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Abstract 

Honeypot is an active defense mechanism, which attracts attackers to interact with virtual resources in the honeypot 
mainly by simulating real working scenarios and deploying decoy targets, so as to prevent real resources from being 
damaged and collect attackers’ attack processes and analyze potential system vulnerabilities to proactively respond to 
similar attacks. Because of the existing honeypot system has defects such as the inability to deploy specific honeypots 
to induce attacks based on complex attacks, the inability to select the best honeypot for dynamic response based on 
honeypot deployment and maintenance costs during attack interactions, and insufficient ability to identify variants of 
known attack methods. Although hybrid honeypots can solve some of these problems by deploying low-interaction 
honeypots and high-interaction honeypots, they cannot really be applied to real production scenarios because of 
their slow TCP connection switching speed and inability to efficiently identify encrypted malicious traffic. In this paper, 
we propose a new dynamic security defense system based on the combination of TCP_REPAIR-based dynamic honey-
pot selection architecture and a deep learning-based intelligent firewall. The system accurately distributes encrypted 
or non-encrypted attack traffic and its variants through the intelligent firewall. The normal traffic is sent to the actual 
system, and the marked malicious traffic dynamically selects honeypots to respond according to the attack process.
The experimental result indicated that the system can select honeypots for targeted responses according to the 
actual network situation quickly and dynamically and covertly, effectively improving the utilization rate of honeypot 
clusters as well as the ability to decoy.

Keywords  Honeynet, TCP_REPAIR, Convolutional neural network, Software-defined networking, Encrypted traffic 
detection, Cyber security

Introduction
With the continuous development of the Internet, the secu-
rity threats facing the Internet are also escalating. In the 
face of complex and changing attack methods, traditional 
network defense technologies such as firewalls, Intrusion 
Detection System (IDS), Intrusion Prevention System (IPS) 
and other passive defense methods [1] have difficulties in 

processing and responding to unknown and complex attack 
events such as encrypted malicious traffic rapidly. In order 
to cope with the current endless new network attacks and 
enhance the security of Internet information, the applica-
tion of active defense technology has become an urgent 
need for today’s network security defense technology.

Honeypot technology is an active defense technology 
that attracts attackers to conduct illegal applications by 
arranging decoy resources and then obtaining their attack 
process. Honeypot is essentially to arrange some bait 
hosts and network services to induce attackers to attack 
their exposed services, reproduce their attack process, 
analyze the attack flow and process, and apply them to 
the intrusion detection system to improve the network 
defense capability. Depending on their ability to interact 
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with attackers, honeypots can be classified into two types, 
High-Interaction Honeypots (HIH) and Low-Interaction 
Honeypots (LIH) [2]. High-interaction honeypots are 
usually built using real system environments, which can 
easily build complex honeypot environments with decoy 
functions; low-interaction honeypots are usually built 
using virtual simulation software, which isolates the real 
environment and is simple and less expensive to build, but 
it is easier to be detected by attackers because of the own 
virtual environment. The basic idea of hybrid honeypots 
[3] means that arranges a large number of low-interaction 
honeypots at the front-end and a small number of high-
interaction honeypots at the back-end to achieve attack 
capture and analysis by migration of traffic. However, the 
traditional honeynet, due to its coarse-grained data con-
trol, leads to various deficiencies of hybrid honeypots 
such as data connection control migration.

Encrypted malicious traffic identification techniques 
mainly identify and classify encrypted traffic by analyzing 
the statistical and time series features of data streams, using 
statistical models such as machine learning algorithms (e.g., 
support vector machines, decision trees, random forests, 
and other algorithms) [4–7] and Gaussian mixture models 
[8]. Although the above methods can solve many problems 
that cannot be solved by port- and payload-based methods, 
there are still problems such as the inability to automati-
cally extract and select features, the tendency of features to 
fail, and the need for continuous updating [9].

Based on the existing research work, this paper pro-
poses a new dynamic security defense system based on 
TCP_REPAIR and deep learning, which can divide the 
traffic (including encrypted and unencrypted traffic) 
entering the system through an intelligent firewall. There-
fore, normal traffic can access the real system normally 
and malicious traffic will be forwarded to the low-inter-
action honeypot automatically. When the low-interaction 
honeypot does not meet the attack depth, it will auto-
matically switch to the high interaction honeypot. Nor-
mal traffic will continuously pass through the intelligent 
firewall in transit; once the malicious traffic is flagged in 
transit, it will automatically switch the connection to the 
high interaction honeypot. The hybrid honeypot with 
low interaction and high interaction honeypots collects 
the attack process to provide a new type of attack process 
for the system and improve the security performance of 
the network. The main contributions in the paper consist 
of major two parts. The first part is to add the malicious 
encrypted traffic identification based on deep learn-
ing in the active defense system. It can make up for the 
defect that the traditional intrusion detection system in 
the hybrid honeypot can only identify the non-encrypted 
traffic. Secondly, we use the TCP live migration mod-
ule in the Linux underlying network communication. By 

saving the negotiation fields in the original connection in 
advance, the TCP_REPAIR technology is used to directly 
create a new TCP connection when the TCP connec-
tion is transferred. It can optimize the shorts in the tra-
ditional TCP connection switching process, which takes 
a long time during switching and is not hidden in the 
switching process. In this paper, we firstly summarize the 
current research on Software Defined Network (SDN), 
hybrid honeynets, and malicious traffic identification, sec-
ondly elaborate on the solution of this system, and finally 
design and implement the prototype system. The system 
is experimentally proven to have good performance. The 
rest of this paper is organized as follows: “Current status 
of research” section introduces the current research sta-
tus of SDN, hybrid honeynet, and encrypted malicious 
traffic identification; “The proposed program” section 
proposes the architectural solution of this system and 
the specific implementation plan of each module; “Func-
tionality review” section evaluates the indicators of the 
system through the overall usability and quantitative per-
formance tests of the system; “Concluding remarks” sec-
tion summarizes the problems of the system and future 
research directions through the test data of the system.

Current status of research
Software defined network
SDN [10] is a new network innovation architecture pro-
posed by the Clean-Slate research group at Stanford 
University, which is an implementation of network virtu-
alization. Its core technology, OpenFlow [11], provides a 
good platform for core network and application innova-
tion by separating the control plane of network devices 
from the data plane, thus enabling flexible control of net-
work traffic and making the network more intelligent.

SDN uses the idea of stratification to separate data from 
control. The overall architecture of SDN is divided into a 
data plane, control plane and application plane from south 
to north [12], as shown in Fig. 1. The data plane consists 
of switches and other network general-purpose devices 
that provide simple data forwarding functions, besides the 
SDN links are formed by different protocol rules between 
different network devices. The main function of the con-
trol plane which consists of the controller is to extract the 
matching function of route calculation from the traditional 
routers and let the controller perform the calculation 
uniformly; create forwarding rules for network traffic by 
mastering the global network information, and then dis-
tribute flow tables to the switches through the OpenFlow 
protocol [13]. The application plane mainly contains SDN-
based applications, and users can deploy new applications 
through the northbound interface without understanding 
the underlying details, which provides great convenience 
for the installation of intrusion prevention systems.
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SDN controllers have developed at a high rate in recent 
years and at this stage are divided into two main factions, 
one is the camp of network service providers such as 
operators, of which the main representatives are ONOS 
controllers [14] and Ryu controllers [15], and the other 
is the camp of network equipment vendors, of which the 
main representative is the OpenDayLight controller [16]. 
Since OpenDayLight controllers and ONOS control-
lers are mainly used for industrial applications and their 
architectures are more complex, scientific experiments 
usually use lightweight Ryu controllers. The current stage 
of the Ryu controller solution is mainly based on the 
OpenFlow protocol, where forwarding rules are first cre-
ated in the controller and passed through the OpenFlow 
protocol to the data plane to the switch, which matches 
the destination address according to the flow table. The 
main features of the OpenFlow protocol have changed 
significantly from version 1.0 released in 2009 to version 
1.5 in 2015, but the main enhancement is that version 1.5 
natively supports TCP keyword matching [17], so it can 
intercept TCP packets (including three handshakes) and 
can play an important role in task of targeted data inter-
ception based on TCP message headers.

Hybrid honeynet
The hybrid honeynet is mainly divided into front-end and 
back-end, where the front-end usually arranges a large 
number of low-interaction honeypots and the back-end 

usually arranges a small number of high-interaction hon-
eypots [18]; when the attacker’s attack arrives, the attack 
answers firstly through the front-end; when the attack 
depth is too deep it will let the back-end answer through 
connection conversion to make the overall utilization of 
the hybrid secret network increase [19].

The core of the hybrid honeynet is mainly the method 
of connection switching compared with the traditional 
honeynet.

Artail [20] et  al. use Honeyd’s built-in proxy function 
to redirect traffic to a high interaction honeypot, but this 
method does not install traffic filtering, so the backend 
is occupied by a large number of invalid connections, 
increasing the burden on the whole system.

Fan [21] et  al. proposed HoneyDOC architecture. 
The SDN store-and-forward strategy is used to switch 
TCP connections. During the connection switchover, 
the previously stored packets are replayed, and then 
the connection is established with the back-end hon-
eypot. The scheme has excessive storage requirements 
because the massive storage of malicious traffic packets 
is too burdensome for the system when a large number 
of attacks arrive.

Berthier [22] et  al. proposed HoneyBrid architecture 
based on traditional hybrid honeynets, which mainly 
implements redirection through NAT address transla-
tion devices, and then processes the Seq, ACK, and win-
dow size of TCP and then replay the message to achieve 

Fig. 1  SDN overall architecture diagram
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connection switching. Due to the use of NAT address 
translation, the switchover is perceived during the actual 
connection.

Encrypted malicious traffic classification
With the increasing awareness of Internet security and 
privacy protection and the widespread use of Hyper 
Text Transfer Protocol Secure (HTTPS), the encryption 
of Internet communication has become an unstoppable 
trend. Although traffic encryption makes information 
interaction more secure, encrypted traffic also poses a 
great challenge to Internet security (e.g., using encryp-
tion technology to spread illegal information). Tra-
ditional traffic classification is mainly based on port, 
payload and flow approaches. Among them, port-based 
approaches typically use the default port numbers of TCP 
and UDP protocols to infer the type of service or appli-
cation. However, the use of port masquerading random 
and tunneling techniques can evade the detection of this 
method. Payload-based methods, also called deep packet 
parsing Deep Packet Inspection (DPI) techniques [23], 
mainly match the contents of packets, and the method 
cannot handle encrypted traffic. The flow-based method 
mainly uses statistical and timing characteristics of pack-
ets using machine learning algorithms for modeling and 
identification, where the statistical models used to iden-
tify encrypted traffic are mainly Gaussian mixture and 
other models.

Machine learning-based traffic classification methods 
mainly use machine learning algorithms to model the 
identification for the problem. Soleimani [24] et  al. use 
machine learning methods for Obfs3, Obfs4 and Scram-
bleSuit traffic obfuscation plugins commonly used in 
Tor. It can quickly detect obfuscation-based plugins Tor 
traffic identification by using the information of the first 
10–50 packets of each stream, but the detection direc-
tion of this method is too homogeneous. ACETO [25] 
et  al. compared multiple deep learning algorithms with 
Random Forest (RF) based on different encrypted traffic 
datasets and showed that most of the deep learning algo-
rithms outperformed the Random Forest algorithm.

Deep learning-based traffic classification methods 
achieve high accuracy in classifying traffic mainly by 
using traffic features (packet-level features, session fea-
tures and statistical features), etc., through neural net-
work models such as Convolutional Neural Networks 
(CNN), Recurrent Neural Network (RNN), and AutoEn-
coder (AE) [26]. WANG [27] et  al. used a one-dimen-
sional vector to represent each flow or session to train 
CNN models, and the results demonstrated that the accu-
racy using CNN was much higher than the C4.5 method 
using temporal and statistical features. CHEN [28] et al. 
transformed temporal data into two-dimensional images 

and trained CNNs using two convolutional layers, two 
pooling layers, and three fully connected layers, and the 
results showed that the method outperformed machine 
learning methods.

The proposed program
Overall architecture
Based on the existing research work, the proposed new 
defense system architecture is shown in Fig. 2.

As can be seen from the above figure, the initial traf-
fic discrimination is performed by the intrusion detec-
tion system Snort in OVS when the traffic enters the 
system. If Snort detects that the traffic is normal and 
encrypted, the traffic is reviewed by the deep learning 
based malicious traffic detection module 1D-CNN to see 
if the traffic is malicious. If it is normal then it is sent to 
the normal host, otherwise it is malicious then it is sent 
down through the Ryu controller The flow table forwards 
the traffic to the low-interaction honeypot created by 
HFish. When the attack depth reaches a critical point, 
HFish activates the copy of the normal host of the timed 
snapshot as a high-interaction honeypot, while using a 
random fill form to overwrite the sensitive data, and then 
switches the connection to the high-interaction honey-
pot using the TCP_REPAIR Proxy.

Encrypted malicious traffic identification scheme
IDS is a network device or application that monitors net-
work transmissions in real-time. The overview of tradi-
tional IDS traffic classification methods mainly includes 
four categories: (1) pre-attack port scanning; (2) detec-
tion of payloads containing attacks in the communication 
process; (3) statistical traffic characteristics;(4) behav-
ioral analysis. Due to the development of random ports 
and port disguise and the popularity of traffic encryp-
tion, coupled with the low accuracy of the pre-attack 
port scanning method, and the detection of payloads 
in the communication process requires decryption of 
encrypted traffic, the traditional IDS for traffic classifica-
tion methods are no longer applicable to current network 
communications. Traditional statistical methods are used 
to analyze the strategy of big data, which usually can not 
do real-time analysis, mainly through a large number of a 
priori knowledge in the traffic to match. Behavioral anal-
ysis methods are similar. These two approaches are sum-
marized in two processes: feature extraction and feature 
matching. At this stage, the most advanced techniques 
for feature extraction training are machine learning and 
deep learning. Therefore, the use of machine learning or 
deep learning-based traffic classification can be applied 
to the current traffic encryption development status.
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Comparison of machine learning‑based and deep learning 
traffic classification
Machine learning traffic classification is generally divided 
into four steps: firstly designed traffic features and packet 
features manually; secondly, followed by extraction and 
selection from the original traffic according to the manu-
ally designed features; thirdly designed classifiers such as 
decision trees manually; finally input from the extracted 
and selected features into the classifier to get the output 
of traffic classification. This process is essentially a divide-
and-conquer idea, and the disadvantage of the divide-
and-conquer method is that the locally optimal solution 
is not necessarily globally optimal.

Traffic classification by deep learning is generally 
divided into two steps: first input of raw data and then 

deep learning algorithms such as CNN and RNN are 
used to learn the original data features and train the deep 
learning model at the same time. Finally, the trained deep 
learning model outputs the classification results for the 
new input data [29]. Depending on whether traffic fea-
tures are required and thus classified into supervised, 
semi-supervised and unsupervised learning [30].

Both hand-designed features and hand-designed clas-
sifiers in machine learning-based traffic classification 
require expert knowledge. Different feature designs and 
classifier designs can largely affect the final classification 
results. The method of feature extraction in deep learning 
is widely adaptable and more flexible in application.

The traffic classification module integrated in IDS 
needs to have end-to-end traffic classification function. 

Fig. 2  Overall system architecture
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Although machine learning can be used to identify 
encrypted traffic, the Disadvantages mainly include the 
inability to automatically extract features, the tendency of 
features to fail, and the need to manually design features 
and classifiers, which is contrary to the need for imme-
diate traffic classification in IDS. Deep learning-based 
traffic classification is selected based on the demand for 
greater extraction of encrypted traffic features to accu-
rately identify malicious traffic.

1D‑CNN model design
Deep learning is classified into unsupervised learn-
ing, semi-supervised learning. Because the accuracy of 
unsupervised learning classification is not high, and the 
acquisition of traffic characteristics required by super-
vised learning requires a lot of computing power, a semi-
supervised learning method combining labeled data and 
unlabeled data is selected.

Since CNN is mainly suitable for data where features can 
appear anywhere, objects are not subject to translation and 
distortion, and have strong local relevance. The traffic fits 

exactly the above characteristics. Therefore, CNN is chosen 
as the deep learning algorithm for training. The commonly 
used CNNs include 1-dimensional CNN, 2-dimensional 
CNN, and 3-dimensional CNN. 1-dimensional CNN is 
mainly applicable to sequence data, 2-dimensional CNN is 
mainly applicable to image and audio data, and 3-dimen-
sional CNN is mainly applicable to data such as video and 
volume images [31]. Although it has also been studied to 
classify traffic images by transforming the traffic into 2D 
images and then using 2D-CNN, 1D-CNN was chosen 
as the training algorithm based on the fact that the traffic 
itself is sequential data because the matrix computation of 
the images requires strong computer performance and is 
more time consuming to compute.

Based on the deep learn-based encryption traffic 
classification proposed by Wang [32] et  al., the origi-
nal model is improved according to the specific classi-
fication tasks in the system. The operation flow of the 
improved 1D-CNN model is shown in Fig. 3.

As can be seen from the above figure, the improved 
1D-CNN model mainly includes two parts, namely, the 

Fig. 3  1D-CNN operation flow
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preprocessing module and the training output module. 
The preprocessing module generates labeled and unla-
beled data by processing the original dataset, where 
part of the unlabeled data is used for testing and part for 
training. Since the model itself training process will pro-
duce errors, the Mini-batch Stochastic Gradient Descent 
(MBSGD) method is selected for model optimization. 
The final processed data and the originally reserved 
unlabeled data are used as the input of the 1D-CNN 
model, and then the model outputs the prediction results 
through training. The overall architecture of the CNN 
model is shown in Table 1.

Custom software defined networking SDN
Custom SDN consists of two main modules: Forward-
ing Decision Engine, and Redirected Forwarding Engine 
(TCP_REPAIR Proxy). It mainly contains traffic identifi-
cation, filtering and TCP switching.

Forwarding decision engine
The forwarding decision engine is mainly composed of the 
intrusion detection system Snort, 1D-CNN and Ryu con-
troller. It mainly consists of four forms of work. The first 
forms of work: To begin with, the traffic arrives at Snort, 
and Snort detects the port and payload of the traffic. If the 
port is an open port of the system and the payload is nor-
mal, it is marked as 0. If the traffic is encrypted, input it to 
1D-CNN module for testing again. If the traffic is normal 
after 1D-CNN testing, mark 0(at this time, the traffic is 
marked as 00), then it is determined that this traffic is nor-
mal traffic. The traffic is forwarded directly to the normal 
host by OVS through the Ryu controller downstream flow 
table, and the payload of the subsequent traffic does not 
have any abnormalities. The second one: Based on the first 
one, if Snort or 1D-CNN detects an exception in the subse-
quent payload (that is, the traffic is marked as 1), the traffic 
will be directly forwarded to the high interaction honey-
pot of the corresponding service. The third one: The traffic 
reaches Snort firstly, and Snort detects the port and payload 
of the traffic. If the port is an open port of the system and 
the payload is normal, it is marked as 0. Then it is input to 
the 1D-CNN module for testing again. After the 1D-CNN 

test, the abnormal traffic is marked as 1 (at this time, the 
traffic is marked as 01), and the traffic is forwarded to the 
low interaction honeypot corresponding to the request port. 
The fourth one: On the basis of the third, if the payload of 
the attack process is determined by the action in Snort’s 
msg to require forwarding to the high interaction honeypot, 
TCP_REPAIR is started to transfer the traffic originally con-
nected to the low interaction honeypot to the high interac-
tion honeypot. The specific flow is shown in Fig. 4.

The more important aspects of the system are the con-
nection selection algorithm, and the Snort alarm rules.

Snort has three main modes: sniffer, packet logger, and 
network intrusion detection system. Sniffer mode simply 
grabs packets from the network and displays them on the 
terminal; packet logger mode saves packets to disk; net-
work intrusion detection mode is the most complex, with 
high configurability. It allows Snort to analyze network 
traffic and react according to user-defined rules.

Due to the needs of the system, therefore, choose the 
Network Intrusion Detection System (NIDS) mode, 
which can respond by analyzing network traffic.

Snort alarm rules are as follows

Examples:
alter tcp any any - > 10.37.23.59/18 22 (logto: “ssh”; msg: 

“HIH”;)
TCP traffic accessing port 22 of network 10.37.23.59/18 

triggers this warning and issues a warning rule with the 
name ssh and the content HIH.

Because of the warning rules, the design creates four 
actions in the msg warning content, Real_System,1D_CNN, 
LIH, HIH, which represent forwarding to normal host, for-
warding to 1D_CNN, forwarding to low interaction hon-
eypots, and forwarding to high interaction honeypots, 
respectively. Forwarding to a specific honeypot requires the 
Ryu controller to send down the flow table to the switch to 

Table 1  CNN model parameters

Layer Operation Input Kernel Stride Pad Activation 
Function

Pooling Type Pooling Size/
Stride/Padding

Output

1 CONV 784*1 25*1 1 12 ReLU Max 3*1/3/1 262*32

2 CONV 262*32 25*1 1 12 ReLU Max 3*1/3/1 88*64

3 Full Connect 88*64 – – – – – – 1024

4 Full Connect 1024 – – – – – – 2

5 Softmax 2 – – – – – – 2
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complete, so the Ryu controller completes the forwarding 
after using Snort’s socket transmission alarm.

Pseudocode for connecting the selection engine in the 
controller.

Algorithm 1. Connection Selection Engine Algorithm

Redirected forwarding engine (TCP_REPAIR proxy)
The normal TCP connection process is shown in 
Fig.  5. Note that above the orange line are the TCP 
three-way handshakes, and below the orange line 
are the data exchanges after the TCP connection is 
established.

In a hybrid honeynet system, low-interaction honey-
pots mainly work at the early stage of the attack, that is 
the network segment information scanning phase. Dur-
ing the scanning probe phase, the attacker usually does 
not establish a full TCP connection with the target host 
in order to avoid the scanning behavior being recorded. 
Even if a TCP full connection scan is used, no subsequent 
data exchange occurs with the target host. Therefore, 
during a typical TCP connection, the arrival of the first 
PSH packet after three TCP handshakes can be used as a 
signal for connection transfer. The 1D_CNN of the smart 
firewall in this system detects encrypted malicious traffic 
as a signal for connection transfer to occur, and the steps 
are similar.

This module is mainly inspired from TCP connec-
tion switchover method proposed by Cunha [33] et  al. 
to perform connection hot migration at any stage of a 

Fig. 4  Traffic forwarding flow chart



Page 9 of 21Tang et al. Journal of Cloud Computing           (2023) 12:21 	

TCP connection through TCP_REPAIR mode in Linux, 
which greatly reduces the time loss and throughput 
loss of the switching process through the underlying 
Linux communication. The specific connection trans-
fer process is shown in Fig. 6. The typical TCP connec-
tion communication process is shown above the orange 
line, and the data connection transfer process is shown 
below the orange line.

The steps are described in detail below.

Step 1: The attacker wants to establish a TCP full 
connection with the real system via TCP three 
times handshake. At this point, since the attacker 
has not yet made a real attack, the Ryu controller 
will first intercept the three times handshake mes-
sages between the attacker and the real system 
by sending flow rules matching the relevant TCP 
keywords to the switch via OpenFlow 1.5, record-
ing the TCP negotiation parameters in them, and 
then the Ryu controller sends the flow table to the 

switch, which sends the connection messages to 
the real system. All TCP messages during the three 
handshakes are sent to Snort for detection, and the 
alert message msg is sent to the Ryu controller for 
determination. This step successfully isolates the 
large amount of scanned data in the network.
Step 2: After the Ryu controller receives the PSH 
packet, it first extracts the key fields such as 
sequence number, answer number and identifica-
tion number from the packet and saves the connec-
tion information. When the Ryu controller receives 
an alert message msg “HIH” from the IDS or when 
the encrypted traffic is marked as “1” by 1D-CNN, 
the Ryu controller initiates a TCP connection 
switch. First of all the Ryu controller sends Flow-
Mod, which temporarily takes over the connection 
from the attacker to the real system, and enters the 
attacker’s message into the Ryu controller via Packet-
In to prevent the real system from replying (to avoid 
further data leakage). Then the TCP_REPAIR Proxy 

Fig. 5  Flow chart of TCP connection and data exchange
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creates a socket and a new regular socket to connect 
to the high interaction honeypot. When the Ryu 
controller issues a “200 OK” to confirm that the sys-
tem is OK, it uses the TCP_REPAIR socket and the 
original TCP_REPAIR sockets saved by the Ryu con-
troller with the parameters of the real system. When 
the Ryu controller receives the “200 OK” confirma-
tion from the TCP_REPAIR Proxy that the system is 
ready, the Ryu controller temporarily connects the 

attacker to the real system. When the Ryu control-
ler receives the “200 OK” confirmation from TCP_
REPAIR Proxy that it is ready, it passes the packets 
of the attacker and the real system temporarily man-
aged by the Ryu controller to TCP_REPAIR Proxy 
via Packet-Out. TCP_REPAIR Proxy to submit the 
subsequent messages of this connection to the high 
interaction honeypot through the proxy to complete 
the connection transfer.

Fig. 6  Detailed flow of TCP switching
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Algorithm 2. TCP_REPAIR Socket Live Migration Algorithm

During connection transfer, the controller needs to save 
the negotiation parameters of the three TCP handshakes 
of the original active connection when implementing 
connection transfer through the sockets created by TCP_
REPAIR. The following are the negotiation parameters 
that need to be intercepted by OpenFlow 1.5 during the 
TCP handshake phase.

Window size
This field is for the receiver to inform the sender of the 
number of bytes it can currently receive.

TCP Optional
TCP options are located at the end of the TCP header, 
and only those options that will appear in [SYN] and 
[SYN, ACK] messages are analyzed here.

(1)	 Maximum Segment Size (MSS). Both sides of the 
TCP connection declare the MSS value in their 
respective SYN packets and choose the smaller of 
the two values as the negotiated value at the end 
of the handshake. The MSS is the most impor-
tant of the available options and the default size 
is 1460. Since this value is affected by other for-
warding devices on the chain, it needs to be set 
comprehensively considering the actual situation. 
To avoid packet loss, enable the path MTU dis-
covery mechanism for high interaction honey-
pots and set the firewall to allow ICMP message 
segmentation messages to pass. Alternatively, 
a simpler approach can be taken by setting the 
MSS to a smaller value of 1380 to accommodate 
most link conditions.

(2)	 Timestamp. The timestamp is used to calculate 
the round-trip delay. The sender puts the current 
timestamp into TSval when sending the mes-

sage, and the receiver puts it into TSecr when 
acknowledging the message. If the TCP commu-
nication parties negotiate the use of a timestamp, 
this option is included in each packet. As a conse-
quence, the controller can determine it through the 
PSH message. This value is modified in a similar 
way to the sequence number and answer number.

(3)	 Other options, such as SACK, window expansion 
factor, etc. Usually, since these options are rarely 
used in the SYN packets between the client and the 
server and cannot be inferred from the PSH pack-
ets, the proposed scheme in this paper does not use 
these optional options.

Other fields
The source and destination ports can be modified to the 
SDN switch to be modified according to the mapping 
between the high and low interaction honeypots. The 
fields such as checksum value, flag bit, and the emer-
gency pointer can be set accordingly.

Identifier in the IP packet header
The initial value is randomly generated and incremented 
by 1 for client-side SYN packets, ACK packets and the 
first PSH packet, while the value is 0 for server-side SYN/
ACK packets. This field does not need to be modified 
after connection transfer.

Functionality review
System testing
Test environment construction
In this section, we will build the test environment 
according to the scheme proposed in “The proposed 
program” section. The test system is selected from 
OpenFlow protocol version 1.5, and the controller 
framework is selected from Ryu, a lightweight Python-
based framework. One OVS is deployed for traffic fil-
tering and connection transfer. The test environment 
is shown in Fig. 7.

The test system includes: (1) the external network 
where the attacker is located (10.37.52.0/24); (2) The 
internal network where the real system and the hybrid 
honeynet system are located (10.37.23.0/24). The hybrid 
honeynet includes a low-interaction honeypot in the 
front and a high-interaction honeypot in the back; (3) 
Controller Ryu (because Ryu is lightweight, easy to 
build and easy to test), in which OpenFlow is selected 
version 1.5 (support TCP keyword flow matching); 
(4) SDN supporting OVS switch connecting the two 
networks.
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For these test configurations use the following Snort 
rules, as shown in Content 2.

Through the above rules for the first step of the intrusion 
detection system IDS traffic filtering classification, the msg 
message will be passed to the SDN-enabled OVS according 
to the flow table rule matching for traffic forwarding work.

The flow table entries on the OVS are shown in Content 3.

Simulation test
In order to verify the availability of the system, the 
Netcat tool was used to simulate a client machine and 

three servers (a real server, a low-interaction server, 
and a high-interaction server). The reasons for using 
the Netcat tool include two main aspects. The first 
reason is that Netcat can use “ncat” instructions to 
encrypt data transmission in addition to the regu-
lar “nc” instructions using plaintext, which allows 
testing the effectiveness of the machine’s identifica-
tion against malicious encrypted traffic. The second 
reason is that Netcat automatically disconnects by 
default, when a TCP session is established and does 
not allow recovery.

Experiment 1: Verify the problems that Netcat has 
with normal connection switching.

Test 1: Netcat environment basic test, mainly tests 
whether the server does not allow reconnection after a 
TCP session is disconnected.

First, connect the client to the real server, and use 
SDN to simply transfer the traffic to the high interac-
tion server. Then use the client to send data to the real 
server, but the result is that the real server does not 
receive the data. Finally use the client to send data to 
the high interaction honeypot, but the high interaction 
honeypot does not receive the data, either.

Test 2: Based on Test 1, then configure the TCP traffic 
steering rules.

The experiment assumes that the attacker tries to 
restore the connection, and as a result, the client and 
the highly interactive honeypot can make a normal 
connection.

Test 3: Connect to the real system on the basis of test 2, 
when the real system is also not allowed to connect.

Test 4: Connect again on the basis of test 3, when 
the high interaction honeypot also does not allow 
connection.

Fig. 7  Test environment framework
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Experiment 2: Verify the use of SDN controllers to con-
trol traffic for traffic forwarding and resolve normal con-
nection switching.

First, a connection between the client and the real 
system is established using Netcat. Unlike experiment 
1, where the switch is made using SDN instead of sim-
ply steering, at which point the TCP session data is con-
firmed and the TCP_REPAIR proxy is configured to the 
correct value. As a result, when the TCP_REPAIR proxy 
is configured and new sockets are instantiated, the high 
interaction server can be seen. During the handover pro-
cess, the client did not receive any errors. Further simula-
tion of the attack interaction reveals that the client and 
the high interaction honeypot can send and receive data 
to and from each other. Re-run the experiment again 
using the low interaction honeypot to the high interac-
tion honeypot to determine again the feasibility of this 
connection switch.

Experiment 3: Test system connectivity using 
encrypted traffic.

First, create a connection between the client and 
the server using Netcat. Then use ncat to transfer ssl 
encrypted traffic in the client and check the output 
results. In consequence, the traffic is normal and enters 
the server without any problem. At last, we use ncat to 
pass the self-started Trojan data in the client and encrypt 
it with ssl, and we can see that the sub-Trojan data is 
received in the high interaction honeypot.

Real environment testing
Use the test system set up in “Test environment con-
struction” section. Use Wireshark to listen to the con-
nection network connection of each host to observe the 
connection changes between the front and back end, as 
shown in Fig. 8 shows the traffic exchange graph before 
and after the switch using TCP_REPAIR. Where the start 
time is the time when listening began using Wireshark.

The first half of the above figure shows the initial TCP 
connection established between the attacker and the 
front end, so the attacker needs to establish a connec-
tion with the front end through three handshakes. Then 
interact with the front end, when Snort sends “HIH” will 
automatically trigger Ryu to send down the flow table to 
transfer the traffic from the front end to the back end. At 
the same time, TCP_ REPAIR mode starts, as shown in 
the bottom half of Fig.  8. First, the controller will send 
an ACK message with the sequence number using the 
sequence number of the last byte of data confirmed by 
the last ACK from the opposite end, and use the origi-
nal saved window size of the three-way handshake nego-
tiation with LIH. And HIH will return the confirmed 
ACK message, negotiate the connection parameters. 

Then perform a backup of data, sequence number, TCP 
options, timestamp, TCP window Restore, exit TCP_
REPAIR mode, hot migration is complete, disconnect the 
original attacker from the LIH, and subsequent interac-
tions use the attacker with the HIH. Here we should note 
that the time shown by Wireshark is relative to the first 
packet captured by the network interface it listens to dur-
ing the test (independent of the time the connection was 
initiated).

Performance tests
1D‑CNN performance test
To evaluate the SDN-based security defense system’s 
ability to identify encrypted malicious traffic, traffic redi-
rection, and system stress resistance. The performance of 
the 1D-CNN module for identifying encrypted malicious 
traffic is tested using three main metrics: accuracy, preci-
sion, and recall.

The equations are respectively.

In the above formula, TP represents the number of 
samples in which both predicted and true values are posi-
tive. FP represents the number of samples with negative 
predicted values and positive real values. FN represents 
the number of samples whose predicted value is positive 
and whose true value is negative, while TN represents the 
number of samples whose predicted and true values are 
both negative.

The experiments for performance testing of the 
1D-CNN module for identifying encrypted malicious 
traffic are set up with three main comparison experi-
ments, namely malicious encrypted traffic identification; 
regular encrypted traffic classification; and encrypted 
traffic classification. Since the two most common traf-
fic representations are session and flow [4]. The session 
is a unit of traffic divided according to the 5-tuple of 
source IP, source port, destination IP, destination port, 
and transport level protocol (5-tuple). A flow is very 
similar to a session, except that it contains traffic in only 
one direction and the source IP/ port and destination IP 
/ port are not interchangeable. Also, since normal traffic 
is usually divided into encrypted and non-encrypted, the 
ISCX dataset is used for the test to combine encrypted 

(1)Accuracy =
TP+ TN

TP+ FP+ FN + TN

(2)Precision =
TP

TP+ FP

(3)Recall =
TP

TP+ FN
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and non-encrypted traffic for the experiment, which 
matches the real working scenario. Details of the com-
parison experiments are shown in Table 2.

The accuracy of the three experimental sessions with 
streams is shown in Fig. 9.

As can be seen from the figure, if only identify-
ing whether the encrypted or non-encrypted traffic 
is malicious traffic, the accuracy of its recognition 
Session is nearly 1.8% higher than Flow, However, if 
the classification is divided into Experiment 2 and 

Experiment 3 that are accurate to each type, the rec-
ognition accuracy will be greatly reduced. Fortu-
nately, this does not have much impact on this system, 
because this system only needs to carry out whether 
the encrypted traffic has malicious components The 
accuracy of 1D-CNN recognition meets the experi-
mental requirements.

In order to further verify the fine-grained classification 
effect of the model, the exact experimental precision and 
recall of Experiment 3 are shown in Tables 3 and 4.

Fig. 8  Traffic exchange diagram before and after TCP_REPAIR switching
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It can be seen from the above table that 1D-CNN has strong 
feature extraction ability in fine-grained classification of 
encrypted traffic. The Precision of all categories except VPN-
Email was higher than 90%. The feature extraction capability 

of unencrypted traffic is lower than that of encrypted traffic, 
but the Precision of all traffic except Email, Chat, and FT is 
90%. This shows that the model has strong feature recogni-
tion ability for both encrypted and unencrypted traffic.

Table 2  1D-CNN comparison experiment table

The ISCX dataset classifies data into 12 categories, including 6 categories of regular encrypted traffic (VPN-Email, VPN-Chat, VPN-Streaming, VPN-File Transfer, VPN-
VoIP, VPN-P2P) and 6 categories of protocol-encapsulated traffic (Email, Chat, Streaming, File Transfer, VoIP, P2P). In Experiment 1, there were 14,000 malicious traffic 
and 12,921 normal traffic in the unencrypted data set of Session traffic. There are 7000 malicious traffic and 5525 normal traffic in the encrypted data set. Flow Traffic 
There are 17,000 malicious traffic and 15,422 normal traffic in the non-encrypted data set. There were 9000 malicious traffic and 8926 normal traffic in the encrypted 
data set. The above malicious traffic is generated by randomly adding some malicious codes to the traffic data

Experiment Content Category Traffic Type Whether 
Encryption

Dataset Size

1 Malicious encrypted traffic identification 2-class Session No 26,921

Yes 12,525

Flow No 32,422

Yes 17,926

2 Regular encrypted traffic classification 6-class Session No 26,921

Yes 12,525

Flow No 32,422

Yes 17,926

3 Encrypted traffic classification 12-class Session No 26,921

Yes 12,525

Flow No 32,422

Yes 17,926

Fig. 9  Accuracy of three experimental sessions with streams
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In order to verify the difference between the per-
formance of 1D-CNN and the more popular current 
encrypted traffic identification models, the current 
more advanced traffic classification model C4.5 [34] 
was therefore compared. The performance of Preci-
sion and Recall of the two models was compared in 
three experimental settings using the ISCX dataset for 
encrypted and non-encrypted traffic, respectively, as 
shown in Tables 5 and 6.

As can be seen from the table, classification accu-
racy of the 1D-CNN model is far superior to the traffic 
recognition and classification algorithm C4.5 based on 
machine learning in three experiments. The main rea-
son is that the feature extraction ability of deep learning 
is far higher than that of machine learning algorithm, 
which can adapt to various classification environments. 
Furthermore, it can quickly discriminate whether the 
flow is malicious traffic or not for the flow except for the 
training phase which is losser in computational perfor-
mance when the model training is completed.

Overall system performance testing
In order to evaluate the traffic conversion capability and sys-
tem stress tolerance of the system, therefore multiple experi-
ments were designed to make a comprehensive comparison 

with HoneyBrid, HoneyDOC and Honeyd methods. The 
experiment of comparison mainly included latency, identifi-
cation traffic accuracy and throughput. Although the experi-
ments considered other parameters such as CPU load and 
memory occupancy, these parameters had a low impact on 
the experimental results due to the same experimental envi-
ronment. In short these metrics are not particularly empha-
sized in the quantitative evaluation below. The benchmark test 
is represented as the performance of regular communication 
using ordinary TCP sockets without the redirection feature.

The first is delayed evaluation, the client and server built 
by the test system can effectively measure the round trip 
time (RTT). Because the sending and receiving paths are 
symmetrical, the delay uses half of the RTT. The attack-
ers use TCP sockets to send the specified timestamp to 
the server, and the attacker calculates RTT after the server 
responds. The calculation method is half of the difference 
between echo time and the corresponding system clock 
when the message is sent. The test experiment is repeated 
10,000 times. The experimental results are chosen to be in 
the 96% confidence interval of the value, and the compara-
tive experimental results are shown in Fig. 10 (round-trip 
time comparison graph for connection redirection).

The experimental results shown above show that 
the latency of normal TCP socket communication is 

Table 3  Accurate experimental precision and recall for the non-encrypted category of Experiment 3

Indicator Classification

Email Chat Stream FT VoIP P2P

Precision 69.5 71.3 95.7 82.6 95.3 98.2

Recall 72.8 69.8 95.6 94.8 83.9 98.5

Table 4  Accurate experimental precision and recall for the encryption category of Experiment 3

Indicator Classification

VPN-Email VPN-Chat VPN-Stream VPN-FT VPN-VoIP VPN-P2P

Precision 79.7 97.3 91.2 92.7 99.8 92.1

Recall 99.7 96.3 85.6 91.3 98.7 97.6

Table 5  Comparison of precision of encrypted and non-
encrypted traffic identification for C4.5 and 1D-CNN

Experiment Classification

C4.5(Non-
VPN)

1D-CNN(Non-
VPN)

C4.5(VPN) 1D-CNN(VPN)

1 90.6 99.7 89 98.6

2 89 85.5 84 94.9

3 84.3 85.8 78.2 92

Table 6  Comparison of recall of encrypted and non-encrypted 
traffic identification for C4.5 and 1D-CNN

Experiment Classification

C4.5(Non-
VPN)

1D-CNN(Non-
VPN)

C4.5(VPN) 1D-CNN(VPN)

1 88.8 98.8 92 98.7

2 85.5 85.8 87.6 97.3

3 79.3 85.9 81.3 95.2
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0.012049 ms, while the latency of our system excluding 
the 1D-CNN module is 0.013268 ms which is close to the 
latency of normal TCP socket communication. Because of 
the hot migration technique of TCP_REPAIR in the Linux 
kernel for connection transfer, which does not require re 
Instead of performing three handshakes, the original TCP 
connection parameters can be negotiated by sending an 
ACK packet with the confirmed maximum sequence num-
ber, thus redirecting the TCP connection. The latency of the 
complete system with the 1D-CNN module is 0.252356 ms, 
which is mainly due to the complexity of identifying the 
traffic as malicious traffic in the 1D-CNN, but still has an 
advantage over other mainstream TCP switching models. 
Due to the use of NAT address translation, the connection 
switch is achieved by replaying the message after modifying 
TCP parameters, so the intermediate processing needs to 
go through TCP three handshakes again. Thus, the latency 
is greatly increased compared to this system. HoneyDOC 
uses SDN controller to perform the worst traffic conversion, 
with an average time close to 1.251356 ms. This is mainly 
because HoneyDOC first needs IDS to send an alarm, and 
then replays TCP messages through the redirection mod-
ule in the SDN controller’s northbound interface to negoti-
ate TCP parameters, so as to achieve connection switching. 
Since most of the switching processes are implemented by 
SDN controller and software modules, the time delay will be 
greatly increased compared with the first two methods. The 
delay of Honeyd method is 0.864102 ms. The main reason is 
that its method of switching traffic to the highly interactive 

honeypot mainly uses the built-in agent function of Hon-
eyd software. The switching process is still operated by user 
software, so the delay is greatly increased.

In order to further test the latency of the system, a 
simple SMTP test is designed to test the delay from the 
first payload to the back-end honeypot in the concurrent 
state, The SMTP server is installed in the honeypot and 
the SMTP client script was sent by simulating an attacker. 
The content of the script is shown in Content 4. This test 
is run automatically on the normal system, this system, 
HoneyBrid, HoneyDOC, Honeyd system, and the script 
was run automatically at a rate of 10 connections per sec-
ond, of which 1 s was randomly selected to test the delay 
between the first payload packet of the 10 connections 
and the arrival of the honeypot The details are shown in 
the table (Table 7).

Next, the system’s ability to identify malicious traffic 
is tested. We designed 1000 of the four forms of SMTP 

Fig. 10  System latency comparison
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scripts to run on a single attack host to complete the 
test. The script contents are 250 non-encrypted nor-
mal scripts, 250 non-encrypted malicious scripts, 250 
encrypted normal scripts, and 250 encrypted malicious 
scripts. The Content of each script is approximately 
equal with Content 3 above. After the script runs prop-
erly, the non-encrypted SMTP connects to port 25, and 
the encrypted SMTP connects to port 465. Compared 
with normal traffic, malicious traffic only adds mali-
cious code in the DATA part. Recognition accuracy is 
represented by the ratio of the sum of connections cor-
rectly transferred to the real system and the honeypot 
of high interaction to all connections. The results of the 
comparative experiments are shown in the Fig. 11.

As shown in the figure above, the precision of Honey-
Brid model and Honeyd model in identifying malicious 
traffic (both encrypted and unencrypted) is 76.3% and 
78.4%, respectively. The main reason is that the traffic 
filtering of the two models is completed by the original 
intrusion detection system. The traditional intrusion 
detection system mainly detects whether the traffic 
has malicious components by matching the keywords, 
which is not suitable for encrypting the malicious traf-
fic. The precision of HoneyDOC and the system without 
1D-CNN module to identify malicious traffic is 78.8% and 
79.1%, respectively. Compared with HoneyBrid model 
and Honeyd model, there is a partial improvement, but 
the improvement is not significant. The main reason is 
that although the two models add more traffic rules to 
the original intrusion detection system to identify mali-
cious traffic, they can only identify non-encrypted mali-
cious traffic to a greater extent and is not still effective on 
encrypted malicious traffic. In the paper, the accuracy of 
the traffic direction of the system with full module form 
is 92.6%, which is greatly improved compared with the 

traditional intrusion detection system. The main reason 
is the powerful feature extraction ability of 1D-CNN, 
which can effectively identify malicious components in 
encrypted traffic, and greatly improve the traffic identi-
fication ability of the system. Finally, the throughput is 
tested by transferring large files that have been prepared 
by the client, and the client calculates the time it takes for 
the system to transfer the large files. The system through-
put is the file size divided by the transfer time. To reduce 
the error, all tests were repeated 200 times with a con-
fidence interval of 96%. The results of the comparison 
experiments are shown in Fig. 12.

The throughput of Normal Communication shown 
above is 744.5Mbit/s. The throughput of the system with 
1D-CNN removed is 711.6Mbit/s, with a loss rate of 
4.42%. The principal reason is that its TCP connection 
switching mainly depends on the conversion of the Linux 
kernel. Therefore, the loss is mainly caused by the soft-
ware level such as IDS and SDN controller. The through-
put of the full version of the system is 583.7Mbit/s, with a 
loss of 21.59%.Largely because the 1D-CNN in the traffic 
detection takes up channel resources, so the throughput 
is reduced. 50.8Mbit/s of HoneyBrid’s throughput, with a 
loss of 93.18%, is chiefly due to the replay of TCP pack-
ets in the NAT address translation process The through-
put of HoneyDOC is 18.2Mbit/s, with a loss of 97.55%, 
mainly because the system is mainly realized by TCP 
packet replay through the TCP switch module in the 
northbound interface of the SDN controller, and its front 
IDS also leads to a significant reduction in throughput. 
The throughput of Honeyd is 45.7 Mbit/s, and the loss 
is 93.86%. Although the throughput of Honeyd is higher 
than HoneyDOC, its overall performance is not as good 
as HoneyDOC. Primarily because Honeyd does not have 
traffic filtering, so it is easily flooded by invalid traffic.

Table 7  Table of latency information for 10 connections in 1 s

The experimental results again demonstrate that the TCP_REPAIR-based connection switching latency in this system is much lower than using TCP replay and NAT 
address translation

10 Connection Serial 
Numbers for 1 Second

Normal 
Communication(s)

Our System Dropout 
1D-CNN(s)

HoneyBrid(s) HoneyDOC(s) Honeyd(s)

1 0.002 0.009 0.208 0.049 0.225

2 0.008 0.009 0.209 0.209 0.225

3 0.008 0.013 0.209 0.225 0.229

4 0.008 0.017 0.209 0.250 0.241

5 0.010 0.017 0.209 0.324 0.263

6 0.012 0.017 0.209 0.325 0.274

7 0.014 0.019 0.209 0.325 0.291

8 0.015 0.023 0.209 0.350 0.325

9 0.017 0.023 0.223 0.368 0.371

10 0.017 0.027 0.231 0.400 0.384
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Experimental results show that the system per-
forms well for all types of network requirements 
and is more stealthy compared to software replay of 
TCP packets due to its conversion using Linux kernel 
features.

Concluding remarks
Due to the rise of encrypted communication, it brings 
security to communication on the one hand, but also 
creates a great security problem for the interception and 
capture of attacks. At the same time, with the continuous 

Fig. 11  Comparison of system identification traffic precision

Fig. 12  System Throughput Comparison
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updating of network attacks, it also poses a great chal-
lenge to the security of real systems. Therefore honeypots 
that can triage and actively capture attack process analysis 
based on identifying attack traffic have great development 
value. As an active defense tool, honeypots are also evolv-
ing according to the current development of network 
attacks. Although the traditional honeypot can focus on a 
specific attack, it has little effect when encountering other 
attacks. Thus, the invention of the hybrid honeypot solves 
this problem. The biggest problem of hybrid honeypots is 
the switching algorithm between low interaction honey-
pots and high interaction honeypots. Although traditional 
NAT address translation can also achieve this effect, it has 
defects both in speed and security.

In this paper, we propose an intelligent defense sys-
tem based on TCP_REPAIR and deep learning. Traffic 
classification and identification by traditional intrusion 
detection system and deep learning-based traffic analy-
sis model can accurately verify the security of ordinary 
traffic and encrypted traffic. Abandoning the use of tra-
ditional NAT address translation for hybrid honeypot 
connection transfer, connection transfer is performed 
using the TCP_REPAIR socket design agent in the Linux 
kernel, allowing for fast and seamless transfer to another 
endpoint at any stage of an active connection to con-
tinue the current session. And the performance loss of 
our solution is mainly in the process of creating sockets, 
using OpenFlow 1.5 to match TCP keywords and intel-
ligent firewalls to identify malicious traffic, with almost 
identical performance to that of regular sockets. Thanks 
to TCP_REPAIR’s reliance on the underlying Linux com-
munication results.

The usability and efficiency of the method are con-
firmed by comparing the experimental data results, 
while the method can remain invisible during active 
TCP connection switching. A part of the efficiency 
problem is detected to arise mainly in the detection of 
1D-CNN, principally because the virtual scenes cur-
rently tested are relatively simple. The future research 
direction is mainly the detection speed improvement of 
1D-CNN, which makes the performance of the whole 
system adaptable to large-scale use.
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