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Abstract

Magnetic Resonance Elastography (MRE) is an emerging imaging modal-

ity for quantifying soft tissue elasticity deduced from displacement measure-

ments within the tissue obtained by phase sensitive Magnetic Resonance

Imaging (MRI) techniques. MRE has potential to detect a range of patholo-

gies, diseases and cancer formations, especially tumors. The mechanical
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model commonly used in MRE is linear viscoelasticity (VE). An alterna-

tive Rayleigh damping (RD) model for soft tissue attenuation is used with

a subspace-based nonlinear inversion (SNLI) algorithm to reconstruct vis-

coelastic properties, energy attenuation mechanisms and concomitant damp-

ing behavior of the tissue-simulating phantoms. This research performs a

thorough evaluation of the RD model in MRE focusing on unique identifica-

tion of RD parameters, µI and ρI .

Results show the non-identifiability of the RD model at a single input

frequency based on a structural analysis with a series of supporting experi-

mental phantom results. The estimated real shear modulus values (µR) were

substantially correct in characterising various material types and correlated

well with the expected stiffness contrast of the physical phantoms. However,

estimated RD parameters displayed consistent poor reconstruction accuracy

leading to unpredictable trends in parameter behaviour. To overcome this

issue, two alternative approaches were developed: 1) simultaneous multi-

frequency inversion; and 2) parametric-based reconstruction. Overall, the

RD model estimates the real shear shear modulus (µR) well, but identify-

ing damping parameters (µI and ρI) is not possible without an alternative

approach.
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1. Introduction

Soft tissue property identification is valuable to a number of medical

applications, such as diagnostic purposes [1–3], surgery simulations [4? ],

and virtual-reality based techniques. The elastic properties of soft tissues

are closely related to their consistency, biological structure, and pathological

conditions. Therefore, imaging of mechanical properties of tissue in-vivo can

improve non-invasive tissue characterisation and help in early diagnosis of

various pathologies.

Magnetic Resonance Elastography (MRE) can directly visualise and mea-

sure tissue elasticity [5–8], and has been applied to resolve stiffness charac-

teristics of a variety human tissues and organs, such as muscle [9–12], breast

[13–17], liver [18–20] and the brain [21–29]. MRE acquisition requires ap-

plication of mechanical waves to tissue within the MRI, phase-contrast MR

pulse sequence extended with motion encoding gradient (MEGs), and sophis-

ticated inverse problem methods to identify an elastic modulus map of the

tissue.

The choice of the constitutive model is crucial for accurate reproduction

of the observed mechanical response. To date, reconstruction approaches

generally assumed tissue to be linearly elastic [30], although some groups

have employed more advanced models, such as viscoelasticity (VE) [23, 26,

27] and poroelasticity [31]. Rayleigh damping (RD) is an extension of VE,

which utilises an additional damping parameter to provide a more complex

description of the elastic energy attenuation.

Additional damping effects can improve model accuracy by providing

a better data-model correlation [32]. In biological tissue, attenuation, or
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damping, occurs due to the complex interaction between micro structural

components in the soft tissue matrix. Therefore, the model that more accu-

rately maps damping properties might bring additional diagnostic potential

with regards to differentiating tissue structure and composition. Depend-

ing on consistency, this particular tissue type can display different damping

properties. More specifically, tissue composed from tightly arranged cells

displays less damping compared to the highly-saturated porous tissue. Thus,

accurate quantification of damping properties might aid in early diagnosis

of various degenerative diseases, such as Alzheimer’s disease [23], Normal

Pressure Hydrocephalus (NPH) [33] and Multiple Sclerosis (MS) [26].

The RD model incorporates attenuation behavior proportionally related

to both elastic and inertial forces, which in the time-harmonic case can be

implemented by the use of a complex shear modulus (µI) and a complex

density (ρI) [34]. The use of a complex shear modulus also occurs when a

viscoelastic material model is used and attributed here as an elastic damp-

ing. Damping resulting from the complex density can be associated with

the damping force which is proportional to the velocity, and is referred here

as an inertial damping. Therefore, the RD model allows extraction of two

damping parameters, compared to standard VE models, commonly used in

elastography, that use only complex shear modulus and a single damping

parameter.

Identifying those two parameters and the resulting damping ratio (ξd),

which is the ratio between these two damping parameters, could improve

characterisation of the tissue composition and thus differentiation of various

pathological processes in the tissue. However, the identifiably of the RD
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model has yet to be demonstrated, and the subspace method, previously

applied in phantoms and in vivo breast tissue for elastic material models

[13, 35], has not been proven for the RD case.

The ability to uniquely recover unknown parameters is a fundamental

prerequisite in the model development. Although a variety of methods have

been proposed to test identifiability of nonlinear models [36–38], it remains a

challenging mathematical problem. In this paper we present a full structural

analysis of the linear RD elastic model, which is supported by MRE phantom

experiments. In this regard, the limitations associated with the use of a

RD model applied to time-harmonic MRE are presented and discussed both

analytically and experimentally.

2. Materials and methods

2.1. Subspace-based image reconstruction algorithm

Elastographic image reconstruction is performed using a proven subspace-

based nonlinear inversion (SNLI) algorithm [39] that is formulated as an

iterative constrained optimisation that minimises the objective function:

Φ(θ) =
Nm∑
i=1

(umi − uci(θ))(umi − uci(θ))H , (1)

where umi represents the complex valued measured displacement data at i’th

measurement point, uci(θ) is the co-located displacement calculated by a for-

ward simulation of the model using a current estimate of the properties (θ),

Nm is the number of measurements and the superscript H denotes the com-

plex conjugate transpose. In MRE, the number of measurements corresponds

to the number of measured displacements. The minimisation is performed
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by updating θ using the conjugate-gradient (CG) method [40]. Calculation

of uci(θ) is referred as the forward computational problem, and the process of

iterative estimation of the material property parameters θ that minimize Eq.

1 is the inverse problem. Regularisation techniques, such as spatial filtering

(SF), total variation (TV) minimisation [41] and parameter constrains are

applied to further stabilise the inversion process.

The forward problem for SNLI requires the solution of system of lin-

ear partial differential equations (PDEs). For this study, a finite element

(FE) implementation of an isotropic linear nearly-incompressible RD mate-

rial model was used, to account for a nearly-incompressible behavior expected

in the tofu material due to the high water content. The motion amplitude,

u, is calculated from Navier’s equation:

∇ · (µ(∇u +∇uT ))−∇(
1

3
∇ · u)−∇P = −ρω2u; (2)

where u is the displacement within the medium; λ is the first Lamé’s pa-

rameter, µ is the second Lamé’s parameter, also known as a shear stiffness;

ρ is the density of the material, ∇P is a pressure term, related to volumetric

changes through the bulk modulus, K.

2.2. RD model

Navier’s equation with damping can be discretised:

Mü + Cu̇ + Ku = f (3)

where M, C and K are mass, damping and stiffness matrices, u is the dis-

placement vector (u̇ and ü correspond to the first and second time deriva-
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tives), and f represents external and body forces. In time-harmonic steady

state elastography, motion and forces can be defined as u(x, t) = û(x)eiωt

and f(x, t) = f̂(x)eiωt, yielding:

(−ω2M + iωC + K)û = f̂ (4)

In a RD system, the damping is directly proportional to the mass and

stiffness, C = αM + βK:

[
−ω2

(
1− iα

ω

)
M + (1 + iωβ)K

]
û = f̂ (5)

where K and M are initial undamped stiffness and mass distributions, re-

spectively. All coefficients in M contain the density, ρ, and all coefficients

in K contain the shear modulus, µ. Thus, these parameters can be moved

outside the matrices, giving:

[
−ω2

(
ρ− iαρ

ω

)
M′ + (µ+ iωβµ)K′

]
û = f̂ , (6)

where M′ = (1/ρ)M and K′ = (1/µ)K are the normalised mass and stiffness

matrices, respectively. Eq. 6 indicates that the RD model can be imple-

mented using a complex density ρ∗ = ρR + iρI and complex shear modulus

µ∗ = µR + iµI . The physical interpretation of the µR and µI is the storage

and loss modulus of the material, while ρI for a nearly-incompressible mate-

rial is hypothesised to indicate fluid perfusion within the solid elastic matrix

of the porous media. In other words, µR and ρR describe the real stiffness

and density in the undamped system, while µI and ρI represent damping due

to the elastic and inertial forces, respectively; and can be expressed in terms

of the RD parameters [34]:
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ρI =
−αρR
ω

, µI = ωβµR (7)

Considering that the terms (1− iα/ω) and (1 + iωβ) carry the spatial infor-

mation of RD parameters, Eq. 6 can be further simplified:

[
− ω2ρ∗M′ + µ∗K′

]
û = f̂ (8)

The resulting damping ratio, ξd, is defined:

ξd =
1

2

(α
ω

+ βω
)
⇒ ξd =

1

2

(
µI
µR
− ρI
ρR

)
(9)

The RD model allows reconstruction of not only the stiffness distribution

(µR), but also energy attenuation mechanisms proportionally related to both

elastic (µI) and inertial (ρI) effects. This approach may allow better descrip-

tion of the microscale interactions that cause motion attenuation, compared

to the more commonly used viscoelastic model, which does not incorporate

inertial damping effects.

Accurate reconstruction of the RD parameters may bring additional di-

agnostic potential with regards to differentiation of various tissue types and

more accurate characterisation of certain pathological diseases based on dif-

ferent energy absorbing mechanisms. Therefore, the RD model offers recon-

struction of three material properties (µR, µI , ρI) that can contain clinical

diagnostic merit in contrast to only two (µR, µI) for the VE case.

2.3. Inertial explanation of the RD model

In the RD model, Newton’s 2nd law of motion defines the body force (b)

due to inertial forces as:
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b =
∂ (ρu̇)

∂t
=
∂ρ

∂t

∂u

∂t
+ ρ

∂2u

∂t2
(10)

where ρu̇ is the momentum of the system. For a time-harmonic system,

where the time-dependent behavior of a complex-valued u = uR + iuI at

angular frequency ω is given by u(x, t) = <
{
ûeiωt

}
, one obtains:

∂u

∂t
= <

{
iωûeiωt

}
= −ω

[
uR sinωt+ uI cosωt

]
,

∂2u

∂t2
= <

{
− ω2ûeiωt

}
= −ω2

[
uR cosωt− uI sinωt

]
. (11)

Substituting Eq. 11 into Eq. 10, leads to the inertial force description:

b = −ω∂ρ
∂t

(uR sinωt+ uI cosωt)− ω2ρ(uR cosωt− uI sinωt), (12)

where the term ∂ρ/∂t describes changes in density occurring at angular fre-

quency ω and justifies the inclusion of the an inertial term in the model.

Time-harmonic formulation of a RD elastic system results in a complex

density, ρ∗ = ρR + iρI , which scales the acceleration term in the elastic

equilibrium equation to give the inertial body forces for the system defined:

b = ρ
∂2u

∂t2
= −ω2

[
(ρRuR − ρIuI) cosωt− (ρIuR + ρRuI) sinωt

]
. (13)

Comparing the inertial body forces given by Eqs. 12 & 13, yields:

− ω∂ρ
∂t

(uR sinωt+ uI cosωt)− ω2ρ(uR cosωt− uI sinωt) · · ·

· · · = −ω2
[

(ρRuR − ρIuI) cosωt− (ρIuR + ρRuI) sinωt
]

(14)
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Simplifying and collecting terms leads to equivalences defined:

∂ρ

∂t
= −ωρI ⇒ ρI = − 1

ω

∂ρ

∂t
(15)

ωρ = ωρR ⇒ ρR = ρ. (16)

Eq. 15 indicates that ρI describes the time change in density scaled by the

angular frequency, ω. For a compressible material, this change in density

would indicate some level of compression within the material. However,

for a nearly-incompressible or saturated porous material, this change would

represent the fluid perfusion within the solid elastic matrix. To ensure that

the energy is lost from the system due to this mass transfer, rather than

gained, it is important to ensure that ρI < 0.

Eq. 16 shows that ρR describes the actual density of the continuum, as

expected. Therefore, in a porous media, rheological interpretation of the

imaginary density term would be associated with the rate of density change

in the porous voxel due to the volume fraction between fluid and solid com-

partments. Overall, it is clear that the RD model with ρI , µI offers better

option to define all modes of energy dissipation in biological tissue compared

to a simpler VE model.

2.4. Structural analysis of the RD model

Structural model analysis was performed to investigate the identifiably of

the RD model parameters. The analysis assessed parameter uniqueness using

a typical input-output approach. The input-output method summarises the

complete relationship between the input-output structure of the model and

determines the identifiably of each estimated parameter [38, 42].
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2.5. Experimental methodology

2.5.1. Phantom experiments

Two phantoms were generated using partial geometries of tofu and gela-

tine. Tofu is known to possess a porous microstructure, which is composed of

an organic solid matrix with pores of different sizes and shapes. Therefore,

it has been proposed recently as a sonographic and elastographic tissue-

mimicking material with acoustic and mechanical properties similar to those

of some soft tissues [43, 44].

The first phantom (P1) was made of soft tofu slab of 105× 80× 45 mm,

with a single, stiff gelatine inclusion (10% concentration, Sigma Aldrich).

The second phantom (P2) was a reverse configuration of P1, with stiff 10%

concentration of a gelatine as the background and a soft tofu as the inclusion.

Both phantoms had an external rectangular shape with a cylindrical inclusion

located at the centre. Piezo-electric actuation was utilized to introduce shear

waves into the phantoms at mechanical frequencies of 50 Hz, 75 Hz, 100 Hz

and 125 Hz. The phantoms were positioned on the actuation plate attached

to the piezoelectric driver. The actuation direction induced by piezoelectric

driver was in the Y direction causing propagation of the shear strain waves

in the phantom in the Z direction (refer to Fig 1).

MRE imaging experiments were performed on a 1.5 T Philips MRI scan-

ner. 20 coronal slices of 2 mm thickness of 3D steady-state displacement fields

were acquired by an spin-echo based phase-contrast sequence, extended with

trigger timing and MEG modules, using the following parameters: TR/TE

= 480/10 ms; FOV = 150 × 225 × 40 mm and 2 mm3 isotropic voxel. A

3D quality-guided phase unwrapping method [45] was applied to the motion
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Figure 1: An illustrative drawing of the cross-section of a tofu phantom (100 × 75 × 45

mm) containing a 28.5 mm diameter cylindrical inclusion that passes vertically through

centre of the slab.

MRE data to suppress phase wrapping. The reconstruction results were then

analysed to evaluate the presence of statistically significant differences among

the two types of materials and for image quality analysis. The background

and inclusions were segmented to calculate the median and the interquartile

range (IQR) of the material property values.

2.5.2. Reconstruction protocol

A SNLI algorithm [39, 46] was used to estimate material properties from

measured MR displacement data. Reconstruction computations were carried

out on High Performance Computing (HPC) system Blue Fern P575. A

total of 32 processors were employed in parallel message passing interface

(MPI) environment to produce 100 global iterations using CG optimisation

method. The average runtime for the reconstruction processing was 5 hours.
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Each parameter was interpolated at different resolution levels [47].

Reconstruction of material properties using an isotropic linearly elastic

nearly-incompressible RD material model was performed using the following

parameters: an isotropic subzone size of 24× 24× 24 mm with the subzone

overlap of 0.15×0.15×0.15 %. Displacements were approximated on the FE

mesh with 1.8 × 1.8 × 1.9 mm voxel resolution, providing approximately 16

nodes per wavelength for the FE forward problem. Initial a-priori estimates

were µR = 3300 Pa, µI = 330 Pa and ρI = -100 kg/m3. The real density (ρR)

and the bulk modulus (K) were set to constants, where ρR = 1000 kg/m3

and K = 107 Pa to account for nearly-incompressible behaviour expected in

a highly saturated media, such as the tofu material.

To minimise the risk of obtaining unrealistic solutions of the material

property values, the parameter inbox constraints were imposed along with

other applied regularisation techniques, such as the Tikhonov regularisation

[48], the total variation minimisation (TVM) [41], and spatial filtering (SF).

The minimum and maximum values for inbox constraints were: µR (200 Pa

- 50 kPa), µI (1 Pa - 10 kPa), and ρI (- 5000 kg/m3 - -1 kg/m3). The initial

and final TV weighting was 10−15 and 10−14 with TV delta set to 10−19. The

initial and final SF weights were set to 0.25 % and 0.15 % respectively.

Convergence was declared after approximately 100 iterations. More specif-

ically, after 100 iterations the change in the median parameter values was <

0.1% of the final parameter value. Convergence criteria was achieved for all

material properties in phantom reconstructions. Stabilisation of statistical

indicators, such as the median and associated percentiles of parameter be-

haviour for all nodes within FE mesh across computed iterations was used
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to evaluate of the convergence for a particular parameter.

3. Results

3.1. Structural analysis of the RD model

Based on Eq. 7, the RD coefficients, α and β, can be formulated as:

α =
−ωρI
ρR

, β =
µI
ωµR

. (17)

Considering that all terms in M contain the density (ρR) and all terms in K

contain the shear modulus (µR), then for a single degree of freedom system

by substituting Eq. 17 into Eq. 6 results:

[
− ω2ρR + iω

(
−ωρI
ρR

ρR +
µI
ωµR

µR

)
+ µR

]
û = f̂ , (18)

[
− ω2ρR + iω

(
µI
ω
− ωρI

)
+ µR

]
û = f̂ (19)

Collecting the coefficients of the < and = terms yields:

[
− ω2ρR + µR

]
uR +

[
µI − ω2ρI

]
uI = f̂ . (20)

Eq. 20 indicates that the real displacement, uR, is described by two parame-

ters µR and ρR. In RD reconstruction, the real density (ρR) is assumed to be

a density of a water, e.g. ρR = 1000 kg/m3. Therefore, uR is defined by two

model parameters and only one variable µR. Hence, µR is easily and uniquely

identifiable being a direct function of the real displacements: µR = f(uR).

However, uI is determined by two model parameters, ρI and µI , which

are both variables. Hence, both parameters can have a model role, but
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there cannot be unique identification of those variables at one frequency

without further a-priori information. Therefore, the overall RD model is

not identifiable. However, results exist for reconstruction. The following

experimental results are used to clearly illustrate this outcome.

3.2. Phantom experiments

Fig. 2 shows the T2*- weighted MR images for P1 and P2 phantoms.

Fig. 3 shows the full simultaneous three parameter-based RD reconstruction

results of P1 and P2 phantoms at 75 Hz. The results show significant fail-

ure to differentiate materials clearly in the reconstructed µI and ρI images.

Damping has also not been clearly differentiated. Fig. 4 supports Fig. 3 by

showing a lot of overlap and lack of separation between materials for µI and

ρI for both phantoms, whereas µR is more clear. In addition, Tables 1 and

2 present summary of quantified results for both phantoms across multiple

frequencies.

Fig. 5 illustrates three parameter-based RD and two parameter VE re-

construction results of the P1 phantom at 125 Hz. Similar qualitative as

well as quantitative results are observed for µR, µI and ξd reconstructions,

indicating non-identifiable nature of the ρI parameter. Finally, Fig. 6 shows

octahedral shear strain SNR (OSS-SNR) distribution results for both phan-

tom configurations at 75 Hz. Generally, high SNR level (above 5) is seen in

both phantoms, which would normally indicate a good reconstruction.
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MR Magnitude image

(a) T2*-weighted MR image

P2. T2*−weighted MR image

(b) T2*-weighted MR image

Figure 2: MRI image results of the P1 and P2 phantoms (a) P1 phantom and (b) P2

phantom.

Table 1: Quantitative ROI analysis of the P1 phantom for multiple frequencies

Parameter MA µR µI ρI ξd

Units (µm) (Pa) (Pa) (kg/m3) (% / 100)

Median [IQR] Median [IQR] Median [IQR] Median [IQR] Median [IQR]

Gelatine (50 Hz) 1.42 [1.37 – 1.56] 4926 [4763 – 5052] 3.6 [2.8 – 6.6 ] -4 [-13 – -2] 0.0038 [0.0013 – 0.0125]

Gelatine (75 Hz) 1.64 [1.56 – 1.80] 8372 [8053 – 8635] 80 [63 – 98] -13[-20 – -5] 0.014 [0.001 – 0.020]

Gelatine (100 Hz) 2.33 [2.29 – 2.39] 11638 [10680 – 12355] 31 [18 – 50] -19 [-58 – -5] 0.012 [0.0037 – 0.0395 ]

Gelatine (125 Hz) 2.32 [2.10 – 2.49] 14790 [13838 – 15860] 51 [19 – 194] -73[-108 – -39] 0.037 [0.020 0.054]

Soft tofu (50 Hz) 2 [1.56 – 2.54] 3288 [3034 – 3601] 85 [33 – 353] -46 [-114 – -9] 0.066 [0.030 – 0.124]

Soft tofu (75 Hz) 1.92 [1.52 2.46] 3341 [3105 – 3624] 256 [123 – 393] -85 [-192 – -32] 0.10 [0.07 – 0.14]

Soft tofu (100 Hz) 1.94 [1.65 – 2.33] 3590 [3327 – 4113] 109 [59 – 211] -157 [-260 – -92] 0.11 [0.072 – 0.156]

Soft tofu (125 Hz) 1.79 [1.42 – 2.31] 4902 [4181 – 6128] 102 [30 – 325] -401 [-658 – -130] 0.22 [0.11 – 0.34]
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Figure 3: Image results for the full simultaneous three parameter-based RD reconstruction

of the P1 (soft tofu background with a single stiff gelatine inclusion) and P2 phantom (stiff

gelatine background with a single soft tofu inclusion) using 75 Hz mechanical excitation:

(a) and (b) storage modulus µR image (Pa); (c) and (d) loss modulus µI image (Pa); (e)

and (f) imaginary density ρI image (kg/m
3
), and (g) and (h) damping ratio ξd image (%

/ 100)
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Figure 4: Quantitative analysis of P1 and P2 phantoms at 75 Hz of both materials within

the selected regions of interest (ROIs) for each material property: (a) and (b) storage

modulus µR image (Pa); (c) and (d) loss modulus µI image (Pa); (e) and (f) imaginary

density ρI image (kg/m
3
), and (g) and (h) damping ratio ξd image (% / 100). Uncertainty

bars represent the (5 25 50 75 95) percentiles.
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Figure 5: Image results for RD (left column) and VE (right column) reconstruction of

the P1 phantom configuration at 125 Hz using same experimental protocol: (a) and (b)

storage modulus µR image (×104 Pa); (c) and (d) loss modulus µI image (Pa); (e) and (f)

imaginary density ρI image (kg/m
3
), and (g) and (h) damping ratio ξd image (% / 100)
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Figure 6: Image results of the OSS-SNR distribution of the P1 and P2 phantoms at 75

Hz: a) P1 phantom and b) P2 phantom.

Table 2: Quantitative ROI analysis of the P2 phantom for multiple frequencies

Parameter MA µR µI ρI ξd

Units (µm) (Pa) (Pa) (kg/m3) (% /100)

Median [IQR] Median [IQR] Median [IQR] Median [IQR] Median [IQR]

Gelatine (50 Hz) 1.6 [1.34 – 1.86] 8920 [8435 – 9278] 276 [241 – 312] -15 [-27 – -8] 0.024 [0.0193 – 0.032]

Gelatine (75 Hz) 1.75 [1.45 – 2] 10930 [10733 – 11202] 445 [324 – 537] -58 [-78 – -28] 0.05 [0.03 – 0.062]

Gelatine (100 Hz) 1.77 [1.31 – 1.98] 14506 [14287 – 15911] 510 [394 – 551] -47 [-81 – -23] 0.04 [0.028 – 0.054]

Gelatine (125 Hz) 1.72 [1.47 – 2.14] 16048 [15763 – 16714] 732 [474 – 866] -63 [-117 – -25] 0.054 [0.036 – 0.082]

Soft tofu (50 Hz) 2.6 [2 – 3] 6688 [5661 – 7508] 161 [110 – 186] -154 [-257 – -70] 0.088 [0.045 – 0.14]

Soft tofu (75 Hz) 2 [1.66 – 2.6] 5189 [4034 – 7679] 267 [59 – 472] -50 [-132 – -6] 0.06 [0.03 – 0.098]

Soft tofu (100 Hz) 2.23 [1.8 – 2.64] 7200 [5378 – 9151] 137 [80 – 230] -228 [-356 – -140] 0.12 [0.091 0.186]

Soft tofu (125 Hz) 1.85 [1.57 – 2.18] 8995 [6325 – 11550] 97 [42 – 210] -262 [-500 – -83] 0.13 [0.05 – 0.25]
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4. Discussion

4.1. Structural analysis

The structural analysis revealed non-identifiability of the RD model at a

single frequency. Use of a non-uniquely identifiable model in a clinical set-

ting will result in parameter values that do not capture the true material

property even though the modelled displacement-data match. The resulting

error in parameter estimation could lead to faulty diagnosis and unjustified

conclusions. To overcome this issue two approached are postulated: 1) si-

multaneous multifrequency inversion, and 2) parametric-based inversion.

1. Simultaneous multifrequency inversion performs simultaneous

identification on motion data from two or more input frequencies. Here,

both parameters are frequency dependant. The current system is effectively

a system of one equation with two unknowns, which is impossible to resolve

without specifying either ρI or µI :


−ω2uI(t1) uI(t1)

−ω2uI(t2) uI(t2)
...

...

−ω2uI(tn) uI(tn)


ρI
µI

 =




=[̂f1(t1)] [1]

=[̂f1(t2)] [2]
...

=[̂f1(tn)] [n]

(21)

However, if two frequencies are used, one obtains two equations with two

unknowns presuming ρI and µI can be related between the two frequencies

by a power law or other relation.

Therefore, at least two frequencies are required for unique identification of

the RD parameters. However, practical identifiability is not assured if both

frequencies are within similar range. Thus, a wide range of input frequencies,
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where ω1 � ω2 or ω1 � ω2 is essential for strong practical and theoretical

identifiability [49].

2. Parametric-based inversion, where either ρI or µI is set to a

constant or dependant function, thus, specifying its value. This approach

yields a system effectively composing one equation with one unknown in Eq.

20 which is uniquely identifiable. It is important to stress that specifying µR

does not solve the identifiability problem, as the imaginary components of

the complex valued parameters are independent from their real components.

The parametric approach allows only a single value of a particular pa-

rameter to be globally declared throughout the reconstruction domain, thus

automatically leading to a limitation of the RD model to accurately recon-

struct two independent material regions characterised by different mechanical

properties. A more robust approach of the parametrisation method would

include specification of the multiple regions of interest (ROIs) corresponding

to different materials, where specific mechanical properties can be defined for

each individual region.

Overall, this study leads to a robust conclusion that RD model, applied to

a time-harmonic MRE, is non-identifiable with regards to unique delineation

of the RD parameters, ρI and µI , at a single frequency. In contrast, µR

was captured relatively well, also confirming the outcome of that part of

the identifiability analysis. Unique identification of the RD parameters at a

single frequency is not possible due to the fundamental formulation of the

RD model, which describes rate of damping change across multiple frequency

modes. Therefore, at least two frequencies are required for reasonable fit of

damping property data or a parametric approach is required.
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4.2. Phantom experiments

Non-identifiability of the RD parameters at a single frequency is further

confirmed by the MRE phantom experiments. The differences between the

quality of reconstruction for the different parameters was evident, with the

real shear modulus, µR, having the highest quality image and the images

of the RD parameters, µI and ρI , being significantly poorer. These trends

verify results from the structural model analysis.

Qualitatively, the µR reconstruction of both materials in the P1 phantom

at 75 Hz was successful in confirming the higher stiffness of the gelatine inclu-

sion compared to the soft tofu background. Opposite results were obtained

for P2, as expected. Boundaries between the two materials were accurately

delineated with no significant artefacts present. Generally, the µR behaviour

within both materials is consistent throughout the phantom as confirmed by

plotted median values in Figs. 4 (a) and 4 (b). The variation in the distri-

bution of the µR values within both materials was found to be relatively low,

as confirmed by the IQR values given in Tables 1 and 2.

The reconstructed RD parameters from both phantoms yielded impracti-

cal material property estimates. In particular, Tables 1 and 2 show that the

parameter values did not accurately or precisely assess expected outcomes

for ρI and µI . More specifically, reconstruction quality of the µI and ρI

was relatively poor around material boundaries and within the homogeneous

material regions (refer to Figs. 3 (c)-(f)). Unexpected trends in parame-

ter behaviours associated with weak characterisation of the both damping

properties material types was generally observed, as seen in Figs. 4 (c)-(f).

Qualitatively, ξd reconstruction in P1 at 75 Hz (refer to Fig. 3 (g)) had a
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moderate success. In P2, ξd images generally identified presence of the tofu

inclusion, correctly confirming higher loss of mechanical energy in the more

attenuating tofu material compared to the stiffer gelatine background across

multiple frequencies. However, accurate characterisation of both materials

as well as delineation of the boundaries failed, as shown in Fig. 3 (h).

Fig. 5 shows the RD and VE reconstruction results of the P1 phantom

at 125 Hz. Despite using two different models, no change in µI and ξd

parameters was observed. These results confirm inaccurate identification of

the ρI parameter in RD reconstruction, which is introduced to compensate for

the lack of identifiability using one parameter to ensure minimal parameter

identification. Hence, in the RD model, both µI and ρI parameters do not

reflect realistic behaviour and therefore are misleading due to this lack of

identifiability despite high SNR and convergence.

The obtained results indicate that accurate delineation of the RD based

properties and concomitant damping ratio at a single frequency is very diffi-

cult even with the number of regularisation techniques applied to the SNLI.

Given that in RD formulation the shear modulus and density are complex-

valued quantities, elastographic reconstruction of the RD properties, rep-

resented as the unknown imaginary components, is not possible at a sin-

gle frequency due to the non-identifiable formulation of the model composi-

tion. Therefore, reconstructed complex RD properties will not have meaning,

which casts doubt on same uses of this model in inverse problem.

The phantom experiments allow better understanding the limitations of

the RD reconstructions to distinguish damping in these types of materials.

Preliminary RD MRE experiments on a similar to the P1 phantom configu-
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ration were performed by Van Houten et al [50] where reconstruction results

produced by the RD model were compared to the reconstruction results com-

puted by linear VE model. The parameters investigated were effectively the

real shear modulus (µR) and a damping ratio (ξd). However, this study

emphasises the need for further assessment of the RD model to accurately

delineate the RD parameters, µI and ρI , where the lack of identifiability is

clearly evident.

4.3. OSS-SNR

Producing accurate, reliable estimates of the mechanical properties of tis-

sue with SNLI algorithm is critically dependent on the quality of the acquired

MRE displacement images. In this research, data quality is estimated using

OSS-SNR measure [51]. The strain SNR signal is directly proportional to

the wavelength of a propagating shear strain wave which is determined by

the excitation frequency and stiffness of the material. Therefore, low SNR

might lead to inaccurate reconstruction of the stiffness estimates and possible

appearance of artefacts.

McGarry et al [51] studied the influence of the OSS-SNR on the accu-

racy of elastographic reconstruction in single inclusion gelatine phantoms

consisting of 5 % of weight for the background and 10 % for the inclusion.

The results indicated accurate reconstruction of shear modulus of the back-

ground material at strain SNR above 3 with accurate reconstruction of stiffer

inclusions for strain SNR above 5. The gelatine concentration used in this

research for the tofu-gelatine phantom studies was also 10 %, which suggests

thresholds for strain SNR of approximately 5.

Generally, relatively high SNR levels (above 5) were observed in both
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phantoms across multiple frequencies, as depicted in Fig. 6. Assuming that

OSS based SNR provides a reliable measure of the quality of MRE data, it

is expected that SNR levels in phantoms studies do not influence inaccurate

reconstruction results of the RD parameters. Therefore, the results presented

here can be fully attributed to issues around model identifiability .

4.4. Other limitations

Additionally to noise, data-model mismatch can also contribute to sig-

nificant degradation of the motion data quality, as any constitutive model

provides only a continuum approximation of the great number of complex

microscale interactions within the tissue matrix. Therefore, accuracy of the

elastographic reconstruction results produced by such indirect SNLI algo-

rithm can only be as good as the fundamental assumptions that underlie the

constitutive model behaviour.

The reconstruction code models tissue as an isotropic nearly-incompressible

linear RD elastic continuum. These assumptions allow identification of three

parameters rather than the 21 that exist in a rank 4 strain tensor. How-

ever, the phantoms might display non-linear behaviour and be characterised

by anisotropy and associated direction dependant properties. Hence, recon-

struction results may not be accurate due to the fundamental data-model

discrepancy caused by over-simplified model representation of the material

mechanical properties. In this context, application of more sophisticated

models, such as poroelasticity, might improve data-model fit. However, the

increase in the number of unknown parameters being identified reinforces

both high-resolution and high-SNR displacement images as well as complex

model formulation.
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Phase-wrapping is another challenging problem in MRE image acquisi-

tion. Depending on the pulse-sequence used, phase-errors can be introduced

to the motion data which could lead to significant degradation of the image

quality. These phase errors are mainly attributed to the excessive motion

amplitudes of the induced actuation signal [8]. In this research, phase errors

were corrected with the 3D quality-guided phase unwrapping technique in-

troduced by Wang et al [45]. This correction leads to higher-quality MRE

motion data and consequently higher-SNR level throughout imaging volume,

and thus did not appear to affect the results.

5. Conclusion

This research presents a rigorous evaluation of the RD model in appli-

cation to time-harmonic MRE. The full simultaneous three parameter-based

reconstructions of RD based properties were performed on the damping phan-

toms, combining elastic and poroelastic medias. The main goal was to in-

vestigate the viability of the time-harmonic RD MRE in producing accurate

recovery of VE properties as well as describing realistic damping behaviour.

Overall, good success was achieved in reconstruction of real shear mod-

ulus (µR) in both phantom configurations across multiple frequencies. Gen-

erally, µR images showed reasonable characterisation of both material types

with acceptable delineation of the boundaries. However, reconstruction of

RD properties, µI and ρI , yielded misleading effective property distributions

resulting from model non-identifiability.

The non-identifiability of the RD model at a single frequency was demon-

strated both from structural analysis and further confirmed by MRE phan-
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tom experiments. In particular, RD reconstruction at a single frequency

is highly structurally non-identifiable due to the similar model roles of the

RD parameters. Such non-identifiability cannot be remediated by any num-

ber of regularisation techniques. Hence, the RD model is not recommended

for medical imaging of delineating damping properties with a data obtained

from a single frequency, which is a commonly used approach in a range of

elastographic inverse problems used in biomedical applications of this model.

The structural analysis revealed that multiple frequencies are required

for the RD model to accurately delineate the RD parameters, µI and ρI ,

and the resulting damping behaviour, expressed as a damping ratio ξd. An

alternative approach of establishing practical identifiably of the RD model is

the parametrisation, where one of the RD model parameters is globally con-

strained throughout the reconstructions domain, thus specifying its value.

From medical imaging prospective, the simultaneous multifrequency inver-

sion is the most promising approach for accurate reconstruction of the RD

properties, which might provide additional diagnostic information.

Overall, use of an isotropic linear RD model to reconstruct data acquired

in phantoms with MRE at a single frequency provided biased, highly variable

results with regards to accurate mapping of damping properties. These find-

ings suggest that the success with which RD model is applied to MRE data

in tissue will depend on frequency range, number of frequencies at which the

data is acquired, the underlying mechanical characteristics and the experi-

mental compliance of the tissues and/or organs of clinical interest.
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