
Tang et al. Journal of Cloud Computing (2023) 12:21
https://doi.org/10.1186/s13677-022-00379-2

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

A new dynamic security defense system
based on TCP_REPAIR and deep learning
Jianxun Tang1, Mingsong Chen2*, Haoyu Chen3, Shenqi Zhao2 and Yu Huang2 

Abstract 

Honeypot is an active defense mechanism, which attracts attackers to interact with virtual resources in the honeypot
mainly by simulating real working scenarios and deploying decoy targets, so as to prevent real resources from being
damaged and collect attackers’ attack processes and analyze potential system vulnerabilities to proactively respond to
similar attacks. Because of the existing honeypot system has defects such as the inability to deploy specific honeypots
to induce attacks based on complex attacks, the inability to select the best honeypot for dynamic response based on
honeypot deployment and maintenance costs during attack interactions, and insufficient ability to identify variants of
known attack methods. Although hybrid honeypots can solve some of these problems by deploying low-interaction
honeypots and high-interaction honeypots, they cannot really be applied to real production scenarios because of
their slow TCP connection switching speed and inability to efficiently identify encrypted malicious traffic. In this paper,
we propose a new dynamic security defense system based on the combination of TCP_REPAIR-based dynamic honey-
pot selection architecture and a deep learning-based intelligent firewall. The system accurately distributes encrypted
or non-encrypted attack traffic and its variants through the intelligent firewall. The normal traffic is sent to the actual
system, and the marked malicious traffic dynamically selects honeypots to respond according to the attack process.
The experimental result indicated that the system can select honeypots for targeted responses according to the
actual network situation quickly and dynamically and covertly, effectively improving the utilization rate of honeypot
clusters as well as the ability to decoy.

Keywords  Honeynet, TCP_REPAIR, Convolutional neural network, Software-defined networking, Encrypted traffic
detection, Cyber security

Introduction
With the continuous development of the Internet, the secu-
rity threats facing the Internet are also escalating. In the
face of complex and changing attack methods, traditional
network defense technologies such as firewalls, Intrusion
Detection System (IDS), Intrusion Prevention System (IPS)
and other passive defense methods [1] have difficulties in

processing and responding to unknown and complex attack
events such as encrypted malicious traffic rapidly. In order
to cope with the current endless new network attacks and
enhance the security of Internet information, the applica-
tion of active defense technology has become an urgent
need for today’s network security defense technology.

Honeypot technology is an active defense technology
that attracts attackers to conduct illegal applications by
arranging decoy resources and then obtaining their attack
process. Honeypot is essentially to arrange some bait
hosts and network services to induce attackers to attack
their exposed services, reproduce their attack process,
analyze the attack flow and process, and apply them to
the intrusion detection system to improve the network
defense capability. Depending on their ability to interact

*Correspondence:
Mingsong Chen
cms@guet.edu.cn
1 School of Ocean Engineering, Guilin University of Electronic Technology,
Guilin, China
2 School of Information and Communication, Guilin University
of Electronic Technology, Guilin, China
3 School of Electric Power Engineering, Guangxi Electrical Polytechnic
Institute, Nanning, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00379-2&domain=pdf

Page 2 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

with attackers, honeypots can be classified into two types,
High-Interaction Honeypots (HIH) and Low-Interaction
Honeypots (LIH) [2]. High-interaction honeypots are
usually built using real system environments, which can
easily build complex honeypot environments with decoy
functions; low-interaction honeypots are usually built
using virtual simulation software, which isolates the real
environment and is simple and less expensive to build, but
it is easier to be detected by attackers because of the own
virtual environment. The basic idea of hybrid honeypots
[3] means that arranges a large number of low-interaction
honeypots at the front-end and a small number of high-
interaction honeypots at the back-end to achieve attack
capture and analysis by migration of traffic. However, the
traditional honeynet, due to its coarse-grained data con-
trol, leads to various deficiencies of hybrid honeypots
such as data connection control migration.

Encrypted malicious traffic identification techniques
mainly identify and classify encrypted traffic by analyzing
the statistical and time series features of data streams, using
statistical models such as machine learning algorithms (e.g.,
support vector machines, decision trees, random forests,
and other algorithms) [4–7] and Gaussian mixture models
[8]. Although the above methods can solve many problems
that cannot be solved by port- and payload-based methods,
there are still problems such as the inability to automati-
cally extract and select features, the tendency of features to
fail, and the need for continuous updating [9].

Based on the existing research work, this paper pro-
poses a new dynamic security defense system based on
TCP_REPAIR and deep learning, which can divide the
traffic (including encrypted and unencrypted traffic)
entering the system through an intelligent firewall. There-
fore, normal traffic can access the real system normally
and malicious traffic will be forwarded to the low-inter-
action honeypot automatically. When the low-interaction
honeypot does not meet the attack depth, it will auto-
matically switch to the high interaction honeypot. Nor-
mal traffic will continuously pass through the intelligent
firewall in transit; once the malicious traffic is flagged in
transit, it will automatically switch the connection to the
high interaction honeypot. The hybrid honeypot with
low interaction and high interaction honeypots collects
the attack process to provide a new type of attack process
for the system and improve the security performance of
the network. The main contributions in the paper consist
of major two parts. The first part is to add the malicious
encrypted traffic identification based on deep learn-
ing in the active defense system. It can make up for the
defect that the traditional intrusion detection system in
the hybrid honeypot can only identify the non-encrypted
traffic. Secondly, we use the TCP live migration mod-
ule in the Linux underlying network communication. By

saving the negotiation fields in the original connection in
advance, the TCP_REPAIR technology is used to directly
create a new TCP connection when the TCP connec-
tion is transferred. It can optimize the shorts in the tra-
ditional TCP connection switching process, which takes
a long time during switching and is not hidden in the
switching process. In this paper, we firstly summarize the
current research on Software Defined Network (SDN),
hybrid honeynets, and malicious traffic identification, sec-
ondly elaborate on the solution of this system, and finally
design and implement the prototype system. The system
is experimentally proven to have good performance. The
rest of this paper is organized as follows: “Current status
of research” section introduces the current research sta-
tus of SDN, hybrid honeynet, and encrypted malicious
traffic identification; “The proposed program” section
proposes the architectural solution of this system and
the specific implementation plan of each module; “Func-
tionality review” section evaluates the indicators of the
system through the overall usability and quantitative per-
formance tests of the system; “Concluding remarks” sec-
tion summarizes the problems of the system and future
research directions through the test data of the system.

Current status of research
Software defined network
SDN [10] is a new network innovation architecture pro-
posed by the Clean-Slate research group at Stanford
University, which is an implementation of network virtu-
alization. Its core technology, OpenFlow [11], provides a
good platform for core network and application innova-
tion by separating the control plane of network devices
from the data plane, thus enabling flexible control of net-
work traffic and making the network more intelligent.

SDN uses the idea of stratification to separate data from
control. The overall architecture of SDN is divided into a
data plane, control plane and application plane from south
to north [12], as shown in Fig. 1. The data plane consists
of switches and other network general-purpose devices
that provide simple data forwarding functions, besides the
SDN links are formed by different protocol rules between
different network devices. The main function of the con-
trol plane which consists of the controller is to extract the
matching function of route calculation from the traditional
routers and let the controller perform the calculation
uniformly; create forwarding rules for network traffic by
mastering the global network information, and then dis-
tribute flow tables to the switches through the OpenFlow
protocol [13]. The application plane mainly contains SDN-
based applications, and users can deploy new applications
through the northbound interface without understanding
the underlying details, which provides great convenience
for the installation of intrusion prevention systems.

Page 3 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

SDN controllers have developed at a high rate in recent
years and at this stage are divided into two main factions,
one is the camp of network service providers such as
operators, of which the main representatives are ONOS
controllers [14] and Ryu controllers [15], and the other
is the camp of network equipment vendors, of which the
main representative is the OpenDayLight controller [16].
Since OpenDayLight controllers and ONOS control-
lers are mainly used for industrial applications and their
architectures are more complex, scientific experiments
usually use lightweight Ryu controllers. The current stage
of the Ryu controller solution is mainly based on the
OpenFlow protocol, where forwarding rules are first cre-
ated in the controller and passed through the OpenFlow
protocol to the data plane to the switch, which matches
the destination address according to the flow table. The
main features of the OpenFlow protocol have changed
significantly from version 1.0 released in 2009 to version
1.5 in 2015, but the main enhancement is that version 1.5
natively supports TCP keyword matching [17], so it can
intercept TCP packets (including three handshakes) and
can play an important role in task of targeted data inter-
ception based on TCP message headers.

Hybrid honeynet
The hybrid honeynet is mainly divided into front-end and
back-end, where the front-end usually arranges a large
number of low-interaction honeypots and the back-end

usually arranges a small number of high-interaction hon-
eypots [18]; when the attacker’s attack arrives, the attack
answers firstly through the front-end; when the attack
depth is too deep it will let the back-end answer through
connection conversion to make the overall utilization of
the hybrid secret network increase [19].

The core of the hybrid honeynet is mainly the method
of connection switching compared with the traditional
honeynet.

Artail [20] et al. use Honeyd’s built-in proxy function
to redirect traffic to a high interaction honeypot, but this
method does not install traffic filtering, so the backend
is occupied by a large number of invalid connections,
increasing the burden on the whole system.

Fan [21] et al. proposed HoneyDOC architecture.
The SDN store-and-forward strategy is used to switch
TCP connections. During the connection switchover,
the previously stored packets are replayed, and then
the connection is established with the back-end hon-
eypot. The scheme has excessive storage requirements
because the massive storage of malicious traffic packets
is too burdensome for the system when a large number
of attacks arrive.

Berthier [22] et al. proposed HoneyBrid architecture
based on traditional hybrid honeynets, which mainly
implements redirection through NAT address transla-
tion devices, and then processes the Seq, ACK, and win-
dow size of TCP and then replay the message to achieve

Fig. 1  SDN overall architecture diagram

Page 4 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

connection switching. Due to the use of NAT address
translation, the switchover is perceived during the actual
connection.

Encrypted malicious traffic classification
With the increasing awareness of Internet security and
privacy protection and the widespread use of Hyper
Text Transfer Protocol Secure (HTTPS), the encryption
of Internet communication has become an unstoppable
trend. Although traffic encryption makes information
interaction more secure, encrypted traffic also poses a
great challenge to Internet security (e.g., using encryp-
tion technology to spread illegal information). Tra-
ditional traffic classification is mainly based on port,
payload and flow approaches. Among them, port-based
approaches typically use the default port numbers of TCP
and UDP protocols to infer the type of service or appli-
cation. However, the use of port masquerading random
and tunneling techniques can evade the detection of this
method. Payload-based methods, also called deep packet
parsing Deep Packet Inspection (DPI) techniques [23],
mainly match the contents of packets, and the method
cannot handle encrypted traffic. The flow-based method
mainly uses statistical and timing characteristics of pack-
ets using machine learning algorithms for modeling and
identification, where the statistical models used to iden-
tify encrypted traffic are mainly Gaussian mixture and
other models.

Machine learning-based traffic classification methods
mainly use machine learning algorithms to model the
identification for the problem. Soleimani [24] et al. use
machine learning methods for Obfs3, Obfs4 and Scram-
bleSuit traffic obfuscation plugins commonly used in
Tor. It can quickly detect obfuscation-based plugins Tor
traffic identification by using the information of the first
10–50 packets of each stream, but the detection direc-
tion of this method is too homogeneous. ACETO [25]
et al. compared multiple deep learning algorithms with
Random Forest (RF) based on different encrypted traffic
datasets and showed that most of the deep learning algo-
rithms outperformed the Random Forest algorithm.

Deep learning-based traffic classification methods
achieve high accuracy in classifying traffic mainly by
using traffic features (packet-level features, session fea-
tures and statistical features), etc., through neural net-
work models such as Convolutional Neural Networks
(CNN), Recurrent Neural Network (RNN), and AutoEn-
coder (AE) [26]. WANG [27] et al. used a one-dimen-
sional vector to represent each flow or session to train
CNN models, and the results demonstrated that the accu-
racy using CNN was much higher than the C4.5 method
using temporal and statistical features. CHEN [28] et al.
transformed temporal data into two-dimensional images

and trained CNNs using two convolutional layers, two
pooling layers, and three fully connected layers, and the
results showed that the method outperformed machine
learning methods.

The proposed program
Overall architecture
Based on the existing research work, the proposed new
defense system architecture is shown in Fig. 2.

As can be seen from the above figure, the initial traf-
fic discrimination is performed by the intrusion detec-
tion system Snort in OVS when the traffic enters the
system. If Snort detects that the traffic is normal and
encrypted, the traffic is reviewed by the deep learning
based malicious traffic detection module 1D-CNN to see
if the traffic is malicious. If it is normal then it is sent to
the normal host, otherwise it is malicious then it is sent
down through the Ryu controller The flow table forwards
the traffic to the low-interaction honeypot created by
HFish. When the attack depth reaches a critical point,
HFish activates the copy of the normal host of the timed
snapshot as a high-interaction honeypot, while using a
random fill form to overwrite the sensitive data, and then
switches the connection to the high-interaction honey-
pot using the TCP_REPAIR Proxy.

Encrypted malicious traffic identification scheme
IDS is a network device or application that monitors net-
work transmissions in real-time. The overview of tradi-
tional IDS traffic classification methods mainly includes
four categories: (1) pre-attack port scanning; (2) detec-
tion of payloads containing attacks in the communication
process; (3) statistical traffic characteristics;(4) behav-
ioral analysis. Due to the development of random ports
and port disguise and the popularity of traffic encryp-
tion, coupled with the low accuracy of the pre-attack
port scanning method, and the detection of payloads
in the communication process requires decryption of
encrypted traffic, the traditional IDS for traffic classifica-
tion methods are no longer applicable to current network
communications. Traditional statistical methods are used
to analyze the strategy of big data, which usually can not
do real-time analysis, mainly through a large number of a
priori knowledge in the traffic to match. Behavioral anal-
ysis methods are similar. These two approaches are sum-
marized in two processes: feature extraction and feature
matching. At this stage, the most advanced techniques
for feature extraction training are machine learning and
deep learning. Therefore, the use of machine learning or
deep learning-based traffic classification can be applied
to the current traffic encryption development status.

Page 5 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

Comparison of machine learning‑based and deep learning
traffic classification
Machine learning traffic classification is generally divided
into four steps: firstly designed traffic features and packet
features manually; secondly, followed by extraction and
selection from the original traffic according to the manu-
ally designed features; thirdly designed classifiers such as
decision trees manually; finally input from the extracted
and selected features into the classifier to get the output
of traffic classification. This process is essentially a divide-
and-conquer idea, and the disadvantage of the divide-
and-conquer method is that the locally optimal solution
is not necessarily globally optimal.

Traffic classification by deep learning is generally
divided into two steps: first input of raw data and then

deep learning algorithms such as CNN and RNN are
used to learn the original data features and train the deep
learning model at the same time. Finally, the trained deep
learning model outputs the classification results for the
new input data [29]. Depending on whether traffic fea-
tures are required and thus classified into supervised,
semi-supervised and unsupervised learning [30].

Both hand-designed features and hand-designed clas-
sifiers in machine learning-based traffic classification
require expert knowledge. Different feature designs and
classifier designs can largely affect the final classification
results. The method of feature extraction in deep learning
is widely adaptable and more flexible in application.

The traffic classification module integrated in IDS
needs to have end-to-end traffic classification function.

Fig. 2  Overall system architecture

Page 6 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

Although machine learning can be used to identify
encrypted traffic, the Disadvantages mainly include the
inability to automatically extract features, the tendency of
features to fail, and the need to manually design features
and classifiers, which is contrary to the need for imme-
diate traffic classification in IDS. Deep learning-based
traffic classification is selected based on the demand for
greater extraction of encrypted traffic features to accu-
rately identify malicious traffic.

1D‑CNN model design
Deep learning is classified into unsupervised learn-
ing, semi-supervised learning. Because the accuracy of
unsupervised learning classification is not high, and the
acquisition of traffic characteristics required by super-
vised learning requires a lot of computing power, a semi-
supervised learning method combining labeled data and
unlabeled data is selected.

Since CNN is mainly suitable for data where features can
appear anywhere, objects are not subject to translation and
distortion, and have strong local relevance. The traffic fits

exactly the above characteristics. Therefore, CNN is chosen
as the deep learning algorithm for training. The commonly
used CNNs include 1-dimensional CNN, 2-dimensional
CNN, and 3-dimensional CNN. 1-dimensional CNN is
mainly applicable to sequence data, 2-dimensional CNN is
mainly applicable to image and audio data, and 3-dimen-
sional CNN is mainly applicable to data such as video and
volume images [31]. Although it has also been studied to
classify traffic images by transforming the traffic into 2D
images and then using 2D-CNN, 1D-CNN was chosen
as the training algorithm based on the fact that the traffic
itself is sequential data because the matrix computation of
the images requires strong computer performance and is
more time consuming to compute.

Based on the deep learn-based encryption traffic
classification proposed by Wang [32] et al., the origi-
nal model is improved according to the specific classi-
fication tasks in the system. The operation flow of the
improved 1D-CNN model is shown in Fig. 3.

As can be seen from the above figure, the improved
1D-CNN model mainly includes two parts, namely, the

Fig. 3  1D-CNN operation flow

Page 7 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

preprocessing module and the training output module.
The preprocessing module generates labeled and unla-
beled data by processing the original dataset, where
part of the unlabeled data is used for testing and part for
training. Since the model itself training process will pro-
duce errors, the Mini-batch Stochastic Gradient Descent
(MBSGD) method is selected for model optimization.
The final processed data and the originally reserved
unlabeled data are used as the input of the 1D-CNN
model, and then the model outputs the prediction results
through training. The overall architecture of the CNN
model is shown in Table 1.

Custom software defined networking SDN
Custom SDN consists of two main modules: Forward-
ing Decision Engine, and Redirected Forwarding Engine
(TCP_REPAIR Proxy). It mainly contains traffic identifi-
cation, filtering and TCP switching.

Forwarding decision engine
The forwarding decision engine is mainly composed of the
intrusion detection system Snort, 1D-CNN and Ryu con-
troller. It mainly consists of four forms of work. The first
forms of work: To begin with, the traffic arrives at Snort,
and Snort detects the port and payload of the traffic. If the
port is an open port of the system and the payload is nor-
mal, it is marked as 0. If the traffic is encrypted, input it to
1D-CNN module for testing again. If the traffic is normal
after 1D-CNN testing, mark 0(at this time, the traffic is
marked as 00), then it is determined that this traffic is nor-
mal traffic. The traffic is forwarded directly to the normal
host by OVS through the Ryu controller downstream flow
table, and the payload of the subsequent traffic does not
have any abnormalities. The second one: Based on the first
one, if Snort or 1D-CNN detects an exception in the subse-
quent payload (that is, the traffic is marked as 1), the traffic
will be directly forwarded to the high interaction honey-
pot of the corresponding service. The third one: The traffic
reaches Snort firstly, and Snort detects the port and payload
of the traffic. If the port is an open port of the system and
the payload is normal, it is marked as 0. Then it is input to
the 1D-CNN module for testing again. After the 1D-CNN

test, the abnormal traffic is marked as 1 (at this time, the
traffic is marked as 01), and the traffic is forwarded to the
low interaction honeypot corresponding to the request port.
The fourth one: On the basis of the third, if the payload of
the attack process is determined by the action in Snort’s
msg to require forwarding to the high interaction honeypot,
TCP_REPAIR is started to transfer the traffic originally con-
nected to the low interaction honeypot to the high interac-
tion honeypot. The specific flow is shown in Fig. 4.

The more important aspects of the system are the con-
nection selection algorithm, and the Snort alarm rules.

Snort has three main modes: sniffer, packet logger, and
network intrusion detection system. Sniffer mode simply
grabs packets from the network and displays them on the
terminal; packet logger mode saves packets to disk; net-
work intrusion detection mode is the most complex, with
high configurability. It allows Snort to analyze network
traffic and react according to user-defined rules.

Due to the needs of the system, therefore, choose the
Network Intrusion Detection System (NIDS) mode,
which can respond by analyzing network traffic.

Snort alarm rules are as follows

Examples:
alter tcp any any - > 10.37.23.59/18 22 (logto: “ssh”; msg:

“HIH”;)
TCP traffic accessing port 22 of network 10.37.23.59/18

triggers this warning and issues a warning rule with the
name ssh and the content HIH.

Because of the warning rules, the design creates four
actions in the msg warning content, Real_System,1D_CNN,
LIH, HIH, which represent forwarding to normal host, for-
warding to 1D_CNN, forwarding to low interaction hon-
eypots, and forwarding to high interaction honeypots,
respectively. Forwarding to a specific honeypot requires the
Ryu controller to send down the flow table to the switch to

Table 1  CNN model parameters

Layer Operation Input Kernel Stride Pad Activation
Function

Pooling Type Pooling Size/
Stride/Padding

Output

1 CONV 784*1 25*1 1 12 ReLU Max 3*1/3/1 262*32

2 CONV 262*32 25*1 1 12 ReLU Max 3*1/3/1 88*64

3 Full Connect 88*64 – – – – – – 1024

4 Full Connect 1024 – – – – – – 2

5 Softmax 2 – – – – – – 2

Page 8 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

complete, so the Ryu controller completes the forwarding
after using Snort’s socket transmission alarm.

Pseudocode for connecting the selection engine in the
controller.

Algorithm 1. Connection Selection Engine Algorithm

Redirected forwarding engine (TCP_REPAIR proxy)
The normal TCP connection process is shown in
Fig. 5. Note that above the orange line are the TCP
three-way handshakes, and below the orange line
are the data exchanges after the TCP connection is
established.

In a hybrid honeynet system, low-interaction honey-
pots mainly work at the early stage of the attack, that is
the network segment information scanning phase. Dur-
ing the scanning probe phase, the attacker usually does
not establish a full TCP connection with the target host
in order to avoid the scanning behavior being recorded.
Even if a TCP full connection scan is used, no subsequent
data exchange occurs with the target host. Therefore,
during a typical TCP connection, the arrival of the first
PSH packet after three TCP handshakes can be used as a
signal for connection transfer. The 1D_CNN of the smart
firewall in this system detects encrypted malicious traffic
as a signal for connection transfer to occur, and the steps
are similar.

This module is mainly inspired from TCP connec-
tion switchover method proposed by Cunha [33] et al.
to perform connection hot migration at any stage of a

Fig. 4  Traffic forwarding flow chart

Page 9 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

TCP connection through TCP_REPAIR mode in Linux,
which greatly reduces the time loss and throughput
loss of the switching process through the underlying
Linux communication. The specific connection trans-
fer process is shown in Fig. 6. The typical TCP connec-
tion communication process is shown above the orange
line, and the data connection transfer process is shown
below the orange line.

The steps are described in detail below.

Step 1: The attacker wants to establish a TCP full
connection with the real system via TCP three
times handshake. At this point, since the attacker
has not yet made a real attack, the Ryu controller
will first intercept the three times handshake mes-
sages between the attacker and the real system
by sending flow rules matching the relevant TCP
keywords to the switch via OpenFlow 1.5, record-
ing the TCP negotiation parameters in them, and
then the Ryu controller sends the flow table to the

switch, which sends the connection messages to
the real system. All TCP messages during the three
handshakes are sent to Snort for detection, and the
alert message msg is sent to the Ryu controller for
determination. This step successfully isolates the
large amount of scanned data in the network.
Step 2: After the Ryu controller receives the PSH
packet, it first extracts the key fields such as
sequence number, answer number and identifica-
tion number from the packet and saves the connec-
tion information. When the Ryu controller receives
an alert message msg “HIH” from the IDS or when
the encrypted traffic is marked as “1” by 1D-CNN,
the Ryu controller initiates a TCP connection
switch. First of all the Ryu controller sends Flow-
Mod, which temporarily takes over the connection
from the attacker to the real system, and enters the
attacker’s message into the Ryu controller via Packet-
In to prevent the real system from replying (to avoid
further data leakage). Then the TCP_REPAIR Proxy

Fig. 5  Flow chart of TCP connection and data exchange

Page 10 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

creates a socket and a new regular socket to connect
to the high interaction honeypot. When the Ryu
controller issues a “200 OK” to confirm that the sys-
tem is OK, it uses the TCP_REPAIR socket and the
original TCP_REPAIR sockets saved by the Ryu con-
troller with the parameters of the real system. When
the Ryu controller receives the “200 OK” confirma-
tion from the TCP_REPAIR Proxy that the system is
ready, the Ryu controller temporarily connects the

attacker to the real system. When the Ryu control-
ler receives the “200 OK” confirmation from TCP_
REPAIR Proxy that it is ready, it passes the packets
of the attacker and the real system temporarily man-
aged by the Ryu controller to TCP_REPAIR Proxy
via Packet-Out. TCP_REPAIR Proxy to submit the
subsequent messages of this connection to the high
interaction honeypot through the proxy to complete
the connection transfer.

Fig. 6  Detailed flow of TCP switching

Page 11 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

Algorithm 2. TCP_REPAIR Socket Live Migration Algorithm

During connection transfer, the controller needs to save
the negotiation parameters of the three TCP handshakes
of the original active connection when implementing
connection transfer through the sockets created by TCP_
REPAIR. The following are the negotiation parameters
that need to be intercepted by OpenFlow 1.5 during the
TCP handshake phase.

Window size
This field is for the receiver to inform the sender of the
number of bytes it can currently receive.

TCP Optional
TCP options are located at the end of the TCP header,
and only those options that will appear in [SYN] and
[SYN, ACK] messages are analyzed here.

(1)	 Maximum Segment Size (MSS). Both sides of the
TCP connection declare the MSS value in their
respective SYN packets and choose the smaller of
the two values as the negotiated value at the end
of the handshake. The MSS is the most impor-
tant of the available options and the default size
is 1460. Since this value is affected by other for-
warding devices on the chain, it needs to be set
comprehensively considering the actual situation.
To avoid packet loss, enable the path MTU dis-
covery mechanism for high interaction honey-
pots and set the firewall to allow ICMP message
segmentation messages to pass. Alternatively,
a simpler approach can be taken by setting the
MSS to a smaller value of 1380 to accommodate
most link conditions.

(2)	 Timestamp. The timestamp is used to calculate
the round-trip delay. The sender puts the current
timestamp into TSval when sending the mes-

sage, and the receiver puts it into TSecr when
acknowledging the message. If the TCP commu-
nication parties negotiate the use of a timestamp,
this option is included in each packet. As a conse-
quence, the controller can determine it through the
PSH message. This value is modified in a similar
way to the sequence number and answer number.

(3)	 Other options, such as SACK, window expansion
factor, etc. Usually, since these options are rarely
used in the SYN packets between the client and the
server and cannot be inferred from the PSH pack-
ets, the proposed scheme in this paper does not use
these optional options.

Other fields
The source and destination ports can be modified to the
SDN switch to be modified according to the mapping
between the high and low interaction honeypots. The
fields such as checksum value, flag bit, and the emer-
gency pointer can be set accordingly.

Identifier in the IP packet header
The initial value is randomly generated and incremented
by 1 for client-side SYN packets, ACK packets and the
first PSH packet, while the value is 0 for server-side SYN/
ACK packets. This field does not need to be modified
after connection transfer.

Functionality review
System testing
Test environment construction
In this section, we will build the test environment
according to the scheme proposed in “The proposed
program” section. The test system is selected from
OpenFlow protocol version 1.5, and the controller
framework is selected from Ryu, a lightweight Python-
based framework. One OVS is deployed for traffic fil-
tering and connection transfer. The test environment
is shown in Fig. 7.

The test system includes: (1) the external network
where the attacker is located (10.37.52.0/24); (2) The
internal network where the real system and the hybrid
honeynet system are located (10.37.23.0/24). The hybrid
honeynet includes a low-interaction honeypot in the
front and a high-interaction honeypot in the back; (3)
Controller Ryu (because Ryu is lightweight, easy to
build and easy to test), in which OpenFlow is selected
version 1.5 (support TCP keyword flow matching);
(4) SDN supporting OVS switch connecting the two
networks.

Page 12 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

For these test configurations use the following Snort
rules, as shown in Content 2.

Through the above rules for the first step of the intrusion
detection system IDS traffic filtering classification, the msg
message will be passed to the SDN-enabled OVS according
to the flow table rule matching for traffic forwarding work.

The flow table entries on the OVS are shown in Content 3.

Simulation test
In order to verify the availability of the system, the
Netcat tool was used to simulate a client machine and

three servers (a real server, a low-interaction server,
and a high-interaction server). The reasons for using
the Netcat tool include two main aspects. The first
reason is that Netcat can use “ncat” instructions to
encrypt data transmission in addition to the regu-
lar “nc” instructions using plaintext, which allows
testing the effectiveness of the machine’s identifica-
tion against malicious encrypted traffic. The second
reason is that Netcat automatically disconnects by
default, when a TCP session is established and does
not allow recovery.

Experiment 1: Verify the problems that Netcat has
with normal connection switching.

Test 1: Netcat environment basic test, mainly tests
whether the server does not allow reconnection after a
TCP session is disconnected.

First, connect the client to the real server, and use
SDN to simply transfer the traffic to the high interac-
tion server. Then use the client to send data to the real
server, but the result is that the real server does not
receive the data. Finally use the client to send data to
the high interaction honeypot, but the high interaction
honeypot does not receive the data, either.

Test 2: Based on Test 1, then configure the TCP traffic
steering rules.

The experiment assumes that the attacker tries to
restore the connection, and as a result, the client and
the highly interactive honeypot can make a normal
connection.

Test 3: Connect to the real system on the basis of test 2,
when the real system is also not allowed to connect.

Test 4: Connect again on the basis of test 3, when
the high interaction honeypot also does not allow
connection.

Fig. 7  Test environment framework

Page 13 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

Experiment 2: Verify the use of SDN controllers to con-
trol traffic for traffic forwarding and resolve normal con-
nection switching.

First, a connection between the client and the real
system is established using Netcat. Unlike experiment
1, where the switch is made using SDN instead of sim-
ply steering, at which point the TCP session data is con-
firmed and the TCP_REPAIR proxy is configured to the
correct value. As a result, when the TCP_REPAIR proxy
is configured and new sockets are instantiated, the high
interaction server can be seen. During the handover pro-
cess, the client did not receive any errors. Further simula-
tion of the attack interaction reveals that the client and
the high interaction honeypot can send and receive data
to and from each other. Re-run the experiment again
using the low interaction honeypot to the high interac-
tion honeypot to determine again the feasibility of this
connection switch.

Experiment 3: Test system connectivity using
encrypted traffic.

First, create a connection between the client and
the server using Netcat. Then use ncat to transfer ssl
encrypted traffic in the client and check the output
results. In consequence, the traffic is normal and enters
the server without any problem. At last, we use ncat to
pass the self-started Trojan data in the client and encrypt
it with ssl, and we can see that the sub-Trojan data is
received in the high interaction honeypot.

Real environment testing
Use the test system set up in “Test environment con-
struction” section. Use Wireshark to listen to the con-
nection network connection of each host to observe the
connection changes between the front and back end, as
shown in Fig. 8 shows the traffic exchange graph before
and after the switch using TCP_REPAIR. Where the start
time is the time when listening began using Wireshark.

The first half of the above figure shows the initial TCP
connection established between the attacker and the
front end, so the attacker needs to establish a connec-
tion with the front end through three handshakes. Then
interact with the front end, when Snort sends “HIH” will
automatically trigger Ryu to send down the flow table to
transfer the traffic from the front end to the back end. At
the same time, TCP_ REPAIR mode starts, as shown in
the bottom half of Fig. 8. First, the controller will send
an ACK message with the sequence number using the
sequence number of the last byte of data confirmed by
the last ACK from the opposite end, and use the origi-
nal saved window size of the three-way handshake nego-
tiation with LIH. And HIH will return the confirmed
ACK message, negotiate the connection parameters.

Then perform a backup of data, sequence number, TCP
options, timestamp, TCP window Restore, exit TCP_
REPAIR mode, hot migration is complete, disconnect the
original attacker from the LIH, and subsequent interac-
tions use the attacker with the HIH. Here we should note
that the time shown by Wireshark is relative to the first
packet captured by the network interface it listens to dur-
ing the test (independent of the time the connection was
initiated).

Performance tests
1D‑CNN performance test
To evaluate the SDN-based security defense system’s
ability to identify encrypted malicious traffic, traffic redi-
rection, and system stress resistance. The performance of
the 1D-CNN module for identifying encrypted malicious
traffic is tested using three main metrics: accuracy, preci-
sion, and recall.

The equations are respectively.

In the above formula, TP represents the number of
samples in which both predicted and true values are posi-
tive. FP represents the number of samples with negative
predicted values and positive real values. FN represents
the number of samples whose predicted value is positive
and whose true value is negative, while TN represents the
number of samples whose predicted and true values are
both negative.

The experiments for performance testing of the
1D-CNN module for identifying encrypted malicious
traffic are set up with three main comparison experi-
ments, namely malicious encrypted traffic identification;
regular encrypted traffic classification; and encrypted
traffic classification. Since the two most common traf-
fic representations are session and flow [4]. The session
is a unit of traffic divided according to the 5-tuple of
source IP, source port, destination IP, destination port,
and transport level protocol (5-tuple). A flow is very
similar to a session, except that it contains traffic in only
one direction and the source IP/ port and destination IP
/ port are not interchangeable. Also, since normal traffic
is usually divided into encrypted and non-encrypted, the
ISCX dataset is used for the test to combine encrypted

(1)Accuracy =
TP+ TN

TP+ FP+ FN + TN

(2)Precision =
TP

TP+ FP

(3)Recall =
TP

TP+ FN

Page 14 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

and non-encrypted traffic for the experiment, which
matches the real working scenario. Details of the com-
parison experiments are shown in Table 2.

The accuracy of the three experimental sessions with
streams is shown in Fig. 9.

As can be seen from the figure, if only identify-
ing whether the encrypted or non-encrypted traffic
is malicious traffic, the accuracy of its recognition
Session is nearly 1.8% higher than Flow, However, if
the classification is divided into Experiment 2 and

Experiment 3 that are accurate to each type, the rec-
ognition accuracy will be greatly reduced. Fortu-
nately, this does not have much impact on this system,
because this system only needs to carry out whether
the encrypted traffic has malicious components The
accuracy of 1D-CNN recognition meets the experi-
mental requirements.

In order to further verify the fine-grained classification
effect of the model, the exact experimental precision and
recall of Experiment 3 are shown in Tables 3 and 4.

Fig. 8  Traffic exchange diagram before and after TCP_REPAIR switching

Page 15 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

It can be seen from the above table that 1D-CNN has strong
feature extraction ability in fine-grained classification of
encrypted traffic. The Precision of all categories except VPN-
Email was higher than 90%. The feature extraction capability

of unencrypted traffic is lower than that of encrypted traffic,
but the Precision of all traffic except Email, Chat, and FT is
90%. This shows that the model has strong feature recogni-
tion ability for both encrypted and unencrypted traffic.

Table 2  1D-CNN comparison experiment table

The ISCX dataset classifies data into 12 categories, including 6 categories of regular encrypted traffic (VPN-Email, VPN-Chat, VPN-Streaming, VPN-File Transfer, VPN-
VoIP, VPN-P2P) and 6 categories of protocol-encapsulated traffic (Email, Chat, Streaming, File Transfer, VoIP, P2P). In Experiment 1, there were 14,000 malicious traffic
and 12,921 normal traffic in the unencrypted data set of Session traffic. There are 7000 malicious traffic and 5525 normal traffic in the encrypted data set. Flow Traffic
There are 17,000 malicious traffic and 15,422 normal traffic in the non-encrypted data set. There were 9000 malicious traffic and 8926 normal traffic in the encrypted
data set. The above malicious traffic is generated by randomly adding some malicious codes to the traffic data

Experiment Content Category Traffic Type Whether
Encryption

Dataset Size

1 Malicious encrypted traffic identification 2-class Session No 26,921

Yes 12,525

Flow No 32,422

Yes 17,926

2 Regular encrypted traffic classification 6-class Session No 26,921

Yes 12,525

Flow No 32,422

Yes 17,926

3 Encrypted traffic classification 12-class Session No 26,921

Yes 12,525

Flow No 32,422

Yes 17,926

Fig. 9  Accuracy of three experimental sessions with streams

Page 16 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

In order to verify the difference between the per-
formance of 1D-CNN and the more popular current
encrypted traffic identification models, the current
more advanced traffic classification model C4.5 [34]
was therefore compared. The performance of Preci-
sion and Recall of the two models was compared in
three experimental settings using the ISCX dataset for
encrypted and non-encrypted traffic, respectively, as
shown in Tables 5 and 6.

As can be seen from the table, classification accu-
racy of the 1D-CNN model is far superior to the traffic
recognition and classification algorithm C4.5 based on
machine learning in three experiments. The main rea-
son is that the feature extraction ability of deep learning
is far higher than that of machine learning algorithm,
which can adapt to various classification environments.
Furthermore, it can quickly discriminate whether the
flow is malicious traffic or not for the flow except for the
training phase which is losser in computational perfor-
mance when the model training is completed.

Overall system performance testing
In order to evaluate the traffic conversion capability and sys-
tem stress tolerance of the system, therefore multiple experi-
ments were designed to make a comprehensive comparison

with HoneyBrid, HoneyDOC and Honeyd methods. The
experiment of comparison mainly included latency, identifi-
cation traffic accuracy and throughput. Although the experi-
ments considered other parameters such as CPU load and
memory occupancy, these parameters had a low impact on
the experimental results due to the same experimental envi-
ronment. In short these metrics are not particularly empha-
sized in the quantitative evaluation below. The benchmark test
is represented as the performance of regular communication
using ordinary TCP sockets without the redirection feature.

The first is delayed evaluation, the client and server built
by the test system can effectively measure the round trip
time (RTT). Because the sending and receiving paths are
symmetrical, the delay uses half of the RTT. The attack-
ers use TCP sockets to send the specified timestamp to
the server, and the attacker calculates RTT after the server
responds. The calculation method is half of the difference
between echo time and the corresponding system clock
when the message is sent. The test experiment is repeated
10,000 times. The experimental results are chosen to be in
the 96% confidence interval of the value, and the compara-
tive experimental results are shown in Fig. 10 (round-trip
time comparison graph for connection redirection).

The experimental results shown above show that
the latency of normal TCP socket communication is

Table 3  Accurate experimental precision and recall for the non-encrypted category of Experiment 3

Indicator Classification

Email Chat Stream FT VoIP P2P

Precision 69.5 71.3 95.7 82.6 95.3 98.2

Recall 72.8 69.8 95.6 94.8 83.9 98.5

Table 4  Accurate experimental precision and recall for the encryption category of Experiment 3

Indicator Classification

VPN-Email VPN-Chat VPN-Stream VPN-FT VPN-VoIP VPN-P2P

Precision 79.7 97.3 91.2 92.7 99.8 92.1

Recall 99.7 96.3 85.6 91.3 98.7 97.6

Table 5  Comparison of precision of encrypted and non-
encrypted traffic identification for C4.5 and 1D-CNN

Experiment Classification

C4.5(Non-
VPN)

1D-CNN(Non-
VPN)

C4.5(VPN) 1D-CNN(VPN)

1 90.6 99.7 89 98.6

2 89 85.5 84 94.9

3 84.3 85.8 78.2 92

Table 6  Comparison of recall of encrypted and non-encrypted
traffic identification for C4.5 and 1D-CNN

Experiment Classification

C4.5(Non-
VPN)

1D-CNN(Non-
VPN)

C4.5(VPN) 1D-CNN(VPN)

1 88.8 98.8 92 98.7

2 85.5 85.8 87.6 97.3

3 79.3 85.9 81.3 95.2

Page 17 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

0.012049 ms, while the latency of our system excluding
the 1D-CNN module is 0.013268 ms which is close to the
latency of normal TCP socket communication. Because of
the hot migration technique of TCP_REPAIR in the Linux
kernel for connection transfer, which does not require re
Instead of performing three handshakes, the original TCP
connection parameters can be negotiated by sending an
ACK packet with the confirmed maximum sequence num-
ber, thus redirecting the TCP connection. The latency of the
complete system with the 1D-CNN module is 0.252356 ms,
which is mainly due to the complexity of identifying the
traffic as malicious traffic in the 1D-CNN, but still has an
advantage over other mainstream TCP switching models.
Due to the use of NAT address translation, the connection
switch is achieved by replaying the message after modifying
TCP parameters, so the intermediate processing needs to
go through TCP three handshakes again. Thus, the latency
is greatly increased compared to this system. HoneyDOC
uses SDN controller to perform the worst traffic conversion,
with an average time close to 1.251356 ms. This is mainly
because HoneyDOC first needs IDS to send an alarm, and
then replays TCP messages through the redirection mod-
ule in the SDN controller’s northbound interface to negoti-
ate TCP parameters, so as to achieve connection switching.
Since most of the switching processes are implemented by
SDN controller and software modules, the time delay will be
greatly increased compared with the first two methods. The
delay of Honeyd method is 0.864102 ms. The main reason is
that its method of switching traffic to the highly interactive

honeypot mainly uses the built-in agent function of Hon-
eyd software. The switching process is still operated by user
software, so the delay is greatly increased.

In order to further test the latency of the system, a
simple SMTP test is designed to test the delay from the
first payload to the back-end honeypot in the concurrent
state, The SMTP server is installed in the honeypot and
the SMTP client script was sent by simulating an attacker.
The content of the script is shown in Content 4. This test
is run automatically on the normal system, this system,
HoneyBrid, HoneyDOC, Honeyd system, and the script
was run automatically at a rate of 10 connections per sec-
ond, of which 1 s was randomly selected to test the delay
between the first payload packet of the 10 connections
and the arrival of the honeypot The details are shown in
the table (Table 7).

Next, the system’s ability to identify malicious traffic
is tested. We designed 1000 of the four forms of SMTP

Fig. 10  System latency comparison

Page 18 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

scripts to run on a single attack host to complete the
test. The script contents are 250 non-encrypted nor-
mal scripts, 250 non-encrypted malicious scripts, 250
encrypted normal scripts, and 250 encrypted malicious
scripts. The Content of each script is approximately
equal with Content 3 above. After the script runs prop-
erly, the non-encrypted SMTP connects to port 25, and
the encrypted SMTP connects to port 465. Compared
with normal traffic, malicious traffic only adds mali-
cious code in the DATA part. Recognition accuracy is
represented by the ratio of the sum of connections cor-
rectly transferred to the real system and the honeypot
of high interaction to all connections. The results of the
comparative experiments are shown in the Fig. 11.

As shown in the figure above, the precision of Honey-
Brid model and Honeyd model in identifying malicious
traffic (both encrypted and unencrypted) is 76.3% and
78.4%, respectively. The main reason is that the traffic
filtering of the two models is completed by the original
intrusion detection system. The traditional intrusion
detection system mainly detects whether the traffic
has malicious components by matching the keywords,
which is not suitable for encrypting the malicious traf-
fic. The precision of HoneyDOC and the system without
1D-CNN module to identify malicious traffic is 78.8% and
79.1%, respectively. Compared with HoneyBrid model
and Honeyd model, there is a partial improvement, but
the improvement is not significant. The main reason is
that although the two models add more traffic rules to
the original intrusion detection system to identify mali-
cious traffic, they can only identify non-encrypted mali-
cious traffic to a greater extent and is not still effective on
encrypted malicious traffic. In the paper, the accuracy of
the traffic direction of the system with full module form
is 92.6%, which is greatly improved compared with the

traditional intrusion detection system. The main reason
is the powerful feature extraction ability of 1D-CNN,
which can effectively identify malicious components in
encrypted traffic, and greatly improve the traffic identi-
fication ability of the system. Finally, the throughput is
tested by transferring large files that have been prepared
by the client, and the client calculates the time it takes for
the system to transfer the large files. The system through-
put is the file size divided by the transfer time. To reduce
the error, all tests were repeated 200 times with a con-
fidence interval of 96%. The results of the comparison
experiments are shown in Fig. 12.

The throughput of Normal Communication shown
above is 744.5Mbit/s. The throughput of the system with
1D-CNN removed is 711.6Mbit/s, with a loss rate of
4.42%. The principal reason is that its TCP connection
switching mainly depends on the conversion of the Linux
kernel. Therefore, the loss is mainly caused by the soft-
ware level such as IDS and SDN controller. The through-
put of the full version of the system is 583.7Mbit/s, with a
loss of 21.59%.Largely because the 1D-CNN in the traffic
detection takes up channel resources, so the throughput
is reduced. 50.8Mbit/s of HoneyBrid’s throughput, with a
loss of 93.18%, is chiefly due to the replay of TCP pack-
ets in the NAT address translation process The through-
put of HoneyDOC is 18.2Mbit/s, with a loss of 97.55%,
mainly because the system is mainly realized by TCP
packet replay through the TCP switch module in the
northbound interface of the SDN controller, and its front
IDS also leads to a significant reduction in throughput.
The throughput of Honeyd is 45.7 Mbit/s, and the loss
is 93.86%. Although the throughput of Honeyd is higher
than HoneyDOC, its overall performance is not as good
as HoneyDOC. Primarily because Honeyd does not have
traffic filtering, so it is easily flooded by invalid traffic.

Table 7  Table of latency information for 10 connections in 1 s

The experimental results again demonstrate that the TCP_REPAIR-based connection switching latency in this system is much lower than using TCP replay and NAT
address translation

10 Connection Serial
Numbers for 1 Second

Normal
Communication(s)

Our System Dropout
1D-CNN(s)

HoneyBrid(s) HoneyDOC(s) Honeyd(s)

1 0.002 0.009 0.208 0.049 0.225

2 0.008 0.009 0.209 0.209 0.225

3 0.008 0.013 0.209 0.225 0.229

4 0.008 0.017 0.209 0.250 0.241

5 0.010 0.017 0.209 0.324 0.263

6 0.012 0.017 0.209 0.325 0.274

7 0.014 0.019 0.209 0.325 0.291

8 0.015 0.023 0.209 0.350 0.325

9 0.017 0.023 0.223 0.368 0.371

10 0.017 0.027 0.231 0.400 0.384

Page 19 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

Experimental results show that the system per-
forms well for all types of network requirements
and is more stealthy compared to software replay of
TCP packets due to its conversion using Linux kernel
features.

Concluding remarks
Due to the rise of encrypted communication, it brings
security to communication on the one hand, but also
creates a great security problem for the interception and
capture of attacks. At the same time, with the continuous

Fig. 11  Comparison of system identification traffic precision

Fig. 12  System Throughput Comparison

Page 20 of 21Tang et al. Journal of Cloud Computing (2023) 12:21

updating of network attacks, it also poses a great chal-
lenge to the security of real systems. Therefore honeypots
that can triage and actively capture attack process analysis
based on identifying attack traffic have great development
value. As an active defense tool, honeypots are also evolv-
ing according to the current development of network
attacks. Although the traditional honeypot can focus on a
specific attack, it has little effect when encountering other
attacks. Thus, the invention of the hybrid honeypot solves
this problem. The biggest problem of hybrid honeypots is
the switching algorithm between low interaction honey-
pots and high interaction honeypots. Although traditional
NAT address translation can also achieve this effect, it has
defects both in speed and security.

In this paper, we propose an intelligent defense sys-
tem based on TCP_REPAIR and deep learning. Traffic
classification and identification by traditional intrusion
detection system and deep learning-based traffic analy-
sis model can accurately verify the security of ordinary
traffic and encrypted traffic. Abandoning the use of tra-
ditional NAT address translation for hybrid honeypot
connection transfer, connection transfer is performed
using the TCP_REPAIR socket design agent in the Linux
kernel, allowing for fast and seamless transfer to another
endpoint at any stage of an active connection to con-
tinue the current session. And the performance loss of
our solution is mainly in the process of creating sockets,
using OpenFlow 1.5 to match TCP keywords and intel-
ligent firewalls to identify malicious traffic, with almost
identical performance to that of regular sockets. Thanks
to TCP_REPAIR’s reliance on the underlying Linux com-
munication results.

The usability and efficiency of the method are con-
firmed by comparing the experimental data results,
while the method can remain invisible during active
TCP connection switching. A part of the efficiency
problem is detected to arise mainly in the detection of
1D-CNN, principally because the virtual scenes cur-
rently tested are relatively simple. The future research
direction is mainly the detection speed improvement of
1D-CNN, which makes the performance of the whole
system adaptable to large-scale use.

Abbreviations
IDS	� Intrusion Detection System
IPS	� Intrusion Prevention System
HIH	� High-Interaction Honeypot
LIH	� Low-Interaction Honeypot
SDN	� Software Defined Network
HTTPS	� Hyper Text Transfer Protocol Secure
RF	� Random Forest
MBSGD	� Mini-Batch Stochastic Gradient Descent
NIDS	� Network Intrusion Detection System
MSS	� Maximum Segment Size
TP	� True Positive

FP	� False Positive
FN	� False Negative
TN	� True Negative
DPI	� Deep Packet Inspection
CNN	� Convolutional Neural Networks
RNN	� Recurrent Neural Network
AE	� AutoEncoder

Authors’ contributions
Jianxun Tang: Conceptualization (lead); formal analysis (lead); investigation
(lead); methodology (lead); software (lead); writing-original draft preparation
(lead). Haoyu Chen: Software (equal); data curation (lead); writing-original
draft (equal). Shenqi Zhao: Software (equal); data curation (equal); writing-
original draft (equal). Yu Huang: Software (equal); validation (lead). Mingsong
Chen: Conceptualization (supporting); funding acquisition (supporting);
resources (supporting); supervision (lead); writing-review and editing (lead).
The author(s) read and approved the final manuscript.

Funding
This study was supported in part by the National Natural Science Foundation
of China (91836301), the Special Program of Guangxi Science and Technology
Base and Talents under Grant (AD21220098) and the Innovation Project of
Guangxi Graduate Education (YCSW2022289).

Availability of data and materials
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Declarations

Competing interests
The authors report no conflict of interest.

Received: 25 August 2022 Accepted: 7 December 2022

References
	1.	 Shi J, Chen M, Jiao J (2022) Thoughts on the application of low-interac-

tive honeypot based on raspberry pi in public security actual combat,
LIHRP. In: Sun X, Zhang X, Xia Z, Bertino E (eds) Artificial intelligence
and security. ICAIS 2022. Lecture notes in computer science, vol 13340.
Springer, Cham

	2.	 Anwar AH, Leslie NO, Kamhoua CA (2021) Honeypot allocation for cyber
deception in internet of battlefield things systems. In: MILCOM 2021–
2021 IEEE military communications conference (MILCOM), pp 1005–1010

	3.	 Tang J, Zhou F (2021) Design and implementation of high-performance
web vulnerability scanner based on Python intelligent crawler. In: 2021
International Conference on Computer Information Science and Artificial
Intelligence (CISAI), pp 765–769

	4.	 Dainotti A, Pescape A, Claffy KC (2012) Issues and future directions in traf-
fic classification. IEEE Netw 26(1):35–40

	5.	 Sun GL, Xue Y, Dong Y et al (2010) A novel hybrid method for effectively
classifying encrypted traffic. In: 2010 IEEE global telecommunications
conference

	6.	 Velan P, Čermák M, Čeleda P et al (2015) A survey of methods for encrypted
traffic classification and analysis. Int J Netw Manag 25(5):355–374

	7.	 Arndt DJ, Zincir-Heywood AN (2011) A comparison of three machine
learning techniques for encrypted network traffic analysis. In: 2011 IEEE
symposium on computational intelligence for security and defense
applications (CISDA)

	8.	 Yao Z, Ge J, Wu Y et al (2020) Encrypted traffic classification based on
Gaussian mixture models and hidden Markov models. J Netw Comput
Appl 166:102711

	9.	 He K, Chen X, Xie S et al (2022) Masked autoencoders are scalable vision
learners. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp 16000–16009

Page 21 of 21Tang et al. Journal of Cloud Computing (2023) 12:21 	

	10.	 Li R, Zheng M, Bai D, Chen Z (2021) SDN based intelligent Honeynet
network model design and verification. In: 2021 International Conference
on Machine Learning and Intelligent Systems Engineering (MLISE), pp
59–64. https://​doi.​org/​10.​1109/​MLISE​54096.​2021.​00019

	11.	 Wazirali R, Ahmad R, Alhiyari S (2021) SDN-openflow topology discovery:
an overview of performance issues. Appl Sci 11(15):6999

	12.	 Ray PP, Kumar N (2021) SDN/NFV architectures for edge-cloud oriented
IoT: a systematic review. Comput Commun 169:129–153

	13.	 Khorsandroo S, Sánchez AG, Tosun AS et al (2021) Hybrid SDN evolu-
tion: a comprehensive survey of the state-of-the-art. Comput Netw
192:107981

	14.	 Vieira JL, Ferreira VC, Bastos IV et al (2021) THANOS: Teleprotection holistic
application for ONOS controller. In: 2021 IFIP/IEEE international sympo-
sium on integrated network management (IM). IEEE, pp 818–823

	15.	 Babbar H, Rani S (2021) "Performance evaluation of qos metrics in
software defined networking using ryu controller." IOP conference
series: materials science and engineering, vol 1022. No. 1. IOP Publishing.
https://​doi.​org/​10.​1088/​1757-​899X/​1022/1/​012024

	16.	 Parhandhito N, Negara RM, Dewanta F (2021) "Comparison of High
Availability Performance on OpenDaylight with Corosync Pacemaker and
OpenDaylight SDN Controller Platform Clustering," 2020 IEEE Interna-
tional Conference on Internet of Things and Intelligence System (IoTaIS),
pp 66–71. https://​doi.​org/​10.​1109/​IoTaI​S50849.​2021.​93596​96

	17.	 Yan B, Liu Q, Shen JL et al (2022) Flowlet-level multipath routing based on
graph neural network in OpenFlow-based SDN. Futur Gener Comput Syst
134:140–153

	18.	 Wang J, Yang H, Fan C (2021) A SDN dynamic honeypot with multi-phase
attack response. Netinfo Security 21(1):27–40

	19.	 Jiahui L, Yijun W, Zhi X (2021) TCP connection handover mechanism for
hybrid Honeynet based on connection state and SDN. Commun Technol
54(2):444–450

	20.	 Artail H, Safa H, Sraj M, Kuwatly I, Al-Masri Z (2006) A hybrid honeypot
framework for improving intrusion detection systems in protecting
organizational networks. Comput. 25(4):274–288

	21.	 Fan W, Du Z, Smith-Creasey M, Fernandez D (2019) HoneyDOC: an effi-
cient honeypot architecture enabling all-round design. In: IEEE journal on
selected areas in communications

	22.	 Berthier R, Cukier M (2008) Honeybrid: a hybrid honeypot architecture. In:
USENIX security symposium, vol 2008

	23.	 El-Maghraby RT, Abd Elazim NM, Bahaa-Eldin AM (2017) "A survey on
deep packet inspection," 2017 12th International Conference on Com-
puter Engineering and Systems (ICCES), pp 188–197. https://​doi.​org/​10.​
1109/​ICCES.​2017.​82753​01

	24.	 Soleimani MHM, Mansoorizadeh M, Nassiri M (2018) Real-time identifica-
tion of three Tor pluggable transports using machine learning tech-
niques. J Supercomput 74(10):4910–4927

	25.	 Aceto G, Ciuonzo D, Montieri A et al (2019) Mobile encrypted traffic clas-
sification using deep learning:experimental evaluation, lessons learned,
and challenges. IEEE Trans Netw Serv Manag 16(2):445–458

	26.	 Yang L, Finamore A, Jun F et al (2021) Deep learning and zero-day traffic
classification: lessons learned from a commercial-grade dataset. IEEE
Trans Netw Serv Manag 18(4):4103–4118

	27.	 Wang W, Zhu M, Wang J et al (2017) End-to-end encrypted traffic classifi-
cation with one-dimensional convolution neural networks. In: 2017 IEEE
international conference on intelligence and security informatics

	28.	 Chen Z, He K, Li J et al (2017) Seq2img:a sequence-to-image based
approach towards ip traffic classification using convolutional neural
networks. In: 2017 IEEE international conference on big data

	29.	 Salman O, Elhajj IH, Kayssi A et al (2021) Data representation for CNN
based internet traffic classification: a comparative study. Multimed Tools
Appl 80(11):16951–16977

	30.	 Sadeghzadeh AM, Shiravi S, Jalili R (2021) Adversarial network traffic:
towards evaluating the robustness of deep-learning-based network traf-
fic classification. IEEE Trans Netw Serv Manag 18(2):1962–1976

	31.	 Shin HC, Roth HR, Gao M et al (2016) Deep convolutional neural networks
for computer-aided detection: CNN architectures, dataset characteristics
and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

	32.	 Wang W, Zhu M, Wang J, Zeng X, Yang Z (2017) End-to-end encrypted
traffic classification with one-dimensional convolution neural networks.
In: 2017 IEEE international conference on intelligence and security infor-
matics (ISI), pp 43–48. https://​doi.​org/​10.​1109/​ISI.​2017.​80048​72

	33.	 Cunha VA, Corujo D, Barraca JP, Aguiar RL (2020) Using Linux TCP connec-
tion repair for mid-session endpoint handover: a security enhancement
use-case. In: 2020 IEEE conference on network function virtualization and
software defined networks (NFV-SDN), pp 174–180

	34.	 Draper-Gil G, Lashkari AH, Mamun MSI, Ghorbani AA (2016) Characteri-
zation of encrypted and VPN traffic using time-related features. In: In
proceedings of the 2nd international conference on information systems
security and privacy (ICISSP), pp 407–414

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/MLISE54096.2021.00019
https://doi.org/10.1088/1757-899X/1022/1/012024
https://doi.org/10.1109/IoTaIS50849.2021.9359696
https://doi.org/10.1109/ICCES.2017.8275301
https://doi.org/10.1109/ICCES.2017.8275301
https://doi.org/10.1109/ISI.2017.8004872

	A new dynamic security defense system based on TCP_REPAIR and deep learning
	Abstract
	Introduction
	Current status of research
	Software defined network
	Hybrid honeynet
	Encrypted malicious traffic classification

	The proposed program
	Overall architecture
	Encrypted malicious traffic identification scheme
	Comparison of machine learning-based and deep learning traffic classification
	1D-CNN model design

	Custom software defined networking SDN
	Forwarding decision engine

	Redirected forwarding engine (TCP_REPAIR proxy)
	Window size
	TCP Optional
	Other fields
	Identifier in the IP packet header

	Functionality review
	System testing
	Test environment construction
	Simulation test
	Real environment testing

	Performance tests
	1D-CNN performance test
	Overall system performance testing

	Concluding remarks
	References

