
Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1501

Edge Based Network Attack Detection Using Pulsar

Sheetal Dash

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1502

ABSTRACT

The edge-based network attacks are increasing largely in size, scale and frequency with the

booming internet. The Distributed Denial of Service (DDoS) attacks is one of the most diffused types of

attacks in the cyberworld which is a great concern for all organizations today. There were 5.2 billion

Google searches in the year 2017 alone. Research shows that there cannot be a better example to show

how prevalent internet use is nowadays. What started off as a point to point conversation in 1970s as a

mode of communication has expanded to millions and millions of devices communicating with each

other via some or the other form of the web. And therefore, this research focuses on the strategic

approach that has been taken to defend from the growing cyber threat.

In this dissertation, the focus is on defending against these edge-based network attacks and

collaborating with other neighboring networks in order to communicate with them to transfer

information about potentially malicious hosts. This research has focused on exploring ways of

integrating the Software Defined Networking with the pub-sub messaging system in order to show a

collaborative approach of defense to these attacks. The attacks from unknown multiple sources have

also been analyzed in order to cope with them through this robust solution that has been proposed

and implemented in this dissertation.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1503

ACKNOWLEDGEMENT

I would take this opportunity to extend a heartfelt thanks to my supervisor, Dr. Sandra-Scott Hayward

for providing an opportunity to be a part of this research and guiding throughout the time over completion of

this work. Her experience and expertise have been very helpful in supervising my work. She has constantly

been a helping hand at all times to my work at Centre for Secure Information Technologies (CSIT), Queen’s

University for this research which provides the basis of this article. I am very thankful for the valuable time

she has put in to assist me in this research.

I would also like to thank my family for their constant support during my academic career and helping

provide me with the opportunity to study at Queen’s University. Last but not the least, I would like to thank

God for supporting me while I pursued my higher studies and for always being there for me at all times.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1504

Table of Contents

Abstract ... 1502

Acknowledgement ... 1503

Table of Contents .. 1504

List of Figures ... 1506

List of Tables ... 1507

Chapter 1 Introduction ... 1508

Goal.. 1508

Research Objectives.. 1508

Contribution ... 1509

Structure of the Thesis .. 1509

Chapter 2 Review of Related Work ...1511

Introduction .. 1511

Mechanisms which uses Devices against the Victim ... 1511

SDN Mechanisms ... 1512

Centralized Detection Mechanisms ... 1513

Cross-Layer Approach .. 1513

Traceability .. 1513

Entropy Based Mechanisms .. 1514

Statistical Analysis ... 1515

Cloud Mechanisms ... 1515

Summary .. 1516

Chapter 3 Aims and Objectives ...1518

Open challenges.. 1518

Research Tasks ... 1518

Summary .. 1519

Chapter 4 Design of the Architecture ..1520

Proposed Architectural Model .. 1520

Choice of Tools for this Proposed Mechanism .. 1520

Summary .. 1521

Chapter 5 Environments and Experiments ...1522

Introduction .. 1522

Environment Setups .. 1522

Tools and Analysis ... 1523

Testbed Layout ... 1523

Pulsar ... 1524

Floodlight Controllers ... 1525

Mininet Networks/Topology ... 1525

Traffic Monitoring .. 1527

Bandwidth Usage.. 1527

Packet Speed .. 1529

Threshold to Differentiate genuine and Malicious Traffic ... 1533

Traffic Analysis & Attack Mitigation.. 1534

Posting of ACL Rules ... 1535

ACL Rules Housekeeping ... 1535

Bandwidth Analysis .. 1536

Packet Speed Analysis .. 1540

IP Density Analysis .. 1546

Load Testing ... 1546

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1505

Performance Metrics ... 1547

Summary .. 1548

Chapter 6 Discussion and Future Work ...1549

Discussion .. 1549

Future Work ... 1549

Chapter 7 Conclusion..1550

References ..1551

Glossary ...1554

Appendix ..1555

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1506

List of Figures

Figure 1 - High-Level Design .. 1523

Figure 2 - Docker Images ... 1524

Figure 3 - Invoke Docker Container to start Pulsar ... 1524

Figure 4 - Pulsar Client Config .. 1524

Figure 5 - Docker Image of Pulsar ... 1525

Figure 6 - Floodlight Installations .. 1525

Figure 7 - SDN Architecture .. 1525

Figure 8 - Sample Mininet Command Line Interface .. 1526

Figure 9 - Sample Mininet Topology ... 1526

Figure 10 - Network Interfaces opened up by Mininet .. 1527

Figure 11 - Add Host / Enable IPv4 ... 1527

Figure 12 - Enable Statistics .. 1528

Figure 13 - Get Topology Info ... 1528

Figure 14 - Bandwidth Usage from Floodlight ... 1529

Figure 15 - Initiate Asynchronous Sniffers ... 1529

Figure 16 - Filter IP Traffic .. 1529

Figure 17 - PING Test ... 1530

Figure 18 - Wireshark Capture of Ping Test ... 1530

Figure 19 - Deep Packet Inspection of Wireshark Captures .. 1530

Figure 20 - HPING3 Test ... 1531

Figure 21 - Deep Packet Inspection of HPING3 Captures .. 1531

Figure 22 - Ignore 'PING REPLY' Packets ... 1532

Figure 23 - Data Polled & Loaded to Tables to Database ... 1533

Figure 24 - Load to IP Sniffer table .. 1533

Figure 25 - Post ACL Rules Scripts ... 1535

Figure 26 - Post to ACL & Load to ACL_RETENTION Table .. 1535

Figure 27 - Fetch IPs blocked for more than 15 mins ... 1536

Figure 28 - Release Blocks for IPs older than 15 mins.. 1536

Figure 29 - Bandwidth Usage Greater than Threshold .. 1537

Figure 30 - Publish to Pulsar Topic .. 1537

Figure 31 - Normal Traffic Simulator... 1537

Figure 32 - Attack Traffic Simulator .. 1538

Figure 33 - Initial Bandwidth Usages ... 1538

Figure 34 - Bandwidth Usage after starting Normal traffic Simulator ... 1538

Figure 35 - Attacker IP detected ... 1539

Figure 36 - Attacker IP Blocked on Network 1 i.e. Floodlight - 16653 ... 1539

Figure 37 - Attacker IP Blocked on Network 2 i.e. Floodlight - 6653 ... 1540

Figure 38 - ACL_RETENTION table loaded on CIDS & CIDS_NW2 ... 1540

Figure 39 - API Call to get ACL rules in each controller .. 1540

Figure 40 - After Retention Period block removed ... 1541

Figure 41 - Aggregate & Load to Source & Dest Sniffer .. 1541

Figure 42 - IPs breaching various threshold identified .. 1542

Figure 43 - Publish to Pulsar .. 1542

Figure 44 - Network-1 Graphical representation... 1543

Figure 45 - Network-2 Graphical Representation ... 1543

Figure 46 - Collector Load Output ... 1544

Figure 47 - Stats Captured - Destination Sniffer ... 1544

Figure 48 - Top Contributors blocked – Network 1 .. 1544

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1507

Figure 49 - Top Contributors blocked – Network 2 .. 1545

Figure 50 – High-Speed Traffic Initiated .. 1545

Figure 51 - ACL_RETENTION table populated for both networks .. 1546

Figure 52 - IP Density .. 1546

Figure 53 - Top contributors to the IP with the most unique connections .. 1546

Figure 54 - HPING3 flood attempt ... 1547

Figure 55 - DDoS Attacker identified... 1547

Figure 56 - Added to ACL_RETENTION .. 1547

List of Tables

Table 1 - Thresholds used in the Framework .. 1534

Table 2 - Topology Information of Two networks .. 1542

Table 3 - Modified thresholds for performance tests... 1547

Table 4 - Performance Test Results .. 1548

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1508

CHAPTER 1

INTRODUCTION

Emerging technology trends, such as the concept of the Internet-of-Things (IoT) or the advent of the

Industrial Control Systems (ICSs) with the internet, raises questions about the challenges that need to be

tracked from a security perspective. The author’s preliminary work starts off by analysing the existing

architectures and later goes on to the novel topics of security and privacy.

With the boom in the market for IoT-based devices, (which is evident from the surveys that have been

performed), it is imperative to expect that the vulnerability to cyber-attacks has also increased manifold.

Nowadays, Intrusion Detection Systems (IDSs) play a key role in any systems preparedness to defend

in case of an attack. They have been studied in depth in the past and used widely. However, the known

drawback to traditional IDSs is its non-scalability to large networks or highly distributed denial of service

attacks. Collaborative IDSs (CIDS) [2] have come into the picture in an attempt to cover these shortcomings.

The monitoring components in these systems collect and exchange data in a collaborative manner.

Depending on such kind of architecture, the proposed solution of the work in this thesis has been focused

upon.

Goal

The main objective of this research is to detect a DDoS attack in its early stages itself and notify the

hosts nearby to block the malicious traffic from the attacker. The term ‘early’ depends on the network on its

own, the tolerance of the device and the properties of the network traffic. Having said that, the sooner the

detection and mitigation happens the better it is. Waiting longer could risk the device getting inundated with

packets from a malicious source. In addition, the Internet Protocol (IP) addresses after getting detected would

be blocked and the same would be notified to the neighboring networks. The detection and mitigation of the

attack collaboratively without minimizing the persistent performance are one of the objectives of this work.

The focus of this dissertation is to present a detailed insight into collaborative implementation

techniques of detecting the edge-based network attack, prevent them, followed by their execution and

implementation in a running network. In addition, the detected attack must be communicated to other

neighboring networks and notify them. The author shall even carry out a detailed analysis and research in

order to work out a detailed mechanism of the same.

Research Objectives

The novel character of the Collaborative Intrusion Detection System (CIDS) area results in many

research questions and limitations that will be in depth discussed in this dissertation. Briefly, this field unites

research from many different areas of networking as explained in the section of related work in this

dissertation.

This thesis is attempting to answer the following research challenges for Collaborative IDSs: -

 Detect an attack before the target host or the controller is inundated with a huge number of malicious

packets.

 Propose a strategic mechanism that performs the sharing of information with minimal communication

overhead.

 Effectively exchanging data to other networks, in the context of a collaborative attack detection

framework.

 Impact of such a framework – performance, testing (positive and negative scenarios).

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1509

First, an efficient, accurate and yet speedy attack detection method needs to be formulated.

Furthermore, handling the situation of other neighboring networks being affected in an organization, that is

realistic enough to be utilized for the evaluation of an organization’s security perspective, will be a

significant value add to the existing research.

Another main aim of this research focuses on detecting the attack as soon as possible, preferably at the

start of its launch. This will allow the controller to bar the attacker from accessing the network before the

attacker could render the target unreachable.

In order to achieve this objective, a high-speed and highly effective detection method is needed that

works with the Software Defined Networking (SDN) architecture. The framework must be lightweight, else

it shall hamper the performance. Also, the framework must effectively notify adjacent networks about the

attack and prevent them from being a victim.

Contribution

The main aim and objective of this field of research are to detect and mitigate DDoS attacks in a

collaborative manner. However, the degree and the rate of the detection varies from one approach to another

depending on the algorithm and environment used. After analyzing a lot of papers, it is found that not all

researchers have found a profound solution to it. Rather, there are a few areas which need to be focused

upon to deal with such kind of an attack. The following can be a few that can be contributed to this field of

research:

 Detect attacks from known as well as unknown sources.

 Blocking malicious traffic and letting genuine traffic pass through as opposed to periodically dropping all

packets forwarded to the victim when a threat is detected.

 Share information about the attacker to other networks and eliminate the risk before it corrupts the whole

organization's infrastructure.

 Calculate the accuracy and sensitivity of the attack very minutely to verify the contribution.

The aim of the research is to build a solution in this framework considering all the above points to assist

in the detection and mitigation process. In addition, this approach can be compared with few of the existing

models and can be identified as to how this framework would be better for the organization.

Structure of the Thesis

The first few sections of this work presented is the initial step of the overall architecture, that is to

effectively detect DDoS traffic at all the nodes near the edges and block them. This thesis includes the

following chapters and is organized as follows:

 Chapter 1 reviews the background information of the DDoS attacks and other related approaches used in

this field of research as well as in the design and implementation of the framework.

 Chapter 2 gives a basic idea of the works that have been researched in this field to deal with such attacks

from the very early stage. To effectively fight against these attacks, it is very necessary to know the cause

of the attack or the root from which it starts. For example, if the attack can be identified at the edge of the

network and can be distinguished as a malicious flow of traffic, then this malicious traffic can be filtered for
defending the attack.

 Chapter 3 discusses in details the aims and objectives of the work with the open challenges that are

analyzed as a part of this work. In addition, it even provides the justifications of the choice of choosing the

technologies and the tools used.

 Chapter 4 provides the design model of the framework that has been discussed in order to detect, mitigate

and communicate with the other neighboring networks to protect them even from the DDoS attacks.

 Chapter 5 describes in detail the environment that has been set up in order to implement this framework

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1510

including the analysis of the traffic and implementing ways to mitigate them.

 Chapter 6 describes and shows the collaborative approach by using the pub-sub messaging system. It

evaluates the approach by checking its performance, accuracy, sensitivity and even compares it with other

existing approaches justifying the reasons for it being better.

 Chapter 7 discusses further scopes of this framework as the future part of this research.

 Chapter 8 summarizes this thesis including all the important points in this research.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1511

CHAPTER 2

REVIEW OF RELATED WORK

Introduction

This chapter of reviewing the related work aims to introduce the reader to the various topics that shall

be discussed further down in the rest of the thesis. The first section discusses SDN Architecture which is

being a central part of this dissertation, including some initial classifications and definitions related to them.

The second part of this section deals with certain collaborative intrusion detection frameworks which is

an additional framework that can appreciably improve the existing mechanisms to detect attacks.

Lastly, this chapter deals with the topic of evaluating the Intrusion Detection System (IDSs) with

importance on the corresponding datasets. At the same time, the importance of the tools and mechanisms for

creating such datasets will also be evaluated. As it shall soon become clear in the course of this thesis, the

latter topic of the collaborative evaluation mechanisms stays as a big challenge in this research area.

Mechanisms which uses Devices against the Victim

DDoS attacks have become a weapon of choice for hackers, intruders and cyber terrorists [5]. These

attacks can swiftly weaken a victim, causing huge financial and reputational loss. A lot amount of work and

research is being carried out in this field and a lot of techniques have been identified in order to deal with

them. This section provides background information on the DDoS attacks, its detection mechanisms and a

few related works on how they have been implemented.

DDoS attacks are made possible by the Internet. The term distributed as the name suggests describes

that such kind of a distributed detection framework detects the DDoS flooding attacks by monitoring the

flow of packets in the network, of the abrupt traffic changes at various distributed network points.

The forwarding elements within the Internet forward packet towards their destination with a very little

or no consideration towards the behavior of the sender to the receiver. Hence, Mirkovic and Reiher[4]

presented taxonomy on the forms of DDoS attacks, with an observation that the Internet was not designed to

defend traffic. The simplest being a flood attack is characterized by a victim being sent tremendous volumes

of traffic to consume resources. There were two other types, one of it requiring the attacking party to send

malformed packets to machines that cause applications to freeze and the other requiring the attacking party to

gain privileged access to devices within the victim’s network. Consequently, these devices are then used

against the victim until the target resources become unavailable. In addition, they have also identified

various approaches to detect such kind of attacks which are pattern-based, third-party detection and anomaly

detection.

Pattern Detection used signatures of known attacks to identify DDoS attacks as traffic passes through a

network. These signatures include a combination of IP addresses and port numbers, which are used in Static

Classification (an example of such kind of a detection mechanism). Snort [20] is an example of the intrusion

detection system which is based on signatures to identify malicious traffic in the network. However, these

kinds of techniques are not found to be flexible as they must be updated regularly to identify new attacks.

Third-Party Detection basically relies on external networks to detect and inform them about the occurrence

of an attack. The limitations of such kind of a detection approach are that the detection signal must travel to

the victim network. But, it would be difficult or may not be possible for the signal to make it to the victim

network. Although an approach of having a separate network for signalling would be helpful, it may be of a

higher cost to the victim.

Anomaly Detection model creates a normal traffic behavior and then compares it against the flows in the

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1512

network as traffic passes through. These detections systems are also useful in other domains to identify

faulty equipment in critical systems. It is important to distinguish anomaly detection from other similar

processes handling outliers in data, which are noise removal and novelty detection. Noise removal is the

process of removing unwanted data points before the analysis of data. On the other hand, novelty detection

helps in identifying previously unobserved behavior which is then included in the model as the behavior to

be a “normal” one. However, they tend to misclassify traffic which is not malicious, called false positives.

This can be very inconvenient for the legitimate users of a resource as they may be flagged and treated as an

attacking party. Hence, these systems can be helpful to identify cases that fall outside the bounds of normal

behavior.

SDN Mechanisms

The mechanism explained above indicates that there are a lot of various approaches identified by researchers

to identify DDoS attacks collaboratively. This section covers some of the core topics, related researches, and

background within the domain of SDN. This would be helpful and would be used throughout the thesis.

SDN/OpenFlow has been integrated with classification techniques for classifying network in various

scenarios. The use-case for detecting DDoS attacks collaboratively in this thesis is important, to show that

this kind of a model can be used in integration with a pub-sub messaging system.

Classification mechanisms traditionally operate on the controller. Recent researches have seen this task to be

moved closer to the switches in the data plane. Lin et al. had come up with a proposal that the processing

overheads imposed by the detection algorithms and the classifiers on a controller can be removed by

transferring the function to some other device in a reliable manner [9]. However, this kind of transfer was

exemplified to be scalable as well as a necessary one.

The SDN based platforms for classifying malicious and legitimate traffic are typically evaluated in virtualized

environments. There is room for review and challenge that such a mechanism does not accurately show how

a system would work in a real-time environment despite being the convenience of the environment. Hence,

this has been tackled by the proposed solution that has been explained further in this research, which even

utilizes the maximal amount of traffic to maintain a good performance level. This piece of research even

utilizes SDN integrated with Pulsar in order to distinguish the malicious and legitimate traffic at the host

level itself. The SDN platform detecting and blocking the malicious traffic at the host level demonstrates

resiliency to the attacks right from the start and prevent overwhelming of the traffic at the end.

Consequently, it would also communicate to the other neighboring networks about the existence of the

attack from the particular host and even notifying to block them from the network.

OpenFlow is an implementation of the Software Defined Networking (SDN) Architecture which will be

used further in this thesis. It is characterized by the separation of the control and data planes.

The logically centralized control-plane offered by SDN has been considered a very convenient approach for

detecting the DDoS attacks which have been further explained in this work. The data plane is responsible

for deciding how traffic is forwarded through a network and is typically realized by a logically centralized

controller. The OpenFlow manages network traffic through the definition of flow table entries which are

stored in a switch’s flow table. These entries in the flow table depict how packets with matching

characteristics are handled by the switch [36].

In OpenFlow, the switches within the network are connected to each other, receiving instructions on how to

forward packets through the entries in the flow table. As a result, they can provide the controller with the

information as necessary. The higher level of such kind of a model discusses that the business applications

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1513

communicate with the services in the network and these network services then enforce the desired behaviors

on the infrastructure.

There have been research efforts around implementing the flow-based security for IoT Devices using a

Software Defined Networking (SDN) Gateway. Austin [2] et al. proposed the use of this gateway as a

distributed means of monitoring the traffic in the network which is originating from and directed to IoT

devices. This has been devised in order to provide flexible and secure integration seeing the exponential

growth expected in the number of IoT based devices. The SDN Gateway proposed has the ability to both

detect abnormal behaviour and perform a programmed response, i.e. either blocking or forwarding. This is a

new kind of adaptive flow-based security mechanism which performs real-time analysis of network traffic

from IoT devices to detect anomalous behaviour. Hence, there is room for further research in order to deal

with such challenges.

Centralized Detection Mechanisms

Further, with the advancement of the technology came the distributed framework for the detection of the

DDoS attacks. Snapp et al. [22] proposed one of the earliest centralized CIDSs known as the Distributed

Intrusion Detection System (DIDS). The author, in this work, detects the malicious traffic over the network

that is being monitored and creates a comprehensive result of its security state. This kind of a framework

unites distributed monitoring with a centralized data analysis and contains the elements like DIDS director,

host and network monitors. The DIDS director represents to be the central analysis unit. The detection

techniques used in this model would not be able to compete against a sophisticated attack. Therefore, this

model’s accuracy is deemed poor. In addition, there is a lack of self-configuration mechanisms in such a

model. The communication and computation overhead in this approach increases with an increasing size of

the monitored network, hence they are not scalable. This is one of the open challenges that need to be tackled

in the case of a distributed framework.

Further, cooperative intrusion detection framework (CRIM) was introduced in [23]. This is a centralized

cooperative framework which connects to isolated IDSs and acquires its data. Based on that data the

framework raises alerts. After that then an alert clustering function generates clusters of alerts based on a

relation of similarity [24].

Cross-Layer Approach

In this kind of a methodology, the items at various layers communicate and transmit information with each

other. These approaches work on the SDN platform by integrating with it and providing an easy access to

the network status data. Wang et al. [25] have proposed a cross-layer mechanism to configure the underlying

network at runtime depending on the dynamics of the big data application. The author here uses high

configurability of the SDN switches and even the scheduling approaches of the Hadoop job in order to

accommodate the dynamic configuration of the network in a hybrid network with Ethernet and optical

switches. In this paper, the results of the analysis were the improved performance of the application and

network utilization with a low overhead of its configuration.

Traceability

Few researchers have thought of tracing the origin of the DDoS attacks first and then mitigating them.

Savage, Wetherall, Karlin, and Anderson [26], have introduced a trace-back mechanism using the

probabilistic packet marking algorithms to reduce the strength of DDoS attacks. This is a mechanism

introduced which helps the victim to recognize the path of the attack without any technical involvement

from the Internet Service Providers (ISPs). When there is a lot of traffic or attacks instigated from various

distributed locations, the packets travel from one network to another through the intermediate routers and are

checked against the access tables which are to be forwarded to allocated networks without packet

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1514

modification. However, the researchers suggest header modifications on each IP header with specific flags at

each intermediate router before the packets reach their next hop. When a DDoS attack is initiated, the victim’s

network is populated with a high volume of packets resulting in slow network traffic and poor response.

Consequently, at this point, the system calculates the packets that are received by the operating system’s

Kernel and reconstructs the path of the attack using marked values assigned by each router. Thereby,

informing the closest routers to limit their traffic rate to minimise the strength of the attack.

Yaar, Perrig, and Song [27] have proposed a marking mechanism called Stack Path Identification (StackPi).

In this mechanism, the authors concentrated on detecting spoofed IP addresses and tracing-back the source

of the attack. This approach includes two marking methods, Stack-based and Write-ahead marking, which

helps in substantially increasing the performance according to them. It also states that such kind of a

methodology almost completely eliminates the effect of legacy routers. In addition to this work, Beak, Lee

and Kim have developed another kind of marking technique using Link-ID to construct the path of the

attacking packets. It has been claimed in this approach that the Link-ID information between the Border

Gateway Protocol (BGP) routers provides more accurate results than marking IP headers with randomised

values. Link-ID is the information path between the BGP routers in any Autonomous Systems (AS) and

BGP router provides Link-ID information on the flooding packets. As soon as the victim receives the flooding

packets, it constructs the packets and then calculates the path of the attack using the Link-ID values.

Law, Lui, and Yau, [28] complemented and enhanced the probabilistic marking method by more accurately

identifying the locations of the DDoS attackers. This is performed to allow the victim to infer the local

traffic of all the routers that the DDoS attack passes through. The rate of the traffic can be identified through

a framework where the rate can be determined in unit time. In other words, it can be described through an

example as such that, if a victim discovers its sides to be under DDoS attack, it requests all its known routers to

mark the incoming packets with any given probability.

P. Based on the marked packets the victim receives, a graph can be represented showing the origin of the

attacks. This reduces the traffic based on the router with the highest number of marked packets.

Entropy Based Mechanisms

Further, Yu, Zhou, Doss, and Jia [29] used the method of entropy variations methodologies to identify the

launch of the attacks. When there are no attacks within the network, the routers record the entropy variations

of the local flow of traffic. In this approach, flow and entropy variations have been used in order to detect the

attacks and once it has been detected, a pushback process has been used which identifies the location of the

zombies. Based on this entropy variation, each router has accumulated enough information that identifies

the upstream routers and then submits to the immediate router in order to identify the flow of traffic. This

flow of traffic is based on local entropy variations that routers monitor. The intermediate respectively routers

forward requests to further upstream intermediate routers to find the source of the flow.

Furthermore, Su, Wu, Hsu, and Kuo [31], on the basis of the performance of the network introduced a trace-

back and mitigation method. The author claims that this is based on the monitoring packet loss and even the

rate at which packets arrive. This kind of a methodology does not analyze the traffic post-mortem rather it

uses online analysis. The packet filtering mechanism is proposed to reduce the DDoS attacks and Intrusion

Detection Systems (IDS) are also used to support all edge routers. These routers, in turn, support Simple

Network Management Protocol (SNMP) [32]. Such kind of a framework on the edge of the routers conducts

two phases, one being the DDoS attack trace-back and the other being the attack mitigation. In order to

discover the flow of the traffic, the system uses estimated attack entry to monitor the loss of packets and the

arrival rate of packets.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1515

Other approaches that have been initiated by the researchers are to intelligently make decisions to trace-back

the cause of the attack. Intelligent Decision Prototype (IDP) is a supervised machine learning approach

which is introduced in [33]. This kind of methodology is divided into two phases- one phase being called the

pre-marked decision where packets are subjected to DDoS attack attribute analysis. If packets are genuine

then they are forwarded to the next closest router and if not they are marked as not genuine. The second

phase of this approach is to identify the path of the attack.

Statistical Analysis

Network analysis methods, such as Entropy and Chi-Square techniques which are quite common

mechanisms, have been proposed in [34] to detect a change in the network traffic. Packet headers are

represented by Entropy as independent ones which have a unique probability of occurrence. In this kind of

an approach, there is a pattern evolving for every type of packet header and high standard deviation from the

average limits would raise alerts about spotted anomalies. This method has its potential use in SDN which is

explored further in later chapters as its quite helpful for the solution that is proposed in this thesis.

Further, machine learning and cognitive detection approaches have also been proposed for the detection and

defence against intrusion. In this kind of an approach, based on the events in the network the machine is

trained to continuously update a certain filtering criterion rather than setting fixed criteria on filters. One of

the examples of such kind of a framework is neural networks [35] which contains many nodes working

parallelly for processing the data. When these are trained and a large amount of information is provided to

them, the knowledge of these aggregated nodes develops a particular pattern for the processing of similar

information. The knowledge gathered over a period of time become the base of the decision-making process

for the neural networks.

Cloud Mechanisms

OpenFlow has been a common field of research in the cloud networks and data centers, that are currently on

the rise. There is research around resource control, improving the scalability of the network using OpenFlow

and network virtualization in OpenFlow [37], the advantages of which will be explored further in this thesis.

The cloud networks often deal with distributed hosts all around the world or from various locations. Quite a

lot of controllers shall be needed to deal with the scalability issue we shall face if the SDN architecture is

applied to cloud networks. This is explored further in order to handle this situation.

In this paper [24], a cooperative design was proposed in order to analyze alerts and generate more alerts. The

main functions, one being the alert base management, alert clustering and the other being the alert merging

has been suggested. In this approach, the alert manager stores alerts in a relational database in order to

analyze and compare the alerts more. Further, the alert clustering analyses the alerts and even performs

cluster generation for similar alerts. And lastly, the alert merger basically allows refining the clusters in

order to bring an accurate alert. This approach even shows correlation by using explicit correlation when the

security administrator is able to find some connection between events that it knows and even though the

implicit one where the data analysis brings out some kind of mappings between events.

Further, in order to deal with such kind of attacks the new architecture of SDN proved to be one of the

solutions for the cloud networks. Shin et al. [38] used OpenFlow which monitors the network traffic. The

main objective here is to modify the packet flow by using the OpenFlow protocol. The motive behind doing

that was to direct the packet flow in the route where the Network Intrusion Detection System (NIDS) is

installed. In this research, SDN architecture shall be explored which does not need the relocation and

reinstallation of the NIDS devices like the former approach needed. OpenFlow used here helps in processing

the packets and adding the flow rules to the hosts and switches to travel through this path that is being

monitored. This is quite useful which has been further used in this work. In order to find the shortest and

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1516

secure path for the packets, algorithms have been proposed in this paper and each of them is classified by the

controller based on the time it takes to find the same. In this analysis, it has two modules, one being the SDN

controller which calculates the shortest path to a monitored channel in the network and the other being the

routing rule generator which identifies the topology of the network, thereby collecting the status and

statistics of the network to pass it to the controller. In this case, the NOX controller is used which serves as

the network control platform.

Furthermore, Xing et al. [39] proposed adding OpenFlow to SNORT [21] which is a tool for the detection of

attacks in the cloud, which even reconfigures the network when there is an attack spotted by the SNORT.

The approaches explained, show the capability that SDN has to be an intrusion detection and mitigation

framework in a cloud network.

With the attack coming from numerous vectors from all directions, a single isolated instance of monitoring

to detect any intrusion would most certainly be ineffective. To overcome this, an approach was taken,

referred to as the Collaborative Intrusion Detection System (CIDS). In a CIDS, there are multiple monitors

capturing data from multiple sensors and communicating between themselves in some way to raise alerts

about identified botnets and blocked devices/IPs which forms to be an effective method in detecting and

preventing such attacks.

Netbiotic is one of the distributed CIDS based on the JXTA peer to peer [40] framework. The focus of this

kind of a framework is just not on detecting specific attacks but it even creates a faster network of interested

peers which help in the exchange of the alert information. Therefore, their main goal lies in protecting the

participating peers, such as by detecting rapidly propagating malware. Vlachos et al. have proposed the

Netbiotic peer which works as a monitoring and analysis unit, which even hosts a notifier and a handler

component. In this kind of a mechanism, each peer is accountable for identifying whether a virus is

propagating through the network apprehensively along with automatically dispatching of warnings and

information to other peers and even taking specific preventive measures for protecting their host by

automated tightening of their security controls during this infestation.

The remaining chapters demonstrate the open challenges which are being identified to act upon, how SDN

and Network Function Virtualization (NFV) along with few other tools were chosen to be evaluated on a

physical network testbed and the tasks to be performed as a part of this research. Further, it even provides a

broader insight on how the SDN approach has been integrated with the pub-sub messaging system, which

collaborates with other neighboring networks to publish the attacker and presents the final conclusions with

the future work.

Summary

To summarise the centralised framework of CIDSs has the ability to provide the maximum accuracy but

they are not scalable. Therefore, such kind of an architecture can be only used for protecting small

infrastructure networks. In order to deal with large organizational networks, there have to be more scalable

solutions implemented. The decentralization of CIDSs seems convenient but are unsafe from attacks and

even have the level of accuracy as very low than the centralized systems.

In addition, performance seems to be a challenge in these kinds of infrastructures as it depends highly on the

used building blocks for interconnection and collaboration.

To date, researchers found the occurrence of the DDoS attacks and its mitigation at the switch level in the

SDN architecture. Therefore, especially in this area, certain challenges need to be addressed by detecting

and mitigating the attacks at the host level itself.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1517

OpenFlow Networks mechanisms were also discussed. The occurrence of DDoS at a very high level of

frequency may create an open challenge for SDN and it can be focused on just the controller getting

overwhelmed, which in turn can bring down the operating system. This states that OpenFlow has all the

components that are deemed necessary for a successful detection. Therefore, the following chapters in the

thesis focus on the utilization of the components of OpenFlow for the early detection and mitigation of DDoS

attacks within an SDN environment. This thesis even uses these elements and measures the rate of detection

in order to address a few challenges in this area of cybersecurity.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1518

CHAPTER 3

AIMS AND OBJECTIVES

From the above chapter, the author summarises a few models that have been introduced by researchers

and their main objective behind it was to reduce the strength of the DDoS attacks. Researchers have focused

on traceability while others have focused on detection and mitigation of attacks using various machine

learning approaches, algorithm or statistical to increase the detection rate admitting the fact that it is almost

of a small amount in all cases. The author has explained all the approaches to have an idea about the state of

the art in this particular field and then used this to compare the results of the approach based on its accuracy,

scalability, and performance, in order to highlight the contribution towards the work. In this chapter, there is

an explanation and overview of the open challenges that are relevant to the work in this thesis. In addition,

the choice of the tools and methodology focused on has also been explained for the proposed work in this

work.

Open challenges

Below listed research challenges shall provide enough relevance to the basis of our hypothesis.

 SDN – compared with the traditional networks and its monitoring Aims at knowing the overview of the

state-of-art of SDN and differentiate the networking into the control and data plane. Comparing it with

the current networks can be analyzed for a broader perspective of the security features and possibilities of

monitoring.

 Analyzing new SDN vulnerabilities Aims at analyzing the possible features of the SDN that are

vulnerable to attacks. Initially, the focus is on the open-source solutions, i.e., Open vSwitch which

provides the vulnerabilities that can be exploited in the data and control plane devices.

 Integrating SDN with the Pulsar Framework Aims at notifying the neighboring networks about the

ongoing attacks and pass on relevant details to them. The SDN after monitoring and detecting the traffic

to be malicious or legitimate may have the capability to publish to the various users connected to the

network. These features of publishing and subscribing of the events and other security features in Apache

Pulsar shall be analyzed.

 Optimally mitigating these attacks: The objective is to find a framework which can intelligently provide

mitigation to the DDoS attack in the SDN environment by optimally tracing-back the attack source and

maintaining the central knowledge of the network, passing on to other networks.

 Load Testing the framework Aim is to improve the performance of the framework proposed by testing it

in a network with a higher amount of load. As a result, the proposed model would be more scalable and

would be resilient to the attacks.

Research Tasks

In order to achieve the goal of this research as discussed above, the following steps need to be

performed:

 To learn the behavior, characteristic features and the differences between a normal traffic and abrupt

traffic to know the behavior of a DDoS attack by building a real-life physical environment to run such

kind of an attack.

 Analyzing the traffic and extracting its characteristic features in order to know the behavior of a DDoS

attack traffic.

 Arrange these patterns and distinguish these in order to collect it in a detection collector.

Summary

This chapter basically focused on the main objective and goals that we want to achieve from this work.

The author has listed the various tasks that shall be carried out during this research. A method of measuring

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1519

the bandwidth usage and the packet speed/density has been evaluated in order to distinguish the traffic to be

genuine or malicious. In addition, this method of detection is performed at both the switch and the host

level. The IP addresses/hosts that are identified as malicious are stored as a part of the detection mechanism,

and published to the Pulsar topic. Following that, other neighboring networks would be subscribing to this

Pulsar topic and eventually shall block the same host IPs. This exemplifies a collaborative model of

detecting the edge-based attack detection and mitigation approach.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1520

CHAPTER 4

DESIGN OF THE ARCHITECTURE

Detection and mitigation of DDoS attacks is a typical problem and in case of the cloud environment, it

becomes a bigger challenge. A cloud network, however, cannot be totally isolated from the traditional

networks. There is no doubt that the data centre networks are more complex in their architecture but their

foundation is laid on the traditional network architecture. And, in turn, these networks are becoming to be

more robust and scalable in the real world.

There have been various approaches that have been suggested in the context of the network in transition

which depicts all the specification, open questions, and challenges in building defence modules against

DDoS attacks in a cloud architecture. The expanding nature of the mitigation mechanisms along with the

evolution of the Internet can be depicted in the approaches that have been discussed.

Proposed Architectural Model

There have been new promising approaches with the advancement of the networks in the context of the

cloud environment. These include Software Defined Networking (SDN) based ideas integrated with the

collaborative approach of using Apache Pulsar to communicate with other neighboring networks. On

analyzing the various existing approaches and their features such as the level of operation, time to respond,

time to cooperate with other devices, the author has divided the active response into two main categories as

below: -

 Proactive approach in which the steps were taken to monitor and control the potential impact of the attack

before it happens.

 A reactive approach, which identifies the abrupt traffic behavior and notifies the Pulsar to communicate

with the neighboring networks in real time.

Several terms and methods that have been analyzed and used in this work need to be familiarized to get a

background information about them, their architecture and their techniques.

The system model is based on a testbed using Mininet Network emulation software. The reason for

choosing such software is because it uses Linux containers and Open vSwitch to allow realistic virtual

networks of hosts and switches to be constructed using a virtual machine.

Secondly, we have the Floodlight OpenFlow Controller whose default behavior offers elementary

connectivity, and so it was selected for the testbed. As a result, simple performance optimizing applications

can be developed since they do not require to be concerned with sustaining connectivity and also it is open to

emphasize on implementing optimization.

In addition, Apache Pulsar has been used as a pub-sub messaging system. This is because it can publish

and subscribe the messages to collaborate by communicating with other neighboring networks.

Choice of Tools for this Proposed Mechanism

A short technical overview of SDN and NFV has been provided above in the section of related works in

Chapter 2. In this sub-section, these principles have been further explored in order to justify the selection of

architecture and tools that shall be integrated into this framework. The justification for these principles and

tools has been listed below:

 NFV can provide high-performance packet processing and run network functions on the commodity

servers efficiently [7]

 SDN as an architecture can control network behavior centrally and steer flows in and across data centres

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1521

flexibly [4]. SDN provides a programmable network platform to encourage innovation for the detection

or mitigation of ongoing cyber-attacks.

SDN provides quite a good separation among virtual networks which would help one to experiment,

deploy and implement new ideas as like in a real environment.

 Floodlight offers a module loading system that makes it simple to extend and enhance. It is also easy to

set up with minimal dependencies. In addition, it supports a wide range of virtual and physical OpenFlow

switches [42].

Floodlight is designed to be highly performant. The core architecture of Floodlight is multithreaded.

 Apache Pulsar is used as a pub-sub messaging system due to its design that provides low publish latency

and persistent storage that guarantees message delivery to the intended target. In addition, Pulsar can be

seamlessly expanded to hundreds of nodes demonstrating its horizontally scalable nature [43].

 Mininet is chosen as the network emulator to create the testbed since it is quickly reconfigurable and

restartable. It also scales easily and provides good bandwidth which would be helpful for the evaluation of

the proposed framework. In addition, it comes with an out of the box command line interface (CLI) which

helps in running network-wide tests [44].

Summary

In this chapter, the author has focussed on the proposed solution and the architecture that has been

implemented in this thesis. Here, a pub-sub messaging system has been introduced which communicates

with other neighbouring networks in order to defend against the attack collaboratively. In addition, even the

mechanism of detecting a traffic to be malicious and blocking them in Floodlight has also been discussed. In

order to produce a realistic output, different SDN environments with Mininet topologies integrated into it are

used as simulators. Then it is aimed to verify and evaluate the contribution by comparing it against other

approaches. The assessment of this research is based on the accuracy, scalability, and performance

compared with the results of some other approaches. Further, in the remaining chapters, the aims and the

open challenges are tackled, designed, experimented and implemented and tested for making it as an

effective solution.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1522

CHAPTER 5

ENVIRONMENTS AND EXPERIMENTS

Introduction

In this chapter, the environments used to execute different DDoS experiments have been discussed for

the purpose of research, whereby we identify and execute various experiments that simplify the design

process that is described in the following chapter. These experiments also guide in identifying the

characteristic features that can differentiate malicious packets from the legitimate ones.

The detection process is one of the most vital components in this work and failure in distinguishing the

malicious packets from the legitimate ones can have serious consequences. Hence, the environments and

technologies involved in the below experiments and technologies must be validated conscientiously.

There would be two steps to this model, with a proactive and reactive mechanism. The first step begins

by exploring the process of retrieving the packets from the networks in different physical environments

where each set of packets is organized and prepared for identifying its features to differentiate the legitimate

ones from the one being malicious. This process included scanning of all the ports or the hosts in the network

with different pings from different addresses and launching a DDoS attack in the network. The results of the

various IP addresses sending packets in the network are collected, carefully analysed and compared with the

genuine traffic at a threshold level in order to verify the features and distinguish the genuine traffic from the

illegitimate one. This part of the process required an intensive understanding of the SDN Architecture, the

travel of packets captured in flow tables and their communication with each other in the network. Any

packets identified to have a different level of traffic flow in the network or trying to overwhelm the network

are blocked and stored in the collector as part of the detection mechanism. The second step is the

collaboration phase whereby, the IP addresses collected on the collector publishes it to the pub-sub

messaging system, called the Apache Pulsar, in order to subscribe it to the neighbouring networks. As a

result, the other networks in the neighbouring domains would be aware of the attacker to block them.

Environment Setups

In this section, the process of building the virtual environment has been presented to identify the

characteristics features of both normal and malicious traffic.

The purpose of this kind of an environment is to launch the DDoS attacks with integrated SDN and

Apache Pulsar as described in the system architecture in Chapter 4. This environment is chosen because the

risk of packets flooding out from the virtual environment is minimal as it is more controllable from a

configuration perspective. Moreover, it is not that expensive to configure devices or launch DDoS attacks in

this environment, whereas the same process in a physical environment would take days for deployment

followed by a check on all domains in the organisation.

The virtual environment is an isolated environment and such isolation protects the physical domain

network from accidental DDoS attacks ensuring both scalability and security enabling this work to be

undertaken in a safe manner. The virtual environment that has been used in this work is built using Oracle

VirtualBox (VBox) [41] where clones of physical servers, networks, routers, and switches were created and

duplicated to introduce quite a similar physical network.

Mininet is used to define a topology consisting of various switches, hosts and a centralised controller,

which is the Floodlight controller in the network.

The virtual environment that is chosen runs on the following configurations:

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1523

 A physical Lenovo machine with 4 processors, 6GB RAM, 2 CPU Cores.

 Oracle Virtual Box Application (VBox).

Ubuntu has been selected to be the operating system due to its security, performance, and compatibility

with VBox. The installation and all the configuration have been done through a graphical user interface

(Oracle VM VirtualBox Manager).

Such a graphical user interface helps the user to choose various distinct network settings using different

virtual devices. This also helps users to combine wired and wireless networks with network capacity

according to the user’s choice or requirements. It even guides the interface to choose the storage type of data

or can even change the physical Media Access Control (MAC) address if required.

Tools and Analysis

The attack tools that have been used in the virtual isolated test-bed environment are carefully used only

for the part of this research and learning, and only to identify or understand the characteristics features of the

genuine and malicious traffic for the purpose explained in Section 4.2.

The initial foundation of this framework began by selecting the attack methodologies and tools that are

generally used by attackers to launch such kind of attacks in the network. There are various types of DDoS

attack tools, some of which are weak and some effective but to be effective, the attack must overwhelm the

network to introduce network latency or crash the network of the victim host. And therefore, the focus in this

experiment was on tools that are most effectively used and are productively meaningful for our purposes.

There are a lot of tools that yield better results than others, although the same methodologies and protocols

are used due to their implementation and architectural design.

Testbed Layout

The testbed has been designed mainly by two components:

 Pulsar – The Pub-Sub messaging system

 Individual Standalone Networks – serving as neighbouring networks polling a common Pulsar topic for

information.

Figure 1 - High-Level Design

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1524

Pulsar

Apache Pulsar is taken to be the Pub-Sub messaging system of choice for this research. For this

experimentation, the Docker image for the 2.0.1-incubating version has been downloaded which can be shown

in Figure-2 below.

Figure 2 - Docker Images

Pulsar provides both standalone and clustered mode. For this research, Pulsar container is run in

standalone mode. This is helpful because it encapsulates all the components and runs in a single Java Virtual

Machine (JVM) process. In addition, this mode runs in a single machine and is quite helpful in case of the

development of such a framework.

For this experiment, two different ports have been used on Pulsar. One is the port 6650 for the Pulsar

broker and the other being 7080, opened for Pulsar Restful API. These have been represented in the Figure-3

below.

Figure 3 - Invoke Docker Container to start Pulsar

Further, as we start the Pulsar, the client starts with the configurations that have been depicted in the

Figure-4 for the purpose of this research.

Figure 4 - Pulsar Client Config

Now that we have started the pulsar and the container is started, it would show up as a Docker process.

If this needs to be identified, the following commands can be used and results, as shown in the Figure-5,

would clearly represent the details of the container.

In this figure, the apachepulsar/pulsar that has been highlighted is the image that is used and 2.0.1-

incubating represents to be the tag of the image.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1525

Figure 5 - Docker Image of Pulsar

Floodlight Controllers

For the purpose of this research and its experimentation, two floodlight controllers have been used for

two SDNs. The reason for using this is to represent the collaborative approach mechanism for the proposed

design in this work. The Floodlight controller being an integral part of SDN uses two different ports, one

being the 6653 and the other being the 16653. Similarly, for accessing the Rest API of this floodlight

controller, their corresponding ports are 8080 and 18080 respectively.

The Figure-6 below represents the names of the two floodlight installations with different ports as

explained above.

Figure 6 - Floodlight Installations

Mininet Networks/Topology

Each of the Mininet instances that have been used for this dissertation can have primarily three kinds of

switches (Figure-7):

 One, being the Source Switch (es), which shall be multiple in numbers, used by various hosts (being used

as potential Internet of Things (IoT) based devices). Out of the various hosts, there will be few sending

legitimate traffic and a few malicious ones.

 Second being the Aggregation Switch which is the switch that connects all the source switches to the

destination.

 And finally, the Gateway Switch which acts as a deep packet inspection (DPI) switch that drops packets

based on whether the traffic is deemed to be malicious or not.

Figure 7 - SDN Architecture

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1526

The Figure-8 below represents a sample Mininet Topology Command line interface that shows that the

Mininet topology has 10 hosts (h), 3 switches(s) and a Floodlight controller (c).

Figure 8 - Sample Mininet Command Line Interface

All these switches have been connected to a central controller which is the Floodlight controller that

would be maintaining an Access Control List (ACL).

The graphical user Interface (GUI) of the Floodlight controller has been shown in the Figure-9 below

including the topology representation that has been created above in Mininet.

Figure 9 - Sample Mininet Topology

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1527

In order to show a new network interface prefixed with the names of the switch (being s1, s2, s6) for

each of the port that has been opened by the Mininet, ifconfig has been used which can be depicted in the

screen capture below (Figure-10).

Figure 10 - Network Interfaces opened up by Mininet

Mininet, by default, sends the network traffic as Internet Protocol version 6 (IPv6). This means that the

output of the Rest API that is being represented is of the nature of the IPv6 addresses. In the experiment that

has been used in this thesis, the ACL module of the Project Floodlight has been used in order to block the

host IPs. For the purpose of blocking, the addresses that can be used is the Internet Protocol version 4

(IPv4).

In order to enable the IPv4 address and override the default behaviour, the custom topology script can

be modified on the host creation step. This modification can be done by using the below command (Figure

11), in the custom Mininet topology creation python script (as provided in Appendix-1).

Figure 11 - Add Host / Enable IPv4

Traffic Monitoring

The traffic across the network is being monitored for the below parameters:

 Bandwidth Usage

 Packet Speed/Throughput

 IP Density

Bandwidth Usage

The bandwidth usage can be captured from the floodlight’s captured statistics. And therefore, in order to

collect the statistics, this needs to be enabled first since the stat collection in Floodlight is not enabled by

default.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1528

The script check_bw_final.py [45] is the one which helps in enabling the statistics. The Figure-12 below

represents the script which helps in enabling the statistics.

Figure 12 - Enable Statistics

Floodlight controller provides bandwidth usage statistics at a “per switch – per port” granularity via

a GET call which gives the below output:

[{

u'updated': u'Sun Sep 02 21:25:36 BST 2018', u'bits-per-second-tx': u'0',

u'link-speed-bits-per-second': u'10000000', u'dpid': u'00:00:00:00:00:00:00:0b',

u'bits-per-second-rx': u'0', u'port': u'6'

}]

In order to capture the usage for all the ports for all the switches, the method topology_info() in this

script, first finds out all the switches & hosts on the network. This is clearly represented in the section of the

method that has been shown in the Figure-13 below.

Figure 13 - Get Topology Info

This script of check_bw_final.py then iterates for all the switches. It scans all the ports on these

switches in order to capture the bandwidth usage on each of them. This usage is captured in bits per second as

highlighted in the Figure-14 depicted below.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1529

Figure 14 - Bandwidth Usage from Floodlight

Packet Speed

Traffic Sniffer

The speed of the packet would be ascertained by the number of packets that have been sent or received

within a stipulated period of time which is regarded the same as the Polling interval that has been defined in

Section 5.4 in this thesis.

In order to monitor the traffic, all the network interfaces created as a part of the Mininet topology would

be monitored. This monitoring is done by the use of the tool, known as Scapy in Python. This is quite a

powerful tool which helps to scan these interfaces and even has the ability to decode packets of various

protocols, send them on the wire and capture them. The script sniff- traffic.py has the main method which

initiates an asynchronous process for each of the network interfaces in the topology. This has been

represented in the code snippet shown below in the Figure- 15.

Figure 15 - Initiate Asynchronous Sniffers

In the other section of the script, each process uses the sniff function of scapy that helps in filtering the

IP traffic from the network which has been shown in the code snippet below (Figure-16).

Figure 16 - Filter IP Traffic

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1530

While sniffing the traffic, the response packets are being filtered out. This is because when we send a

request to a host, an acknowledgment from it would come as a response to that request which would cause

someone to interpret wrongly that both the hosts are the source.

In other words, if the IP traffic has the layer as Internet Control Message Protocol (ICMP), the response

traffic (that is the ‘echo reply’) would have the type attribute as 0 and the request traffic (that is the ‘echo

request’) would have the type attribute to be 8. And, only the records with type attribute ‘8’ are being

captured in this experiment in order to avoid duplicating the counts.

 As can be seen in the below Figure-17, one packet is sent from source IP being 10.0.1.2(Node h22) to

the destination IP i.e. 10.0.1.4. The command used for this purpose was ping.

Figure 17 - PING Test

The packet when analysed shows two entries in Wireshark. The info of the packet reveals that the

packet #3 in the below Figure-18 is the Ping Request and the packet #4 is the Ping Reply.

Figure 18 - Wireshark Capture of Ping Test

The packet #3 shows the type attribute as 8 and the packet #4 has the type attribute as 0, as can be seen,

highlighted in the Figure-19 below.

Figure 19 - Deep Packet Inspection of Wireshark Captures

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1531

As discussed earlier, for a network traffic that doesn’t have an ICMP layer, the type attribute does not

exist. Therefore, ping request and reply need to be identified using different condition. The below Figure-20

shows a couple of packets sent from source IP 10.0.1.2 to destination IP 10.0.1.4 using hping3.

Figure 20 - HPING3 Test

The deep packet inspection (DPI) of one of the packets shows a TCP layer instead of an ICMP layer. As

can be seen in the below Figure-21, the packet #1 which is the Ping Request has flags set as 0 and the Ping

Reply has flags set as a non-zero value.

Figure 21 - Deep Packet Inspection of HPING3 Captures

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1532

The sniffer program, therefore, checks the packet to see if it has an ICMP layer. If it has an ICMP layer,

the code is shown below (Figure-22) looks for the type attribute and filters out any packets that do not have

the type attribute as ‘8’. And, if the packet does not have an ICMP layer, the code looks for the flags and

filters out any non-zero flags, which are the ‘Ping Reply’ packets.

Figure 22 - Ignore 'PING REPLY' Packets

Now, after the traffic has been sniffed, the source and destination IPs are distinguished and is written to

the Pulsar topic in asynchronous mode. Here, the mode has been chosen to be the asynchronous mode for

maximum performance. This mode would put the message on the queue and return without waiting for an

acknowledgement. The risk in this kind of a mode is the queue could grow in size if many messages are not

acknowledged. And therefore, the maximum pending messages (Figure-16) is an attribute or parameter that

is set at the time of creating the producer.

The format of the message that is written to the Pulsar topic is the packet source IP followed by the

packet destination IP, separated by a pipe delimiter.

Collector & Loader

Considering the database operations to be usually resource intensive and therefore could be detrimental

to performance, the sniffed traffic is not loaded directly to the database. Rather, the messages are written to

the Pulsar topic by the traffic sniffer function. And thereby, they would be picked up after every nth message

and loaded to a table, named ip_sniffer in the database for the analytics job to run on it which would be

explained below in the thesis. Consequently, this would, in turn, reduce the number of hits to the database by

1/n and also, the performance level is maximized due to the highly scalable nature of Pulsar in response to

high-speed network traffic.

Further, the load frequency (n) should not be too low as that would trigger very frequent loads to the

database, which would have a detrimental impact on the performance. The load frequency should not be too

high either, because that would mean the data would not be moved from the pulsar topic to the tables for

analysis till the required number of packets for a load is received. This would even reduce the accuracy of

the analysis as many packets would not be considered.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1533

The below code snipper (Figure-23) shows the counter that goes up to the load frequency. Before the

counter has reached the count, the messages keep getting appended to the list and once it reaches the count,

it gets loaded to the “ip_sniffer” table.

Figure 23 - Data Polled & Loaded to Tables to Database

The data received would be split using its delimiter “|” and then would be loaded to the ip_sniffer table in

the database. This is clearly spotted in the code snippet below (Figure-24) which shows the record being

inserted into the table.

Figure 24 - Load to IP Sniffer table

Threshold to Differentiate genuine and Malicious Traffic

Various configuration parameters need to be defined in the code for the framework to be able to detect

malicious traffic. These parameters are the following:

1.) Bandwidth Consumption Threshold: This threshold signifies if the bandwidth consumption

i.e. bits-per-second-rx for any of the ports on any of the switches exceeds the value set for the threshold, and

then the connected host is deemed to be malicious.

2.) Polling Interval: This is the time duration after which the data captured during the traffic monitoring

stage would be aggregated and analysed for making decisions. This parameter would define the

responsiveness of the application to attacks.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1534

3.) Threshold of requests per source: This is the upper limit that has been configured on the number of

packets from a source IP address per polling interval. Setting this parameter to an appropriate value is

important. This is because a very low value could result in a high number of false positives for the network

that is under threat and all its neighbouring networks. Similarly, a very high value could allow a DDoS

attack to take place and therefore would defeat the purpose of this intrusion detection framework.

4.) Threshold of requests per destination: This is the upper limit that has been configured on the number of

packets from multiple source IPs to a destination IP address per polling interval. Similar to the “threshold of

requests per source”, the value needs to be carefully considered and set up in order to prevent high false positives

or false negatives.
5.) LIMIT of Destination IPs block: When the number of packets per polling interval for a destination IP

exceeds the threshold of the requests per destination, this parameter would define the number of top

packet contributors, i.e., the source IPs that would be deemed malicious and eventually blocked in order

to mitigate the attack. As a result, this would bring down the number of packets per second at the

destination IP.

6.) ACL Retention Period: This is the period of time for which all the IPs that have been added to the ACL

rules would be retained on the ACL list in Floodlight. Upon expiry of the retention period, the IPs would

be released, thereby removing it from the ACL list.

The below table shows the values that are used for the purpose of this research.

Threshold Name Value

Bandwidth Consumption Threshold 20,000

Polling Interval 5 secs

Threshold of requests per source 100 packets per second

Threshold of requests per destination 400 packets per second

LIMIT of Destination IPs block Top 3 contributors

ACL Retention Period 15 mins

Table 1 - Thresholds used in the Framework

Another important factor that needs to be considered while deciding on neighbouring networks (i.e., the

networks subscribing to the same Pulsar topic for intelligence about malicious hosts) is, networks with

similar capacity in terms of the ability to handle high-speed network traffic should be grouped together. If a

network with much higher capacity is in the same neighbourhood as other networks that do not have a

comparable capacity, it would result in a lot of false positives for the former, since other networks would

have set their thresholds much lower and therefore would be blocking hosts who would not have caused an

issue with the network with high capacity.

Traffic Analysis & Attack Mitigation

Based on the results from the traffic monitoring explained above, the data collected would be analysed

in order to differentiate between the malicious and genuine traffic. For the purpose of analysis, various hosts

are identified to be malicious based on the threshold that has been configured. If the hosts exceed this

threshold and overwhelm the network then they are deemed to be the malicious ones. And therefore, the IP

of the hosts are added to the ACL rules of the corresponding network in the floodlight denying access and

blocking the traffic.

At the same time, these IPs are even sent to a Pulsar topic, which is subscribed to by other neighbouring

networks. Consequently, the neighbouring networks even pick the same information from the topic and

thereby, block the IP of the host on its corresponding controller as well. This demonstrates the collaborative

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1535

mechanism of this proposed model discussed in this thesis.

The implementation has been done using various programs/modules. These are explained in the sections

further.

Posting of ACL Rules

The job that would be posting the ACL rules would run on all the individual networks. These ACL rules

are published on to the Pulsar topic. Each network would be subscribing to the same Pulsar topic by creating

its own subscriber like sub1 and sub2 in this experiment (as shown below in Figure 25)

Each individual subscriber would read from the Pulsar topic and calls the Floodlight Rest API to post

the received IP on to the ACL list. Once the processing is complete, it would send an acknowledgement

back triggering Pulsar to send in the next message. In other words, it acts like a conventional queue that

exhibits the First-In-First-Out (FIFO) mode of dealing with messages.

Figure 25 - Post ACL Rules Scripts

Further, the expected message on the attackers_topic would be an IPv4 address. In addition to the address being

loaded to the ACL rules in Floodlight, it would also be loaded to a table in the database called ACL_Retention. This

table contains the IP address of the host and the timestamp at which it was loaded. As a result, this will help perform

housekeeping of the ACL rules. The Figure-26 below shows the python script which performs the activities explained

above.

Figure 26 - Post to ACL & Load to ACL_RETENTION Table

ACL Rules Housekeeping

The idea behind the acl-rules-housekeeping mechanism is to remove the block on an IP address that has

been blocked previously after a certain period of time. The purpose of doing this is not to overload the

database with loads of data and hamper its performance. In addition, this even allows for course correction

in case a host was infected in the past because of its IP being spoofed or have been intruded by someone and

is triggering a DDoS attack but it has been clean since then. However, if the host exhibits similar behaviour it

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1536

would again be added to the ACL table and blocked.

As can be seen in the below code snippet (Figure-27), this job would look at the acl_retention table for

any entries older than the value of the parameter “ACL Retention Period”.

Figure 27 - Fetch IPs blocked for more than 15 mins

Further, in order to clear a specific rule, the API call needs the ‘id’ of the entry and is not driven by the

IP. Based on the IPv4 addresses retrieved above, the corresponding id is fetched from the ACL rules table in

floodlight and then the specific rule is cleared. And thereby, deleting the record from the acl_retention table

(as represented in Figure-28 below).

Figure 28 - Release Blocks for IPs older than 15 mins

Bandwidth Analysis

The bandwidth monitoring on all the ports of all the switches gives the bandwidth usage, which is then

compared with the “Bandwidth Consumption Threshold”. For hosts that go beyond the threshold (as

highlighted in Figure-29 below), the IPv4 address would be posted to the ATTACKERS_TOPIC for it to be

blocked.

Once it is blocked, the bandwidth usage would go down approximately to ‘0’ within some time.

Meanwhile, in order to avoid multiple duplicate posts to the Pulsar Topic, the program checks if the host is

already present on the ACL list. If it is present then the post to the Pulsar topic is skipped otherwise it is

posted.

In case of an Aggregation switch or the switch which is not connected to any hosts but only exists as a

connector between other switches, the bandwidth could go much higher than the threshold as it would be

aggregating the usage from the traffic from all the hosts of the connected switches. Consequently, these

ports would not return an IPv4 address and hence, they have been filtered out before posting to the Pulsar

topic.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1537

Figure 29 - Bandwidth Usage Greater than Threshold

The code snippet as represented in Figure-30 below shows the method that takes the IP addresses that

are believed to be malicious as a parameter in the python script check_bw_final.py and writes them to the

Pulsar topic for the post-acl-rules.py script to read and block them in the network.

Figure 30 - Publish to Pulsar Topic

Evaluation

For the purpose of implementation and evaluation of this work below scripts are used to simulate normal

traffic (Figure-31) and attack traffic (Figure-32). For the simulation of Normal traffic, 100 packets are sent

to multiple targets at the default ping speed. Whereas for an attack traffic simulation, 100 packets are sent at

a speed of 500packets per second.

Figure 31 - Normal Traffic Simulator

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1538

Figure 32 - Attack Traffic Simulator

The check_bw_final.py script starts monitoring the bandwidth usage of all the ports of all the switches.

As can be seen in the below screenshot, the usage starts from 0 (Figure-33) and when the normal traffic

simulator script is run, the usage starts to show up on the output (Figure-34).

Figure 33 - Initial Bandwidth Usages

Figure 34 - Bandwidth Usage after starting Normal traffic Simulator

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1539

When the attack network simulator script is run, the bandwidth goes beyond the threshold of 20,000 set

as per Table-1. The host connected to the port is deemed to be malicious and therefore the corresponding

IPv4 address is posted to the pulsar topic (Figure-35).

Figure 35 - Attacker IP detected

The below screenshots (Figure-36 & Figure-37) show two neighbouring networks picking up the

message posted by one of the networks and loading to the ACL in Floodlight and loading to the

acl_retention table as well.

Figure 36 - Attacker IP Blocked on Network 1 i.e. Floodlight - 16653

Figure 37 - Attacker IP Blocked on Network 2 i.e. Floodlight - 6653

Each network has its own database i.e. cids and cids_nw2.

Both databases would have an entry each for the blocked IP address (as in Figure-38).

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1540

Figure 38 - ACL_RETENTION table loaded on CIDS & CIDS_NW2

Figure-39 below shows the results of an API call to both floodlight controllers. This call aims to get a list of

ACL rules on each controller.

Figure 39 - API Call to get ACL rules in each controller

After the retention period i.e., 15 minutes (defined as per Table-1) is exhausted, the IP address is

released from the ACL rules (Figure-40) for both networks.

Figure 40 - After Retention Period block removed

Packet Speed Analysis

For the analysis of the packet speed, the data collected and loaded during the monitoring phase by the

Collector & Loader job has been used.

This job’s frequency is defined by the “Polling Interval” parameter and can be formulated as below,

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1541

Equation 1 - Polling Interval Deduction

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∝ 1⁄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃

As shown above, the polling interval is inversely proportional to the expected speed of traffic.

Alternatively, in networks where the speed is very high, the polling interval should be low or else the DDoS

attack would become successful by the time the next iteration of analysis is triggered since timing is very

important in case of DDoS attacks.

For the purpose of analysis, two tables have been used which are the following: -

1. source_sniffer - This table stores the total number of packets transmitted from each of the source IPs

during the polling interval.

2. dest_sniffer – is the table that stores the total number of packets received by each destination IP from

various source IPs during the polling interval.

The python script consumer-stat-capture.py helps in capturing the statistics which initially starts off by

truncating the previous analysis results and starts with empty datasets on the above two tables.

Further, the code snippet below (Figure-41) conveys that, from the IP_SNIFFER table, the number of

entries of each source IP (while filtering out source_ip’s that are already blocked) is loaded to the

source_sniffer table. Similarly, a number of entries for each destination IP (while filtering out those entries

that have an already blocked IP as its source) is loaded to the dest_sniffer table.

Figure 41 - Aggregate & Load to Source & Dest Sniffer

If the count of any source IP is greater than the “Threshold of requests per source”, the IP is deemed to

be malicious. Similarly, if the count of any destination IP is greater than the “Threshold of requests per

destination”, the top few contributors to that count is selected. The number of contributors to be selected is

driven by the “LIMIT of Destination IPs block” parameter. These source

IPs are also added to the list of IPs to be blocked (Figure-42).

Figure 42 - IPs breaching various threshold identified

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1542

The IP_SNIFFER table is truncated and the list of IPv4 addresses to be blocked is published to the

ATTACKER_TOPIC (as shown in the Figure-43 below).

Figure 43 - Publish to Pulsar

Evaluation

For the purpose of this test, a topology has been created on each network. In this work, two networks have

been used for evaluation of the testbed. The below table lists the various hosts and switches along with their

corresponding IP addresses.

Below are the respective topologies of the two networks.

Table 2 - Topology Information of Two networks

Figures 44 & 45 show the graphical representation of the two networks being used for this research.

Figure 44 - Network-1 Graphical representation

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1543

Figure 45 - Network-2 Graphical Representation

In each network, the sniff-traffic scripts start with the producer while the collector-load scripts subscribe to

the same topic and load it to the respective database tables.

Below screenshot (Figure-46) is the output of the collector-load scripts, which loads the sniffed traffic from

the pulsar topic to the database. It loads 5 messages instantly which can be seen below.

Figure 46 - Collector Load Output

The consumer-stat-capture scripts check if the threshold for the number of packets per polling interval

for a source or destination is breached for any of the hosts.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1544

Destination Threshold Checks

If the destination threshold (set as 2000 as per Table-1) is breached, the script finds the top 3

contributors and adds them to the ACL rules.

The below screenshot (Figure-47) shows the count goes beyond 2000 in a 5 sec window (polling

interval as per Table-1).

Figure 47 - Stats Captured - Destination Sniffer

The script then looks for the top 3 contributors and adds the IP addresses to the ATTACKERS_TOPIC.

The ATTACKERS_TOPIC would be subscribed to, by all neighbouring networks and therefore, would be

blocked on all the networks. The below screenshots (Figure-48 & 49) show the blocks added on both

networks.

Figure 48 - Top Contributors blocked – Network 1

Figure 49 - Top Contributors blocked – Network 2

As it can be seen that from the above implementations and evaluation of the script, the attack was

initiated on Network 1 but the block was added just not on Network 1 but also on Network 2 justifying a

collaborative approach of detecting and mitigating the attack.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1545

Source Threshold Checks

Similarly, if the threshold for the source IP (i.e. 500) is exceeded, the source address would be added to

the Pulsar topic and eventually blocked by all neighbouring networks.

As evident from the below Figure-50, a high-speed flow of packets is initiated from 10.0.1.1 to

10.0.1.9.

Figure 50 – High-Speed Traffic Initiated

The setting of (-i 0.005) triggers up to 200 packets per second, which exceeds the “Threshold of

requests per source”. The corresponding source IP (in this case 10.0.1.1), is therefore blocked by all the

neighbouring network when the IP address is posted to the “ATTACKERS_TOPIC”.

Once the source IP is blocked, the corresponding entry would be created on the acl_retention table on

both networks, as can be seen in below screenshot (Figure-51).

Figure 51 - ACL_RETENTION table populated for both networks

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1546

As evident from the above test, the attack was initiated on Network 2 but the block was added on both

networks due to an increase in the number of packets and exceeding a configurable limit of threshold (as it is

500 in this case).

IP Density Analysis

In this case of evaluation, the data collected on the “ip_sniffer” can be used to calculate the number of

unique source IP addresses per destination IP that can be defined as the IP Density at a destination host.

This can be an important parameter while considering a network which is not expecting too many

different IP addresses connecting to its hosts within the polling interval. In such a situation, this framework

has the ability to check the IP density and block the top contributors of the servers sending a huge number of

packets to the destination host.

Below screenshot (Figure-52) shows the query that gives the IP density for each destination host.

Figure 52 - IP Density

After having found out the destination IPs that have breached one of the thresholds that have been set,

the below query would give the top contributors and accordingly those source IPs can be blocked (Figure-

53).

Figure 53 - Top contributors to the IP with the most unique connections

Load Testing

The performance test of the framework has also been carried out. “hping3 –faster” or “ping -f” has

been used to send a huge number of packets to a host and make the server overwhelmed with traffic. The

below screenshot (Figure-54) shows ways to send high-speed packets from 10.0.0.1 to 10.0.0.8.

Figure 54 - HPING3 flood attempt

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1547

As mentioned earlier, the polling interval is inversely proportional to “expected speed of traffic”. Since

we are expecting a very high-speed traffic, the polling interval would be reduced to 1 sec. The idea behind

reducing the polling interval, even though we are more or less persisting with the same packet speed is, there

can be a situation where if the polling interval is too high the DDoS attack may become successful in bringing

down the target host before the speed is checked again after the waiting period. Therefore, frequent checks

of the packet speed would help in stopping an attack while it is yet to cause harm to the target host as we

know that timing is very important for the short intermittent DDoS attacks.

Also, in order to reduce the number of hits to the database, the frequency of database load is reduced to

every 10 records instead of the previous value of every 5 records (See Table-3).

Threshold Name Value

Polling Interval 1 sec

Threshold of requests per source 100 packets per

second

Threshold of requests per

destination

400 packets per

second

LIMIT of Destination IPs block Top 3 contributors

ACL Retention Period 15 mins

Frequency of Database Load 10 records

Table 3 - Modified thresholds for performance tests

The below screenshot (Figure-55) shows that in about 5-6 seconds, there was a post to the Pulsar Topic

that triggered the IP to be blocked and loaded to the acl_retention table (Figure-56). And therefore,

justifying that the performance of the solution is quite high and helps in detecting the attack faster.

Figure 55 - DDoS Attacker identified

Figure 56 - Added to ACL_RETENTION

Performance Metrics

The time taken to detect an ongoing DDoS attack is defined by the Polling Interval. If the polling

interval is set to 5 secs, the framework can take up to 5 secs to detect an attack. During performance

benchmarking, a polling interval of one second was used and the attack was detected within a second.

Post detection, the mitigation of the attack was completed with an average turnaround time of fewer

than 200 milliseconds.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1548

Results Time

taken

(ms)

1

108

2

279

3

300

4

107

5

95

Table 4 - Performance Test Results

Summary

In this chapter, the author describes and implements the framework that has been proposed which includes

detecting the DDoS attack, blocking them in order to mitigate the attack and followed by communicating it to

other neighbouring networks for signifying a collaborative approach. The proposed solution is divided into

various sections and modules like the detection mechanism, the posting of ACL rules and the housekeeping

module, and it works independently. The advantage of this is that if one needs to implement any

modification on a specific module the other modules remains untouched and works fine after integration.

The various scripts written for this experiment has been described in detail including the reviewing of

various test cases which carefully explains the launch of a DDoS attack and thereby, detecting the same,

mitigating it and communicating with neighbouring networks in order to show the collaborative mechanism

of this solution. Moreover, various experiments have been carried out coupled with the state of the art that has

been discussed in previous chapters, which justifies the purpose of selecting specific tools and functions.

These experiments include the calculation of the bandwidth usage, the specification of threshold or an upper

limit, etc.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1549

CHAPTER 6

DISCUSSION AND FUTURE WORK

Discussion

The purpose of this study is to detect and mitigate the edge-based network attacks with a collaborative

approach before they overwhelm the network of a victim. In order to define an approach and propose a

framework, various existing collaborative methods of defense were studied and analysed according to their

detection accuracy, performance and, scalable nature. And then, a strategic solution of a collaborative

framework is proposed and a physical environment was built in order to test and analyse the distinction

between the genuine and malicious packets. Various parameters such as bandwidth usage, packet speed, IP

Density have been used to detect an attack. For each scenario, the functions and the mechanism of its working

have been explained clearly which helps in meeting the objectives of this research (as explained in Chapter

1) and tackling with the research challenges that have been discussed before in Chapter 3.

Most traditional systems use the signature-based approach and volume limitations in order to control

the network traffic. In these signature-based approaches, it is required to specify rules and signatures for

detecting the known attacks whereas, the approach in this thesis helps identify attacks from unknown multiple

sources. The proposed solution has shown a better performance by accurately detecting and blocking the

attacks in a very short period of time, approximately 200milliseconds. The results even inferred the scalable

nature of Pulsar that has been used as a pub- sub messaging system in this framework which is quite helpful

for a collaborative intrusion detection system. This framework is a prototype which can be a useful solution

for organizations or institutions. Hence this work can be extended further in order to build upon the research

and come up with a highly robust framework.

Future Work

Below are a few areas identified where more work/research can be done, to explore possibilities.

 Pulsar provides a clustered mode which helps in enormous horizontal scalability. Pulsar installations

running on multiple clustered nodes would allow for better performance as it would share the workload

across multiple clusters. It would also lend more stability to the platform as it would allow for set up of

secondary and failover nodes, therefore reinforcing persistent storage. This will make the solution

enterprise ready.

 This framework has laid the foundation that can be extended to add more packet inspection parameters

like - Packet Payload, Entropy etc.

 Machine Learning framework could possibly be used to self-maintain the thresholds with varying

network load.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1550

CHAPTER 7

CONCLUSION

This research takes a step by step approach in providing a lightweight, easily deployable and an

efficient collaborative edge-based attack detection framework. The proposed solution implements SDN

integrated with the pub-sub messaging system Apache Pulsar which helps in propagating attack

characteristics all the way from the victim to the attack sources in a very effective way. This is a three-step

mechanism that has been implemented, the first step being the attack detection, followed by blocking it on

that network server and then communicating to other networks to block the same justifying a collaborative

mechanism to deal with such attacks.

This research explains the experiments that have been carried out for the prototype implementation in

order to show the effect of mitigation and the instant transfer of information from one network to another

about the attack. The performance benchmarking has been performed, which gave an average turnaround

time to an attack of fewer than 200 milliseconds.

In addition, this solution was able to detect attacks which would come from multiple sources and would

overwhelm the network with a lot of traffic. Such a detection and mitigation approach is helpful to detect

unknown attack sources in the server and blocking them. The idea of polling interval that has been

experimented is helpful for detecting the attacks in a very short period of time. Threshold values have been

adopted based on the capacity of the system. Key consideration while setting the threshold should be – the

threshold should be a limit that a genuine traffic can never touch and a malicious traffic would most

definitely breach.

Like all other research mechanisms in this dynamic and complex field of study, this proposed solution

can benefit from suggestions of further research and can be worked on in a larger framework to explore

more on the capability of it to protect and defend against these aggressive attacks. As these attacks continue

to evolve more critical analysis needs to be done and not underestimate this threat. And therefore, SDN

network’s integration with Pulsar can be a suitable framework to thwart emerging DDoS attacks.

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1551

REFERENCES

[1]. Ken Gray, Thomas D. Nadeau, “SDN: Software Defined Networks”, [Online] Available:

https://www.safaribooksonline.com/library/view/sdnsoftwaredefined/9781449342425/ch

04.html?cv=1&sessionid=a6ac89a9175d47ac336b8fa73052bb54

[2]. Rainer Bye, Seyit Ahmet Campete, and Sahin Albayrak. Collaborative Intrusion Detection Framework:

Characteristics, Adversarial Opportunities and Countermeasures. In Workshop on Collaborative

Methods for Security and Privacy (CollSec), pages 1– 12, 2010.

[3]. Adrien Bonguet, Martine Bellaiche, “A Survey of Denial-of-Service and Distributed Denial of Service

Attacks and Defenses in Cloud Computing”, Future Internet MDPI, Canada, August 2017, [Online]

Available: http://www.mdpi.com/1999-5903/9/3/43/pdf.

[4]. J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack and DDoS Defense Mechanisms,”
SIGCOMM Computer Communication Review, vol. 34, pp. 39–53, Apr. 2004.

[5]. Bawany, N.Z., Shamsi, J.A. & Salah, K. Arab J Sci Eng (2017) 42: 425. https://doi.org/10.1007/s13369-

017-2414-5.

[6]. Zargar S.T., Joshi J, Tipper D, “A survey of defense mechanisms against distributed denial of service

(DDoS) flooding attacks”, Commun. Surv. Tutor, IEEE 2013, 15, 2046–2069.
[7]. Hameed, S., Khan, H.A., “Leveraging SDN for collaborative DDoS mitigation”, In Proceedings of the

IEEE International Conference on Networked Systems (NetSys), Goettingen, Germany, 13–16 March

2017.

[8]. Kalkan, K., Gur, G., Alagoz, F, “Defense Mechanisms against DDoS Attacks in SDN Environment”

IEEE Commun. Mag. 2017, 55, 175–179.

[9]. Y.-D. Lin, P.-C. Lin, C.-H. Yeh, Y.-C. Wang, and Y.-C. Lai, “An Extended SDN Architecture for

Network Function Virtualization with a Case Study on Intrusion Prevention,” IEEE Network, vol. 29,

pp. 48– 53, May 2015.

[10]. Yu Chen, Kai Hwang, and Wei-Shinn Ku, “Collaborative Detection of DDoS Attacks over Multiple

Network Domains,” IEEE Trans. on Parallel and Distributed Systems, vol. 18, no. 12, Dec. 2007.

[11]. Giotis, K., Androulidakis, G., Maglaris, V., “Leveraging SDN for Efficient Anomaly Detection and

Mitigation on Legacy Networks”, In Proceedings of the Third European Workshop on Software

Defined Networks, Budapest, Hungary, 1–3 September 2014.

[12]. Chen, X.F., Yu, S.Z., “CIPA: A collaborative intrusion prevention architecture for programmable

network and SDN”, Comput. Secur. 2016, 58, 1–19.

[13]. François, J., Aib, I., Boutaba, R, “FireCol: A collaborative protection network for the detection of

flooding DDoS attacks”, IEEE/ACM Trans. Netw. (TON) 2012, 20, 1828–1841.
[14]. Oktian, SangGon Lee, and Hoonjae Lee, “Mitigating Denial of Service (DoS) attacks in OpenFlow

networks,” In Information and Communication Technology Convergence (ICTC), 2014, pp. 325- 330, Oct. 2014.
[15]. Rashidi, B.; Fung, C., “CoFence: A collaborative DDOS defence using network function virtualization”.

In Proceedings of the 12th International Conference on Network and Service Management (CNSM), Montreal,

QC, Canada, 31 October–4 November 2016; IEEE: Berlin, Germany, 2016; pp. 160–166.
[16]. S. Scott-Hayward, G. O'Callaghan and S. Sezer, "Sdn Security: A Survey", 2013 IEEE SDN for Future

Networks and Services (SDN4FNS), 2013, pp. 1-7.

[17]. “Mininet: An Instant Virtual Network on Your Laptop (or Other PC) - Mininet.” Accessed April 13,

2017. http://mininet.org/.
[18]. “What Is a Floodlight Controller? - Defined.” SDxCentral, September 15, 2014.

https://www.sdxcentral.com/sdn/definitions/sdncontrollers/open-source-sdn- controllers/what-

isfloodlight-controller/

[19]. Yin Minn Pa Pa , Shogo Suzuki , Katsunari Yoshioka , Tsutomu Matsumoto, Takahiro Kasama,

Christian Rossow, “IoTPOT: Analysing the Rise of IoT Compromises”, 2015, [Online] Available:
https://www.usenix.org/conference/woot15/workshopprogram/presentation/pa

[20]. Greene K, (2009), “TR10: Software-defined networking. MIT Technology Review, March/April

http://www.ijisrt.com/
http://www.safaribooksonline.com/library/view/sdnsoftwaredefined/9781449342425/ch
http://www.mdpi.com/1999-5903/9/3/43/pdf
http://mininet.org/
http://www.sdxcentral.com/sdn/definitions/sdncontrollers/open-source-sdn-
http://www.usenix.org/conference/woot15/workshopprogram/presentation/pa

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1552

2009” http://www2.technologyreview.com/article/412194/tr10-software-defined- networking/

[21]. Snort homepage: https://www.snort.org/

[22]. Steven Snapp, James Brentano, Gihan Dias, Terrance Goan, Todd Heberlein, Che-Lin Ho, Karl Levitt,

Biswanath Mukherjee, Stephen Smaha, Tim Grance, Daniel Teal, and Doug Mansur. DIDS (Distributed

intrusion detection system) - Motivation, Architecture, and an early Prototype. In Fourteenth National Computer

Security Conference, pages 167–176, 1991.

[23]. Frédéric Cuppens and Alexandre Miège. Alert correlation in a cooperative intrusion detection

framework. In IEEE Symposium on Security and Privacy (S&P). IEEE, 2002.

[24]. Frédéric Cuppens. Managing alerts in a multi-intrusion detection environment. In Annual Computer

Security Applications, pages 22–31. IEEE, 2001. ISBN 0-7695-1405-7.

[25]. G. Wang, T. E. Ng, and A. Shaikh, “Programming your network at runtime for big data applications,” in

Proc. 1st Workshop HotSDN, 2012, pp. 103–108.
[26]. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Network support for IP traceback, IEEE/ACM

Trans. Netw. VOL. 3 NO 3, pp. 226-237 (August 2002).

[27]. Yaar, A., Perrig, A., Song, D.: StackPi: New Packet Marking and Filtering Mechanisms for DDoS and

IP Spoofing Defense, IEEE J. Sel. Areas Commun. VOL. 24, NO. 10, pp. 1853- 1863 (October 2006).

[28]. Law, T.K.T.,Lui,J.C.S.,Yau,D.K.Y.:YouCanRun,ButYouCan’tHide:AnEffective Statistical

Methodology to Trace Back DDoS Attackers. In: Proceeding of 10th IEEE International Symposium on

Modeling, Analysis and Simulation of Computer Telecommunications Systems (MASCOTS 2002), pp.

433-440 (2002).

[29]. Yu, Y., Zhou, W., Doss, R., Jia, W.: Traceback of DDoS Attacks Using Entropy Variations. In:

Transaction on Parallel and Distributed System VOL. 22, NO. 3, pp. 412-425 (March 2011).

[30]. Floyd, S., Bellovin, S., Ioannidis, J., Kompella, K., Manajan, R., and Paxson, V.: Controlling High

Bandwidth Aggregates in the Network. AT&T Center for Internet Research at ICSI (ACIRI) and AT&T

Labs Research (July 2001) http://www.icir.org/pushback/pushbackJul01.pdf

[31]. Su, W., Lin T., Wu,C., Hsu J., Kuo Y. : An On-line DDoS Attack Traceback and Mitigation System

Based on Network Performance Monitoring. In: Tenth International Conference on Advanced

Communication Technology (ICACT), Gangwon-Do, South Korea, 17-20 Feb 2008 , pp. 1467- 1472

(2008).

[32]. Case, J.: A Simple Network Management Protocol (SNMP). IETF RFC 1157, (May 1990),

http://www.ietf.org/rfc/rfc1157.txt

[33]. Chonka, A., Zhou, W., Singh, J., Xiang, Y.: Detecting and Tracing DDoS Attacks by Intelligent

Decision Prototype. In: Sixth Annual IEEE International Conference on Pervasive Computing and

Communications PerCom 17-21 March 2008, Hong Kong , pp-578-583 (2008).

[34]. D. Schnackenberg, R. Balupari, D, Kindred L. Feinstein, "Statistical Approaches to DDoS Attack

Detection and Response," in DARPA Information Survivability Conference and Expedition, vol. 2003,

Apr.

[35]. Michie, D. and Spiegelhalter, D.J. and Taylor, C.C., Machine Learning, Neural and Statistical

Classification. Ellis Horwood, 1994.

[36]. Open Networking Foundation, “OpenFlow Switch Specification - Version 1.3.5,” Mar. 2015. Retrieved

17 March, 2016.
[37]. Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick McKeown, Guru

Parulkar, ”FlowVisor: A Network Virtualization Layer”, 2009
[38]. Shin, S., Gu, G.: Attacking software-defined networks: A first feasibility study. In: HotSDN, ACM

(2013) 165–166.

[39]. C. Chun-Jen, et al., "NICE: Network Intrusion Detection and Countermeasure Selection in Virtual

Network Systems," Dependable and Secure Computing, IEEE Transactions on, vol. 10, pp. 198-211,

2013.

[40]. Li Gong. JXTA: A network programming environment. Internet Computing, IEEE, 5(3):88–95, 2001.

[41]. Oracle Cooperation: VitrualBox (2007), https://www.virtualbox.org/wiki/VirtualBox.

http://www.ijisrt.com/
http://www2.technologyreview.com/article/412194/tr10-software-defined-
http://www.snort.org/
http://www.icir.org/pushback/pushbackJul01.pdf
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.virtualbox.org/wiki/VirtualBox

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1553

[42]. Floodlight OpenFlow Controller-Project Floodlight, www.projectfloodlight.org/floodlight.

[43]. Apache Pulsar, https://pulsar.incubator.apache.org

[44]. Mininet Overview-Mininet, www.mininet.org/overview

[45]. RahulRajewar – Github, https://github.com/rahulrajewar/cmpe210

http://www.ijisrt.com/
http://www.projectfloodlight.org/floodlight
http://www.mininet.org/overview

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1554

GLOSSARY

SDN Software Defined Networking

NIDS Network Intrusion Detection System

CIDS Collaborative Intrusion Detection System

IP Internet Protocol

TCP Transmission Control Protocol

NFV Network Function Virtualization

DDoS Distributed Denial of Service

ACL Access Control List

ICMP Internet Control Message Protocol

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1555

APPENDIX

Code Base - https://bitbucket.org/sheet13/cids_using_pulsar/src/master

Topology Creation Script

#!/usr/bin/python

from mininet.net import Mininet

from mininet.node import Controller, RemoteController, OVSController from mininet.node import

CPULimitedHost, Host, Node

from mininet.node import OVSKernelSwitch, UserSwitch from mininet.node import IVSSwitch

from mininet.cli import CLI

from mininet.log import setLogLevel, info from mininet.link import TCLink, Intf from subprocess import

call

from os import environ """Custom topology example

Two directly connected switches plus a host for each switch: host --- switch --- switch --- host

Adding the 'topos' dict with a key/value pair to generate our newly defined topology enables one to pass in '-

-topo=mytopo' from the command line.

"""

from mininet.topo import Topo

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1556

collector = environ.get('COLLECTOR','127.0.0.1') sampling = environ.get('SAMPLING','10')

polling = environ.get('POLLING','10')

class MyTopo(Topo):

"Simple topology example."

def init (self): "Create custom topo."

Initialize topology Topo. init (self)

Add hosts and switches

s11 = self.addSwitch('s11', cls=OVSKernelSwitch) s12 = self.addSwitch('s12', cls=OVSKernelSwitch)

h12 = self.addHost('h12', ip='10.0.0.2', defaultRoute=None, startCommand='sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h15 = self.addHost('h15', ip='10.0.0.5', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h19 = self.addHost('h19', ip='10.0.0.9', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h125 = self.addHost('h125', ip='10.0.0.25', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h17 = self.addHost('h17', ip='10.0.0.7', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h16 = self.addHost('h16', ip='10.0.0.6', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h14 = self.addHost('h14', ip='10.0.0.4', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h11 = self.addHost('h11', ip='10.0.0.1', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h13 = self.addHost('h13', ip='10.0.0.3', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

h18 = self.addHost('h18', ip='10.0.0.8', defaultRoute=None, startCommand= 'sysctl -w

net.ipv6.conf.default.disable_ipv6=1;sysctl -w net.ipv6.conf.default.disable_ipv6=1;sysctl -w

net.ipv6.conf.lo.disable_ipv6=1')

Add links self.addLink(s11, h11) self.addLink(s11, h12) self.addLink(s11, h13) self.addLink(s11, h14)

self.addLink(s11, h15) self.addLink(s12, h16) self.addLink(s12, h17) self.addLink(s12, h18)

self.addLink(s12, h19)

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1557

self.addLink(s12, h125) self.addLink(s11, s12)

topos = { 'mytopo': (lambda: MyTopo()) }

nw1_normal_traffic.ksh

ping -c 100 10.0.0.5 &

ping -c 100 10.0.0.6 &

ping -c 100 10.0.0.7 &

ping -c 100 10.0.0.8 &

ping -c 100 10.0.0.9 &

nw1_attack_traffic.ksh

ping -c 100 -i 0.05 10.0.0.5 &

ping -c 100 -i 0.05 10.0.0.6 &

ping -c 100 -i 0.05 10.0.0.7 &

ping -c 100 -i 0.05 10.0.0.8 &

ping -c 100 -i 0.05 10.0.0.9 &

check_bw_final.py

import requests import time import pulsar import logging

import sys,threading

def topology_info():

print('\n<----------------------------SUMMARY----------------------------

-->')

data1 =

requests.get("http://127.0.0.10:18080/wm/core/controller/summary/json") dat1 = data1.json()

number_of_switches = dat1 ["# Switches"] number_of_hosts = dat1 ["# hosts"]

print '# Switches Connected: ', number_of_switches print '# Hosts Connected: ', number_of_hosts

print '--

\n'

return(number_of_switches , number_of_hosts)

def switch_info (number_of_switches , switch_dpids): data =

requests.get("http://127.0.0.1:18080/wm/core/controller/switches/json") dat = data.json()

k=0

for k in range(0 , number_of_switches): DPID = dat[k]["switchDPID"]

DPID = DPID.decode() switch_dpids.append(DPID)

bandwidth_one (DPID, number_of_switches)

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1558

return (switch_dpids)

def host_info(number_of_hosts , hosts):

a = requests.get("http://127.0.0.1:18080/wm/device/") b = a.json()

for k in range(0, number_of_hosts):

c = str(b["devices"][k]['ipv4']) if c != []:

hosts[str(c)] = str(b["devices"][k]["attachmentPoint"])

return(hosts)

def find_host(DPID , PORT): cntrlr_summ =

requests.get("http://127.0.0.1:18080/wm/core/controller/summary/json") cntrlr_summ_json =

cntrlr_summ.json()

number_of_hosts = cntrlr_summ_json["# hosts"]

device_detail = requests.get("http://127.0.0.1:18080/wm/device/") device_detail_json = device_detail.json()

dpid_curr="1" port_curr="0" device_ipv4="1"

for index in range(0, number_of_hosts-1): try:

if(str(device_detail_json["devices"][index][u'attachmentPoint'])!='[]'):

dpid_curr=str(device_detail_json["devices"][index]['attachmentPoint'][0]['switch '])

port_curr=str(device_detail_json["devices"][index]['attachmentPoint'][0]['port']

)

if(dpid_curr==DPID and port_curr == PORT): device_ipv4 =

str(device_detail_json["devices"][index]['ipv4']).replace('[','').replace(']',''

).replace('u','')

except:

device_ipv4="1" return device_ipv4

def pulsar_publish(attacker_ip):

ATTACKERS_TOPIC = 'persistent://sample/standalone/ns1/attacker'

Set up for basic logging

logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s', level=logging.INFO)

logging.info('Connecting to Pulsar...')

Create a pulsar client instance with reference to the broker client = pulsar.Client('pulsar://localhost:6650')

Build a producer instance on a specific topic producer = client.create_producer(ATTACKERS_TOPIC)

logging.info('Connected to Pulsar')

logging.info('Sending ACL Addition Request: %s ', attacker_ip) producer.send(attacker_ip);time.sleep(10)

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1559

client.close()

def bandwidth_one (DPID , number_of_switches): print DPID

for port in range(1,7):

try:

a = requests.get("http://127.0.0.1:18080/wm/statistics/bandwidth/"+DPID+"/"+str(port

)+"/json")

b = a.json() acl =

requests.get("http://127.0.0.1:18080/wm/acl/rules/json")

acl_json = str(acl.json())

bandwidth = int (b[0]["bits-per-second-rx"]) dpid=str(b[0]["dpid"])

ipv4=find_host(dpid, str(b[0]["port"])) print "\tport :", b[0]["port"]

print "\t\tBits per Second :", bandwidth

except:

if bandwidth > 20000:

if ipv4.replace('\'','') not in acl_json: print 'DPID: ', dpid

print 'Port: ', str(port) if ipv4 != "1":

print "Attacker IP : ", ipv4 pulsar_publish(ipv4)

attack=False

def stat_enable():

try:

stat = requests.put("http://127.0.0.1:18080/wm/statistics/config/enable/json")

print "Enabled statistics..."

except Exception as e:

print"error while enabling statistics :" , e

def start():

try:

number_of_switches , number_of_hosts = topology_info(); switch_dpids = list()

hosts = dict() attacked_switches = set()

switch_dpids = switch_info (number_of_switches, switch_dpids) ; #hosts = host_info (number_of_hosts ,

hosts);

#dpid = switch_byte (number_of_switches, switch_dpids);

except Exception as e:

print'Error occured:', e

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1560

def main():

try:

stat_enable(); while 1:

secs = 2 time.sleep(secs) start()

except:

exit(1)

T1 = threading.Thread(target=main) T1.start()

sniff-traffic.py

from scapy.all import * import pulsar, commands

from multiprocessing import Process

SNIFFER_TOPIC = 'persistent://sample/standalone/ns1/ip_sniffer' # Set up for basic logging

logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s', level=logging.INFO)

logging.info('Connecting to Pulsar...')

Create a pulsar client instance with reference to the broker client = pulsar.Client('pulsar://localhost:6650')

logging.info('Connected to Pulsar') def callBack(res, msg):

print('Message published: %s'%res) def sniffPacketsWrapper(producer):

def sniffPackets(packet): # custom custom packet sniffer action method if not

(packet.haslayer(ICMP)):

if packet[IP].seq != 0: pckt_src = packet[IP].src pckt_dst = packet[IP].dst pckt_ttl = packet[IP].ttl print

"IP Packet: %s is going to %s and has ttl value %s" % (pckt_src, pckt_dst, pckt_ttl)

producer.send_async(pckt_src + "|" + pckt_dst, callBack) return

elif packet.haslayer(ICMP) and packet[ICMP].type != 0: pckt_src = packet[IP].src

pckt_dst = packet[IP].dst pckt_ttl = packet[IP].ttl print

"IP Packet: %s is going to %s and has ttl value %s" % (pckt_src, pckt_dst, pckt_ttl)

logging.info('Source|Target: %s ', pckt_src + "|" + pckt_dst) producer.send_async(pckt_src + "|" +

pckt_dst, callBack) return

return sniffPackets

def sniffPacketsSwitch(switch):

Build a producer instance on a specific topic producer = client.create_producer(SNIFFER_TOPIC,

max_pending_messages=100000) sniff(filter="ip",iface=switch,prn=sniffPacketsWrapper(producer))

def main():

print "custom packet sniffer"

switches=commands.getoutput('ifconfig|egrep "s1"|grep eth|awk -F":" \'{print

$1}\'')

for switch in switches.splitlines(): if switch != '0':

p=Process(target=sniffPacketsSwitch, args=(switch,)) p.start()

if name == ' main ': main()

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1561

consumer-load.py

import logging import sys

import os, pulsar, mysql.connector

SNIFFER_TOPIC = 'persistent://sample/standalone/ns1/ip_sniffer' SUBSCRIPTION = 'sub'

TIMEOUT = 10000

Setup up basic logging

logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s', level=logging.DEBUG)

counter=0 source_ips=[] dest_ips=[] traffic=[]

def insert_db(traffic): mydb=mysql.connector.connect(

host="localhost", user="root", passwd="mysql", database="cids"

)

mycursor = mydb.cursor()

sql = "INSERT INTO ip_sniffer (source_ip, dest_ip) VALUES (%s, %s)" mycursor.executemany(sql,

traffic)

mydb.commit()

print(mycursor.rowcount, "record inserted.") def main(args):

global source_ips, dest_ips, traffic, counter print "Counter : "+str(counter) logging.info('Connecting to

Pulsar...')

Create a pulsar client instance with reference to the broker client = pulsar.Client('pulsar://localhost:6650')

consumer = client.subscribe(SNIFFER_TOPIC, SUBSCRIPTION, receiver_queue_size=100000)

logging.info('Created consumer for the topic %s', SNIFFER_TOPIC) while True:

try:

try and receive messages with a timeout of 10 seconds msg =

consumer.receive(timeout_millis=TIMEOUT) logging.info("Received message '%s'", msg.data())

source_ips.append(msg.data().split("|")[0])

dest_ips.append(msg.data().split("|")[1]) counter=counter+1

if counter >= 5: traffic=list(zip(source_ips,dest_ips)) source_ips=[]

dest_ips=[] insert_db(traffic) counter=0

consumer.acknowledge(msg) # send ack to pulsar for message

consumption

except Exception: received = 0

if name == ' main ': main(sys.argv)

consumer-stat-capture.py

import sys, logging import mysql.connector import time, datetime import pulsar

def pulsar_publish(attacker_ip):

ATTACKERS_TOPIC = 'persistent://sample/standalone/ns1/attacker' # Set up for basic logging

logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s', level=logging.INFO)

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1562

logging.info('Connecting to Pulsar...')

Create a pulsar client instance with reference to the broker client = pulsar.Client('pulsar://localhost:6650')

Build a producer instance on a specific topic producer = client.create_producer(ATTACKERS_TOPIC)

logging.info('Connected to Pulsar')

logging.info('Sending ACL Addition Request: %s ', attacker_ip) producer.send(attacker_ip)

client.close()

def insert_db(): mydb=mysql.connector.connect(

host="localhost", user="root", passwd="mysql", database="cids"

)

block_list= []

truncate source_sniffer mycursor = mydb.cursor()

sql = "truncate source_sniffer" mycursor.execute(sql) mydb.commit()

print(datetime.datetime.now().strftime("%I:%M%p %d-%b-%Y") + " : Truncate complete for Source

Sniffer")

mycursor = mydb.cursor()

truncate destination sniffer sql = "truncate dest_sniffer" mycursor.execute(sql) mydb.commit()

print(datetime.datetime.now().strftime("%I:%M%p %d-%b-%Y") + " : Truncate complete for Dest Sniffer")

mycursor.close()

Insert into Source Sniffer mycursor = mydb.cursor() sql = "insert into

source_sniffer(source_ip,count_per_polling_interval,loadtime) (select source_ip,count(1),now() from

ip_sniffer where source_ip not in (select blocked_ip from acl_retention) group by source_ip)"

mycursor.execute(sql) mydb.commit()

print(datetime.datetime.now().strftime("%I:%M%p %d-%b-%Y")+" : " + str(mycursor.rowcount) + " record

inserted to Source_Sniffer.")

mycursor.close()

Insert into Destination Sniffer mycursor = mydb.cursor()

sql = "insert into dest_sniffer(dest_ip,count_per_polling_interval,loadtime) (select dest_ip,count(1),now()

from ip_sniffer where source_ip not in (select blocked_ip from acl_retention) group by dest_ip)"

mycursor.execute(sql) mydb.commit()

print(datetime.datetime.now().strftime("%I:%M%p %d-%b-%Y")+" : " + str(mycursor.rowcount) + " record

inserted to Dest_Sniffer.")

mycursor.close()

Pick Source Ips with count > threshold mycursor = mydb.cursor()

mycursor.execute("SELECT distinct source_ip FROM source_sniffer where

count_per_polling_interval>500")

source_ips = mycursor.fetchall() mycursor.close()

Pick Destination Ips with count > threshold

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1563

mycursor = mydb.cursor()

mycursor.execute("SELECT distinct dest_ip FROM dest_sniffer where count_per_polling_interval>2000")

dest_ips = mycursor.fetchall() mycursor.close()

for ip in dest_ips:

mycursor = mydb.cursor() ip=str(ip).translate(None,"u,'()")

mycursor.execute("SELECT distinct source_ip FROM ip_sniffer where dest_ip='"+str(ip)+"' group by

source_ip order by count(*) desc LIMIT 3")

ips = mycursor.fetchall() source_ips=source_ips+ips mycursor.close()

for ip in source_ips:

if ip not in block_list: block_list.append(ip)

truncate ip_sniffer mycursor = mydb.cursor() sql = "truncate ip_sniffer" mycursor.execute(sql)

mydb.commit()

print(datetime.datetime.now().strftime("%I:%M%p %d-%b-%Y")+" : Truncate complete for IP Sniffer")

mycursor.close()

for attacker_ip in block_list:

attacker_ip = str(attacker_ip).translate(None, "u,()") pulsar_publish(attacker_ip)

def main(args): while True:

insert_db() time.sleep(5)

if name == ' main ': main(sys.argv)

post-acl-rules.py

import logging import sys

import os, pulsar import mysql.connector import datetime

ATTACKERS_TOPIC = 'persistent://sample/standalone/ns1/attacker' SUBSCRIPTION = 'sub1'

TIMEOUT = 10000

Set up up basic logging

logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s', level=logging.DEBUG)

def main(args):

mydb=mysql.connector.connect(host="localhost", user="root", passwd="mysql", database="cids"

)

logging.info('Connecting to Pulsar...')

Create a pulsar client instance with reference to the broker client = pulsar.Client('pulsar://localhost:6650')

consumer = client.subscribe(ATTACKERS_TOPIC, SUBSCRIPTION) logging.info('Created consumer for

the topic %s', ATTACKERS_TOPIC) while True:

try:

try and receive messages with a timeout of 10 seconds msg =

consumer.receive(timeout_millis=TIMEOUT) logging.info("Received message '%s'", msg.data())

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1564

mycursor = mydb.cursor()

mycursor.execute("SELECT blocked_ip FROM acl_retention where blocked_ip="+msg.data())

check_acl = mycursor.fetchall() mycursor.close()

if not check_acl:

command='curl -X POST -d \'{"src- ip":"'+msg.data()+'/32","action":"deny"}\'

localhost:18080/wm/acl/rules/json'

os.system(command) logging.info("Post Complete")

Insert into Destination Sniffer mycursor = mydb.cursor()

sql = "insert into acl_retention(blocked_ip,loadtime) values("+msg.data()+",now())"

mycursor.execute(sql) mydb.commit()

print("{0} : {1} IP inserted into ACL Retention.".format(datetime.datetime.now().strftime("%I:%M%p %d-

%b-%Y"),

str(msg.data())))

mycursor.close()

consumer.acknowledge(msg) # send ack to pulsar for message

consumption

except Exception: received = 0

if name == ' main ': main(sys.argv)

acl-rules-housekeeping.py

import logging import sys import os

import mysql.connector, requests, json import datetime, time

Setup up basic logging

logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s', level=logging.ERROR)

def main(args): mydb=mysql.connector.connect(

host="localhost", user="root", passwd="mysql", database="cids", autocommit=True

)

while True: try:

mycursor = mydb.cursor()

mycursor.execute("select blocked_ip from acl_retention where loadtime < now()-interval 15 minute")

blocked_ips = mycursor.fetchall() mycursor.close()

if blocked_ips: acl_rules =

requests.get("http://127.0.0.1:18080/wm/acl/rules/json") acl_rules_data = acl_rules.content acl_rules_json =

json.loads(acl_rules_data) for ip in blocked_ips:

for i in range(0, len(acl_rules_json)): ip=''.join(ip)

if acl_rules_json[i]['nw_src'].replace("/32", "") == ip: id=acl_rules_json[i]['id']

print("Attempting to remove IP - '" + ip + "' from

ACL!!")

command='curl -X DELETE -d

\'{"ruleid":"'+str(id)+'"}\' localhost:18080/wm/acl/rules/json'

os.system(command)

http://www.ijisrt.com/

Volume 5, Issue 8, August – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20AUG624 www.ijisrt.com 1565

'"+str(ip)+"'"

Clean up ACL Table mycursor = mydb.cursor()

sql = "delete from acl_retention where blocked_ip =

mycursor.execute(sql) mydb.commit()

print(datetime.datetime.now().strftime("%I:%M%p %d-

%b-%Y") + " : Deleted entry from ACL Retention table")

print("\nSleeping 5 mins!") time.sleep(300)

except Exception: received = 0

if name == ' main ': main(sys.argv)

http://www.ijisrt.com/

	ABSTRACT
	ACKNOWLEDGEMENT
	Table of Contents
	List of Figures
	List of Tables
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	REVIEW OF RELATED WORK
	CHAPTER 3
	AIMS AND OBJECTIVES
	CHAPTER 4
	DESIGN OF THE ARCHITECTURE
	CHAPTER 5
	ENVIRONMENTS AND EXPERIMENTS
	CHAPTER 6
	DISCUSSION AND FUTURE WORK
	CHAPTER 7
	CONCLUSION
	REFERENCES
	GLOSSARY
	APPENDIX
	Topology Creation Script
	nw1_normal_traffic.ksh
	nw1_attack_traffic.ksh
	sniff-traffic.py
	consumer-load.py
	consumer-stat-capture.py
	post-acl-rules.py
	acl-rules-housekeeping.py

