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Abstract

We consider a priori generalization bounds developed in terms
of cross-validation estimates and the stability of learners. In
particular, we first derive an exponential Efron-Stein type tail
inequality for the concentration of a general function of n
independent random variables. Next, under some reasonable
notion of stability, we use this exponential tail bound to ana-
lyze the concentration of the k-fold cross-validation (KFCV)
estimate around the true risk of a hypothesis generated by a
general learning rule. While the accumulated literature has
often attributed this concentration to the bias and variance
of the estimator, our bound attributes this concentration to
the stability of the learning rule and the number of folds k.
This insight raises valid concerns related to the practical use
of KFCV, and suggests research directions to obtain reliable
empirical estimates of the actual risk.

k-Folds cross-validation (KFCV) is a widely used pro-
cedure to estimate the empirical risk of a hypothesis ob-
tained from a certain learning rule (Stone 1974; Geisser
1975). It is used in practice with the promise of being
more accurate than the training error, while not being
overly computationally expensive as the deleted (or the
leave-one-out) estimate which is considered an unbiased
estimate of the actual risk (under some notion of stability
of the learning rules) (Devroye, Györfi, and Lugosi 1996;
Blum, Kalai, and Langford 1999). As such, it is natural to
ask how well does the KFCV estimate concentrate around the
risk of the hypothesis returned by the sought learning rule.

Various works have considered different aspects of this
question. Blum, Kalai, and Langford (1999) show that the
KFCV estimate is more accurate than the training error based
on its variance and higher order moments. Kale, Kumar, and
Vassilvitskii (2011), under some notion of stability, show
that the averaging taking place in the KFCV estimate leads
to a tighter concentration of the estimated risk around its
expectation. Note that this is different from considering the
concentration of the estimated risk around the actual risk of
the hypothesis. Cornec (2017), in the spirit of sanity-check
bounds (Kearns and Ron 1999), shows that for empirical risk
minimizers over VC–classes, the worst case error for the
KFCV estimate is not much worse than that of the training
error.
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In this work we consider the exponential concentration of
the KFCV estimate around the actual risk of a hypothesis re-
turned by a stable learning rule under distribution-dependent
notions of stability. Our hope is to obtain a high probability
generalization bound for the KFCV estimate without being
dependent on overly restrictive notions of stability such as
uniform stability (explained below) (Kutin and Niyogi 2002).

Earlier works have derived such concentration results for
the deleted estimate and learning rules that are uniformly
stable in the sense that no matter how the input to the learning
rule is selected, and no matter what value is used as a test
example, replacing (or removing) one example in the input,
the prediction loss will change only in a limited fashion
(Bousquet and Elisseeff 2002). The stability coefficient of
a learning rule is the amount of this change. Bousquet and
Elisseeff (2002) considered the concentration of the deleted
estimate and resubstitution estimate around the (random) risk
of a hypothesis returned by a uniformly stable learning rule.
The main observation of Bousquet and Elisseeff (2002) is
that uniform stability (a worst-case notion over all training
and test examples) allows an elegant use of McDiarmid’s
inequality, which leads to exponential tail bounds. Kutin and
Niyogi (2002) and Rakhlin, Mukherjee, and Poggio (2005)
consider a softening of the stringent requirement underlying
uniform stability to “almost everywhere” stability. While
Kutin and Niyogi (2002) prove their result by extending
McDiarmid’s inequality, Rakhlin, Mukherjee, and Poggio
(2005) used the higher-moment version of the Efron-Stein
inequality due to Boucheron, Lugosi, and Massart (2003).

Uniform stability is unpleasantly restrictive: Unlike other
notions of stability (e.g., L2, or L1 stability), it is insensitive
to the data-generating distribution. This is problematic as it
removes the possibility of studying large classes of learning
rules, or even classes of problems. One particularly strik-
ing example is binary classification with the zero-one loss
(Kutin and Niyogi 2002). Another example when uniform sta-
bility fails is regression with unbounded response variables
and losses. In addition, as noted earlier, uniform stability
is distribution-free and is thus unsuitable to studying finer
details of learning.

Since we are interested in the tail properties of KFCV and
higher moments are sufficient and necessary to characterize
the tails of random variables, it is natural to expect that the
whole family of Lq-stability coefficients with q ≥ 1 would



play a role in determining the tail behavior of KFCV. The ad-
vantage of using Lq stability coefficients to uniform (which
in a way are close to L∞ coefficients) is that they are distri-
bution dependent and are nontrivial even when the uniform
stability coefficient is uncontrolled. Recent, yet unpublished
work by Celisse and Guedj (2016) indeed demonstrated that
the family of Lq stability coefficients can be successfully
used to study the deviation of deleted estimates. While we
also use the same family of stability coefficients, our work
goes beyond the work of Celisse and Guedj (2016) in that
we consider distribution dependent concentration bounds for
the KFCV estimate. While our techniques resemble those
of Celisse and Guedj (2016), we streamline several steps of
their proofs. One difference is that we build directly on the el-
egant Efron-Stein style exponential inequality of Boucheron,
Lugosi, and Massart (2003), while Celisse and Guedj (2016)
chose a different route.

1 Setup and Notations
We consider learning in Vapnik’s framework for risk min-
imization with bounded losses (Vapnik 1995): A learning
problem is specified by the triplet (H,X , `), where H,X
are sets and ` : H × X → [0, 1]. The set H is called the
hypothesis space, X is called the instance space, and ` is
called the loss function. The loss `(h, x) indicates how well
a hypothesis h ∈ H explains (or fits) an instance x ∈ X .

The learning problem is defined as follows: A learner
A sees a sample in the form of a sequence Sn =
(X1, . . . , Xn) ∈ Xn where (Xi)i is sampled in an in-
dependent and identically distributed (i.i.d) fashion from
some unknown distribution P and returns a hypothesis
ĥn = A(Sn) ∈ H based solely on X1, . . . , Xn.1 The goal of
the learner is to pick hypotheses with a small risk (defined
shortly). For readers familiar with learning theory we remark
that as opposed to most of statistical learning theory, the only
roleH plays is to collect the universe of all choices available
to learning rules. In particular, unlike in most of the literature
on statistical learning theory, it will not be used to “control
the bias of learners”.

We assume that a learner is able to process samples of
different cardinality. Hence, a learner will be identified with
a map A : ∪nXn → H. Here, we only consider deterministic
learning rules; extension to randomizing learning rules is
left for future work. Given a distribution P on X , and
X ∼ P , the risk of a fixed hypothesis h ∈ H is given by
R(h,P) = E [` (h,X)]. Since Sn is random, so is A(Sn).
Therefore, we define the risk of the hypothesis that A(Sn)
returns by: R(A(Sn),P) = E[` (A(Sn), X) |Sn]. Note that
R(A(Sn),P) is also a random quantity. Ideal learners keep
the risk R(A(Sn),P) of the hypothesis returned by A small
for a wide range of distributions P .

q-Norm of RVs In the sequel, we will heavily rely on the
q-norm for a random variable (RV). For a real RV X , and
for 1 ≤ q ≤ +∞, the q-norm of X is defined as: ‖X‖q

.
=

1The set X is thus measurable. In general, for the sake of
minimizing clutter, we will skip mentioning measurability issues;
in particular, all functions are assumed to be measurable as needed.

(E [|X|q])1/q, and ‖X‖∞ is the essential supremum of |X|.
Note that for 1 ≤ q ≤ p ≤ +∞, the following property
holds for the q-norm: ‖·‖q ≤ ‖·‖p.

1.1 Quality Assessment of Learners
Most of statistical learning theory is devoted to answering
the following two questions: (i) A posteriori performance
assessment: How well did A work on some data Sn drawn
from some distribution P? (ii) A priori performance predic-
tion: How well will A perform on data Sn that will be drawn
from some distribution P? For both questions, the answer
should be given in terms of the risk R(A(Sn),P) of the hy-
pothesis A(Sn). Since Sn and A(Sn) are random quantities,
in general, the answers to the above questions will be upper
bounds, the so-called generalization bounds, on the random
risk R(A(Sn),P) that have a probabilistic nature; i.e. the
bounds hold with high probability, or hold for the expected
risk Rn(A,P) = E[` (A(Sn), X)], or the higher moments of
the risk.

The two questions are similar in that both of them concern
performance on unseen data (since the definition of the risk
involves future unseen data). As a result, often the questions
are answered using similar tools. The two questions are also
fundamentally different: in the case of the first question the
data Sn that produces the hypothesis A(Sn) is already given,
while in the second case the data is yet unknown at the time
when the question is asked. Correspondingly, we call bounds
answering the first question a posteriori (“after the fact”)
bounds, while we call bounds answering the second question
a priori bounds. Ideal a posteriori bounds depend on both
A and Sn (i.e., these bounds should be learner- and data-
dependent), while in the case of a priori bounds, the bound
can at best depend on A and P (i.e., they can be learner- and
distribution-dependent).

In this paper we consider the second question, i.e., a priori
generalization bounds. In particular, we consider a priori
generalization bounds developed in terms of cross-validation
estimates and the stability of learners.

2 Efron-Stein Concentration Inequalities
The main tool for our work is an extension of the Efron-
Stein inequality (Efron and Stein 1981; Steele 1986), to a
stronger version known as the exponential Efron-Stein in-
equality (Boucheron, Lugosi, and Massart 2003). The Efron-
Stein inequality is a strong tool itself to bound the variance
V[Z]

.
= E[(Z − EZ)2] of a random variable Z which is a

function (call this f ) of a number of independent RVs. The
idea of the Efron-Stein inequality is to “decompose” the vari-
ance into the sum V of variance-like terms that express the
sensitivity of the function f to its individual variables in an
appropriate manner. Oftentimes, these individual sensitivities
are easier to control than the variance directly. The crucial
feature of the inequality is that it avoids pessimistic worst-
case bounds like those that underly McDiarmid’s inequality
(McDiarmid 1989). While bounding the variance itself is
crucial, we will need exponential concentration bounds on
the tails of Z. Such bounds were derived in the work of
Boucheron, Lugosi, and Massart (2003), and Boucheron, Lu-
gosi, and Massart (2013). Here, based on the techniques



developed in this groundbreaking work, we derive a new tail
inequality which will better suit our purposes.

We start by introducing the Efron-Stein inequality and
some variations. The inequalities shown here will be use-
ful in our derivations on their own. Let f : Xn 7−→ R
be a real-valued function of n variables, where X is a mea-
surable space (not necessarily the same as in the previous
section). If X1, . . . , Xn are independent (not necessarily
identically distributed) RVs taking values in X , define the
RV Z = f(X1, . . . , Xn) ≡ f(Sn). Define the short-
hand for the conditional expectation E−iZ

.
= E

[
Z|S−in

]
,

where S−in = (X1, . . . , Xi−1, Xi+1, . . . , Xn); i.e., it is the
sequence Sn with example Xi removed. Informally, E−iZ
“integrates” Z over Xi and also over any other source of
randomness in Z except S−in . The celebrated Efron-Stein in-
equality bounds the variance of Z as shown in the following
theorem:
Theorem 1 (Efron-Stein Inequality). Let V =

∑n
i=1(Z −

E−iZ)2. Under the setting described in this section, it holds
that V[Z] ≤ EV .

The proof of Theorem 1 can be found in (Boucheron, Lu-
gosi, and Massart 2004). Another variant of the Efron-Stein
inequality which will turn more useful for our context, is con-
cerned with the removal of one example from Sn. To state
the result, let fi : Xn−1 7−→ R, for 1 ≤ i ≤ n, be an arbi-
trary measurable function, and define the RV Z−i = fi(S−in ).
Then, the Efron-Stein inequality can be also stated in the fol-
lowing interesting form (Boucheron, Lugosi, and Massart
2004, Theorem 6)
Corollary 1 (Efron-Stein Inequality – Removal Case). As-
sume that E−i[Z−i] exists for all 1 ≤ i ≤ n, and let
VDEL =

∑n
i=1 (Z − Z−i)2. Then it holds that

V[Z] ≤ EV ≤ EVDEL . (1)

It may be surprising at a first sight that V[Z] can be
bounded in terms of VDEL which relies on the arbitrary func-
tions fi unrelated to f . The proof in (Boucheron, Lugosi,
and Massart 2004) reveals that there is no mistake here.

2.1 An Exponential Efron-Stein Inequality
The work of Boucheron, Lugosi, and Massart (2003) has
focused on controlling the tail of general functions of inde-
pendent RVs in terms of the tail behavior of the Efron-Stein
variance terms such as V and VDEL, as well as other vari-
ance terms known as V + and V − (Boucheron, Lugosi, and
Massart 2013). The later variance terms will not be pre-
sented here since they do not serve our purpose. The tail of
a RV is often controlled through bounding the logarithm of
the moment generating function (MGF) of the RV. This is
known as the cumulant generating function (CGF) of the RV
and is defined as: ψZ(λ)

.
= logE [exp(λ(Z − EZ))], where

λ ∈ dom(ψZ) ⊂ R, and belongs to a suitable neighborhood
of zero. The main result of Boucheron, Lugosi, and Massart
(2003) bounds ψZ in terms of the MGF for V , V + and V −,
but not in terms of the MGF for VDEL. Since we are particu-
larly interested in the RV VDEL, the following theorem bounds
the tail of ψZ in terms of the MGF for VDEL. The proof is
given in the Appendix.

Theorem 2. Let Z = f(X1, . . . , Xn) be a real valued func-
tion of n independent RVs. For all θ > 0, λ ∈ (0, 1], θλ < 1,
and EeλVDEL <∞, the following holds

logE [exp (−λ(Z − EZ))]

≤ λθ(1− λθ)−1 logE
[
exp

(
λθ−1VDEL

)]
. (2)

Theorem 2 states that the CGF of the centered RV Z is
upper bounded by the CGF of the RV VDEL. Hence, when VDEL

behaves “nicely”, the tail ofZ can be controlled. The value of
θ in the upper bound is a free parameter that can be optimized.
For Theorem 2 to be useful in our context, further control
is required to upper bound the tail of VDEL. Our approach to
control the tail of VDEL will be, again, through its CGF. In
particular, we will show that when VDEL is a sub-gamma RV
(defined shortly) we can obtain a high probability tail bound
on the deviation of the RV Z. The obtained tail bound will
be instrumental in deriving the exponential tail bound for the
KFCV estimate.

Sub-Gamma RVs: A real valued centered RV X is said
to be sub-gamma on the right tail with variance factor v and
scale parameter c if for every λ such that 0 < λ < 1/c, the
following holds

ψX(λ) ≤ 1
2λ

2v(1− cλ)−1. (3)

This is denoted by X ∈ Γ+(v, c). Similarly, X is said to
be a sub-gamma RV on the left tail with variance factor v
and scale parameter c if −X ∈ Γ+(v, c). This is denoted
as X ∈ Γ−(v, c). Finally, X is simply a sub-gamma RV
with variance factor v and scale parameter c if X ∈ Γ+(v, c)
and X ∈ Γ−(v, c). This is denoted by X ∈ Γ(v, c). The
sub-gamma property can be characterized in terms of tail
behavior or moment conditions as follows from Theorem 2.3
stated in (Boucheron, Lugosi, and Massart 2013):
Theorem 3. Let X be a centered RV. If for some v > 0 and
c ≥ 0

P
[
X >

√
2vt+ ct

]
∨ P

[
−X >

√
2vt+ ct

]
≤ e−t , (4)

for every t > 0, then for every integer q ≥ 1

‖X‖2q ≤ (q!Aq + (2q)!B2q)1/2q

≤
√

16.8qv ∨ 9.6qc ≤ 10(
√
qv ∨ qc),

where A = 8v, B = 4c, and x∨ y = max(x, y). Conversely,
if for some positive constants u and w, for any integer q ≥ 1,

‖X‖2q ≤
√
qu ∨ qw ,

then (4) holds with v = 4(1.1u+ 0.732w2) and c = 1.46w.

The reader may notice that Theorem 3 is slightly different
than the original version in (Boucheron, Lugosi, and Massart
2013). Our extension to the main result of Boucheron, Lugosi,
and Massart (2013) is based on simple calculations that are
merely for convenience with respect to our purpose.

2.2 An Exponential Tail Bound for Z
In this section we assume that VDEL is a sub-gamma RV with
variance factor v > 0, scale parameter c ≥ 0, and cλ < 1.



Hence, from (3) it holds that

ψVDEL−EVDEL(λ)
.
= logE [exp(λ(VDEL − EVDEL))]

≤ 1
2λ

2v(1− cλ)−1.

The sub-gamma property of VDEL provides the desired control
on its tail. That is, after arranging the terms of the above
inequality, the CGF of VDEL which controls the tail of VDEL,
is upper bounded by the deterministic quantities: EVDEL, the
variance v, and the scale parameter c. Therefore, it is possible
now to use the sub-gamma property of VDEL to extend the
result of the exponential Efron-Stein inequality in Theorem
2. In particular, the following lemma gives an exponential
tail bound on the deviation of a function of independent RVs,
i.e. Z = f(X1, . . . , Xn), in terms of EVDEL, the variance
factor v, and the scale parameter c. This lemma will be our
main tool to derive the exponential tail bound for the KFCV
estimate. The proof is given in the Appendix.
Lemma 1. Let the RVs Z, Z−i, and VDEL be defined as above.
If VDEL −EVDEL is a sub-gamma RV with variance parameter
v > 0 and scale parameter c ≥ 0, then for δ ∈ (0, 1), a > 0,
with probability 1− δ

|Z − EZ| ≤ 4
3 (ac+ 1

a ) log
(
2
δ

)
+ 4

√
(EVDEL + a2v

2 ) log
(
2
δ

)
.

Parameter a in the upper bound is a free parameter that
can be optimized to provide the tightest possible bound. A
typical choice of a would be the inverse standard deviation of
Z. Lemma 1 is our first contribution in this work: recalling
the definition of the RV Z – a function of n independent RVs
– Lemma 1 gives an exponential tail bound on the deviation of
Z from its expectation by controlling the tails of its variance-
like components Z−i and hence VDEL, which in turn is a
sub-gamma RV with bounded higher order moments. In
the second contribution, we will use Lemma 1 to develop a
high probability generalization bound for the KFCV estimate
(which will replace the RV Z) in terms of the “stability” of
the learning rule. Due to the definition of VDEL, stability of
the learning rule will turn to be instrumental in bounding the
higher order moments of VDEL, and hence for upper bounding
the KFCV estimate. However, to derive the desired bound, it
remains to formally define the KFCV estimate, and the notion
of stability that will permit us to derive such a high probability
bound. We pursue this in the following two sections.

3 Risk Estimators
The generalization bounds on the risk usually center on some
point-estimate of the random risk R(A(Sn),P). Many esti-
mators are based on calculating the sample mean of losses
in one form or another. For any fixed hypothesis h ∈ H
we define the empirical risk of h on Sn as R̂(h,Sn) =
1
n

∑n
i=1 ` (h,Xi). Plugging A(Sn) into R̂(·,Sn) we get the

training error or resubstitution (RES) estimate (Devroye and
Wagner 1979): R̂RES (A,Sn) = R̂ (A (Sn) ,Sn). The resub-
stitution estimate is often overly “optimistic”, i.e., it underes-
timates the actual risk R(A(Sn),P).

The leave–one–out or deleted (DEL) estimate (Devroye
and Wagner 1979) is a common alternative to the resubsti-
tution estimate that aims to correct for this: R̂DEL (A,Sn) =

1
n

∑n
i=1 `

(
A(S−in ), Xi

)
, where S−in is defined as in the pre-

vious section. Since E[`
(
A(S−in ), Xi

)
] = Rn−1(A,P), then

E[R̂DEL(A,Sn)] = Rn−1(A,P). When the latter is close to
Rn(A,P), i.e., A is “stable”, the deleted estimate may be
a good alternative to the resubstitution estimate. However,
due to the potentially strong correlations between elements
of (`(A(S−in ), Xi))i, the variance of the deleted estimate is
expected to be higher than that of the resubstitution esti-
mate (there is much redundancy in the information content
of `(A(S−in ), Xi) and `(A(S−jn ), Xj) for i 6= j). Another
downside of the deleted estimate is its high computational
cost. That is, to evaluate R̂DEL (A,Sn) for Sn, one has to
execute the learner A on S−in to obtain hypothesis ĥi, for
i = 1, . . . , n; i.e. execute A for n times. For large n, this is
indeed prohibitive.

The KFCV estimate provides a way of naturally interpo-
lating between the resubstitution and the deleted estimate
(Stone 1974; Geisser 1975). For simplicity, assume that the
sequence Sn can be partitioned into k equal folds F1,...,k

.
=

(F1 . . . Fk), where each fold Fj is a sequence that has ex-
actly m examples from Sn; i.e. Sn = (F1 F2 . . . Fk). In
particular, we assume that n = mk. This assumption is
merely for convenience: all of our results extend to the gen-
eral case with some extra effort. KFCV proceeds by learning
k hypotheses ĥ1, . . . , ĥk, where ĥj = A(S−[Fj ]

n ), and S−[Fj ]
n

is the sequence (F1 . . . Fj−1 Fj+1 . . . Fk). The empirical
risk of ĥj is obtained by evaluating ĥj onFj which was “held
out” while running A on S−[Fj ]

n . The KFCV estimate for the
risk is the average of the empirical risks of the k hypotheses
ĥ1, . . . , ĥk:

R̂CV (A,F1,...,k) =
1

k

k∑
j=1

R̂
(
A(S−[Fj ]

n ),Fj
)

=
1

km

k∑
j=1

∑
x∈Fj

`
(
A(S−[Fj ]

n ), x
)

. (5)

In the last expression of this display we are abusing the nota-
tion by using the membership operator ‘∈’ with the sequence
Fj . In particular, in the sum every element of the set formed
of the members of Fj appears with its multiplicity in Fj .

Note that we obtain the deleted estimate as a special case of
the KFCV estimate when k = n and m = 1. The main goal
of this paper is to develop a high probability upper bound on
the absolute deviation |R̂CV (A(Sn),F1,...,k)−R(A(Sn),P)|
in terms of the “stability” of A, which is defined next.

4 Stability of Learning Rules

We start with the definition of Lq-stability, which specializes
to Definition 1 by Celisse and Guedj (2016) when m = 1.
For m ∈ N, let [m]

.
= {1, . . . ,m}. Fix 1 ≤ m < n, and

let S−[m]
n denote the sequence Sn after removing the first m



examples from it.2

Definition 1 (Lq-stability Coefficient). Let Sn be a sequence
of n i.i.d random variables (RVs) drawn from X according
to P . Let A be a deterministic learning rule, and ` be a loss
function as defined in Section 1. For 1 ≤ m < n, and q ≥ 1,
the Lq-stability coefficient of A with respect to `, P , and
n,m is denoted by βq(A, `,P, n,m) and is defined as

βqq (A, `,P, n,m) = E[|R̂(A(Sn),F ′)− R̂(A(S−[m]
n ),F ′)|q],

where F ′ = (X ′1, . . . , X
′
m) ∼Pm is independent of Sn.

Since the examples in Sn are i.i.d, the joint distribution of
(A(Sn), A(S−[m]

n ), X ′1, . . . , X
′
m) does not depend on which

(fixed) m examples are removed from Sn, hence, for simplic-
ity, in this definition we simply assume that it is always
the first m examples that are removed. Note that quite
a few previous works restrict notions of algorithmic sta-
bility to learning rules that are permutation invariant, or

“symmetric”; i.e. learning rules that yield identical output
under different permutations of the examples presented to
them (Rogers and Wagner 1978; Devroye and Wagner 1979;
Kearns and Ron 1999; Bousquet and Elisseeff 2002; Shalev-
Shwartz et al. 2010). For the same reason of why it does
not matter which examples are removed, it does not matter
whether the learning rule is symmetric or not.

Since often A, `, P are fixed, we will drop them from the
notation and will just use βqq (n,m). However, this should
not be mistaken to taking a supremum over any subset of the
dropped quantities: The stability coefficients are meant to
be algorithm, loss and distribution dependent. By avoiding a
worst-case approach in the definitions, we will be able to get
a finer picture than if we took a worst-case approach.

The Lq-stability coefficient quantifies the variation of the
random risk of A induced by removing m samples from the
training set. Often, this is known as a removal type notion
of stability which is different from (but related to) the re-
placement type notion of stability where the example Xi is
replaced with the example X ′i s.t. X ′i ∼P and X ′i is inde-
pendent of Sn. This definition of stability is therefore in ac-
cordance with previous notions of stability (Rogers and Wag-
ner 1978; Devroye and Wagner 1979; Kearns and Ron 1999;
Bousquet and Elisseeff 2002).

The difference between Lq-stability and earlier notions
of stability, is that Lq-stability is in terms of the higher or-
der moments of the RV |R̂(A(Sn),F ′)− R̂(A(S−[m]

n ),F ′)|.
The reason we care about higher moments is because we
are interested in controlling the tail behavior of the KFCV
estimate. It is then quite expected that the tail behavior of the
KFCV estimate is also dependent on the tail behavior of RVs
characterizing stability. As is well-known, knowledge of the
higher moments of a RV is equivalent to knowledge of the
tail behavior of the RV.

2 The notation S−i
n , S−Fj

n , and S−[m] might be overwhelming
at first glance. Indeed, these are all related, and our objective is
to simplify the notation. Besides these, we only need S−{Fi,Fj}

n ,
which denotes that both folds indexed by i 6= j are removed from
Sn.

From the q-Norm properties of RVs, it holds that βq ≤ βp
for 1 ≤ q ≤ p ≤ +∞. As a result, for a fixed `, A and
P , βq(n,m)

.
= βq(A, `,P, n,m) is an increasing function

of q. Furthermore, we also expect that βq(n,m) will be a
decreasing function of n and an increasing function of m.

5 Application: An Exponential Tail Bound
for The KFCV Estimate

We finally arrive to the main goal of this paper: de-
velop a high probability upper bound on the absolute de-
viation of R̂CV (A,F1,...,k) from the risk R(A(Sn),P)

.
=

E[` (A(Sn), X) |Sn] using the tools developed earlier. To
do so, we decompose |R̂CV (A,F1,...,k)−R(A(Sn),P)| into
three terms

|R̂CV (A,F1,...,k)−R(A(Sn),P)| ≤ I + II + III , (6)

where

I = |ER̂CV(A,F1,...,k)− R̂CV(A,F1,...,k)|,
II = |R(A(Sn),P)− ER(A(Sn),P)|, and

III = |ER(A(Sn),P)− ER̂CV(A,F1,...,k)|.

If the three terms in the RHS of (6) are properly upper
bounded, we will have the desired final upper bound. Terms
I and II shall be bounded using the exponential Efron-Stein
inequality from Lemma 1. Further, we hope that the final
upper bounds can be in terms of the Lq stability of A. Term
III, however, always holds since it does not involve random
quantities, and it shall be directly bounded using the notion
of Lq stability.

For terms I and II, the key quantity for using the expo-
nential Efron-Stein inequality is the RV VDEL. In particu-
lar, the requirement for using VDEL is two-fold. First, since
VDEL =

∑n
i=1(Z − Z−i)

2, recall from Corollary 1 that
Z−i = fi(S−in ), where fi is an arbitrary function of n − 1
independent RVs; i.e. fi : Xn−1 7−→ R. As such, the first re-
quirement of using VDEL is to choose an appropriate function
fi given our knowledge of the RV Z. Second, once Z−i is
defined, we need to show that VDEL is a sub-gamma RV using
the characterization of sub-gamma RVs from Theorem 3. For
this, from Theorem 3 we know that it suffices to show that
for all integers q ≥ 1,

‖VDEL‖2q ≤
√
qu ∨ qw , (7)

for some positive constants u and w, and a ∨ b = max(a, b).
Here, we will relate ‖VDEL‖2q to Lq-stability coefficients and
then we “reverse engineer” appropriate assumptions on the
Lq-stability coefficients that imply (7).

5.1 Upper Bounding Terms I, II, and III

In this section we derive the desired upper bounds for Terms I,
II, and III. Unless otherwise stated, all proofs for the results in
this section can be found in the Appendix. First, we consider
term I in the RHS of inequality (6).



An Upper Bound for Term I This is the devia-
tion |ER̂CV(A,F1,...,k) − R̂CV(A,F1,...,k)|. Note that
R̂CV (A,F1,...,k) ≡ R̂CV (A,F1, . . . ,Fk) is a function of k
independent random sequences, and each sequence Fj has
m i.i.d examples drawn from X according to P . Hence, the
exponential Efron-Stein inequality in Lemma 1 seems to be
an appropriate tool to bound this deviation. To use Lemma
1, we need to (i) define the RV VDEL, and (ii) show that VDEL

is a sub-gamma RV. Let the RVs Z and Z−i be defined as
follows:

Z = R̂CV (A,F1,...,k)

Z−i =
1

k

k∑
j=1, j 6=i

R̂
(
A(S−{Fi,Fj}

n ,Fj)
)
,

(8)

where −{Fi,Fj} indicates the removal of folds Fi and Fj
from Sn = (F1 F2 · · · Fk) and in particular S−{Fi,Fj}

n

indicates the same sequence regardless of whether i < j or
j < i. Recall that VDEL =

∑
i(Z − Z−i)2. The first result

here is an upper bound on EVDEL in terms of the L2 stability
of A.
Lemma 2. Using the previous setup and definitions,
let Z and Z−i be defined as in (8), and let VDEL =∑k
i=1 (Z − Z−i)2. Then, for k ≥ 1, and n > m ≥ 1,

the following holds

EVDEL ≤ kβ2
2(n−m,m) . (9)

The second requirement to use Lemma 1 is to show that
VDEL is a sub-gamma RV. To do so, first we need the follow-
ing lemma to bound the q-norm of VDEL in terms of the Lq
stability of A.
Lemma 3. Using the previous setup and definitions, let Z,
Z−i, and VDEL be defined as above. Then for any integer
q ≥ 1, k ≥ 1, and n > m ≥ 1, the following holds

‖VDEL‖2q ≤ kβ2
4q(n−m,m) . (10)

Next, to show that VDEL is a sub-gamma RV, we need to
make the following reasonable assumption.
Assumption 1. ∃ u1, w1 ≥ 0 s.t. for any integer q ≥ 1, it
holds that kβ2

4q(n−m,m) ≤ √qu1 ∨ qw1.
This assumption is needed since our results are in terms

of the stability of a generic learning rule A with minimal
knowledge about it and about its stability. However, once A is
specified, this assumption will not be needed since an upper
bound can be realized for β2

4q. For instance, as shown in
(Celisse and Guedj 2016), and for the ridge regression case,
βq is upper bounded by the q-norm of the response variable
Y .
Corollary 2. Using the previous definitions, and under
Assumption 1, VDEL ∈ Γ(v1, c1), where v1 = 4(1.1u1 +
0.732w2

1) and c1 = 1.46w1.
The statement of Corollary 2 follows from Lemma 3, and

using Assumption 1 and Theorem 3. Plugging the result of
Lemma 2 and Corollary 2 into Lemma 1 gives the desired
final upper bound.

Lemma 4. Under Assumption 1, and for k ≥ 1, and n >
m ≥ 1, let r1 = kβ2

2(n −m,m). Then for δ ∈ (0, 1) and
a > 0, with probability 1− δ the following holds∣∣∣ER̂CV(A,F1,...,k)− R̂CV(A,F1,...,k)

∣∣∣
≤ 4

3 (1.46aw1 + 1
a ) log

(
2
δ

)
+ 2
√

(r1 + 2.2a2u1 + 1.07(aw1)2) log
(
2
δ

)
.

Note that u1 and w1 are controlled by kβ2
4q(n −m,m),

and that r1 = kβ2
2(n − m,m). Recall that m = n/k;

i.e. for k fixed, the Lq stability coefficients depend on
n. Recall from Section 4 that for fixed A, `, and P , we
assume that β2

2(n − m,m) is a decreasing function of n
and increasing in m. In particular, similar to Bousquet
and Elisseeff (2002) and Celisse and Guedj (2016), for
this bound to be useful, β2

4q(n − m,m) has to be decreas-
ing as n is increasing, hopefully as fast as possible. If
β2
4q(n −m,m) = o(1/

√
n), then R̂CV(A,F1,...,k) is a con-

sistent estimator of ER̂CV(A,F1,...,k). The terms that depend
on a from the bound scale as ak−1n−p + 1

a with n and k.
Choosing a = k1/2np/2 makes both the a-dependent part, as
well as the whole of the bound scale with k−1/2n−p/2 as a
function of n and k. In general, we expect w1 ≈

√
u1, in

which case choosing a = w
−1/2
1 makes the bound scale with

w
1/2
1 . Then, w1/2

1 = o(1) (as n→∞) will be sufficient for
consistency, translating to β4q(n− n/k, n/k) = o(1) with k
fixed.

An Upper Bound for Term II Second, we consider term
II in inequality (6). This is the deviation |ER (A(Sn),P)−
R (A(Sn),P) |. Note that R (A(Sn),P) is a function of n
independent RVs, and therefore, Lemma 1 will be our tool
to bound this deviation. To do so, we need to define the RVs
Z and Z−i, and show that VDEL is a sub-gamma RV. Let the
RVs Z and Z−i be defined as follows:

Z = R (A(Sn),P)

Z−i = R
(
A(S−in ),P

)
.

(11)

Similarly to Lemma (3) we have the following result:

Lemma 5. Let Z and Z−i be defined as in (11) and let
VDEL =

∑n
i=1(Z − Z−i)2. Then for any real q ≥ 1/2, and

n ≥ 2, the following holds:

‖VDEL‖2q ≤ nβ2
4q(n, 1) . (12)

Lemma 1 also requires a bound on EVDEL. As before, we
obtain this from (12) directly by noticing that VDEL ≥ 0, and
for q = 1/2, ‖VDEL‖2q = EVDEL:

EVDEL ≤ nβ2
2(n, 1) . (13)

Then, for the same reason we made Assumption 1, we need
to make the following assumption.

Assumption 2. ∃ u2, w2 ≥ 0 s.t. for any integer q ≥ 1, it
holds that nβ2

4q(n, 1) ≤ √qu2 ∨ qw2.



The steps to derive the final bound for Term II are exactly
the same derivation steps for the previous bound. The final
bound is given by the following lemma which simply plugs
in the the results of Lemma (12) and (13) into Lemma 1.

Lemma 6. Under Assumption 2, and for n ≥ 2, let r2 =
nβ2

2(n, 1). Then for δ ∈ (0, 1) and a > 0, with probability
1− δ the following holds

|ER (A(Sn),P)−R (A(Sn),P)| ≤
4
3 (1.46aw2 + 1

a ) log
(
2
δ

)
+ 2
√

(r2 + 2.2a2u2 + 1.07a2w2
2) log

(
2
δ

)
.

Again, note that u2 and w2 are controlled by β2
4q(n, 1),

and that r2 = nβ2
2(n, 1). Recall that m = n/k; i.e. in

particular, for k fixed, the Lq stability coefficients depend on
n. From Section 4, for fixed A, `, and P , we assume that
β2
2(n−m,m) is a decreasing function of n and increasing

in m. As such, for this bound to be useful, β2
4q(n, 1) has to

be decreasing as n is increasing, hopefully as fast as possible.
If β2

4q(n, 1) = o(1/
√
n), then R (A(Sn),P) is a consistent

estimator of ER (A(Sn),P). Concerning the choice of a,
the discussion after Lemma (4) applies.

An Upper Bound for Term III For term III in inequality
(6) there are no random quantities to account for since both
terms in the absolute value are expectations of RVs. Hence,
an upper bound on this deviation will always hold.

Lemma 7. Using the previous setup and definitions, let A be
a learning rule with L2 stability coefficient β2(n,m). Then,
for k ≥ 1, and n > m ≥ 1, the following holds

|ER(A(Sn),P)− ER̂CV(A,F1,...,k)| ≤ β2(n,m) .

5.2 Main Result
Theorem 4. Let X , H and ` be as previously defined. Let
Sn

.
= (F1, . . . ,Fk) be the dataset defined in Section 3, where

k ≥ 1, n > m ≥ 1, and n = km. Let R̂CV (A,F1,...,k) be the
cross validation estimate defined in (5), and R(A(Sn),P)
be the risk for hypothesis A(Sn). Then, under Assumption 1
and Assumption 2, for δ ∈ (0, 1) and a > 0, with probability
1− δ the following holds

|R̂CV (A,F1,...,k)−R(A(Sn),P)|
≤ 2(aw1 + aw2 + 2) log

(
4
δ

)
+ β2(n,m)

+ 4 (
√
π1 +

√
π2) log

(
4
δ

) 1
2 ,

where

π1 = 2kβ2
2(n−m,m) + 2.2au1 + 1.07a2w2

1, and

π2 = nβ2
2(n, 1) + 2.2au2 + 1.07a2w2

2.

The proof of Theorem 4 simply plugs in the results
of Lemma 4, Lemma 6, and Lemma 7 into inequality
(6). Concerning the choice of a, the discussions after
Lemma (4) and Lemma (6) apply. For consistency, under
assumptions stated there, we need β4q(n, 1) = o(1/n1/2)
and β4q(n− n/k, n/k) = o(1) with k fixed, while we need
β4q(n, 1) = o(1/n1/2) only when k = kn = n (deleted

estimate).

Discussion: First, the discussion that follows Lemma 4 and
Lemma 6 applies here as well. Second, consider the four
terms that constitute the final bound. The first term is due
to the higher order moments of the Lq stability, in partic-
ular β2

4q which are the tails for the RV |` (A(Sn), X) −
`(A(S−1n ), X)|4q. Note that from Theorem 3, w1 and w2

are in fact controlled by the stability β2
4q. Therefore, as the

stability is improving, w1 and w2 will be small, thereby mak-
ing the bound tighter. Note that the same applies to u1 and
u2 in π1 and π2, respectively.

The four terms in the bound show that the concentration
of the KFCV estimate around the true risk depends on the
stability of the learning rule, and the number of folds k (and
consequently m). For a stable learning rule with small higher
order moments, the bound is tightest for the deleted estimate
(k = n). In a general sense, this agrees with earlier results
that, for a stable learning rule, the deleted estimate is almost
an unbiased estimate of the true risk (Devroye, Györfi, and
Lugosi 1996). At a more specific level, our results show that
in order to control the concentration of the KFCV estimate
around the true risk, one has to control the tail of the RV
R̂CV (A,Sn). And to control the tail of R̂CV (A,Sn), one has
to control the tails, or the higher order moments, for the
RV VDEL, or |` (A(Sn), X)− `(A(S−1n ), X)|, which turns to
be the stability of the learning rule – in terms of the loss
function ` (A(Sn), X) – w.r.t the removal of one example (or
m examples) from Sn.

At a higher level, for the KFCV estimate to concentrate
around the true risk, and assuming a highly stable learning
rule, large values of k will give a better estimate for the gener-
alization error. By contrast, when k = 1 (i.e. no cross valida-
tion), R̂CV turns to be the resubstitution estimate R̂RES (A,Sn),
and the bound becomes loose which agrees with the classical
result that R̂RES (A,Sn) overly underestimates the true risk
(Devroye and Wagner 1979).

6 Concluding Remarks
As stated earlier, our concentration bound for the KFCV
estimate shows that in order for the estimate to concentrate
around the true risk, the learning rule A has to be stable. More
specifically, to control the tail of the KFCV estimate, one
has to control its higher order moments which, in turn, is
controlled by the stability of the learning rule. Depending on
the degree of stability, one may then need to increase k as a
function of the sample size. This insight was only possible
through the interplay between the exponential Efron-Stein
inequality and the notion of Lq stability.

According to our results, and considering the practical side
of using machine learning algorithms, one has to question the
widely used practice of setting k into a predefined value to
report the empirical generalization error for a learning rule,
regardless of the sample size n; for instance setting k = 10
or k = 5. Note that for a fixed k, as the sample size is
increasing, the size of each fold, m = n/k is also increas-
ing. This implicitly assumes that the learning rule, and in
terms of the hypothesis loss, is stable w.r.t the removal of



m examples from the training set. If there is no justification
for this stability assumption, one should wonder the faithful-
ness of such empirical results. This practice is even more
alarming in the absence of any empirical measure for the
stability of a learning rule. Nevertheless, this also suggests
two promising research directions; (i) a computationally effi-
cient mechanism for choosing the value of k to improve the
reliability of the KFCV estimate; and (ii) a computationally
efficient (meta)algorithm (hopefully with some guarantees)
to estimate the stability of a learning rule.

On the theoretical side, our result, so far, is in terms of
the stability of the learning rule A, k, n, and m, but did not
consider any particular learning rule in specific. As such,
further insight and refined results can be obtained if our
bound is applied to well known classes of algorithms such
as potential function rules (which include the k-NN rule)
(Devroye and Wagner 1979), and empirical risk minimizers
for instance.
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Appendix
Proof of Theorem 2
Theorem. 2 Let Z = f(X1, . . . , Xn) be a real valued function of n independent random variables. For all θ > 0, λ ∈ (0, 1],
θλ < 1, and EeλVDEL <∞:

logE [exp (−λ(Z − EZ))] ≤ λθ

1− λθ
logE

[
exp

(
λ

θ
VDEL

)]
.

Proof. The proof of this theorem relies on the result of Theorem 6.6 in (Boucheron, Lugosi, and Massart 2013) which we state
here for convenience as a proposition without proof.

Proposition 1. Let φ(u) = eu − u− 1. Then for all λ ∈ R,

λE [Z exp(λZ)]− E [exp(λZ)] logE [exp(λZ)] ≤
n∑
i=1

E [exp(λZ)φ (−λ(Z − Z−i))] . (14)

To make use of inequality (14), we need to establish an appropriate upper bound for the RHS of (14). Note that for u ≤ 1,
φ(u) ≤ u2. Assume that |Z − Z−i| ≤ 1 and since 0 < λ ≤ 1, then

n∑
i=1

E [exp(λZ)φ (−λ(Z − Z−i))] ≤ λ2
n∑
i=1

E
[
exp(λZ) (Z − Z−i)2

]
= λ2E [VDEL exp(λZ)] .

It follows that (14) can be written as

λE [Z exp(λZ)]− E [exp(λZ)] logE [exp(λZ)] ≤ λ2E [exp(λZ)VDEL] . (15)

The RHS of the previous inequality has two coupled random variables; exp(λZ) and VDEL. To make use of (14), we decouple the
two random variables using the following useful tool from (Massart 2000) which we state as a proposition without a proof.

Proposition 2. For random variable W , and for any λ ∈ R, if E [exp(λW )] <∞, then the following holds

EλW exp(λZ)

Eexp(λZ)
≤ EλZ exp(λZ)

Eexp(λZ)
− logEexp(λZ) + logEexp(λW ) . (16)

Multiplying both sides of (16) by Eexp(λZ) and replacing W with VDEL/θ we get that:

Eexp(λZ)VDEL ≤ θ
[
EZ exp(λZ)− 1

λ
Eexp(λZ) logEexp(λZ) +

1

λ
Eexp(λZ) logEexp

(
λ
VDEL

θ

)]
. (17)

Introduce F (λ) = Eexp(λZ), and G(λ) = logEexp(λVDEL). Note that F ′(λ) = EZ exp(λZ).
Plugging (17) into (15) and using the compact notation F (λ), F ′(λ), and G(λ/θ) we get that:

λF ′(λ)− F (λ) logF (λ) ≤ λ2θ
(
F ′(λ)− 1

λ
F (λ) logF (λ) +

1

λ
F (λ)G(λ/θ)

)
. (18)

Dividing both sides by λ2F (λ) and rearranging the terms:

1

λ

F ′(λ)

F (λ)
− 1

λ2
logF (λ) ≤ θG(λ/θ)

λ(1− λθ)
. (19)

The rest of the proof continues exactly as the proof of Theorem 2 in (Boucheron, Lugosi, and Massart 2003). A slightly different
version of this proof was given for Theorem 6.16 in (Boucheron, Lugosi, and Massart 2013).

Proof of Lemma 1
Lemma 1. Let the RVs Z, Z−i, and VDEL be defined as above. If VDEL − EVDEL is a sub-gamma RV with variance parameter
v > 0 and scale parameter c ≥ 0, then for δ ∈ (0, 1), a > 0, with probability 1− δ

|Z − EZ| ≤ 4
3 (ac+ 1

a ) log
(
2
δ

)
+ 4

√
(EVDEL + a2v

2 ) log
(
2
δ

)
.



Proof. Since VDEL − EVDEL ∈ Γ+(v, c), for any λ ∈ (0, 1/c) we have

ψVDEL−EVDEL(λ) = logE [exp(λ(VDEL − EVDEL))] ≤ λ2v

2(1− cλ)
.

Rearranging the terms we get

logE [exp(λVDEL)] ≤ λEVDEL +
λ2(v/2)

1− cλ
. (20)

Combining this with the result of 2 where we choose θ = 1, we get

ψZ−EZ(λ) ≤ λ

1− λ

(
λEVDEL +

λ2(v/2)

1− cλ

)
. (21)

We upper bound the term on the right-hand side as follows:

λ

1− λ

(
λEVDEL +

λ2(v/2)

1− cλ

)
=

λ

1− λ

(
λEVDEL − cλ2EVDEL + λ2v/2

(1− cλ)

)
≤ λ

1− λ

(
λEVDEL + λ2(v/2)

(1− cλ)

)
=
λ2EVDEL + λ3(v/2)

(1− λ)(1− cλ)

≤ λ2EVDEL + λ2(v/2)

(1− λ)(1− cλ)

=
λ2(EVDEL + v/2)

(1− λ)(1− cλ)

≤ λ2(EVDEL + v/2)

(1− (c+ 1)λ)
,

where the last inequality holds provided that 0 < λ < 1/(c+ 1). Thus we finally get that

ψZ−EZ(λ) ≤ λ2(EVDEL + v/2)

(1− (c+ 1)λ)
. (22)

Recall that the Cramer-Chernoff method gives that for any λ > 0, P [Z > EZ + t] ≤ exp(−(λt− ψZ−EZ(λ))). This combined
with (22), we see that we need to lower bound λt − ψZ−EZ(λ) ≥ λt − λ2(EVDEL+v/2)

(1−(c+1)λ) , where λ ∈ (0, 1] ∩ (0, 1/(c + 1)) =

(0, 1/(c+ 1)) can be chosen so that the lower bound is the largest. From Lemma 11 in Boucheron, Lugosi, and Massart (2003),
we have that for any p, q > 0,

sup
λ∈[0,1/q)

(
λt− λ2p

1− qλ

)
≥ t2

4p+ 2q(t/3)
,

and the supremum is attained at

λ =
1

q

(
1−

(
1 +

qt

p

)−1/2)
.

Setting p = EVDEL + v/2, q = c+ 1, we see that the optimizing λ belongs to (0, 1/(c+ 1)). Hence,

P [Z > EZ + t] ≤ exp

(
−t2

4(EVDEL + v/2) + 2(c+ 1)t/3

)
.

Letting the right hand side of the previous inequality to equal δ and solving for t then after some further upper bounding to
simplify the resulting expression (in particular, using

√
|a|+ |b| ≤

√
|a|+

√
|b|), we get

|Z − EZ| ≤ 4
3 (c+ 1) log

(
2
δ

)
+ 2
√

(EVDEL + v/2) log
(
2
δ

)
. (23)

The result now follows by applying (23) to Z ′ = aZ, Z ′−i = aZ−i and V ′DEL =
∑
i(Z
′ − Z ′−i)2. Noting that V ′DEL = a2VDEL ∈

Γ(a4v, a2c), we get

a |Z − EZ| ≤ 4
3 (a2c+ 1) log

(
2
δ

)
+ 2
√

(a2EVDEL + a4v/2) log
(
2
δ

)
.

Dividing both sides by a gives the desired inequality.



Proof of Lemma 3

Lemma 3. Using the previous setup and definitions, let Z, Z−i, and VDEL be defined as above. Then for any integer q ≥ 1,
k ≥ 1, and n > m ≥ 1, the following holds

‖VDEL‖2q ≤ kβ2
4q(n−m,m) . (10)

Proof. Let q ≥ 1. Then,

‖VDEL‖q =

∥∥∥∥∥
k∑
i=1

(Z − Z−i)2
∥∥∥∥∥
q

≤
k∑
i=1

∥∥(Z − Z−i)2
∥∥
q

(by triangle inequality)

=

k∑
i=1

∥∥∥∥∥∥∥
1

k

k∑
j=1

R̂
(
A(S−Fj

n ),Fj
)
− 1

k − 1

k∑
q=1

q 6=i

R̂
(
A(S−{Fi,Fq}

n ),Fq
)

2∥∥∥∥∥∥∥
q

=

k∑
i=1

∥∥∥∥∥∥∥
 1

k(k − 1)

k∑
j=1

k∑
q=1

q 6=i

(
R̂
(
A(S−Fj

n ),Fj
)
− R̂

(
A(S−{Fi,Fq}

n ),Fq
))

2∥∥∥∥∥∥∥
q

≤
k∑
i=1

∥∥∥∥∥∥∥
1

k(k − 1)

k∑
j=1

k∑
q=1

q 6=i

(
R̂
(
A(S−Fj

n ),Fj
)
− R̂

(
A(S−{Fi,Fq}

n ),Fq
))2∥∥∥∥∥∥∥

q

(by Jensen inequality)

≤ 1

k(k − 1)

k∑
i=1

k∑
j=1

k∑
q=1

q 6=i

∥∥∥∥(R̂ (A(S−Fj
n ),Fj

)
− R̂

(
A(S−{Fi,Fq}

n ),Fq
))2∥∥∥∥

q

(by triangle inequality)

=
1

k(k − 1)

k∑
i=1

k∑
j=1

k∑
q=1

q 6=i

β2
2q(n−m,m)

= kβ2
2q(n−m,m) . (24)

Now observe that replacing q with 2q yields that

‖VDEL‖2q ≤ kβ
2
4q(n−m,m) , (25)

which completes the proof.

Proof of Lemma 5

Lemma 5. Let Z and Z−i be defined as in (11) and let VDEL =
∑n
i=1(Z −Z−i)2. Then for any real q ≥ 1/2, and n ≥ 2, the

following holds:

‖VDEL‖2q ≤ nβ2
4q(n, 1) . (12)



Proof. Let q ≥ 1. Then,

‖VDEL‖q =

∥∥∥∥∥
n∑
i=1

(Z − Z−i)2
∥∥∥∥∥
q

≤
n∑
i=1

∥∥∥(Z − Z−i)2
∥∥∥
q

(by triangle inequality)

=

n∑
i=1

‖(Z − Z−i)‖22q (since
∥∥∥X2

∥∥∥
q
= ‖X‖22q)

=

n∑
i=1

∥∥R(A(Sn),P)−R(A(S−in ),P)
∥∥2
2q

=

n∑
i=1

∥∥E [` (A(Sn), X)− `
(
A(S−in ), X

)
|Sn
]∥∥2

2q

=

n∑
i=1

∥∥E [` (A(Sn), X)− `
(
A(S−1n ), X

)
|Sn
]∥∥2

2q
(by i.i.d of the examples)

= nβ2
2q(n, 1) . (26)

Replacing q with 2q yields that
‖VDEL‖2q ≤ nβ2

4q(n, 1) . (27)

Proof of Lemma 7
Lemma 7. Using the previous setup and definitions, let A be a learning rule with L2 stability coefficient β2(n,m). Then, for
k ≥ 1, and n > m ≥ 1, the following holds

|ER(A(Sn),P)− ER̂CV(A,F1,...,k)| ≤ β2(n,m) .

Proof. To derive a bound on |ER(A(Sn),P)− ER̂CV(A,F1,...,k)| in terms of Lq-stability, we proceed as follows. First, note
that ER (A(Sn),P) = E [` (A(Sn), X)]. Second, for ER̂CV (A,F1,...,k), we have

ER̂CV (A,F1,...,k) = E

 1

km

k∑
j=1

∑
xi∈Fj

`
(
A
(
S−Fj
n , xi

))
=

1

km

k∑
j=1

∑
xi∈Fj

E
[
`
(
A
(
S−Fj
n

)
, xi
)]

=
1

km

k∑
j=1

m∑
i=1

E
[
`
(
A
(
S−[m]
n

)
, x′i

)]
(by i.i.d of the examples)

= E
[
`
(
A
(
S−[m]
n

)
, X
)]

,

where (X ′1, . . . , X
′
m) are i.i.d examples drawn from X according to P .

It follows that ∣∣∣ER (A(Sn),P)− ER̂CV (A,F1,...,k)
∣∣∣ =

∣∣∣E[` (A(Sn), X)]− E[`(A(S−[m]
n ), X)]

∣∣∣
=
∣∣∣E [` (A(Sn), X)− `(A(S−[m]

n ), X)
]∣∣∣

≤ E
[∣∣∣` (A(Sn), X)− `(A(S−[m]

n ), X)
∣∣∣]

≤

√
E
[(
` (A(Sn), X)− `(A(S−[m]

n ), X)
)2]

= β2(n,m). (by definition of L2 Stability) (28)
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