection technique.

Uncertainty estimation and explainability

These aforementioned DL techniques over the last decade have improved their performance,

however, these methods are black box and lack mechanism for uncertainty estimation and

explainability; which are essential in the medical domain. Even though a deep learning model

is uncertain about a particular prediction, it would still make a definitive prediction, which

might be cataclysmic in the medical diagnosis scenario where there is a very high human, eco-

nomic, and social cost of error. Displaying a measure of certainty with traditional CAD predic-

tion would allow doctors to adapt their trust according to the model’s confidence. This aspect

of certainty and confidence was addressed in recent works like [40], where the stochastic active

contour segmentation approach was used to produce a large set of plausible segmentations,

and then the weighted sum of these segmentations was calculated to find the uncertain mar-

gins. Wang et al. [41] used test time augmentation for measuring uncertainty in the segmenta-

tion of MRI scans. Ghahramani et al. [42] proposed the use of dropouts as a Bayesian

approximation in order to calculate the model uncertainty. This method was utilized in [43,

44] to measure the uncertainty in classification and segmentation tasks in the medical scenario.

Unlike performance metrics such as accuracy, sensitivity, etc., explainability is not entirely

quantifiable; however, it is crucial to understand what the model is learning. Recent works [44,

45] have deployed techniques like Guided Backprop and Grad CAM to highlight the essential

features that contribute to the DL model’s prediction. This article will attempt to incorporate

uncertainity and explainability using a two stage Skinet Framework.
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Materials and methods

Dataset for lesion segmentation and classification

The ISIC 2018 [46, 47] task 1 dataset has been used in order to train the segmentation model.

It consists of about 2594 RGB images and their respective ground truths. The input images

were resized to 224×224 with bicubic interpolation and normalized to the [0, 1] range.The

classification model was trained and tested on the ISIC 2018 [46, 47] task 3 dataset. The task 3

data contained 10015 dermoscopic images over seven classes viz. Melanoma (MEL), Melano-

cytic Nevi (NV), Basal Cell Carcinoma (BCC), Actinic Keratoses and Intraepithelial Carci-

noma (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF), and Vascular lesions (VASC)

as shown in Fig 1. The dataset suffers from severe class imbalance issues; hence the data was

augmented through vertical, horizontal flipping and random rotations in the range of [−65,

65]. The resulting augmentation is an offline augmentation, which contains 13,302 images that

have been resized to 450×600. Hence when an image is passed from segmentation output to

classification input, it is resized accordingly.

Methods

In this section we discuss various methods employed in our SkiNet framework. Our proposed

SkiNet framework as illustrated in Algorithm 1 is a two-step process (i.e, lesion segmentation

and classification) which incorporates the uncertainty estimation and the explainability of the

algorithm’s decision. In the first step, we perform segmentation to extract key regions from the

input image and then feed this segmented image to our second step which is classification,

provided the segment produced is certain or else the original image itself is passed to the sec-

ond step. If the proposed algorithm is uncertain about its final diagnosis then it would suggest

for expert intervention else it would give results with confidence and also show the key pixels

which played an essential role in the decision-making process. We have set the uncertainty

threshold φT as 0.25 for segmentation and 0.35 for classification which we have arrived at after

experimentation to improve model performance.

This subsection discusses the methods for estimating the associated uncertainty and incor-

porating interpretability in our model. Further, it describes segmentation and classification

techniques suitable to the task at hand.

Algorithm 1 SkiNet framework/pipeline
1: procedure Given image I, Segmentation model Ms, Classification
model Mc
2: Pass I through Ms
3: Get segmented image S and estimate uncertainty metric φ
4: if φ < φT then . φT = 0.25 for segmentation
5: Pass S through Mc . S certain
6: else
7: Pass I through Mc . S uncertain
8: Get predicted class P and estimate uncertainty metric φ
9: if φ < φT then . φT = 0.35 for classification
10: I is diagnosed as predicted class P . P certain
11: else

Fig 1. Visual examples depicting the seven categories of pigmented skin lesions.

https://doi.org/10.1371/journal.pone.0276836.g001
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12: Go for physician’s second opinion . P uncertain
13: Get Explainability map X

Methods for uncertainty estimation. CNNs have some shortcomings despite their prog-

ress in a wide range of applications. One of the concerning drawbacks among them is its

inability to provide a notion of uncertainty in its prediction, which is crucial in the medical

domain [48]. For example, in a case where the CNN model was trained on a range of car data

in order to predict the category to which the given car belongs, the hypothetical model should

return a prediction with a high level of confidence. But what if the model is validated with a

bike image and asked to choose a car category? This is a situation where the test data is far

from the distribution as the model is trained on distinguishing among various car classes and

have never seen the image of a bike. In such cases, the model is expected to return a prediction

and some additional details communicating the high degree of uncertainty with these kinds of

data. Uncertainty estimate can be used to assess samples which are difficult to identify, thereby

requiring a further expert review, and to detect samples that deviate from the data used to

train the model.

There are mainly two types of uncertainty viz., Aleatoric and Epistemic uncertainty [49].

Aleatoric uncertainty captures noise inherent in the data and cannot be abated by collecting

more data [50]. Epistemic uncertainty, also known as model uncertainty, accounts for variabil-

ity in the parameters of the model and analyzes what the model is not aware owing to the lack

of training data [42]. Epistemic uncertainty is helpful to understand examples that vary from

training data especially in situations where we have small and imbalanced datasets, which is

common in CAD systems [50].

Uncertainties are formulated as probability distributions over the model parameters (for

epistemic uncertainty) or model inputs (for aleatoric uncertainty) [42]. Bayesian statistics have

largely inspired most of the work done till now on uncertainty estimation techniques. Bayesian

Neural Network (BNN) [51] is the probabilistic variant of the traditional neural networks and

provides a mathematical framework for uncertainty estimation. Most of the earlier works on

epistemic uncertainty estimation are based on Bayesian inference. However, in practice, Bayes-

ian inference is computationally expensive; therefore, extensive research has been done in

developing various techniques to approximate Bayesian deep networks although they are not

scalable for larger convolutional networks [52–55]. Research has also been carried out to

develop alternative strategies, which are suitable for approximating the uncertainty [42, 56].

The work proposed by [42] demonstrated how dropout [57] applied on a neural network with

an arbitrary number of layers is mathematically equivalent to estimating variational inference

in Gaussian process model [58]. This was later extended to CNNs in [59] explaining that drop-

out can be used to enforce a Bernoulli distribution over the weights of the CNN without any

additional model parameters. This method is known as Monte Carlo (MC) Dropout and is

successfully employed in some of the applications in the medical imaging domain [26, 60].

The dropout layers are generally added in many deep neural networks to reduce overfitting

by randomly dropping weights with a fixed probability. Inspired by the capability of the

MC-Dropout technique in estimating uncertainty, we employ the same to build our proposed

model. Given a test sample s
�

, we sample the network B times over its parameters and thereby

giving an estimate of the predictive posterior distribution. This sampling is known as Monte

Carlo sampling and the mean μe over these iterations is considered as the final result on a

given test sample. μe is computed as shown in the equation below [42]

me �
1

B

XB

m¼1

pðy�js�; Ŵ BÞ ð1Þ
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where Ŵ B denotes the weights of the network with dropouts in Bth MC iteration and B is the

total number of sampled sets of weights. Among several classes y�, the one with μmax is selected

as the outcome for each test sample s�.
Aleatoric uncertainty captures noise inherent in the data and cannot be abated by collecting

more data [50]. Aleatoric uncertainty can be estimated either by learning a mapping directly

from the input data [50] or by test-time data augmentation [41, 61, 62]. However, the former

technique suffers from the drawback, as is it involves adapting the network architecture and

loss function, which restricts the application to trained models. Therefore, we employ test-

time data augmentation technique in our pipeline. In this approach, a test sample s� is aug-

mented to form V different versions of the image and is forwarded to the network. The mean

μa over these iterations is considered the final result of a given test sample. μa is computed as

shown in the equation below [50]

ma �
1

V

XV

v¼1

pðy�js�v ; ŴÞ ð2Þ

where s�v denotes the vth augmented image, Ŵ denotes the weights of the network and V is the

total number of image augmentations. Among several classes y�, the one with μmax is selected

as the outcome for each test sample s�.
These two approaches are then combined to calculate the overall uncertainty where a test

sample s� is augmented to form M different versions of the image and is forwarded to the net-

work with the dropout activated during the test time. The mean μ over these iterations is con-

sidered as the final result on a given test sample. μ is computed as shown in the equation below

[41, 61]

m �
1

M

XM

m¼1

pðy�js�m; Ŵ mÞ ð3Þ

where s�m denotes the augmented image passed and Ŵ m denotes the weights of the network

with dropouts during the mth iteration and M is the total number of iterations. Among several

classes y�, the one with μmax is selected as the outcome for each test sample s�.
In order to estimate the model uncertainty φ, we calculate the entropy of the averaged prob-

ability vector across the N classes using the equation as given below [41, 61, 62]

φ ¼ �
XN

n¼1

pnlogpn ð4Þ

here pn is the probability of nth class.

Methods for explainability. CNNs lack interpretability, which is an essential requirement

in the medical domain due to the possibility of life-threatening consequences. A medical prac-

titioner needs to understand the key features in the image used by the given model to make

predictions to verify if it is consistent with medical knowledge and build trust in the model’s

capability. While interpretability is desirable in all domains, since medical practitioners have

to deal with medico-legal, ethical, and strict regulations it becomes all the more essential in the

medical domain. Recently, there has been considerable research on saliency methods that

relate CNNs prediction to the inputs that have maximum influence on the prediction. These

techniques may be useful in a variety of ways, including tracking a model’s assessment, ensur-

ing that the model does not learn false correlations, and evaluating the model for issues related

to fairness [63, 64].
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Saliency based methods can broadly be classified into two categories. One collection of

methods modifies the input and computes the effect of this change on the output by making

a forward pass through the network using these altered inputs [65, 66]. The other set of

approaches calculate attributions by returning the prediction score back to the input features

through each layer of the network. In general, second category methods are faster than the ini-

tial set of methods, as they usually require a single or constant number of neural network que-

ries [67]. Guided Backprop [68], Grad CAM [64], Guided GradCAM [64] and XRAI [67] are

some of the promising approaches in this category. Therefore we explore these techniques in

our approach to bring model interpretability in the context of skin lesion detection.

Guided Backpropagation is a technique for visualizing CNN by slightly modifying the

backpropagation algorithm wherein the negative gradients are set to zero in each layer, allow-

ing only positive gradients to flow backwards through the network. Guided Backpropagation

is a combination of Backpropagation and deconvolution. During forward pass, due to the pres-

ence of ReLU activations, all the negative input values passed through neurons are set to zero.

Therefore, during the backward pass of Backpropagation, the gradients don’t flow back

through these neurons. In deconvolution, during the backwards pass all the negative gradients

are suppressed to zero. In guided Backpropagation, both the negative gradients and the gradi-

ents with negative input are suppressed to zero. The rationale behind this modification is that

all the positive gradients of higher magnitude imply key pixels, while negative gradients denote

the pixels the model wants to suppress.

Grad-CAM provides a visual explanation by leveraging the gradient information coming

into the final convolutional layer. The last layer is chosen as it provides the best tradeoff

between detailed spatial information and high-level semantics [64]. It considers the convolu-

tional layer since the convolutional features generally possess spatial information. The key pix-

els responsible for categorising a particular class are determined by forward propagation

through the network by obtaining gradients for each class. The gradients during backpropaga-

tion are average-pooled to obtain the weights that are important for the target class prediction.

The weights obtained are combined with activations maps using ReLU operation to compute

the Grad-CAM heatmap. To generate a Grad-CAM heatmap Ve
Grad� CAM 2 R

w�h, of width w
and height h for a class of interest e, the gradient of the score of class e, ze is calculated with

respect to the feature maps Fa i.e@ze

@Fa. Then these gradients are global average pooled to get the

neuron importance weights b
e
a using the equation given below [64]:

b
e
a ¼

1

G

X

k

X

l

@ze

@Fa
kl

ð5Þ

1

G

P
k

P
l correspond to the global average pooling. The b

e
a represents a partial linearization

[64] of the network downstream from F for a class of interest e.Finally to obtain the heatmap, a

weighted combination of forward activation maps is computed followed by a ReLU as given

below [64].

Ve
Grad� CAM ¼ ReLU

X

a

b
e
aFa

 !

ð6Þ

Guided Grad-CAM overcomes the drawback of Grad-CAM, which is the inability to show

fine-grained importance like Guided Backpropagation, a pixel-space gradient visualization

method [64]. Guided Grad-CAM is the blend of Guided Backpropagation and Grad-CAM

algorithms via pointwise multiplication to incorporate the advantages of both methods. First,

the heatmap Ve
Grad� CAM of an input image is obtained via Grad-CAM. Then, this heatmap is
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upsampled to the input image resolution. Finally, it is pointwise multiplied with Guided Back-

propagation to get Guided Grad-CAM visualization. The resultant visualization has high reso-

lution and is class discriminative.

XRAI is the most recently proposed saliency method based on Integrated Gradients [69]

that decides the key inputs by changing the network input from baseline to the original input

and consolidating these gradients. It begins by segmenting the image using Felzenswalb’s

graph-based segmentation [70] technique, followed by repeated testing of the significance of

each segment using attributions. Integrated gradients are used as attribution with black and

white baselines to resolve their setback as they are insensitive to pixels similar to or equal to

the baseline image. Thus, every pixel gets an equal chance to contribute to the attributions

regardless of the distance from the baseline. Finally, it merges regions with a higher positive

value of the sum of all the attributions of that region until it has the complete image as the

mask or runs out of regions to add [67].

Methods for segmentation. In medical image analysis, some pixels in the image contain

vital information that might play a crucial role in decision-making, thereby providing a ratio-

nale for the treatment. Segmentation would help in augmenting the classification model per-

formance in most cases and, furthermore, would reduce the computation time [71]. In the

latter part of the last decade, CNN based segmentation algorithms performed well in biomedi-

cal image segmentation tasks. More importantly, U-Net [72] has emerged as one of the most

promising architecture in this domain and has been applied to various image segmentation

tasks [73–75].

U-Net defined the state of the art in the medical image segmentation tasks [76], however it

is not robust enough to analyze objects in the image present at different scales. One of the

novel ideas of U-Net architecture has been the implementation of shortcut links between the

corresponding layers before the max-pooling and after the deconvolution operations, to relay

the spatial information that gets lost from encoder to decoder during the pooling process. The

dispelled spatial features though retained, still suffers from shortcomings in the skip connec-

tions i.e., there is a plausible semantic gap between the two sets of features being merged. The

features from the encoder are supposed to be lower-level features, and on the contrary, the

decoder features are of much higher level because they come from deeper layers after fairly

complex computation [77].

In order to tackle the shortcomings discussed above, [77] proposed few structural changes

in the form of ‘MultiRes block’ and ‘Res path’ to the U-Net architecture drawing inspiration

from [76, 78, 79]. Inspired by the sucessful working of MutiRes block and Res path structures,

we employ it in our segmentation architecture known as Bayesian MultiResUNet. Similar to

the Inception blocks [80], where convolutional layers of different kernel sizes are adopted to

inspect the points of interest in images from different scales, MultiRes blocks employs 3 × 3,

5 × 5 and 7 × 7 filters in parallel with the larger and computationally expensive 5 × 5 and 7 × 7

blocks factorized as a succession of 3 × 3 without affecting the objective function [78]. Addi-

tionally, MultiRes blocks contain 1 × 1 convolutional layers, for better comprehension of spa-

tial information as shown in Fig 2. Rather than just concatenating the feature maps from the

encoder stages to the decoder stages as in the shortcut connection of U-Net, Res paths transfers

them through a chain of convolution layers with residual connections and then concatenates

them with the decoder features to mitigate the gap between encoder and decoder features. Res

path is represented in Fig 3 below.

As depicted in Fig 4, Bayesian MultiResUNet has symmetric architecture where the

encoder is responsible for extracting spatial features from the input image while the decoder

produces the segmentation map using the encoded features. In the encoder, the weights

obtained from the MultiRes block are passed to a pooling block where a dropout layer is
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appended after the pooling operation and these acquired weights are used as an input to the

next MultiRes block. The fifth MultiRes block acts as a bridge between encoder and decoder

with three 3 × 3 convolution operations followed by one 1 × 1 convolutional operation. On

the other hand, the decoder begins at the upsampling block, which incorporates 2 × 2 trans-

posed convolution operation [81] to perform upsampling thereby reducing the feature chan-

nels by half. These weights are then passed on to the MultiRes block, similar to the encoder.

This succession of upsampling and MultiRes operations is repeated four times, reducing the

number of filters by two at each stage. Finally, a 1 × 1 convolution operation is performed to

generate the segmentation map. As we step towards the inner shortcut routes, the intensity

of the semantic gap between the encoder and the decoder function maps would possibly

decrease; thus we reduce the number of convolutional blocks, i.e., we employ 4, 3, 2, 1 convo-

lutional blocks respectively along the four Res paths. We use 32, 64, 128, 256 filters in the

blocks of the four Res paths respectively to compensate for the number of feature maps in

encoder-decoder similar to [77]. ReLU [82] activation function and batch-normalization

[83] are employed by all convolutional layers in this architecture, except for the final one

which uses a Sigmoid activation function.

Methods for classification. In our experimentation, we initially trained various off-the-

self Classification architectures like Inception [80], Xception [84], VGG-19 [85], DenseNet-

169 [86] and ResNet-50 [87]. Furthermore, we have selected the top two models and obtained

the Bayesian version of these networks by adding dropouts. The dropout can even degrade the

performance of the model; therefore we empirically evaluate the performance of several Bayes-

ian models with various configurations, which include the positioning of dropout layers as

well as the dropout rate, to identify those with the best performance of prediction for the skin

lesion classification task. Moreover, all the Bayesian networks employed in our analysis are

Fig 2. MultiRes block: The rounded rectangle represents a concatenation operation where the black block

represents a 3 × 3 convolution, the green block represents a 5 × 5 convolution and the red one represents a 7 × 7

convolution. Finally a skip connection is added along with 1×1 filter.

https://doi.org/10.1371/journal.pone.0276836.g002

Fig 3. Res path: The encoder features are passed through a series of convolutions instead of linearly connecting

them to the decoder features.

https://doi.org/10.1371/journal.pone.0276836.g003

PLOS ONE SkiNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0276836 October 31, 2022 11 / 26

https://doi.org/10.1371/journal.pone.0276836.g002
https://doi.org/10.1371/journal.pone.0276836.g003
https://doi.org/10.1371/journal.pone.0276836


approximate Bayesian models, as the exact Bayesian inference for neural networks is computa-

tionally intractable.

Experiments

Experimental setup

For the purpose of experimentation we have made use of a cloud based Nvidia RTX 2080ti

GPU. The segmentation models i.e the U-Net and Bayesian MultiResUNet were trained with a

learning rate of 10−3 which we have arrived at after suitable experimentation and a batch size

of 16 for better generalization. Different dropouts ranging between [0.4,0.7] were applied to

get the best model which would not overfit on the training data and produce uncertainty esti-

mates. A dropout rate of 0.5 was found to be optimum. For classification, Bayesian DenseNet-

169 and Bayesian ResNet50 models with dropouts were trained with a learning rate of 10−3

and a batch size of 16 and 32 respectively for better generalization. We have observed that it

takes around 30 epochs for the classification models to converge. Similarly 70 epochs for seg-

mentation models were found to be sufficient for convergence. Both the classification and seg-

mentation models were trained using Adam optimizer and binary cross entropy loss function

as given in equation below [88].

Hp qð Þ ¼ �
1

C

XC

i¼1

yilogðpðyiÞÞ þ ð1 � yiÞlogð1 � pðyiÞÞ ð7Þ

Here C is the number of samples, yi is truth value of the ith sample and p(yi) is the probabil-

ity that ith sample belongs to a particular class.

Evaluation metrics

This section discusses various evaluation metrics to validate the classification, segmentation,

uncertainty estimation, and explainability methods.

Metrics for classification. For classification, we employ accuracy metric and F1-score as

given in the equations below.

Accuracy ¼
Tp þ Tn

Tp þ Fp þ Tn þ Fn
ð8Þ

Fig 4. Bayesian MultiResUNet comprises an encoder and a decoder pathway, with skip connections and dropout layers between the

corresponding layers in pooling and upsampling blocks.

https://doi.org/10.1371/journal.pone.0276836.g004
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Here Tp represents True Positives, i.e, the number of samples correctly predicted as belonging

to a given class. True negatives is given by Tn, which denotes the number of samples correctly

identified as not belonging to a given class. Fp and Fn denote the false positive and false nega-

tive sample predictions respectively.

F1 score is the harmonic mean of precision and recall [89]. Recall is defined as the number

of true positives Tp over the number of true positives Tp plus the number of false negatives Fn

[90] while Precision is given by the number of true positives Tp divided by the number of true

positives Tp plus the number of false positives Fp [90]. F1−score is a more robust metric to eval-

uate the classification performance as it takes into consideration the class imbalance problem

by giving equal importance to precision and recall, thus involving both false positives and false

negatives. For classification tasks where both precision and recall are of high significance,

F1-score should be maximized. F1 score ranges between 0 and 1, reaches the best value of 1

when the balance between precision and recall is perfect. F1−score is calculated as given

below.

F1 � score ¼ 2 �
Precision� Recall
Precision∔Recall

ð9Þ

Metrics for segmentation. We have employed commonly used metrics such as Dice coef-

ficient (DI) and Jaccard index (JI) to quantify image segmentation efficiency. Both these met-

rics essentially measure the similarity between the ground truth and the predicted segmented

image in terms of the extent of overlap between the two images. The Dice coefficient (DI) is

given by

DIðM;CÞ ¼ 2�
jM \ Cj
jMj þ jCj

ð10Þ

The Jaccard index is given by:

JIðM;CÞ ¼ 1 �
jM \ Cj

jMj þ jCj � jM \ Cj
ð11Þ

where M represents the ground truth of segmentation, which is normally a manually-identified

salient region, and C represent a mask.

Metrics for uncertainty. Uncertainty is measured using monte carlo dropout and test-

time data augmentation. As mentioned in the above section, we calculate uncertainty φ but the

range of these values would vary depending on the number of Monte Carlo samples. Hence we

calculate normalised uncertainty φnorm where φnorm 2 [0, 1] [43].

φnorm ¼
φ � φmin

φmax � φmin
ð12Þ

To split the predictions into certain and uncertain categories, we set a threshold φT 2 [0, 1]

where a prediction is deemed to be certain if φnorm < φT and uncertain if φnorm > φT.

When it comes to classification, we usually end up with 4 kinds of predictions i.e incorrect-

uncertain (iu), correct-uncertain (cu), correct-certain (cc), and incorrect-certain (ic) predic-

tions, where incorrect-uncertain(iu) refers to a prediction that was incorrect and the model

was uncertain about it. Correct-uncertain(cu) refers to one where the model prediction is cor-

rect but the model is uncertain about it. The remaining correct-certain(cc) and incorrect-cer-

tain(ic) refer to predictions that were correct or incorrect but the mode is certain. The overall

accuracy of the uncertainty estimation could be expressed as a ratio of all the desirable cases i.e
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correct-certain (cc) and incorrect-uncertain (iu), and all the possible cases. This diagnostic

accuracy(A) can be represented in the form [43]

A φT

� �
¼

Lcc þ Liu

Lcc þ Liu þ Lcu þ Lic
ð13Þ

where L represents the count for each possible combination.

Metrics for explainability. Different explainability techniques like Grad-Cam, Guided

Backprop, Guided Grad-Cam, and XRAI have been discussed in the previous section. To com-

pare the performance of these techniques, we have used the bokeh effect and measured the

accuracies as mentioned in [67]. The basic intuition behind this analysis is that if the above

explainability techniques identify important pixels to the model’s prediction, then the model’s

output of the original image and reconstructed image must go hand in hand [67]. Therefore,

the bokeh effect is used to reconstruct the image, in which initially the original image is blurred

and the important pixels given by the explainability techniques are added. This is done for the

entire test set. Later the resultant images are passed through the classification model. The

explainability techniques used are thus compared using the prediction accuracy of the classifi-

cation algorithm on these reconstructed images.

Results

In this section, we analyse the different parts of the SkiNet framework to demonstrate its effi-

cacy. We emphasize the use of our framework using incremental experiments in order to jus-

tify its use. The following experiments have been performed:

Experiment 1: Comparative analysis of segmentation techniques for preprocessing

As observed in [33], the U-Net architecture appears to be the most effective when compared

to other traditional segmentation architectures. The MultiResUnet architecture as observed in

[77], was developed on the U-Net and demonstrated better effectiveness especially in the area

of medical image processing. We have therefore trained Bayesian versions of MultiResUNet

and U-Net. As observed in Table 1, the Bayesian MultiResUnet has outperformed other seg-

mentation models. Hence we incorporated the Bayesian MultiResUnet as a part of the segmen-

tation process for our SkiNet framework. Fig 5 corroborates the results as shown in Table 1.

As observed in Fig 6, the light greenish black region represents the uncertain region in our

segmentation map. From Fig 6, we observe that the segmentation map produced for image Fig

6(a)is certain as aleatoric, epistemic and combined uncertainty values are well within the

defined threshold. Moreover, Fig 6(b)–6(d)convey the same as the uncertain region is less in

these segmentation maps. The same cannot be said regarding the maps produced for images

Fig 6(e) and 6(i) as all uncertainty values are higher than the uncertainty threshold, the same

can also be observed in the uncertainty maps Fig 6(f)–6(l)as significant region is highlighted as

uncertain. We could also observe that the combined uncertainty maps look quite similar to

that of the aleatoric uncertainty maps and that the combined uncertainty score is close to the

Table 1. Comparitive study of various segmentation models on the ISIC 2018 Task-1 dataset.

Model Dice Coefficient Jaccard Index

U-Net 0.813 0.734

Bayesian U-Net 0.846 0.760

MultiResUNet 0.844 0.759

Bayesian MultiResUNet 0.852 0.767

https://doi.org/10.1371/journal.pone.0276836.t001
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aleatoric uncertainty score. Hence we could say that the aleartoric uncertainty has a greater

contribution to the uncertainty in segmentation map.

Experiment 2: Comparative analysis of classification techniques

As observed in Table 2, The ResNet-50 and DenseNet-169 architectures perform better

than other classical CNN architectures. Hence, we trained using the Bayesian versions of these

architectures in order to estimate model uncertainty and classify the image. From Table 3, it

can be observed that the Bayesian DenseNet-169 performs well on the ISIC-2018 dataset when

compared to Bayesian ResNet-50. The McNemar test has been performed on the Bayesian

ResNet50 and Bayesian DenseNet169 models to test the statistical difference between models.

And the result of the experiment was statistic = 82.00 and p− value= 0.000, since p-value is less

than 0.05 we reject the null hypothesis and conclude that there is a statistically significant dif-

ference between the two models. Hence Bayesian DenseNet is the better model. We therefore

incorporate this classification model, as a part of our SkiNet architecture. Further, we studied

Fig 5. We clearly observe the Bayesian MultiResUNet outperform the U-Net with far more precise boundaries.

https://doi.org/10.1371/journal.pone.0276836.g005

Fig 6. Uncertainty estimation of the Bayesian MultiResUNet.

https://doi.org/10.1371/journal.pone.0276836.g006
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the performance of the Bayesian DenseNet-169 model over each lesion category and demon-

strated the accuracy and F1-score for the same in Table 4.

Examples of posterior probability distributions for each category discussed in the Methods-

section could be observed in Fig 7.

Experiment 3: Which uncertainty type has higher impact on model performance?

The uncertain and misclassified images are examined for various uncertainty strategies on

the best model i.e Bayesian DesneNet-169 to see which sort of uncertainty has the most impact

on model prediction. Table 5 shows that 209 of the 946 aleatoric uncertain images are misclas-

sified, accounting for 22% of the total aleatoric uncertain images. To put it another way, when

an image is aleatoric uncertain, there’s a 22% risk that it will be misclassified. Similarly, there is

a 36% and 19.6% likelihood of being misclassified for epistemic and combined uncertain

images, respectively. This obeservation is useful in a variety of medical circumstances, espe-

cially when the ground truth is unavailable. As a result, epistemic uncertainty has a greater

influence on a model’s decision.

Experiment 4: Comparative analysis of different explainability techniques

The explainability techniques as discussed previously has been compared and the result is

depicted in Table 6. It is clearly visible from the Table 6 that XRAI provides a more clear visu-

alisation of what our classification algorithm is learning. Hence we conclude that XRAI would

Table 2. Comparitive study of classification models on the ISIC 2018 dataset.

Model Prediction Accuracy(%)

ResNet-50 84.87

DenseNet-169 86.67

VGG19 80.18

Xception 83.41

Inception 82.86

ResNet-50 [43] 80.45

DenseNet-169 [43] 81.35

https://doi.org/10.1371/journal.pone.0276836.t002

Table 3. Comparitive study of Bayesian versions of top two classification models on the ISIC 2018 dataset.

Model Prediction Accuracy(%)

Bayesian ResNet-50 85.13

Bayesian DenseNet-169 87.35

Bayesian ResNet-50 [44] 82.37

Bayesian DenseNet-169 [44] 83.59

https://doi.org/10.1371/journal.pone.0276836.t003

Table 4. Class wise performance of Bayesian DenseNet-169.

Class Accuracy(%) F1-score

MEL 85.13 0.84

NV 90.66 0.89

BCC 90.82 0.91

AK 93.38 0.94

BKL 84.78 0.86

DF 89.9 0.92

VASC 90.51 0.90

https://doi.org/10.1371/journal.pone.0276836.t004
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be the best fit for the SkiNet framework and thus provide the best possible explanation behind

the prediction. From Figs 8 and 9, it can be observed that XRAI would be a better method aes-

thetically too in order to clearly explain the reason behind a particular classification.

Experiment 5: SKiNet framework performance

Using data of Table 7 and putting in Eq 13, we clearly observe that SkiNet has a better over-

all diagnostic accuracy(A) of 73.65% when compared to the 70.01% of the stand-alone Bayes-

ian DenseNet-169. It also performs better in terms of prediction accuracy(Eq 8) with an

accuracy of 88.46% when compared to the 87.35% of the Bayesian DenseNet-169 as seen in

Table 3.

Discussion

Sometimes, though a prediction maybe correct, it may be deemed as uncertain due to the high

uncertainty which is mainly caused by the presence of noise in the image. In the case of dermo-

scopic images, it is mainly in the form of sweat droplets, hair, other lesions etc. This noise

could be reduced with the use of segmentation which would crop the unnecessary part out and

Fig 7. Posterior probability distributions for each of the possible scenarios i.e incorrect-uncertain (iu), correct-

uncertain (cu), correct-certain (cc), and incorrect-certain (ic). Assuming that the combined φTis 0.35, the red region

indicates the posterior probability distribution for the incorrect class where as the green region indicates the posterior

probability distribution of the correct class.

https://doi.org/10.1371/journal.pone.0276836.g007

Table 5. Comparison of different uncertainty types.

Type Uncertain images Misclassified images

Aleatoric 946 209

Epistemic 251 91

Combined 1030 202

https://doi.org/10.1371/journal.pone.0276836.t005

Table 6. Comparative analysis between different explainability techniques.

Explainability Technique Accuracy

GradCam 73%

Guided Backprop 73%

Guided GradCam 77%

XRAI 84%

https://doi.org/10.1371/journal.pone.0276836.t006
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highlight the main region of the lesion. This phenomenon is clearly observed in Fig 10, where

sweat droplets and the unnecessary background is cropped out by the Bayesian MultiResUNet

present in the SkiNet pipeline. This improvement can be distinctly observed in the XRAI map

in Fig 11 where we clearly see that the algorithm now focuses on the lesion itself rather than

the unnecessary background. From Table 8, we observe that the uncertainty drop from 0.68 to

0.30 which is within the empirically calculated threshold φTof 0.35 thus leading to a certain

prediction.

Fig 8. Top regions of interest identified by XRAI for classification made using the Bayesian DenseNet-169 which

is part of our SkiNet framework.

https://doi.org/10.1371/journal.pone.0276836.g008

Fig 9. Model’s region of interest depicted by XRAI and Guided Grad CAM. For the skin lesion in Fig 9a we observe

that the bottom right part of the skin lesion depicted in the XRAI heatmap in Fig 9b and Guided Grad CAM map in

Fig 9c is of importance to our model. This is clearly depicted by the top 10% and top 5% plots in Fig 8c and 8d,

showing that the model was heavily influenced by the dark red region. From Fig 9e, we observe that the top right part

of the lesion is of importance to the model. Fig 8g and 8h show that the model is influenced by the reddish pinkish

region present in the top right part of the skin lesion.

https://doi.org/10.1371/journal.pone.0276836.g009

Table 7. Categorical segregation of predictions made on our test data.

Category Stand-alone Bayesian DenseNet-169 SkiNet Pipeline

Correct Certain(cc) 1602 1727

Correct Uncertain(uc) 722 627

Incorrect Certain(ic) 76 74

Incorrect Uncertain(iu) 261 233

https://doi.org/10.1371/journal.pone.0276836.t007
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Similarly, in Fig 12, the SkiNet pipeline has eliminated the water droplets in the segmenta-

tion step which changed its prediction from Incorrect Uncertain to Correct Certain as

observed in Table 9. This also helps the XRAI to identify salient regions instead of focusing on

droplets as shown in Fig 13.

Fig 10. Image received by the Classification Algorithm (a) Image passed into stand-alone DesNet-169 (b) Image

passed after segmentation step of SkiNet framework.

https://doi.org/10.1371/journal.pone.0276836.g010

Fig 11. Regions of Interest identified by XRAI a.) Before Segmentation b.) After Segmentation.

https://doi.org/10.1371/journal.pone.0276836.g011

Table 8. Comparitive analysis between the performance of a Stand-alone DenseNet-169 and the SkiNet pipeline of

image in above figure [CU!CC].

Stand-Alone DenseNet-169 SkiNet Pipeline

Ground Truth MEL MEL

Prediction MEL MEL

Uncertainty 0.68 0.30

Category Correct Uncertain Correct Certain

https://doi.org/10.1371/journal.pone.0276836.t008

Fig 12. Image received by the Classification Algorithm (a) Image passed into stand-alone DesNet-169 (b) Image

passed after segmentation step of SkiNet framework.

https://doi.org/10.1371/journal.pone.0276836.g012
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From Fig 14 we observe that the Bayesian MultiResUNet present in the first step of our

pipeline helps in enhancing the lesion of the image and supports in cropping out the unneces-

sary background. In Fig 15, we observe that the area of interest for the classification algorithm

rather remains similar before and after segmentation but with expulsion of the unnecessary

Table 9. Comparitive analysis between the performance of a Stand-alone DenseNet-169 and the SkiNet pipeline

[IU!CC] of above image.

Stand-Alone DenseNet-169 SkiNet Pipeline

Ground Truth MEL MEL

Prediction NV MEL

Uncertainty 0.45 0.04

Category Incorrect Uncertain Correct Certain

https://doi.org/10.1371/journal.pone.0276836.t009

Fig 13. Regions of Interest identified by XRAI a.) Before Segmentation b.) After Segmentation.

https://doi.org/10.1371/journal.pone.0276836.g013

Fig 14. Image received by the Classification Algorithm (a) Image passed into stand-alone DesNet-169 (b) Image

passed after segmentation step of SkiNet framework.

https://doi.org/10.1371/journal.pone.0276836.g014

Fig 15. Regions of Interest identified by XRAI a.) Before Segmentation b.) After Segmentation.

https://doi.org/10.1371/journal.pone.0276836.g015

PLOS ONE SkiNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0276836 October 31, 2022 20 / 26

https://doi.org/10.1371/journal.pone.0276836.t009
https://doi.org/10.1371/journal.pone.0276836.g013
https://doi.org/10.1371/journal.pone.0276836.g014
https://doi.org/10.1371/journal.pone.0276836.g015
https://doi.org/10.1371/journal.pone.0276836


background which helps the algorithm to make a better prediction. Thus leading to an accu-

rate certain prediction as demonstrated by Table 10.

Conclusion

This article addresses the need to integrate explainability and uncertainty modeling in the

automated skin lesion diagnosis process. Our study shows that UNet and Multi ResUNet have

superior performance over other off-the-shelf segmentation architectures. We have therefore

trained the UNet and Multi ResUNet and their bayesian versions. We have also trained various

off-the-self classification models, and our experimentation shows that ResNet-50 and Desne-

Net-169 have superior performance comparatively, hence we have trained their bayesian veri-

sons. Finally we conclude that Bayesian MultiResUNet, DenseNet 169 are the best models for

segmentation and classification respectively. In this paper, we have proposed a novel SkiNet

pipeline for the diagnosis of skin lesion. The proposed Bayesian Multi ResUNet which is used

for segmentation, also produces uncertainty maps to incorporate the confidence measure. The

DenseNet-169 with added dropout has been used for classification and has demonstrated

superior performance over the original. The addition of segmentation as a pre-processing step

for classification has greatly helped the efficiency of the classification model. The uncertainty

score of the segmentation model’s output is used to pass only the most confident predictions

to classification model. The uncertainty score of the classification model tests the confidence

of the model’s prediction and suggests second opinion in the event of less positive predictions

thereby reducing misdiagnosis to some degree. The diagnostic accuracy of stand-alone Bayes-

ian DenseNet-169 is 70.01%, which further improved to 73.65% after performing segmenta-

tion using the proposed SkiNet pipeline. When deploying such models, one could use model

explanations to “gate” the use of the machine learning system. To build trust of the medical

community in the proposed model, we use an explainability map that shows the salient region

for the model. Using the saliency maps provided by various techniques such as GradCAM,

Guided Backprop, Guided GradCAM and XRAI, the original images are reconstructed with

the aid of Bokeh effect. They are then passed through the classification model and the accuracy

scores thus obtained clearly demonstrate a superior performance of XRAI with an enhanced

84% accuracy. The results of the proposed pipeline is quite encouraging and can be generalized

for other similar tasks in the medical domain. This article has used post-hoc interpretability

methods however, we would also like to explore some pre-hoc interpretation methods like

attention mechanism while training the model in order to further enhance the model’s

performance.
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