
940 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

A Survey on Network Verification and Testing With
Formal Methods: Approaches and Challenges

Yahui Li , Xia Yin, Zhiliang Wang, Jiangyuan Yao, Xingang Shi, Jianping Wu,
Han Zhang, Member, IEEE, and Qing Wang

Abstract—Networks have grown increasingly complicated.
Violations of intended policies can compromise network avail-
ability and network reliability. Network operators need to ensure
that their policies are correctly implemented. This has inspired
a research field, network verification and testing, that enables
users to automatically detect bugs and systematically reason their
network. Furthermore, techniques ranging from formal modeling
to verification and testing have been applied to help operators
build reliable systems in electronic design automation and soft-
ware. Inspired by its success, network verification has recently
seen increased attention in the academic and industrial commu-
nities. As an area of current interest, it is an interdisciplinary
subject (with fields including formal methods, mathematical
logic, programming languages, and networks), making it daunt-
ing for a nonprofessional. We perform a comprehensive survey
on well-developed methodologies and tools for data plane ver-
ification, control plane verification, data plane testing and
control plane testing. This survey also provides lessons gained
from existing solutions and a perspective of future research
developments.

Index Terms—Network verification, network testing, formal
methods, network reliability, software-defined network.

I. INTRODUCTION

MODERN enterprise networks are complicated. A single
service request in Google or Azure is responded to

by hundreds of servers. Networking devices modify pack-
ets quite differently, e.g., firewalls, which interdict mes-
sages based on various rules, and load balancers, which
spread traffic using hash functions. Hundreds of devices
perform complex network functions, which is quite chal-
lenging and hence error prone. Errors (e.g., configuration

Manuscript received November 6, 2017; revised May 11, 2018 and
June 26, 2018; accepted August 23, 2018. Date of publication August 31,
2018; date of current version February 22, 2019. This work was supported in
part by the National High Technology Research and Development Program of
China 863 Program under Grant 2015AA016105, and in part by the National
Natural Science Foundation of China under Grant 61402253. (Corresponding
author: Zhiliang Wang.)

Y. Li, X. Yin, J. Wu, and Q. Wang are with the Department of Computer
Science and Technology, Tsinghua National Laboratory for Information
Science and Technology, Tsinghua University, Beijing 100084, China.

Z. Wang and X. Shi are with the Institute for Network Sciences
and Cyberspace, Tsinghua National Laboratory for Information Science
and Technology, Tsinghua University, Beijing 100084, China (e-mail:
wzl@cernet.edu.cn).

J. Yao is with the College of Information Science and Technology, Hainan
University, Haikou 570228, China.

H. Zhang is with the School of Cyber Science and Technology, Beihang
University, Beijing 100191, China.

Digital Object Identifier 10.1109/COMST.2018.2868050

errors, software implementation bugs, and unexpected proto-
col interactions) can lead to numerous security vulnerabilities,
including network outages, router oscillations and forwarding
blackholes.

A survey [1] conducted by the North American Network
Operators Group revealed that 35 percent of all respondents
encountered more than 25 tickets per month. Other sur-
veys revealed that Microsoft Azure suffers from more than
10,000 cores being down per hour. Unfortunately, network
administrators still use primitive tools, e.g., Ping [2] and
TraceRoute [3], to manage networks. In addition, a new
network architecture, Software-Defined Networking (SDN), is
attracting increasing attention from industry and academia [4].
The innovative features of centralized control and pro-
grammability dramatically simplify network management and
enable network innovations. However, the programmability
of SDN increases the risk of network errors. Traditional
network testing techniques cannot be directly applied to SDN.
Therefore, we urgently need automated analysis of network
systems.

Network operators manage networks with experience and
intuition. They have been regarded as “masters of com-
plexity” [5]. Reasoning networks manually is challenging
fundamentally because of the scale and diversity of large
networks and the rapidity of deployments. Looking for
a bug in a bad access control list or simple questions
about a network are notoriously difficult tasks. We do not
know which packet headers from host A can reach host B,
let alone answer security questions such as whether group
X is isolated from group Y [6]. Certain quantitative ques-
tions, such as “is my load balancer distributing evenly?” or
“why is my backbone utilization poor?”, are also difficult to
answer.

Inspired by the well-honed automated reasoning technolo-
gies for software and hardware, networking researchers have
proposed a new research paradigm, called network-level ver-
ification and testing1 [5]. They regard the whole network
system as a software program that takes packets from the
network input edges and outputs packets of the output
edge after rewriting them [2]. Previous research in networks
focused on verifying the design and implementation of proto-
cols [7], [8], rather than network verification and testing that
formally verify or test the correctness of the entire network

1In this paper, we use the terms ‘network-level verification and testing’ and
‘network verification and testing’ interchangeably.

1553-877X c© 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7094-4053

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 941

TABLE I
DATA PLANE VERSUS CONTROL PLANE

Fig. 1. Number of research papers on network verification and testing in
this survey.

system by collecting network data plane or control plane
information.

Recently, network verification and testing have seen
increased popularity in the verification and programming
language community [5], [9], [10]. Many companies and uni-
versities, including Microsoft, Stanford, and UIUC, have set up
network verification research groups [11], [12]. Fig. 1 shows
that research in this field has intensified. Some efforts have
been made to introduce the development of formal verification
techniques (e.g., model checking) [13]. This is orthogonal to
our goal, which is to introduce the application of formal ver-
ification to network systems. Despite some work referring to
the application of formal methods to networking [14]–[18],
a detailed survey on this topic, network-level verification
and testing, has not yet be conducted. Specifically, a survey
conducted by Qadir and Hasan [19] is the closest to our
survey. The survey introduces the broad use of formal veri-
fication in networking, including checking security properties
for different protocols (e.g., medium access control protocols,
routing protocols, reliability protocols and other protocols)
and verifying network systems. We focus on the applica-
tion of formal method techniques to control and data plane
verification (testing), therein attempting to prove or check
network-wide properties rather than properties for individual
protocols. Qadir and Hasan [19] provide detailed background
of formal methods, but brief introduction of the works on data
and control plane verification. In this paper, we focus on sum-
marizing the developments of the techniques, and discussing
future research directions in this domain field. In addition, as a
new research paradigm, network verification and testing have
seen increased popularity in the verification and programming
language community since 2011. Some recent progresses in
this area are not involved in the survey [19].

We introduce the background of this survey in Section II.
Section III introduces formal methods that are the foundation

Fig. 2. Network layers and example errors. In traditional network, users
implement policies (A) by configuring device-specific configurations (B).
Then devices generate FIBs (C) using routing protocols, which determine the
forwarding behavior of packets. In SDN network, polices (A) are implemented
via SDN applications (B) in a programmable way. Then controller translates
the logic of applications into flow entries installed in the switches (C).

of network verification. In Section IV, we provide a brief
overview of techniques in the area. Then, we provide detailed
introduction of data plane verification in Section V, con-
trol plane verification in Section VI, data plane testing
in Section VII, and control plane testing in Section VIII.
Section IX gives a comprehensive comparison of network
verification and network testing. Sections X–XI discuss the
challenges and potential research directions in this area.
Finally, concluding remarks are given in Section XII.

II. BACKGROUND

A. Data Plane and Control Plane

Fig. 2 illustrates the layers of network, including policy (A),
control plane (B) and data plane (C). Users usually need to
implement a set of policies (A), such as whereby host X can
talk to host Y. In traditional networks, users use low-level
configurations (B) to realize high-level policies (A) manually.
Devices in networks such as routers and switches then run con-
trol protocols, e.g., routing protocols, whose parameters are
defined by these configurations, finally generate forwarding
information base (C). The incoming packets to these devices
are handled (possibly modified or forwarded to a neighbor-
ing router) according to the forwarding state. While in SDN
networks, the polices (A) are implemented via SDN applica-
tions (B) in a programmable way. Then the controller translates
the control logic of the applications into flow entries to be
installed in the switches (C), which are responsible for packet
forwarding.

Before discussing the focus of the sub topic (data plane and
control plane), we introduce the following term, invariant, to
facilitate subsequent presentation. In verification community,
an invariant is a property, held by a class of objects, which
remains unchanged when transformations of a certain type are
applied to the objects. Given a model of the system, we can
check or prove whether the model meets a set of invariants.

942 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE II
ABBREVIATION NOTATIONS

Invariants of the network specify the correctness properties of
the forwarding or routing behavior. For example, the invariant,
no forwarding loops, asserts that packets do not encounter
forwarding loops in the network.

The data plane, such as the flow table in SDN networks [20]
and the forwarding information base (FIB)2 in traditional
networks [21], is the snapshot of the forwarding table in
network devices. As shown in Table I, the inputs of data plane
verification tool are the data plane’s snapshot and network
invariants (e.g., no forwarding loops and no black holes.). It
models the snapshot as logical facts, which determine whether
a packet should be forwarded to a neighbor in each router or
dropped. Then, it formally checks whether the snapshot is con-
sistent with the invariants. However, it cannot detect failed
links/routers or performance problems caused by network
congestion. To address these challenges, researchers have
proposed data plane testing. With the forwarding table and
topology information, such testing generates abstract test cases
via a formalized model, and converts abstract test cases into
real test traffic to detect forwarding errors and performance
issues [1].

The control plane refers to the network program that estab-
lishes the data plane forwarding tables integrated with topol-
ogy information – (e.g., which router ports are interconnected)
and the environment (e.g., route advertisements) [22]. The
control plane in traditional networks includes the algorithm
protocols (e.g., OSPF [23] and BGP [24]) distributed in con-
figuration files scattered among thousands of network devices.
The control plane in SDN networks is concentrated in the con-
troller and in the application on top of it [25]. The inputs for
control plane verification and testing are route announcements,
link states and other information.

The policy is the reference of con trol plane and data plane
verification. To ensure the configuration and SDN program
is well designed, control plane verification checks consis-
tency between policies and the configuration or the SDN
program. To ensure the network behaves as designed, data
plane verification checks consistency between policies and
the forwarding states of network data plane. How do users

2All used abbreviation notations in this survey are listed in Table II.

Fig. 3. A high-level overview of the software-defined networking
architecture [4].

correctly check whether policies satisfy business requirements
before the policies are converted in to configuration? This type
of work is not within the scope of this paper, as this sur-
vey introduces verification works that check the network wide
properties. We focus on whether the data plane or control plane
of the actual network satisfies the policies that correspond to
the invariants of the users.

B. Software-Defined Networking

This section introduces the basic concepts of Software-
Defined Networking. Automatic reasoning technologies in
traditional networks and SDN networks are quite different.

SDN decouples the control logic from forwarding devices.
The prototype of SDN is preliminarily implemented based
on the OpenFlow protocol [21]. The foundation of SDN
proposed by the standardization organization the Open
Network Foundation (ONF) is shown in Figure 3. The foun-
dation defines three conceptual layers: the infrastructure layer,
the control layer and the application layer [21]. (I) The
infrastructure layer is generally referred to as a forwarding
device and is responsible for packet forwarding. It offers pro-
grammable flow tables, which consist of many flow table
entries. The controller configures the switch through the
Southbound API [21]. (II) For the control layer, the controller
can be seen as the ‘network brain’, which undertakes massive
compute and storage tasks. It maintains a global network view.
(III) In the application layer, applications are the programs
on top of the controller and allow users to define network
behaviors in a programmable way [26]. The communication
interface between the controller and the applications is called
the Northbound API. Generally speaking, the controller and
applications represent the control logic, which forms the con-
trol plane. The control plane translates the control-logic policy
of the applications into rules installed in the data plane.

The entire structure of traditional networks is highly decen-
tralized and operates in an entirely distributed manner, making
it difficult to realize automatic network verification tools. In
contrast, SDN networks are built on top of standard interfaces.
This enables the controller to configure and communicate
among different underlying devices. These features (e.g., the
centralized control logic and standard interface) enable users
to verify the correctness and security network properties with
formal methods.

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 943

TABLE III
SUMMARY OF REPRESENTATIVE TOOLS BASED ON MODEL CHECKING

TABLE IV
SOME APPLICATIONS OF FORMAL METHODS IN NETWORKING

III. FOUNDATION OF FORMAL VERIFICATION

AND TESTING

Broadly speaking, formal methods are based on mathemat-
ically techniques, which can be used in the specification and
modeling of systems. This section discusses the terminology
of formal methods used throughout this survey.

A. Model Checking

Model checking was first developed independently by
Clarke et al. [31] and Baier and Katoen [32]. This technique
checks whether the system model satisfies the specifications.
The system model is defined by a finite state model such as
automata or finite state machines (FSM). Specifications are
described as temporal logic formulas. Model checking checks
whether the system model satisfies a specification [33], [34].

Generally speaking, model checkers typically consist of
three components: (i) a method that describes the state tran-
sition of the system (S) to be verified, where S is typically
written in a state machine [35], a prepositional logic lan-
guage [36], the Datalog language [37] etc.; (ii) a specification
that describes the properties of the system with prepositional
temporal logic formula (F), such as computation logic for-
mula (CTL) [38], temporal logic, and linear time formula
(LTL) [39]; and (iii) a checking procedure that checks whether
the system satisfies the desired invariants. It is formulated as
a mathematical problem of whether the state transition system
model S satisfies formula F. It converts the model of the

system into logical formulas, and then, it computes the satis-
fiability of the formulas. After finding a violation, it produces
a counterexample. The counterexamples allow users to diag-
nose and repair errors in the system. Various model checking
tools have been proposed (e.g., SPIN [27], NuSMV [28] and
Alloy [29]), as illustrated in Table III.

Since the checking procedure exhaustively searches the
system state space, the size of the system state space
increases exponentially. Many optimized approaches have
been proposed. Bounded model checking leverages a fast SAT
solver [40]. Symbolic model checking represents state transi-
tions symbolically [41]–[44] using a Binary Decision Diagram
(BDD). Other techniques (e.g., partial order reduction [45] and
abstraction) reduce the size of the state space that needs to be
searched.

Model checking has been widely used to find errors
in software and hardware systems [46], [47]. Recently, it
has attracted significant attention in the network verifica-
tion and testing research community [25], [36], [48]–[51].
As illustrated in Table IV, Flowchecker, proposed by
Al-Shaer and Al-Haj [51], detects network configuration bugs
using the NuSMV tool. NICE [25] combines symbolic exe-
cution and model checking to test SDN applications [25].
Sethi et al. [48] presented another test SDN controller based
on a model checking method.

Fig. 4 presents an example network with three switches.
Each switch has forwarding rules which indicate the pack-
ets forwarding behaviour. For example, forwarding rule

944 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE V
SUMMARY OF REPRESENTATIVE TOOLS BASED ON FORMAL METHODS

Fig. 4. A simple network with three switches. Switch SA has a forward-
ing rule rA1 that forwards packet whose destination is 192.168.1.0/24 via
port pa0, a forwarding rule rA2 that forwards packet whose destination is
192.168.2.0/24 via port pa1. Rules in switch SB and switch SC are similarly
defined.

Fig. 5. A simple model checking encoding of the network in Fig. 4. The
initially state represents all possible packets are at host PA. The forward-
ing rules on switches moving packets between ports can be viewed as state
transitions.

rA1 on switch RA forwards packets whose destination ip
are 192.168.1.0/24 via port pa0. The states of the network
system are defined by the packet and its location. All possible
packets are at host PA, which is the initial state. The forward-
ing rules on switches moving packets between ports can be
viewed as state transitions. The corresponding model check-
ing encoding of the network is shown in Fig. 5. The state is
encoded as (p, l), where l is the location of the packet p. The
initial state is encoded as (p, PA), which represents all possi-
ble packets are at host PA. The relevant transitions are defined
according to the forwarding rules. For example, the formula,
(p,SA) → (p′,SB) (p.dst ∈ 192.168.2.024 & p.dst ′ =
p.dst), represents the forwarding logic of rA2. We introduce a
convenient way to write the matching condition in forwarding
rules. For example, dst ∈ 192.168.2.024 is a boolean formula

testing the equality between the first 24 bits of destination ip
and 192.168.2.0. After encoding initial state and state transi-
tion, we define a property, there exists a path such that packets
from PA to PB can be expressed as EF (l = PB) in CTL.
In syntax of CTL, E means that there exists at least one path
starting from the current state where the property holds, and
F means that the property eventually has to hold (somewhere
on the subsequent path). The model and property can be input
to a model checker engine (e.g., NuSMV [28]). If the engine
returns pass, the property holds on the system model. If the
model violates the property, the system will return a coun-
terexample. In this simple example, the model satisfies the
input property.

B. Theorem Proving

Theorem proving is another important formal verification
method. As depicted in [74] and [75], it consists of for-
mulas that represent the implementation and that describe
the system properties. The formulas (also known as formal-
ized mathematical statements) consist of a set of axioms and
derivation rules. This technique checks whether the property
is valid with the axiom and derivation rules [74]. In early
research, engineers manually designed a verification frame-
work and then manually verified the reasoning correctness in
the sketch. Recently, procedures (e.g., decision procedures)
have been processed automatically by the machine, named,
theorem prover. Theorem proving can be classified into auto-
mated theorem proving and interactive theorem proving. The
former addresses proving mathematical theorems with com-
puter programs. Despite the complexity, automated reasoning
over algebraic proofs greatly improves developments in com-
puter science. Interactive theorem proving handles the proof
problem with human assistance. Users have to support the
axioms and proof strategies with expert knowledge, which is
the most creative part of the verification [75]. Table V lists
various theorem provers that are routinely used in verification
projects.

Unlike model checking, theorem proving does not need
to exhaustively check the entire state space. This technique
takes a mathematical statement and checks the proof. When
checking the properties of a network system with theorem
proving, users can check all admissible network topologies
specified with the logic. However, scaling theorem proving to

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 945

Fig. 6. A simple theorem proving encoding of the network in Fig. 4. The
statements on the right of the figure define the forwarding logic of the network.
The formula on the lower left of the figure defines the invariant: packets from
PA can reach PB .

complex networks is challenging. It heavily depends on the
users’ knowledge of the system. In general, the underlying
logics are very complex and difficult to understand. In addi-
tion, the process is slow and fallible because it requires user
interaction in most cases.

Theorem proving is popular in network verification [54],
[55], [57], [58]. As shown in Table IV, VeriCon [54]
applies theorem proving to verify infinite-state SDN programs.
Reitblatt et al. used the Coq prover to ensure the update con-
sistency of SDN networks [76]. Guha et al. [57] proposed
Netcore for SDN controller programming, which also uses the
Coq tool.

Fig. 6 shows a theorem proving encoding of the network
in Fig. 4, which is motivated by VeriCon [54]. To verify the
properties of the system, the theorem prover receives three
inputs, including the forwarding rules, the toplogy of the
network system, and an invariant formula such as a first-
order logic formula. Topology relations define the links in
the topology. For example, link(SA, pa1, pb1,SB) means that
port pa1 of switch SA is directly connected to port pb1 of
switch SB . Forwarding relations model the logic of exist-
ing forwarding rules on switches moving packets between
ports. For instance, SA.ft(p.dst ∈ 192.168.2.024, pb2) defines
a matching condition in a forwarding rule rB2 in the
network. SB .recv(p.dst ∈ 192.168.2.024, pb1) defines that the
packet p can be received on switch SB at ingress port pb1.
SB .sent(p.dst ∈ 192.168.2.024, pb2) defines that the packet
p can be sent on switch SB at port pb2. To check whether
packets from PA can reach PB , we can prove whether the
formula on the lower left of the Fig. 6 is true. After users
inputs the deduce rules, a theorem prover can prove whether
the property holds.

C. Symbolic Execution

Symbolic execution is a popular approach for analyzing a
software program and represents program inputs with sym-
bolic values instead of concrete values [77]. On the surface,
the network does not resemble software code. It consists

Fig. 7. A simple symbolic execution encoding (pseudocode) of the network
in Fig. 4. Lines 3-5 in the pseudocode indicate the behaviour of switch. Lines
11-14 model the forwarding behavior of data plane. Lines 16-17 define an
assertion, which indicates the network property.

of routers, network interface cards, cabling etc. Moreover,
the entire network can be considered as the “program”. For
instance, a forwarding table of the router can be considered
as a program statement that forwards packets to the destina-
tion address. Therefore, the symbolic execution concept can be
applicable to the analysis of the network. Instead of running
with the normal inputs, it uses symbolic variables represent-
ing arbitrary values as inputs to run a program. An interpreter
follows the program and logically forks and follows both
branches at each code branch. It exercises all possible paths
and records the constraints of the symbolic variables on each
path, referred to as path conditions. Then, it solves path con-
straints using a constraint solver, and it obtains inputs that
follow the associated path during an execution [78].

Unfortunately, symbolic execution does not scale to large
programs because of path explosion. The number of fea-
sible paths increases exponentially with increasing program
size. This is unacceptable when applied to actual network
code [52], [79]. The various efforts shown in Table V have
made symbolic execution practical for verification such as by
merging similar paths and parallelizing independent paths.

Symbolic execution has been widely used in network ver-
ification and testing [6], [25], [52], [59], [61], as shown
in Table IV. SymNet [61] analyzes the network data plane
based on symbolic execution [80]. Dobrescu and Argyraki [52]
applied symbolic execution to verify the data plane code.
NICE [25] also employs symbolic execution to the exercise
code paths of the controller [25]. BUZZ generates abstract
test cases for stateful data planes based on Klee [59].

Fig. 7 shows a symbolic execution encoding of the sim-
ple network in Fig. 4, which is motivated by BUZZ [59].
The program snippet indicates how forwarding rules move
packets between ports. In each iteration, a packet is processed
(line 12) in two steps: (1) it is forwarded to the other end of
the current link (line 13), (2) it is then passed as an argument
to the switch connected at this end (line 14). The output pack-
ets are then processed in the next iteration. We can define an
assertion: packets from PA can be moved to PB (lines 16-17).

946 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Fig. 8. A simple SAT encoding of the network in Fig. 4. The forwarding
rules on switches move packets between ports, which can be formulated as
boolean formulas on the upper right of the figure.

A[i].s_Tag records the original source ip of the packets, and
A[i].d_Tag records the current location of the packets. This
will allow the symbolic execution engine to find a “violation”.
We input the program and assertion into a symbolic execution
engine (e.g., Klee [60]). The engine injects symbolic packets
and tracks their evolution through the program of the network.
The engine ultimately returns whether the assertion holds.

D. SAT/SMT Solvers

Many practical problems in network verification have been
reduced to SAT problems and solved by SAT solvers. The
satisfiability problem is as known as SAT and can be applied
to all logic formulas [81]. If the given propositional formula is
satisfiable, we can obtain values of the boolean variables that
make the formula logically true. A Boolean formula consists of
Boolean variables and operators. The input of the SAT solver is
a formula expressed in propositional logic theories. The solver
automatically decides on the satisfiability in the corresponding
syntax.

The satisfiability modulo theories (SMT) problem general-
izes pure the SAT problem. To express design and verification
conditions, SMT provides first-order theories [82]–[84]. The
express ability of first-order logic (e.g., difference logic,
arrays, bit-vectors, and linear arithmetic) is much greater
(richer) than that of propositional logic [85] in SAT. Both
SAT and SMT have proven to be typical NP-complete prob-
lems, which are difficult to solve in theory. Fortunately, various
SAT/SMT tools, as shown in Table V, have been proposed and
seen rapid progress [13], [86], [87].

SAT/SMT solver has attracted significant attention in
network verification and testing [9], [62], [63], [65]. FLOVER
verifies the properties of SDN networks based on the SMT
Yices solver [63]. Anteater employs an SAT solver to deter-
mine whether the properties of the network data plane are
violated [9]. NetSAT is another example that verifies SDN
networks based on an SAT solver [62].

A simple SAT encoding of a simple network is shown in
Fig. 8. It is motivated by Anteater [9]. Similarly, we encode the
matching condition in forwarding rules in a convenient way.
For example, the matching condition in rule rA2 in Fig. 8 is
represented as dst ∈ 192.168.2.024. The forwarding rules on
switches move packets between ports, which can be formu-
lated as a boolean formulas. For example, the forwarding rule
at SA which forwards packets to SB is formulated as a boolean
formula G(SA,SB) = p.dst ∈ 192.168.2.024. The formula

TABLE VI
SUMMARY OF FORMAL METHODS USED IN NETWORKING

G(PA,SA)∧G(SA,SB)∧G(SB ,PB) encodes the constraints
on the physical path PA → SA → SB → PB in Fig. 8. The
constraints on the path PA → SA → SC → SB → PB are
similarly defined. If we want to check whether packets can be
delivered from PA to PB (which is defined by the formula
on the lower of Fig. 8), we can query the formula with an
SAT solver (e.g., Z3 [70]). After we input the formulas, if
the solver returns true, then the property holds; otherwise, it
returns a counterexample.

E. Conclusion on Formal Methods

We provide a comparison of well-known formal methods.
As shown in Table VI, the first characteristic is soundness,
which indicates that the results verified by the technique are
always true. A technique is termed sound if the results verified
by it are always true. All techniques in Table VI can be termed
sound. Note that symbolic execution can be sound in principle.
For symbolic execution, users simply provide their program,
and the symbolic execution engine will examine all the feasi-
ble paths to generate test inputs or check assertions. In fact,
the number of possible inputs of the system is usually very
large and cannot be covered even in symbolic form. In order to
tackle path explosion, techniques like approximations are often
introduced [88]. However, those approximations techniques
can make the execution unsound. The second characteristic
is automation: a technique is automatic if it does not require
user guidance. As well known, model checking is a automatic
verification technique for finite-state systems. Logic in theo-
rem proving is expressive for defining many formal language
semantics and concepts in mathematics. As introduced earlier,
theorem provers consist of automated theorem provers and
interactive theorem provers. The main challenge of interactive
theorem provers is proof automation. They always require
explicit user guidance in the verification process [55]. The
third characteristic refers to whether the context of the problem
being modeled is generic. In terms of tackling a wide range of
problems, among all techniques in Table VI, theorem proving
is the only technique that supports verifying generic prob-
lems. Theorem proving supports verifying generic theorems,
as it does not require an instantiation. For example, theorem
proving is able to verify that an SDN program is correct on all
admissible topologies and for all possible (infinite) sequences
of network events [54]. While model checking usually requires
a specific instantiation (e.g., a particular network topology
and a specific sequence of network events) [25]. Similarly,
symbolic execution cannot verify the general property for all
possible networks (e.g., the correctness property of the SDN

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 947

program for all possible sequences of network events) [25].
SAT/SMT solvers decide whether logic formula is satisfiable,
and they also require an instantiation (e.g., the correct property
holds on a specific topology [89]). The fourth characteristic is
the provisioning of illustrative counterexamples upon finding
a bug. Both model checkers, symbolic execution engines and
SAT/SMT solvers provide one counterexample when invariant
violation occurs. However, theorem proving does not provide
an example with a negative connotation, which restricts the
ability to debug the system. The final characteristic refers to
state-explosion that must be addressed to solve most real-world
problems. Symbolic execution engine suffers the explosion
problem as the growth of code path. SAT/SMT solvers decide
whether logic formula has a solution. They do not have a
notion of state. Model checkers face a combinatorial blow up
of the state-space. If we use model checking to check that the
systems (e.g., finite state SDN programs) behave correctly,
scaling the method to large networks is highly nontrivial [49].
While, theorem proof does not have a notion of state, and it
does not model the state-space of the system. Users usually
try to do theorem proof as the main verification to avoid the
state-explosion problem.

IV. OVERVIEW

In this section, we introduce the shortcomings of traditional
analysis approaches for networks, and summarize how the
verification techniques in each plane attempt to address the
challenges. In addition, we briefly explain how each plane in
traditional and SDN networks impacts the choice of formal
verification techniques.

As introduced earlier, the complexity of a network can
inevitably lead to errors. Clearly, manually reasoning, such as
checking mailing lists or naively using ping or traceroute, is
inefficient. Some works check for problems in the network
in a black-box manner. For instance, they send probes or
review logs, which is very slow for detecting failures. Some
analysis approaches which are based on the information of
network configurations have been also proposed. For instance,
FIREMAN [90] automatically analyzes ACLs in configuration
files using a rule graph model. However, they are developed
on customized models for limited aspects of the configura-
tion. Other methods check specific correctness properties of
the network to handle complexity. In addition, because they
do not analyze all aspects of the configuration, they are inef-
ficient at helping users determine how the discovered errors
impact the final packet forwarding of the network.

To address these challenges, data plane verification
approaches have been proposed to check the combined impact
of all configuration aspects [9]. The first application of for-
mal verification techniques to the data plane was Anteater [9].
Anteater avoids modeling complex protocol behaviors in con-
figurations by analyzing the FIB in networks. It can verify
network invariants such as reachability, isolation and loop
freedom. Similar to Anteater, various data plane verifica-
tion works (e.g., HSA [6]) focus on verifying forwarding
tables. However, most works can only support off-line veri-
fication at low speeds. Some works, such as Veriflow [91],

improve and optimize the calculation, and they can verify
in near real time. Moreover, there are various middleboxes
(e.g., firewalls) in the data plane whose forwarding behav-
iors are determined by previously observed traffic. Some tools,
including SymNet [61] and VMN [92], utilize algorithms to
verify such stateful data planes. Other works, such as SLA-
verifier [93], attempt to use algorithms to verify performance
properties. While these works represent great progress for data
plane verification, there are a number of open problems in this
area. For example, one of the main problems is scalability in
the verification of stateful data planes.

The only difference is the data collection process when
we verify the data plane in traditional vs SDN networks.
When we verify traditional networks, we can collect FIBs from
networking devices through SNMP, or terminals. When veri-
fying SDN networks, with the Southbound Interface, we can
obtain the forwarding rules by monitoring the rules, which
are inserted, modified or deleted in switches by the controller.
SDN alone does not make the data plane verification problem
easy. It makes data collecting much easier so that we can ver-
ify the data plane in real time by monitoring rule updates. The
details of data plane verification are shown in Section V.

Control logic in SDN is logically centralized in the con-
troller, in contrast to distributed protocols in devices in
traditional networks. Therefore, we introduce control plane
verification work in traditional networks and in SDN networks.
In SDN networks, the task can be converted into how to
verify the program code of the SDN controller and applica-
tions. Therefore, formal verification techniques, such as model
checking, theorem proving and symbolic execution, which are
widely used in code verification, can also be used to verify
SDN programs. In traditional networks, due to the complex-
ity of routing protocols and their interactions, it is not an easy
task to verify all aspects of a configuration. Some standard for-
mal verification methods (e.g., model checking and theorem
proving) cannot be applied to this verification task. For exam-
ple, due to the huge state space of the distributed devices in
network, verification via model checkers is not scalable (also
known as state explosion problem). Because of the complex
logic of the control plane, the network invariants also cannot
be proved by standardized theorem provers.

Unlike prior configuration analysis work that customizes
models for limited aspects of the configuration and checks spe-
cific correctness properties, some work has made progress in
configuration verification. Batfish [94] can simulate the behav-
ior of all distributed protocols to obtain the forwarding tables;
then, it verifies the network properties with a data plane veri-
fier. ARC [95] abstracts the control plane as abstract weighted
graphs. ERA [96] and Minesweeper [89] analyze the con-
trol plane via the abstraction of a special data structure: the
route record. This is significant progress; however, scalability
is an open problem in this field. The details of control plane
verification in traditional networks are shown in Section VI-A.

Although SDN can be tailor-made to suit the user’s needs,
its programmability amplifies the opportunity for errors. The
control plane in SDN networks is the program of the central-
ized controller and applications. These verification works can
be classified into verifying the SDN programs and developing

948 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

verified controller. First, certain tools (e.g., Kuai [49] and
Veificare [36]) check the SDN program using model checkers.
In contrast, VeriCon [54] uses first-order logic to formulate
the network and invariants, and it then proves the correct-
ness of the program. Second, various verification-friendly
languages have been proposed for SDN controllers (e.g.,
Flowlog [50] and NATKAT [58]). They can prevent problem-
atic rules from being installed on the data plane. The details
of control plane verification in SDN networks are shown in
Section VI-B.

Data plane verification and control plane verification can-
not be used to determine if there is a hardware failure or
congestion problems. Network testing is complementary to
network verification. Network testing tools detect these types
of errors by systematically generating packet probes. They
observe whether the actual forwarding violates the intentions
of the network operator. In SDN networks, testing focuses
on checking the behavior of each individual behavior of each
switch, as the controller has an overview of each switch.
Monocle [97] and RuleSope [98] were developed to check the
flow tables in the switch. In traditional networks, testing probes
are usually designed in an end-to-end manner. For instance,
ATPG [99] can check both failure rules and performance fail-
ures such as congestion. The details of data plane testing are
shown in Section VII.

Most control plane testing works have focused on the con-
trol plane in SDN networks. Although some efforts have
been made to analyze and verify configurations, no related
work on control plane testing in traditional networks has been
performed. Most control plane testing approaches have been
proposed to detect design and implementation errors. Certain
white-box testing approaches (e.g., NICE [25]) assume that the
sources code of the controller can be obtained. They extract
formal models from the source codes and perform model-
based testing to find faults. Because these methods depend
on the application’s source codes, they cannot test controllers
developed in languages that they do not support. To address
this challenge, various black-box testing approaches have been
proposed. For instance, Yao et al. [100], [101] described the
system behaviors with parallel component models in a novel
manner. The details of control plane testing in SDN networks
are given in Section VIII.

V. TECHNIQUES FOR NETWORK DATA

PLANE VERIFICATION

This section provides a detailed description of data plane
verification techniques. Compared with the control plane, the
data plane has well-understood semantics and reflects the com-
bined impact of all configuration aspects. The data plane does
not need to unify diverse configuration languages from dif-
ferent vendors (e.g., Cisco and Arista) or model dynamic
behaviors across various protocols. Fig. 9 summarizes a high-
level image of data plane verification. Given a topology and
network data plane snapshot, it derives a logical formula that
models the entire network. It then verifies logical formulas
derived from the specified invariants. The invariants specify
the correctness conditions of the forwarding behavior in the

Fig. 9. Workflow of data plane verification. DP refers to data plane (for-
warding information bases). The FIBs and user’s invariants are collected. Then
they are expressed with formal formulas. With novel algorithms, we can verify
whether the network model stratify these invariants.

network, including the absence of loops, packet reachability
and bidirectional forwarding.

For data plane verification, the only difference between
traditional and SDN networks is the data collection pro-
cess. When verifying traditional networks, we can collect
FIBs through SNMP, terminals, or control sessions. For SDN
networks, we can obtain the forwarding rules by monitoring
the rules that are inserted, modified or deleted with a layer
controller and switches.

A. Static Analysis and Off-Line Verification

Significant effort has been made to verify the actual behav-
ior of a network through formal analysis of data plane states.
In early research, such tools collected the FIBs and then ver-
ified the properties off-line. If the network state violated an
invariant, these tools gave counterexamples to help users find
the errors. Anteater [9] realized the first verification system of
the data plane based on the reachability algorithm proposed by
Le et al. [102]. FlowChecker [51], NetSAT [62], and HSA [6]
are also based on similar ideas. These techniques indeed make
data plane verification of widespread interest.

1) Verification Based on SAT Solver: Anteater [9] was the
first data plane verification system used to detect errors in
networks including ACLs, VLAN tags, etc. First, it obtains the
data plane snapshot by collecting forwarding tables. Second,
the operator defines the invariants (e.g., forwarding, connectiv-
ity, or consistency) to be checked against the network. Third,
it encodes the snapshot into Boolean expressions and trans-
lates the invariants into SAT instances. Then, Anteater checks
the invariants with an SAT solver. The system derives a coun-
terexample (e.g., a packet header or FIB entries) to assist in
diagnosis once violations occur. Anteater finds various bugs
such as forwarding loops caused by configuration errors in the
campus network and packet loss in router software (Quagga).

NetSAT [62], proposed by Zhang and Malik, is another
approach that reduces the data plane verification problem
to an SAT problem. NetSAT also provides a framework for
modeling networks and verifies a set of network invariants.
Compared with Anteater, it achieves better performance. For

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 949

instance, loops are caught in Anteater by making two copies
of every switch and checking if each switch can reach its copy.
Each switch must be checked separately, which is extremely
inefficient. In contrast, NetSAT builds a single formula and
checks the loop invariant. NetStat is more modular because it
separates the network from the invariant formula.

However, both Anteater and NetSAT have limitations. First,
if the FIBs dynamically change while being collected, an
inconsistent data plane snapshot will be produced, resulting
in false positives. Second, if the network suffers from reacha-
bility failures, it is difficult to collect the FIB snapshots. Third,
these systems suffer from poor scalability and minimal time
efficiency problems. For instance, Anteater spends two hours
checking three standard invariants in the campus network. In
addition, these systems only provide a single counterexample
if an invariant violation occurs, which makes it difficult to
locate which rule leads to the violation.

2) Verification Based on Model Checking: Flow-
checker [51] applies model checking to SDN network. In fact,
Al-Shaer et al. have been working on firewalls networks with
model checking for 10 years [103]. FlowChecker encodes for-
warding rules into Boolean expressions. In addition, network
invariants are expressed with Computation Tree Logic (CTL).
FlowChecker uses the binary decision diagram (BDD) to
model a state machine that encodes an inter-connected
network of OpenFlow switches behavior, where BDD is the
data structure that can compress the state space. In addition,
then it uses symbolic model checking tool NuSVM [28]
to check network invariants. Although Flowchecker could
check the correctness of the configuration deployed by new
protocols, it suffers a serious scalability problem. Evaluation
shows that it can be only applied to the small-scale
network.

3) Verification Based on Symbolic Simulation: Unlike the
Anteater, HSA [6] proposed by Kazemian et al. can find all
counterexamples, when a violation occurs. HSA is a vendor-
independent and protocol agnostic verification framework. It
is a novel methodology that combines formal methods (model
checking, symbolic simulation) with network domain features
together [5]. First, packet headers are modeled as subsets of a
geometrical space. Each bit in the geometrical space is com-
mensurate with one dimension in space and does not have a
protocol-specific (associated) meaning. Second, the network
topology is modeled using a topology transfer function γ.
Meanwhile, the networking boxes (e.g., routers and firewalls)
are abstracted as transfer functions γ on sets of headers. φ
consists of an ordered set of rules. HSA computes reachabil-
ity sets from A to B by composing φ and γ along all paths.
It can check against network invariants (e.g., reachability fail-
ures, routing loops and slice isolation) with several algorithms.
However, when the head space is 80 bits, the cost of exploring
the head space state of 280 packets is huge. HSA then uses
some optimizations based on the cube compression technique
to mitigate the state space explosion issue.

4) Verification Based on SMT Solver: Frameworks such as
Anteater and HSA cannot detect non-direct network violations
(such as OpenFlow’s Set-Field or Goto-Field modification
actions) or perform stateful monitoring. FLOVER [63] extends

these techniques. FLOVER models and verifies intermediate
actions (e.g., ‘goto’ and ‘set’ actions). FLOVER demonstrates
the conformance of flow rules against network invariants. It
translates flow tables into many Yices (an SMT solver) asser-
tions. Finally, it detects whether they are inconsistent with
network invariants.

5) Verification Based on Symbolic Execution: Dobrescu
et al. proposed a verification tool [52] that checks whether
a software data plane satisfies invariants (e.g., bounded-
execution, crash-freedom, and filtering). It is challenging to
check these invariants in general software; the problem is even
unsolvable with existing tools. Dobrescu et al. sidestepped the
challenge by combining symbolic execution and composition-
ality with domain optimization. As long as the pipeline meets
some standards, it can be utilized to validate the entire data
plane of the network.

6) Conclusion on Off-Line Verification: The above-
mentioned approaches statically analyze network data plane
snapshots. Anteater makes data plane verification practical
by converting it into an SAT problem. HSA [9] addresses
static checking using functional simulation. FlowChecker [51]
encodes flow tables into BDDs and uses model checking to
verify security invariants. FLOVER [63] leverages the ability
of Yices to efficiently verify flow rule sets. Table VII compares
these tools.

Frameworks such as Anteater and NetSAT provide a single
counterexample if an invariant violation occurs. In contrast,
HSA can find the full set of failed packet headers, which is
useful for detecting failures. A counterexample is detrimen-
tal because operators analyze the invariant and the error for
the network location. Outputting all counterexamples makes
it easier to locate which rule leads to the counterexample
under HSA. For example, if an ACL erroneously drops pack-
ets that are sent to 192.168.0.0/16, reachability fails with
a counterexample (e.g., 192.168.1.200). We need substan-
tially more insight to detect all dropped packets. If it outputs
the set of packets being dropped, it can suggest the ACL
bug more directly (e.g., packets with destinations that match
192.168.* .*). HSA can output all counterexamples because
HSA moved beyond finding reachability predicates to finding
reachability sets and for arbitrary protocols.

These tools find problems after bugs occur in the data plane,
which may potentially damage the network. Despite this, these
tools could play a similar role as post-layout verification tools
do in hardware design but in networks.

B. Real-Time Online Verification

Because of rule insertion and deletion performed by pro-
tocols, networks change over time. Previous tools are not
adequate for checking the correctness of every network update
such as the migration of fast virtual machines. The structure
of traditional networks is highly decentralized and operates in
an entirely distributed manner. Therefore, it can be impossible
to obtain the FIBs in real time. Fortunately, in SDN networks,
we can obtain the forwarding rules by monitoring the rules
that are inserted, modified or deleted with a layer controller
and switches. However, it has been proved in [65] that packet

950 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE VII
SUMMARY OF REPRESENTATIVE PROJECTS OF OFF-LINE VERIFICATION

filters make reachability checks NP-Complete. The problem of
checking the properties in real time is more difficult. However,
some efforts have been made to verify the data plane in real
time, therein attempting to obtain a quick response to failures.

1) Heuristic Verification Based on Equivalence Classes:
VeriFlow [91], [109] is the first verification system that can
check network invariants within a few hundred microseconds.
It can be viewed as an improved version of Anteater. VeriFlow
observes state changes between the control plane and the
switches. Therefore, a new rule can be verified before it is
installed in the switch. First, the network is sliced into equiv-
alence classes (ECs), in which packets experience the same
forwarding actions throughout the network. Second, it builds
individual forwarding graphs for every EC. Then, it traverses
these graphs to check invariants. When the network changes
(e.g., a forwarding rule is inserted), a very small number of
ECs are affected. VeriFlow searches rules via a trie structure
and updates the graph. However, it is not appropriate to verify
the network of multiple controllers because of the difficulty in
obtaining a complete view of the network state.

2) Verification Based on Incremental Computation:
NetPlumber [107] is the most closely related work with
VeriFlow. It incrementally checks for compliance of state
changes. It models the network box as the node and establishes
a dependency graph, the Rule Dependency Graph (RDG),
between the rules. Network invariants are equivalently con-
verted into reachability assertions. Once the network changes
(a message goes through a network box), it updates the corre-
sponding network dependency graph and redoes all forms of
verification. Upon detecting a violation, NetPlumber blocks
the change. The change must be determined by a rule, and
adding a rule does not significantly affect the forwarding rule
equivalence class. Moreover, it provides a policy query lan-
guage, FlowExp, which is similar to FML. Therefore, it can
not only define simple invariants (packet loss and loops) but
also support flexible policy definitions.

However, NetPlumber takes a long time to process link
access and does not apply to networks with frequent link
changes. VeriFlow and NetPlumber achieve similar runtime
performance. Similar to VeriFlow, NetPlumber is protocol
independent and can additionally verify arbitrary header mod-
ifications, including rewriting and encapsulation.

3) Verification Based on Equivalence Classes: Atomic
Predicates Verifier [104] (AP) is more efficient than previous
tools (e.g., NetPlumber and Veriflow) for network verification.
Packet filters are represented as a set of predicates. Yang and
Lam developed a novel algorithm to calculate atomic predi-
cate sets. Each predicate can be expressed as the disjunction
of atomic predicates, which speeds up computation. Atomic

predicates can be stored as integers, and the disjunction is
computed as the union of integer sets. Therefore, packet sets
can be calculated quickly, with atomic predicates being the
minimum. Redundancy in forwarding and ACL is eliminated
by AP Verifier. In particular, AP encodes the state model with
BDDs, and the use of BDDs is more efficient than BDDs in
other tools (e.g., FlowChecker [51]).

4) Verification Based on MapReduce: Although tools such
as Anteater and Veriflow can find forwarding errors, they can-
not scale to large data centers. In data center networks, the
forwarding state makes it difficult to obtain an accurate snap-
shot (e.g., different routing processes update their switches
using unsynchronized clocks). An inaccurate data plane snap-
shot can result in false positives. To address these challenges,
Zeng et al. [105] proposed a new method for verifying very
large networks, called Libra. On the one hand, Libra records
network event streams from routing processes and provides an
algorithm to capture table and consistent data plane snapshots
in large-scale networks. On the other hand, it substantially
improves scalability by exploiting the scaling properties of
MapReduce. It reduces the verification task into smaller, par-
allel computations (e.g., partitioning based on switches or
subnets). For the evaluation, Libra can verify the forward-
ing behavior of a network with 10,000 switches in less than
a minute by harnessing 50 servers. This is the beginning of
distributed computing for network verification.

5) Verification Based on Symmetry: Previous checkers face
difficulties verifying large data centers with millions of rout-
ing rules. Most data center networks are highly regular by
design. Plotkin et al. [106] proposed a new method, network
transformations, to verify large networks by exploiting these
regularities. In other words, the network snapshot and the
invariants to be verified are transformed into simpler ver-
sions. If the transformed invariant is valid in the transformed
network, the original invariant is valid in the original network.
Network transformations consist of network symmetry and
network surgery. It exploits the domain structure w of packet
headers, packet locations, and rules distributed in devices.
Irrelevant or redundant headers, rules, or ports are “sliced”
away with network surgery. Experiments show that this tech-
nique speeds up the verification task in a large data center
network of 100,000 virtual machines by 65x. The time needed
to calculate the all-pair reachability of the virtual machines
was reduced from 5.5 days to 2 hours.

6) Verification Based on Similarity: Most tools exploit two
observations: (i) only small parts of a network tend to be
affected by typical changes to the data plane, and (ii) many
different packets tend to share the same forwarding behav-
ior across the entire network. Delta-net [108] shows how to

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 951

TABLE VIII
SUMMARY OF REPRESENTATIVE PROJECTS FOR REAL-TIME VERIFICATION

effectively exploit the “similarity among forwarding behav-
ior of packets through parts of the network”. The method is
proposed as the first provably amortized quasi-linear algorithm
to do so. In experiments with SDN-IP, Delta-net checks a rule
insertion or removal in 40 microseconds on average; this is a
10x improvement over previous tools.

7) Conclusion on Real-Time Verification: The above-
mentioned approaches can verify the network data plane in
real time. Table VIII shows that they perform optimizations
from various aspects, including (I) incremental computa-
tion. A single rule (e.g., an ACL) change does not change
the network state significantly. NetPlumber [107] leverages
that fact to perform incremental computation. It only per-
forms small modifications to incorporate the rule change.
(II) Equivalence Classes. Although the verification complex-
ity is proportional to the number of headspace and for-
warding rules, the number of header equivalence classes is
small [110]. Khurshid et al. [91] and Yang and Lam [104]
leveraged this fact. They proposed two strategies (a heuris-
tic strategy in Veriflow [91] and an optimal strategy in
AP [104]) to obtain the equivalence classes. (III) Symmetries.
Plotkin et al. [106] observed that many rules and boxes are
repeated. For instance, some backup routers have many redun-
dancy rules. They exploit symmetry to increase the verification
speed. (IV) Similarity. Delta-net [108] effectively exploits
another characteristic, the similarity among the forwarding
behaviors of packets through parts of the network, rather
than its entirety. (V) Distributed computing. These approaches,
except for NetPlumber and Libra [105], assume centralized
computing. NetPlumber introduces a ‘rule clustering’ tech-
nique to enhance scalability. Libra is more efficient and is
based on MapReduce, therein scaling linearly with both rules
and subnets.

C. Optimization via Adding Functionality

The above-mentioned tools all assume that the forwarding
behavior is defined by the control plane. However, networks
contain not only routers but also middleboxes (e.g., caches
and stateful firewalls) whose forwarding behavior is depen-
dent on the previous traffic. In other words, the forwarding
behavior of the middleboxes can be altered by the previously
transmitted traffic. Fig. 10 shows a usage of reflexive ACLs.
Traffic is allowed if it belongs to a TCP connection initi-
ated by an internal host. The above-mentioned verification
tools, which only take FIBs into consideration, cannot ver-
ify a stateful data plane with middleboxes. In this section, we
introduce optimization techniques based on adding verification
functionality such as the support of a stateful data plane.

Fig. 10. Invariants in stateful networks [59]. DP refers to data plane (forward-
ing information bases). The invariant here specifies that only traffic belonging
to a TCP connection initiated by host B inside the department (i.e., if traffic
context is “solicited”) be allowed. The state of stateful firewall depends on
the history traffic.

1) Verification Based on the Datalog: Existing tools,
including Anteater [9], VeriFlow [91], and NetPlumber [107],
assume fixed packet headers and forwarding rules. However,
new mechanisms continuously result in new forwarding behav-
iors (e.g., adding VXLAN). Lopes et al. [65], [111] proposed
an approach for automatically verifying dynamic networks,
called Network Optimized Datalog (NoD). This approach uses
a Datalog to specify network invariants and model network
forwarding behaviors. Compared with the regular expression
language, Datalog is more expressive. By adding new rules,
NoD can check dynamic networks (e.g., add new packet
headers without changing the internal structure of the tool).
However, the Datalog engine suffers from poor scalability.
To address this challenge, NOD modifies the Z3 implemen-
tation by adding new optimizations (e.g., a new combined
Filter-Project operator).

The SecGuru [112] tool is an early version of NOD,
deployed in the Microsoft production cloud Azure. It precisely
encodes policies (policies and semantic diffs) and the analysis
questions as bit-vector logic formulas. A key design aspect
of SecGuru is an algorithm for compactly enumerating sym-
bolic diffs. SecGuru requires a database of predefined common
beliefs. These policies rarely change, which makes it usable
as a regression test. It can also be used as a regression test
suite before network policies are deployed. SecGuru proac-
tively detects and avoids policy miscalculations that lead to
security and availability issues. Each check in SecGuru takes
150-600 ms in Azure.

2) Verification Based on SMT Solver: Velner et al. [98]
address the complexity of verifying safety invariants in
stateful networks. Reasoning about reachability policies is

952 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE IX
SUMMARY OF REPRESENTATIVE PROJECTS THAT OPTIMIZE DATA PLANE VERIFICATION BY ADDING FUNCTIONALITY

TABLE X
SUMMARY OF REPRESENTATIVE PROJECTS FOR DATA PLANE VERIFICATION

undecidable because of unbounded ordered channels among
middleboxes. They proved that checking reachability policies
is EXPSPACE-complete in a stateful network.

Generally speaking, the code of most commonly deployed
middleboxes cannot be obtained by the operators. Standard
techniques cannot be naively used to analyze the middleboxes.
For example, model checking a simple middlebox for very
simple invariants would not scale. Panda et al. [92], [114]
proposed a new approach that extends the benefits of ver-
ification to networks with middleboxes, called Verification
for Middlebox Networks (VMN). It uses a simple abstract
forwarding model and abstracts packet classes to model mid-
dleboxes. The forwarding models can typically be derived
from a general description of the middlebox’s behavior. VMN
has some significant realizations: (I) It first separates the
middlebox classification and middlebox forwarding behaviors.
Then, it models network behaviors with logical formulas and
generates other formulas corresponding to the network invari-
ants. VMN then uses Z3 [70], an SMT solver, to check whether
network invariants hold. (II) To make the verification scalable,
it takes advantage of network topology symmetry and pol-
icy symmetry. Since the results depend on network symmetry,
they cannot be applied to all types of networks. Moreover, it is
based on the SMT solver, whose state space grows exponen-
tially as the scale of the network increases. These problems
reduce the verification speed.

3) Verification Based on Symbolic Execution: SymNet
extends verification to handle mutable datapath ele-
ments [61], [115]. First, it generates an abstract data
plane model encoded in SEFL models for the network con-
figurations (e.g., router tables, firewalls and arbitrary Click
modular router configurations). Then, it injects symbolic
packets with the symbolic execution technique. To ensure

that the model accurately represents real code, it performs
fidelity testing. SEFL represents the novelty of the work,
which incorporates numerous features (e.g., built-in map
data structures, bounded loops, and dedicated path control
instructions). SymNet can verify the packet header memory
safety of networks with complex functionalities (e.g., dynamic
tunneling, encryption, and stateful processing). It also scales
to networks with thousands of prefixes. However, it can only
be applied to certain middleboxes, which can produce issues.

4) Conclusion on Adding Functionality: The approaches
in this section improve the verification performing by adding
functionality. Table IX compares these approaches based on
different characteristics: (I) NOD [65] applies to dynamic
networks and the definitions of the incomplete properties and
supports a richer high-level attribute definition based on the
Datalog language while simultaneously increasing the verifi-
cation speed. (II) Work at Berkeley and CMU extends analysis
to stateful rules such as NAT. Panda et al. [92] used an
SMT solver to verify stateful networks. SymNet’s middlebox
model [61] is similar to the proposal of Panda. Symnet uses
optimized symbolic execution to verify dynamic and state-
ful networks. (III) Sung et al. [113] proposed methods to
verify a few quantization invariants with the CoS configura-
tion. Although these approaches represent significant progress,
problems, such as the lack of verification of the network
performance invariants, remain.

D. Quantitative Invariants Verification

The above-mentioned verification work focuses on the
Boolean properties of the network such as reachability. The
reachability property is very important to ensure the correct-
ness of network functions. However, performance properties

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 953

TABLE XI
SUMMARY OF CHALLENGE AND SOLUTIONS IN NETWORK VERIFICATION

such as bandwidth, latency, and the rate of packet loss, are
also important. Performance property verification is beyond
the scope of the aforementioned verification tools. Existing
tools (e.g., NOD [65], VMN [92] and SymNet [61]) can only
verify Boolean invariants. To verify performance properties,
some efforts have been made to support the verification of
quantitative invariants.

Sung et al. [113] extended verification techniques to sup-
port quantitative invariants. The popular service differentiation
in Virtual Private Networks (VPNs) drives the business.
Configuration is error prone because of the complex nature
of Class of Service (CoS) configurations. Sung et al. propose
an approach to find all class of service treatments (e.g., mark-
ing, queues, and rates) for any flow F for which a user queries.
Similar to reachability, the technique accumulates QoS actions
in a path. Using a novel formal representation of policies, rule-
sets, it can support the analysis of the quantitative properties
of an arbitrary set of flows. BDDs are leveraged to represent
access control lists to improve performance. They also develop
a prototype to analyze CoS configurations. Although it repre-
sents progress in quantitative property verification, it is limited
to the analysis of CoS configurations and scales poorly. SLA-
verifier [93] uses a quantitative model of the network. Their
model describes not only how forwarding rules move the pack-
ets but also performance operations such as how to compute
the end-to-end performance metrics of the packets. Using a
set of algorithms, it supports verifying performance properties
on the flow space and states. It converts the verification task
into the analysis of a graph, which can increase the speed of
verification.

Although various works represent significant progress, the
verification of quantitative properties remains very challeng-
ing. Because the actual performance of the traffic is heavily
dependent on the actual complex states of the network, the
analysis of the quantitative properties with the models, which
are modeled manually and coarsely, may be imprecise.

E. Conclusion on Data Plane Verification

In Table X, we provide a comparison of the most well-
known data plane verification tools. These tools have a few
desirable characteristics: (I) Coverage. The properties that
can be verified include reachability and packet modifica-
tions. (II) Expressiveness. This describes the ability to analyze
network functionalities. For example, HSA cannot model NAT,
and SymNet [61] cannot model IP fragmentation. (III) Ease of
modeling. This describes the difficulty in generating models
among tools. SEFL develops an imperative language, which
is easy to use. (IV) Model independence. NOD [65] does not
have this property. (V) Scalability. Can the technique scale to

Fig. 11. CP refers to control plane. For example, the control plane on R1 is
the program that takes configuration files and the network environments (i.e.,
route advertisements) and generates data planes.

enterprise and operator networks? HSA [6] and SymNet scale
very well on optimized models. (VI) Real time. Tools such
as HSA and Anteater cannot perform checking in real time.
NetPlumber [107], Veriflow [91] and Delta-net [108] perform
checking in milliseconds. Delta-net [108] incrementally main-
tains a compact representation about the flows of all packets in
the network. Existing tools cannot simultaneously achieve all
goals. Moreover, tools may lack expressiveness or do not scale
to large networks (e.g., Anteater). HSA [6] and NOD [65]
can capture reachability in stateless networks. Among these
techniques, NOD [65] is the most complete tool for network
models and constraints. These techniques have achieved use-
ful but limited results. For a small university network, it took
approximately 1 day to verify reachability for all stations [94].
Some hardware failures had no impact on the FIB, which
cannot be checked by these data plane verification tools. The
approaches in Table XI can facilitate the checking of hardware
failures, quantitative metrics (e.g., bandwidth), etc.

VI. TECHNIQUES OF NETWORK CONTROL

PLANE VERIFICATION

Data plane verification cannot proactively prevent errors
before the configuration is deployed to the network. Once the
problem is found in the data plane, the operators still need to
find the configuration snippets corresponding to the problem.
The relationship between forwarding behaviors and configu-
ration fragments are really complex. On the other hand, the
snapshot of the data plane is always changing. When verify-
ing the data plane, we are required to perform calculations
by repeatedly collecting data plane information, as depicted
in Fig. 11. Therefore, moving from data plane verification to
control plane verification is significant.

954 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Fig. 12. Control plane in traditional networks: distributed in configu-
ration files. Control plane in SDN: logically centralized in controller and
applications. Dark lines are the data information. Blue lines are the control
information.

The control plane is the program that integrates the network
topology and link state information and establishes the for-
warding table of the data plane. As shown in Fig. 12, in
traditional networks, the control plane is the implementation
of the algorithm protocols distributed in thousands of network
devices. While in SDN networks, the control plane is con-
centrated in the controller and the applications on top of it.
In traditional networks, certain standard formal verification
methods (e.g., model checking) cannot be used for this ver-
ification task. For example, due to the state explosion issue
facing distributed devices, verification via model checkers is
not scalable. The control logic in SDN is logically centralized
to the controller via the state of the program. Because for-
mal verification techniques such as model checking, theorem
proving and symbolic execution have made great progress in
software code verification, they can also be used to verify SDN
programs with certain optimizations. Therefore, we categorize
related work into two branches: (i) control plane verification
in traditional networks and (ii) control plane verification in
SDN networks.

A. Control Plane Verification in Traditional Networks

Traditional networks continue to be dominant. The imple-
mentation of a network permits a great deal of flexibility
through its various modes of operation. Configuring a network
is difficult because of the complex policy requirements and
low-level configuration languages. Certain critical errors may
arise only during failures, e.g., when upgrading network
protocols or replacing legacy devices or because of the hard-
ware interconnections between different vendors [117], [118].
Verifying network configurations can avoid errors before the
configurations are deployed onto the network.

It is challenging to detect configuration faults.
Govindan et al. and Griffin-Wilfong et al. theoretically
proved that BGP loops are possible [119]–[121]. Gao-
Rexford found sufficient conditions for avoiding loops [80],
and Le et al. [102] proved that route redistribution can
cause loops. However, these results are strongly based on
human analysis and theoretical proofs. Some recent tools
make control plane verification for traditional networks
work. Fig. 13 shows the general process of control plane
verification in a traditional network. The inputs of control
plane verification are the topology environment information

Fig. 13. Workflow of control plane verification in traditional networks.
Configurations in the router define which protocol it can use, what is the
link cost, which neighbor should be sent route advertisements etc. Follow the
RFCs of routing protocols, the control model is built.

of the link failure and configuration files such as the route
announcement of the configuration.

1) Verification Based on Static Analysis: The router con-
figuration checker (rcc [122]) was the first static analysis tool
that can automatically detect faults in BGP configurations in
real networks. rcc synthesizes and represents the configuration
in a unified form. It is difficult to define high-level correctness
specifications for BGP, and specifications must can be tested
against actual configurations. rcc addresses this challenge and
defines two high-level aspects of correctness: path visibility
and path visible faults. Route validity is whereby a route cor-
rectly propagates routes for existing, usable IP-layer paths.
Path visibility denotes that routers learn routes that exist in the
network. It uses these specifications to derive constraints, and
it enables users to detect network-wide configuration faults,
which can improve the Internet routing infrastructure.

2) Verification Based on Datalog: Existing configuration
analysis tools, including rcc, develop customized models for
specific protocols. Therefore, the scope of what can be checked
is limited. Batfish [94] overcomes this challenge. It veri-
fies control plane configurations in four steps. First, it takes
the network configuration file as input; then, the inputs are
encoded as a set of logical facts. Next, it generates a logi-
cal control plane model in LogiQL [37]. With environments
(each link status and route announcement), it executes the
LogiQL program. Batfish can obtain the data plane model. The
third step enables users to check the data plane model. Batfish
employs NoD [65] to perform data-plane analysis. Finally, it
simulates the behavior of counterexample packets via the data
plane model. This step can help operators understand property
violations and repair the network configuration.

Verifying a simple configuration file with Batfish [94] takes
nearly two hours because it requires as much simulation of
the network links as when it generates the data plane. In other
words, Batfish [94] spends a substantial amount of time on the
conversion process from the configuration file to the data plane
forwarding logic. Nevertheless, its input remains a subset of
the actual topological environment. Furthermore, the control
plane model in Batfish [94] does not consider modifications
of the MPLS, resource competition etc.

3) Verification Based on Abstract Interpretation:
Batfish [94] performs proactive configuration analyses by
faithfully deriving the data plane. However, detailed data
plane generation is never necessary. On the one hand, proac-
tive analysis tasks often do not require the paths themselves.
Some invariants focus on the existence of paths or depend
on path sets taken. On the other hand, network protocols

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 955

only interact in certain ways in data centers. By leveraging
the above factors, Gember-Jacobson et al. developed a new
abstract representation, ARC, for control planes [95]. This
technique consists of a series of weighted digraphs, and these
digraphs are network-protocol independent. It abstracts rout-
ing protocols and captures the collective impact on routing
and forwarding. The technique then verifies key invariants by
computing simple graph characteristics in polynomial time.
ARC uses algorithms to accurately model common mecha-
nisms (ACLs, ECMP and static routes) and protocols (e.g.,
OSPF, RIP and eBGP) used in data center networks. Thus,
ARC is an order of magnitude faster than previous tools, e.g.,
Batfish [94].

4) Verification Based on BDD: Control plane verifica-
tion faces two challenges: expressiveness (capturing the
diverse behaviors of routing network protocols) and scalabil-
ity (exploring the model with respect to the environment).
To address these challenges, efficient reachability analysis
(ERA) [96] builds a model for the network control plane
and uses a repertoire of techniques for scalable exploration
of this model. ERA first designs a unified abstraction, route,
which succinctly captures the diverse behaviors of various pro-
tocols and their interactions. With a route announcement, a
router function produces route announcements for its neigh-
bors. It then uses BDDs [123] to compactly represent the
route announcements and shrinks the representation using the
equivalence classes of the announcements [104]. ERA also
uses some techniques (e.g., K-map [124], with VXM2 [125]).
Consequently, it takes a few seconds to identify bugs in various
polices that can be turned into reachability relationships (e.g.,
valley-free routing) for a network with more than one thou-
sand routers. However, ERA cannot detect reachability errors
in transient states or convergence errors.

5) Verification Based on SMT: Minesweeper [89] has both
high network design coverage in that it works for a large col-
lection of network protocols, features and topologies as well as
high data plane coverage in that it can verify a large number of
properties for all possible data planes that might emerge from
the control plane. It uses a graph-based model, where rich
logical constraints on its edges and nodes encode all possi-
ble interactions of route messages. It encodes the stable states
of a network as a satisfying assignment to an SMT formula.
To improve the scalability, they also propose combinational
search (not message set computation). It also designs a range
of highly effective optimizations (e.g., slicing and hoisting)
that reduce the number of constraints in the formulas. Users
use Minesweeper on a collection of real and synthetic config-
urations, therein showing that it is effective at finding issues
in real configurations and can scale to large networks.

6) Conclusion on Control Plane Verification of Traditional
Networks: This section focuses on the configuration-based
paradigm. Although SDN has become popular, many networks
remain configuration based. The approaches in this sec-
tion can be used to successfully find errors proactively
before the configuration is deployed. Similar to the tools
in [90], [126]–[128], rcc [122] only focuses on a single rout-
ing protocol. ARC [95] focuses on a limited set of routing
protocol features. It cannot capture multiple routing protocols

Fig. 14. Verification of SDN Program via code verification. The code of
applications, and topology and user’s invariants are collected. When they are
expressed with formal formulas, we can verify whether the model stratify
these invariants.

or complex features. In contrast, Batfish [94] can simulate
the behavior of individual protocols to obtain the data plane,
although this process is computationally expensive. To address
the scalability challenge, ERA [96] provides a route abstrac-
tion based on BDD. It can scale enterprise networks with
hundreds of devices. Minesweeper [89] achieves both high
network design coverage and high data plane coverage while
remaining sufficiently scalable to enable the verification of
many real-world networks. These tools require users to pro-
vide assumptions on the environment; they thus can produce
false positives.

B. Verification of SDN Program

In SDN networks, the behavior is determined by the con-
troller, which enables users to easily verify network invariants.
Furthermore, SDN is distributed and asynchronous in nature,
making it easy to lead to inconsistencies [131]. Routing soft-
ware developed by Cisco and Juniper has been tested for
many years in real-world networks [5]. It is not wise for user-
defined programs to be blindly deployed in networks [132].
Recent research on SDN control plane verification can be clas-
sified into two branches: (i) verifying the SDN programs and
(ii) developing verified controllers.

The SDN architecture facilitates innovation and the develop-
ment of applications. Applications running over the controller
manage network devices through the uniform northbound
interface. They specify network policies, e.g., routing and
access control policies. Similar to normal software, these con-
trol programs may suffer from design or implementation errors.
Therefore, significant effort has been invested in checking the
correctness of the applications. Fig. 14 shows the workflow of the
verification on application code. They verify or prove whether
the program satisfies the properties with formal methods.

1) Verification Based on Model Checking: Numerous works
apply finite state model checking to check whether programs
are correct in SDN networks. Skowyra et al. [129], [130]
proposed Verificare, a verification tool for SDN-enabled appli-
cations. They developed the Verificare Modeling Language
(VML), which combines the characteristics of SDN networks.
VML is more suitable to modeling SDN networks. First,
the network model defined in the VML is compiled into
LTS [124]. The model and network invariants to be verified
are translated into logical formulas. Then, the invariants can

956 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE XII
SUMMARY OF REPRESENTATIVE PROJECTS IN SDN PROGRAM VERIFICATION

be verified using various model checkers (e.g., SPIN [27] and
Alloy [29]) automatically. Finally, Verificare outputs traces
leading up to the violation. Unlike earlier SDN-verification
tools, Verificare models both SDN controllers and applications
compositionally.

Sethi et al. [48] presented abstractions for SDN controllers
that can perform model checking on an arbitrary number of
packets. Existing approaches that verify SDN controllers can
only handle a small number of packets. To address the state
explosion issue, they first construct a data state abstraction.
This abstraction significantly reduces the model size. Although
it can be used to verify larger topologies, it cannot scale to
data centers.

Kuai [49] is a distributed enumerative model checker for
SDNs. The controller model and invariants to be verified are
written in Murphi [53]. Kuai implements a counter-abstraction
for tracking. This abstraction enables users to check the system
with finite states. The evaluation shows that partial order
reduction techniques can reduce state spaces by many orders
of magnitude.

2) Verification Based on Theorem Proving: In general,
applying the above-mentioned scaling methods based on
model checking to large networks is challenging. Clients can
generate packets in an unbounded manner, and these pack-
ets can be processed in arbitrary interleaved orders. Thus,
the state space remains unbounded, and the topology is fixed
with several clients. Moreover, these methods cannot prove
the absence of errors. VeriCon [54] addresses the challenges
outlined above. This method verifies whether an SDN pro-
gram is correct for all possible sequences of network events
and all admissible topologies. It first expresses programs
in a simplified imperative event-driven programming lan-
guage, CSDN, that manipulates relations. The method specifies
admissible network topologies and network invariants with
first-order logic. It then implements classical Floyd-Hoare-
Dijkstra deductive verification via the Z3 SMT solver. It
quickly outputs a concrete counterexample if an invariant vio-
lation occurs. These two choices guarantee that verification
conditions are simple enough to be expressible, which enables
VeriCon to rapidly verify invariants.

3) Conclusion on SDN Program Verification: As show
in Table XII, much effort has been invested to applying
formal methods (e.g., state model checking and theorem
proving) to check whether SDN applications behave cor-
rectly. Verificare [129], [130], and Kuai [49] leverage finite-
state model checking to check programs. SDN applications
are modeled on the state transition system of the events
(e.g., two links connect). These approaches, in general, suf-
fer two main problems. First, scaling these tools to large
networks is highly nontrivial. These approaches cannot handle

Fig. 15. Workflow of a verified controller [57]. The compiler translates
programs written into low-level packet-processing rules. Then we can verify
the generic network invariants before rules are installed into switches.

infinite-state SDN programs because of the state space explo-
sion problem. Second, although they can be easily used, they
cannot prove the absence of errors. In contrast, VeriCon [54]
provably verifies network invariants of programs at compile
time. It symbolically reasons about potentially infinite network
states and verifies whether network invariants are preserved.
We note, however, that VeriCon relies on user-provided
invariants.

C. Verified Controller in SDN Network

Rather than verifying SDN programs, some researchers have
developed a verified SDN controller with the help of formal
methods. These approaches check whether the controller cor-
rectly installs rules with a formal specification and a detailed
operational model of an SDN. The verified controllers are gen-
erally developed based on high-level programming languages.
Fig. 15 shows the workflow of a verified controller. It sup-
ports verifying properties at runtime in the compiler. Because
the programming language supports invariant verification, they
can avoid problematic rules being installed on the switches.

1) Programing Languages That Supports Theorem Proving:
Guha et al. [57] designed and implemented the first machine-
verified SDN controller, called NetCore. They formalized a
detailed operational OpenFlow model using the Coq proof
assistant. They developed a verified compiler with this model.
The controller is established correctly once and for all, which
obviates the need for run-time or post-hoc verification as in
most tools. It can prove that the system is absent of bugs
because the behavior of the application is verified in Coq.
NetCore gives network programmers robust static guaran-
tees backed by machine-checked proofs against a foundation’s
model.

Chen et al. [133] proposed another approach to program-
ming and verifying SDNs. The approach is based on Network
Datalog (NDLog), a declarative language that provides an

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 957

TABLE XIII
SUMMARY OF REPRESENTATIVE PROJECTS IN VERIFIED CONTROLLERS

encoding of network functionalities. NDLog can encode cer-
tain SDN applications succinctly. To verify invariants of
the NDLog program, they proposed a sound program logic.
Furthermore, the system verify invariants compositionally.

NetKAT [58] is another programming language for SDNs.
It is based on Kleene algebra with tests (KAT), a sound
equational theory. It consists of primitives for filtering and
transmitting packets, composition operators, and a Kleene
star operator that iterates programs. NetKAT is a synthetic
technique for checking reachability. It can also ensure isola-
tion between programs by proving non-interference properties.
NetKAT’s denotational semantics describe network programs
as functions from packet histories. The equational theory in
NetKAT is complete and sound with respect to the model.
Programmers can create compositional and expressive network
programs. They can also reason about their semantics (e.g.,
reachability, traffic isolation, and access control) effectively.

2) Programming Languages That Support Model Checking:
Flowlog [50] is a stateful rule-based language for SDNs. It
is a tierless language that simplifies SDN programming. It
performs SDN verification in a cross-tier manner. Flowlog
is reminiscent of both SQL and rule-based languages and
supports programming with mutable states. Flowlog enables
the minimum amount of necessary traffic between switches
and the controller. It can verify several properties (e.g.,
topology-independent properties).

3) Conclusion on Verified Controller: There is an increas-
ing trend in programming languages to support network
verification [50], [57], [58], [76], [133], [134]. In addition to
the work mentioned in Table XIII, FatTire [76], Flog [76] etc.
can also transform a program into verifiable code. The main
insight of these approaches is that the compiler and run-time
system translate programs written in this language into low-
level packet-processing rules. These methods then verify the
generic network invariants before rules are installed into the
switches. Because its behavior is verified using formal tools,
it establishes the correct controller once and for all, obviat-
ing the need for run-time or post-hoc verification, as in most
tools. However, these languages are ad hoc, and the invariants
supported by each language are different. Furthermore, a lan-
guage is limited to its own controller and cannot be used for
the verification of other controllers.

D. Conclusion on Control Plane Verification

Configuration verification can flag errors proactively. We
provide a comparison of the most well-known control plane
verification tools in traditional networks in Table XIV. These
tools have a few desirable properties: (I) Model expressiveness
and model tractability. These tools reference various behaviors

of various protocols. A naive expressive model is impracti-
cal to explore. Batfish [94] derives fully declarative logical
models of the network’s control plane. Although it is expres-
sive, it is too complex to explore. For most tools, generating
the data plane is ineffective. On the other extreme, ARC [95]
offers a high-level control plane model and is orders of mag-
nitude faster than Batfish. However, it cannot capture many
properties of the control plane. (II) Scalability. Scalability
represents scalable control plane exploration to identify vio-
lations. (III) Accuracy. We analyze the accuracy based on the
false positive or false negative metrics. (IV) Generic. Being
generic means that it checks whether the feature of gen-
eral protocols (e.g., BGP and OSPF route advertisements) are
captured. rcc [122] develops customized models for specific
configuration aspects. This selective focus limits its check-
ing scope. ERA efficiently checks reachability in certain large
symbolic environments (e.g., the environment with all possible
eBGP advertisements). Minesweeper [89] can verify configu-
rations in all environments. Finally, we note that no approaches
in configuration verification can detect bugs in router hardware
and software.

Control plane verification in SDN networks has made sig-
nificant achievements: (I) Various systems (e.g., Kuai [49] and
Veificare [130]) use model checking to check SDN programs.
They model the program as a state-transition event system. The
main challenge to these approaches is the number of messages.
Furthermore, they cannot guarantee an absence of errors. In
contrast, VeriCon [54] uses first-order logic to model networks
and invariants. It can potentially handle infinite topologies, and
it can verify the absence of errors. However, the Hoare-style
verification in VeriCon requires inductive invariants. (II) Many
SDN programming languages have been developed (e.g.,
Flowlog [50] and NetKat [58]). References [135] and [136]
introduced abstractions for programming controllers. The
compiler of the high-level language in NetCore [57] gener-
ates semantically equivalent code. Reference [137] defined a
declarative language to ease the task of verifying SDN pro-
grams. Language abstractions can prevent problematic rules
from being installed on the data plane, which is orthogonal
in verifying SDN programs. As discussed earlier, SDN con-
trol plane verification has achieved great progress. However,
the task of verifying complex properties remains challenging
because of the highly dynamic nature of SDN network.

VII. TECHNIQUES FOR NETWORK DATA PLANE TESTING

Data plane verification can ensure that the data plane
respects the actual policy. Control plane verification can help
check configuration errors and problematic controller codes.
However, implementation bugs in switch failures can still

958 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE XIV
SUMMARY OF REPRESENTATIVE PROJECTS OF CONTROL PLANE VERIFICATION IN TRADITIONAL NETWORK

Fig. 16. Workflow of data plane testing. With the information of data plane,
they systematically find test inputs that trigger certain behaviors of the data
plane with model.

manifest in obscure manners. Network testing can address
the above challenges by systematically probing packet gen-
eration. This concerns the correctness of the entire network
system, e.g., whether the network implementation violates the
intentions of the network operator, whether there are hardware
failures, or whether there are congestion problems.

SDN networks allow the controller to configure and commu-
nicate among different underlying devices. In SDN networks,
data plane testing work focuses on checking the behavior of
each behavior of each switch, as the controller has an overview
of each switch. In traditional networks, it can be impossible
to monitor or collect data on every switch. Therefore, testing
probes are usually designed in an end-to-end manner.

Fig. 16 shows a general workflow of data plane testing in
traditional networks. The data plane testing tool first collects
the topology information and the forwarding states. With the
information, it constructs data plane model and generates
the test packets which satisfies the testing policies input by
the operator. Finally, it periodically sends the test packets
by the test terminals and monitors the network. Once an error
is detected, the testing tool reports to the operator.

A. Stateless Data Plane Testing

In stateless data planes, the results of packet forwarding
depend on the current router or switch rules, regardless of
historical packets. There has been much work on testing state-
less data planes. We classify these work into three branches:
white-box testing, black-box testing and gray-box testing.

1) White-Box Testing Based on HSA: Automatic Test
Packet Generation (ATPG) [1], [99] is designed to discover
inconsistencies between forwarding tables and actual forward-
ing states. It first collects the topology information and the

forwarding states, including FIBs and ACLs. ATPG gener-
ates a device-independent model of the data plane with the
approach in Header Space Analysis [6]. Then, it computes
a minimum abstract test packet set to maximally check each
rule/link with that model. Finally, it periodically sends the test
packets by the test terminals and monitors the network. Once
an error is detected, ATPG triggers a mechanism to localize
the fault. It complements but also extends previous tools that
can detect performance faults or can only locate errors based
on faulty results [99].

Klee [60], in symbolic execution and programming lan-
guages, is closely related to work on ATPG. Klee attempts
to simply find a minimal test to cover code lines, and ATPG
proves minimal packets to traverse each link/rule. Unlike Klee,
ATPG can also find links or queues that cause performance
problems. Klee solves constraints with an SMT solver. ATPG
simulates the forward path of a packet, and it is more effective.

2) White-Box Testing Based on SAT Solver: Monocle [97],
[138], [139] verifies whether the data plane satisfies the view
of the controller in an SDN network. First, the verification of
forwarding tables can be formulated as an SAT problem. Then,
probe packets targeting a particular rule are systematically
probed in the switch data plane. To improve the scalability,
Monocle optimizes the conversion of the constraints. To mini-
mize overhead, it formulates and solves a graph vertex coloring
problem. Monocle also provides more details on how the SAT
solution is translated into a real packet. Therefore, in dynamic
networks with frequent flow table changes, it can detect a
misbehaving rule of the data plane.

In addition to Monocle [138], RuleScope [140] checks the
priority failures of flow tables in addition to missing faults.
In line with established systems [138], RuleScope inspects
the forwarding behavior through probing. Generating probe
packets and processing probing results are challenging tasks.
Monocle solves this problem by reducing the probe gener-
ation to the SAT problem. It also uses algorithms to detect
and troubleshoot rule faults at limited computational costs.
It leverages packet tracing tools (e.g., NetSight [141]) for
probing. However, RuleScope cannot address rule updates.
Moreover, rules are distributed frequently in SDN networks,
thereby restricting the deployment of RuleScope.

3) Gray-Box Testing Based on Planned Tomography:
Various solutions (e.g., ATPG [99]) require details of the con-
figuration. However, sometimes, we can only obtain coarse for-
warding information about the network, for example, multipath
configuration without knowledge of router-internal hash func-
tions. To address this challenge, NetSonar [142] detects
performance problems with only coarse information of the
system. NetSonar is a system that generates test packets to

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 959

probabilistically cover the network (e.g., changing paths and
multipath routing). It uses planned tomography, with input
coming from a novel test technique that maximizes component
coverage while minimizing probing overhead. By computing
probabilistic and diagnosable covers, NetSonar utilizes partial
forwarding information and addresses the remaining uncer-
tainty. By computing probabilistic path coverage, it addresses
nondeterminism in multipath routing. NetSonar localizes faults
with minimal test overhead via diagnosable link covers. It has
been deployed in a Microsoft inter-data center network. It is a
first step toward building tools that balance what can be known
about networks with their unknowns.

4) Black-Box Testing Based on Performance Measurements:
Pingmesh [143] is a system that detects networks with inter-
server network latency measurements as an indicator. To
reduce overhead, it measures inter-server latencies at three
levels (top-of-rack switch, intra-data center and inter-data cen-
ter). Pingmesh creates complete latency graphs at each level.
Its controller creates the list of servers to ping, and its agents
at each server collect the latency data. The analysis of the
data can provide an increase in performance over historical
baselines. Pingmesh uses a simple technique to diagnose com-
plicated problems in data center networks. Pingmesh can also
detect network SLA violations, packet drops, black holes etc.
and locate the source of the network problem. However, sim-
ply measuring latencies in Pingmesh cannot be used to detect
certain types of general problems (e.g., identifying a faulty
spine switch).

5) White-Box Testing Based on Symbolic Execution: A key
component to networks is switches. In SDN networks, the
rapidly changing OpenFlow specification can lead to multiple
implementations that behave differently. Kuzniar et al.
proposed SOFT [144] to test the interoperability of the imple-
mentation of OpenFlow agents running on the switch. It first
leverages symbolic execution to explore each agent in isola-
tion. Then, it can derive which set of inputs causes which
outputs. To improve the scalability of symbolic execution,
SOFT combines symbolic and concrete inputs. It then cross-
checks all distinct behaviors across different switch agents,
and it uses a constraint solver to calculate the common input
subset that causes inconsistent behaviors. However, it requires
the cooperation of various equipment manufacturers to access
the source code.

6) White-Box Testing Based on Model Checking: NOT
NICE [145] uses a method to verify whether the OpenFlow
switch satisfies the OpenFlow specification [146]. It first
presents a generic OpenFlow switch model based on first-order
logic. It then leverages Alloy to model and verify the proper-
ties of OpenFlow switches. Alloy transforms constraints into
Boolean formulas and then solves them using an external SAT
solver. It can support a set of invariants (e.g., non-loop for-
warding), but it inherits the shortcomings of model checking
(e.g., state space explosion).

7) Black-Box Testing Based on Formal Model: Previous
approaches rely on the source code, which is often difficult
to obtain. To address this challenge, Yao et al. presented a
black-box testing method [147] to test the data plane of an
SDN network. They defined a pipelined extended finite state

machine model. The model adds extended finite state machines
(EFSM) with communication channels and shared variables.
It provides an easier model for the multilevel pipelines in
switches.

8) Black-Box Testing Without Formal Models: OFTest
[148] uses thousands of Python test cases for OpenFlow
specifications (e.g., OpenFlow 1.3). All test cases are devel-
oped manually with each OpenFlow switch version. It cannot
achieve a good coverage of the system behavior because the
test case generation is not based on formal models. Similarly,
OFLOPS [149] performs performance testing for OpenFlow
switches (e.g., the device is heavily loaded). It can discover
inconsistencies between the control plane and the data plane
that can be undetectable in other approaches. It tests the
capacity and bottlenecks of forwarding equipment, the con-
sistency of flow tables, the granularity of flow spaces, and
the type of message modification. OFTEN [150] is a sys-
tematic testing framework for network behavior. It combines
a state-space exploration technique, model checking, with
the execution of the actual switch. It checks whether there
exists any erroneous conditions via the interaction of the
controller execution and real switches. Kuzniar et al. [151]
tested the flow table update rates of hardware OpenFlow
switches. Compared with other approaches, it tests along
many different dimensions (e.g., rule installation latency).
It also reports several new types of anomalous behaviors,
which advances the understanding of the OpenFlow switch
performance.

9) Conclusion on Stateless Data Planes: This section intro-
duces data plane testing techniques, as shown in Table XV.
Although Monocle [97] and RuleSope [98] are more fine
grained than ATPG [99], neither can be used to perform
performance testing similar to ATPG. ATPG takes more time
to generate the monitoring probes. Monocle can observe the
switch reconfiguring data plane in dynamic networks. Based
on Monocle, RuleScope can also check whether a rule’s pri-
ority is correct. Beyond these ideas, other methods introduce
techniques for testing OpenFlow switches, as switches are the
key component in the network data plane. For example, NOT
NICE [145] checks whether the implementation of the switch
conforms to the specifications from a model checking per-
spective. Yao et al. [101], [147] proposed a black-box testing
method for switches with a formal model. However, they check
each individual switch each time. To ensure the correctness of
the entire data plane, operators need to test the switches one
by one, which is inefficient.

B. Stateful Data Plane Testing

Complex context-dependent policies are implemented in
stateful networks (e.g., some packets need to be sent to an
intrusion detection system). Unfortunately, early approaches to
network testing faced challenges in handling such scenarios.
Therefore, in this section, we introduce work that can support
testing for the data plane with middleboxes.

1) Black-Box Testing Based on Symbolic Execution: BUZZ
is a model-based testing framework for stateful data planes. It
first instantiates an expressive-yet-scalable data plane model

960 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE XV
TOOLS FOR STATELESS DATA PLANE TESTING

via a traffic unit abstraction: the BUZZ Data Unit (BDU).
Network functions can be modeled as an ensemble of finite-
state machines. Abstract test traffic is generated to trigger the
policy. It optimizes symbolic execution to reduce the scope
and number of symbolic variables. Then, it develops custom
translation mechanisms to translate abstract test traffic into
concrete test traffic. However, the model process in BUZZ is
complex and error prone, as it is built based on expert knowl-
edge. To address this challenge, NFactor [152] uses a method
to automatically extract the model from the source code using
program analysis techniques. Furthermore, the symbolic exe-
cution in BUZZ cannot completely cover all network states.
In addition, SFC-Checker [93], [153] tests the validity of the
stateful data plane from other aspects.

2) Conclusion on Stateful Data Plane Testing: This section
presents the techniques used to test networks with middle-
boxes. BUZZ uses symbolic execution to generate packets to
test whether a network enforces an invariant. The work most
similar to BUZZ is ATPG, which does not capture stateful
behaviors. We analyze the work from the following aspect. (I)
Modeling stateful data planes. FlowTest [155], SymNet [61],
and VMN [92] model stateful behaviors. FlowTest’s mod-
els do not scale beyond 4-5 node networks. Works such as
FlowTest, Symnet, and VMN are different from BUZZ in
terms of both techniques and goals. (II) Model synthesis. The
model used in BUZZ is generated by hand. NFactor generates
models from the source code automatically via program anal-
ysis [156], [157]. (III) Completeness and soundness. BUZZ
favors soundness over completeness. However, it still manu-
ally models the data plane based on expert knowledge, and
it cannot handle middleboxes containing uncertain internal
states.

C. Conclusion on Data Plane Testing

This section introduces techniques for data plane test-
ing. As shown in Table XV, ATPG [99], NetSonar [142]
and Pingmesh [143] can all be used to test the network
performance (e.g., network congestion and network delay).
In particular, Pingmesh is suitable to large data centers, and
the results are more accurate. ATPG and NetSonar need
detailed network forwarding information, which is possible to
obtain in small and medium-sized network. RuleScope [140]
is the finest grained among ATPG, Monocle and RuleScope.
BUZZ [59] can uncover policy violations in stateful data

planes. SOFT [144], NOT NICE [145], Yao et al. [101], [147],
OFTest [148], etc. can test the correctness of the data plane
switches. To check the entire data plane, they need to check
each switch entity one by one, which is not efficient, especially
for large networks. Although data plane testing has made great
progress, current testing methods cannot handle large networks
(e.g., data centers) well. In the future, white-box or black-box
fuzzy testing technology may help alleviate this problem.

VIII. TECHNIQUES FOR NETWORK

CONTROL PLANE TESTING

SDN controls a network using a central software program,
which can alleviate the risk of bugs. Theses errors in the
software can result in erroneous network behaviors. In the
networking community, there is burgeoning interest in network
control plane testing. Up to now, most control plane testing
works have focused on the control plane in SDN networks.
These approaches have attempted to detect design and imple-
mentation errors in SDN programs. Some approaches extract
formal models from the source codes and perform model-
based testing to find faults. Other approaches attempt to test
the gram in a black-box manner. In addition, despite some
effort being been made to verify configurations, no related
work on control plane testing has been done for traditional
networks. We classify the works for SDN control plane into
two branches: white-box testing and black-box testing.

1) White-Box Testing Based on Model Checking: As is well
known, model checking can efficiently verify the correctness
of distributed systems. However, it suffers from the state explo-
sion problem, which makes it difficult to check SDN programs.
Yakuwa et al. [158] proposed a novel method: SDPOR-DS.
They reduced the state space (e.g., by orders of network events)
using dynamic partial-order reduction (DPOR) [159]. They
also proposed a symbolic state transition model. The execution
time of this method is less than that of state-of-the-art tools.
NICE [25] performs symbolic execution and model checking to
systematically explore the network state space (the controller,
the switches, and the hosts). NICE applies the symbolic execu-
tion of event handlers to exercise code paths of applications. To
reduce the state space, NICE simplifies the switch model and
uses effective strategies (e.g., generating event interleavings).
NICE efficiently uncovers eleven bugs in real applications.

2) White-Box Testing Based on Automata: The behaviors
of SDN applications depend intimately on the absolute and
relative timings of inputs. To systematically handle time,
DeLorean [160] uses a new technique to systematically explore
the behavior of control programs. It models SDN programs
with timed automata (TA) [161]. To avoid the state-space
explosion problem, they reduce the number of regions by
reducing the number of clock variables. They explore a pro-
gram as multiple, independent control loops and predict the
response of the program to certain events. TA-based model
checking has been widely used in the real-time-testing com-
munity [38], [123], [162], [163]. To our knowledge, DeLorean
is the first case that applies TA to SDN programs.

3) Black-Box Testing Without Formal Model: Scott et al.
[164] proposed a method that triggers a given bug with a

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 961

TABLE XVI
TOOLS IN CONTROL PLANE TESTING

sequence of responsible inputs. They designed and implemented
a system: the SDN Troubleshooting System (STS). STS first
leverages fuzzy testing to randomly inject interfering network
events (e.g., data packet transmission and link failures) into the
simulation network [165]. Then, it checks the network invariants
(e.g., end-to-end reachability and a lack of forwarding black
holes) based on Hassel [6]. STS can test multiple controller
platforms without any requirements on their source codes.
However, it cannot systematically cover the behaviors of the
applications because of the absence of formal models.

Encouraged by the success of testing techniques in dis-
tributed systems, Shelly et al. [167] designed and imple-
mented Armageddon [168], which introduces systematic chaos
into SDN networks. Armageddon introduces failures (e.g.,
some ports being down) without violating network invariants.
Because failures need to guarantee some concept of coverage
(e.g., complete coverage), Armageddon uses efficient algo-
rithms to compute failure scenarios. Armageddon induces the
failures in production networks and monitors whether the SDN
controller can sustain these failures. A controller is resilient
if it sustains all failures. When testing real-world networks,
Armageddon achieves maximum link coverage within only a
few iterations. However, it is challenging to compute what
failed and when it failed.

4) Black-Box Testing With Formal Model: To model the
SDN network more efficiently, Lebrun et al. [166] defined a
new language named data path requirement language (DPRL),
which can define arbitrary constraints on a data path. It extends
the FML language and adds a regular grammar definition.
They utilized DPRL to describe the data path requirements of
the data paths and generate corresponding test packets. They
transform DRPL statements into automata and check whether
test packets are accepted by the corresponding automata. They
also implemented a prototype tool to track the data paths fol-
lowed by test packets and check whether requirements are
satisfied. However, the coarse-grained model limits the test-
ing capability. To overcome this challenge, Yao et al. [100]
described the system behaviors with parallel component mod-
els in a novel manner. They modeled an application as
component models, where data are passed. This approach is
more efficient than [166], as its model can describe the details
of the SDN applications.

5) Conclusion on Control Plane Testing: Many studies con-
tribute to white-box testing with formal models for SDN
applications. Some approaches based on while-box testing
(e.g., NICE [25] and DeLorean [160]) assume that the sources
code of the controller can be obtained. Most controllers are
open source; this assumption is always true for open-source

controllers. They extract formal models from the source codes
and perform model-based testing to find faults. As shown in
Table XVI, they are usually expressive because of the formal
models. Because these methods depend on the application’s
source codes, they cannot test controllers developed in lan-
guages that they do not support. Because of the massive
numbers of packets and network events, such methods always
suffer from the state-explosion problems. To address the
scalability challenge, these methods always perform domain
optimization. For instance, Yakuwa et al. [158] optimized their
model checking with dynamic partial-order reduction.

Other methods use black-box testing methods for SDN
applications. Reference [164] presented a black-box fuzzy test-
ing method that can test multiple controller platforms. Their
method avoids the state-space explosion problem via testing
without formal models. However, it cannot ensure systematic
coverage due to the absence of formal models. To improve
the coverage, others have proposed black-box testing methods
with formal models. For instance, Lebrun et al. [166] presented
the formal language DPRL to describe the requirements of data
paths and to generate test packets.

The above methods model or simulate networks to detect
errors via model checking, symbolic execution, or unit testing.
However, they suffer from certain limitations. For exam-
ple, they can only detect a subset of possible errors. They
always run control software in a virtual environment (e.g.,
Mininet [176]). However, the behavior of an actual device is
often quite different from that of a virtual device. Many errors
(e.g., race conditions) can only be found when the applications
are being deployed on real hardware [144]. Despite these lim-
itations, these methods remain useful for detecting bugs and
errors in SDN networks.

IX. RELATIONSHIP BETWEEN NETWORK VERIFICATION

AND NETWORK TESTING

Network verification is useful when initially designing a
network. It can be used to evaluate whether designs uphold
desirable invariants. However, verification results hold if and
only if implementations are correct (e.g., protocol implemen-
tations in switches). Network testing is complementary to
network verification, which can check errors in implementa-
tions. However, testing cannot prove the absence of bugs in a
network. The completeness and soundness of testing results are
determined by the method used, test conditions etc. Combining
a verification tool such as VMN [92], [114] (HSA [6]) with a
testing tool such as BUZZ [59] (ATPG [99]) allows users to
guarantee network reliability more efficiently.

A. Data Plane Verification and Testing

Data plane verification has been well studied. This tech-
nique verifies network snapshots via reductions to SAT, model
checking or symbolic simulation. It is intrinsically a state
machine verification technique. Verifying reachability in a
finite network is PSPACE-complete. The techniques used
in Anteater [9] and HSA [6] work well in practice. They
exploit domain optimization of the network, which reduces
the verification problem to being closer to NP-complete. These

962 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE XVII
DATA PLANE VERIFICATION VERSUS DATA PLANE TESTING

TABLE XVIII
CONTROL PLANE VERIFICATION VERSUS CONTROL PLANE TESTING

TABLE XIX
SOME EXAMPLES OF NETWORK BUGS AND ERRORS THAT CAN BE DETECTED

techniques represent a good first step toward making networks
more reliable. However, some tools assume that switches will
process instructions emitted by the controller in sequence, even
though actual switches often reorder messages. This means
that the invariants that they verified do not always actually
hold.

Hardware may not follow the configuration in an actual
network such as ASIC errors, link failures, and link con-
gestion. As show in Table XVII, data plane testing (e.g.,
ATPG [99]) can be used to discover various properties (e.g.,
packet loss, congestion, or faulty hardware), whereas network
verification tools cannot. This technique is orthogonal to data
plane verification tools since it focuses on actual network cor-
rectness. The main challenge is whether the testing process
is completed without degrading performance. Both data plane
verification and data plane testing are fundamentally limited.
Because networks are always in constant churns (e.g., a single
route advertisement results in changes to data planes [94]).

B. Control Plane Verification and Testing

Control plane verification provides more powerful analy-
sis that can reason about more than the current “incarnation”
of the network. The control logic in a traditional network

is distributed in the configuration file. Current verification
tools support many routing protocol features. The analysis in
Batfish [94] is expensive because it simulates the routing pro-
tocols’ running processes. ERA [96] uses an abstract encoding
of the control plane information, making it more scalable
than Batfish. However, these tools cannot check for router
implementation errors. The control logic in SDN is concen-
trated on the controller and applications. Table XVIII shows
that some methods verify SDN controllers at run time with
code verification, whereas other methods use verified SDN
controllers assisted by formal operational models of SDN.
However, verification cannot be used to find software imple-
mentation bugs in real SDN programs. Control plane testing
uses formal-model-based approaches to find implementation
bugs in controller codes.

X. DISCUSSION

In this section, we discuss the lessons that we have learned
from current solutions.

A. What Network Bugs Can Be Detected

In Table XIX, we list some example network bugs and errors
that can be detected by the methods reviewed in the survey. It

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 963

TABLE XX
RESEARCH IDEAS VIA EXEMPLARS FROM PROGRAMMING LANGUAGE AND HARDWARE VERIFICATION

briefly gives the descriptions, effects, and other details of the
network bugs. As long as the forwarding behavior of the FIBs
violates network invariants, it can be detected by data plane
verification tools such as Anteater [9]. For instance, when
upgrading a network, a router is problematically introduced to
offload the traffic, resulting in forwarding loops. Some network
errors in configurations, such as a lack of default routes in
routers and blocking traffic toward unused IPs, can be detected
by data plane verification tools. Even the software errors in
routers can be checked by these tools. Data plane testing tools
such as ATPG [99] can detect outage problems accidentally
created during switch testing. Configuration verification tools
can help detect configuration errors before deployment. For
instance, because of a single hijacked prefix in a configura-
tion, some source nodes can have routes to a victim’s prefix
through either an adversary or a victim. It violates the property
of multipath inconsistency.

In SDN networks, verification and testing tools can be
used to check for design errors in applications. For instance,
Pyswitch does not construct a spanning tree for topologies with
cycles, which can lead to forwarding loops. With tools such
as NICE [25], we can discover the errors that violate network
properties. Some consistency errors between a program and
switch can also be discovered by tools such as Vericon [54].
For instance, in the program AuthNoFlowRemoval, the data
structure is inconsistent with the forwarding tables of the
switches. More example errors, such as host unreachable after
moving, can be found in the table.

B. Ideas That We Can Discover

Various methods in other areas (e.g., software programs)
have been borrowed for network verification and testing.
Similar to ternary symbolic simulation in hardware verifica-
tion, HSA [6] performs symbolic execution to analyze network
data planes. Similar to certified operating systems, Guha et al.
first proposed machine-verified controllers. Inspired by the
symmetry in model checking, Plotkin et al. proposed to sim-
plify redundancy rules in a data center network to improve
scalability. Similar to real-time post-deployment failure injec-
tion tools in large-scale distributed systems (e.g., Google’s
Netflix), Armageddon systematically introduces failures (e.g.,
link failures and network failures) to test the robustness and
reliability of SDN controllers. Dobrescu and Argyraki [52]
leveraged symbolic execution to find errors in the data plane.
Table XX lists more examples. Learning from successful
cases in software and hardware verification can help us solve
problems in networks.

TABLE XXI
SUMMARY OF EXPLOITED DOMAIN STRUCTURES IN NETWORKING

VERIFICATION AND TESTING

C. What Optimization Can We Make

As discussed earlier, network verification has many simi-
larities to software and hardware verification. However, the
naive use of formal methods suffers from problems concern-
ing model expression and scalability. Networks have their own
characteristics, which are different from software and hard-
ware. Throughout this survey, formal methods combined with
network domain features are found to be more efficient in
many aspects. Table XXI shows some examples: (I) In con-
trast to traditional model checking [42] and binary decision
diagrams [165] in hardware verification, HSA exploits the
network features to provide a vendor-independent model. Note
that frameworks based on naive model checking and SAT
solvers are limited to providing a single counterexample when
detecting a violation of the invariants. HSA outputs all packets
of every pair of nodes, which is easier to do than incre-
mental verification. (II) The idea that ATPG [99] generates
the minimum test set to cover all links coming off in soft-
ware testing. Rather than solving constraints using an SMT
solver, ATPG directly simulates the packet forwarding path.
Therefore, ATPG is 10-times faster than the naive attempt
using KLEE [60]. (III) Datalog solvers produce all solutions
but scale poorly. NOD [65] optimizes the Datalog implementa-
tion engine to scale to large header spaces by defining a fused
Select-Project operator. (IV) SymNet employs symbolic exe-
cution on network models instead of the code itself. Previous
works program the models in C [6], but models in C are
too complex to analyze. To improve scalability, SymNet pro-
poses a new language, SEPL, to define the behaviors of the
data plane. However, naively applying standard program ver-
ification techniques to networks cannot help us solve domain

964 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE XXII
TOOLS AVAILABLE IN NETWORK VERIFICATION AND TESTING

problem as well. For example, FlowChecker [6] naively per-
forms symbolic model checking based on NuSMV [28].
However, it suffers from the state-space explosion problem
and scales poorly.

D. What Tools Are Available

Network verification and testing are now a well-established
topic with a series of available tools, as shown in Table XXII.
Some tools have been released publicly. Researchers can build
their own tools with these engines. However, selecting an inap-
propriate tool will lead to poor verification results. A set of
tools can support verification, but each tool is optimized in
different respects (e.g., HOL-Light, a high-level logic theo-
rem prover, does not support probabilistic reasoning, whereas
HOL supports probabilistic reasoning). It is critical to select
appropriate tools according to the given characteristics.

XI. FUTURE WORK AND OPEN QUESTIONS

Although the technologies of network verification and test-
ing have seen progress, there are major issues confronting
future research.

A. Stateful Data Plane Verification

Stateful data planes will become more popular in the future,
e.g., SDN and NFV enable richer network data processing
services. There is substantial research on modeling network
functions [59], [61], [92]. However, most works model the
stateful data plane manually based on specialized knowledge.
In addition, the expressiveness and scalability of the model
are poor. It is wise to automatically generate models from
the source code. Therefore, we need to develop more scal-
able verification and testing techniques to explore stateful data
planes.

B. Verification of Quantitative Invariants

Network verification has been used to check network
reachability. Current technologies focus on verifying Boolean
invariants (e.g., no forwarding loops and reachability).
Although these invariants are fundamental, quantity invariants
(e.g., latency, packet loss, and bandwidth) are also important to
operators. Verifying quantitative invariants is another direction
for future work.

C. Control Plane Verification in Complex Routing Scenarios

Current methods for control plane verification in traditional
networks only support simple routing scenarios. They are not

applicable to modeling other protocols (e.g., iBGP and MPLS
TE [178]). In addition, the expressiveness and scalability of
the control plane model faces many challenges. Synthesizing
an expressive and scalable model of a control plane will be
necessary in the future.

D. Testing Multiple Applications in SDN Control Plane

Applications in SDN work together to offer flexible network
functionality. With the emergence of SDN app stores, an
increasing number of SDN applications are being deployed
by various control domains. Unfortunately, multiple applica-
tions can produce unintentional interference, even though each
individual application may be well developed. However, cur-
rent methods are designed to check the correctness of each
individual application. We argue that we need systematic and
automated methodologies to check the correctness of multiple
SDN applications.

E. Fault Location

Once invariant violations are detected, we need to automat-
ically locate and generate repairs (e.g., changing or adding
configuration lines). Current tools for verification and testing
do not facilitate the debugging and repair of detected errors.
Debugging tools complement verification and testing. Current
debugging tools (e.g., OFRewind [179] and Ndb [164]) are
limited to specific scenarios [180]–[182].

F. Automatic Synthesis of Network Specifications

Network invariants (e.g., no forwarding loops and no for-
warding black holes) define the correct behavior of a network.
The understanding of different network administrators is dif-
ferent. As Engler noted [183], determining which specification
to check is a major obstacle. These invariants are in the minds
of network operators. How can one use current network verifi-
cation techniques when one does not know the reachable pairs?
Hence, another natural direction of future work is to auto-
matically synthesize network specifications from the network
system.

XII. CONCLUSION

Recent works have shown a growing interest in network ver-
ification and testing in academic and industrial research. The
number of research projects on this subject has grown signifi-
cantly since the first data plane verification work, Anteater,
in 2011. Some of these tools have been deployed in real
production networks (e.g., SecGuru in Microsoft Azure and
Anteater in UIUC). This paper has presented a comprehensive
review of this research. We categorize existing research across
different conceptual planes of the network: data plane verifi-
cation and testing and network control plane verification and
testing. We draw the following conclusions: (i) The best tech-
niques for reachability (data plane) verification are currently
fast enough for large networks. (ii) New network features (e.g.,
standardizing the interfaces for network programs) can poten-
tially provide a foundation for network reasoning. Researchers
have developed and verified controllers and proposed formal

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 965

methods to verify SDN program. (iii) Data plane testing could
help operators find hardware failures and performance errors
at minimal cost. (iv) Traditional networks remain dominant,
and configuration verification can offer opportunities to find
latent errors. Even techniques in network verification and test-
ing have made great progress. However, certain open issues,
including verifying stateful data planes, verifying quantitative
invariants, and the automatic synthesis of network invariants,
are challenging. We hope that this survey will offer readers
an opportunity to rethink existing techniques for exploiting
domain structures and find innovative research ideas.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
suggestions.

REFERENCES

[1] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol.
(CoNEXT), Nice, France, 2012, pp. 241–252.

[2] M. Muuss. (1983). The Story of the Ping Program. [Online].
Available: http://mirrors.pdp-11.ru/_vax/www.bandwidthco.com/
whitepapers/netforensics/icmp/The%20Story%20of%20the%20PING
%20Program.pdf

[3] Traceroute. Accessed: 2004. [Online]. Available: ftp://ftp.ee.lbl.gov/
traceroute.tar.gz

[4] Software-Defined Networking: The New Norm for Networks, Open
Netw. Found., Menlo Park, CA, USA, 2012.

[5] G. Varghese. Accessed: 2015. Vision for Network Design
Automation and Network Verification. [Online]. Available: http://
cseweb.ucsd.edu/∼varghese/networkdesignautomationvision.pdf

[6] P. Kazemian, G. Varghese, and N. McKeown, “Header space analy-
sis: Static checking for networks,” in Proc. 9th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), San Jose, CA, USA, Apr. 2012,
pp. 113–126.

[7] F. Babich and L. Deotto, “Formal methods for specification and analy-
sis of communication protocols,” IEEE Commun. Surveys Tuts., vol. 4,
no. 1, pp. 2–20, 1st Quart., 2002.

[8] K. Bhargavan, D. Obradovic, and C. A. Gunter, “Formal verification
of standards for distance vector routing protocols,” J. ACM, vol. 49,
no. 4, pp. 538–576, 2002.

[9] H. Mai et al., “Debugging the data plane with anteater,” in Proc.
ACM SIGCOMM Conf. (SIGCOMM), Toronto, ON, Canada, 2011,
pp. 290–301.

[10] M. Musuvathi and D. R. Engler, “Model checking large network proto-
col implementations,” in Proc. 1st Symp. Netw. Syst. Design Implement.
(NSDI), San Francisco, CA, USA, Mar. 2004, pp. 155–168.

[11] M. Muuss. Accessed: 2014. [Online]. Available: www.microsoft.com/
en-us/research/project/network-verification/

[12] V. Jacobson. Accessed: 2015. [Online]. Available:
conferences.sigcomm.org/sigcomm/2015/tutorial-nwverif.php

[13] M. R. Prasad, A. Biere, and A. Gupta, “A survey of recent advances
in SAT-based formal verification,” Int. J. Softw. Tools Technol. Transf.,
vol. 7, no. 2, pp. 156–173, 2005.

[14] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1617–1634, 3rd Quart., 2014.

[15] D. Kreutz et al., “Software-defined networking: A comprehensive
survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[16] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and
OpenFlow: From concept to implementation,” IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2181–2206, 4th Quart., 2014.

[17] H. Farhady, H. Y. Lee, and A. Nakao, “Software-defined networking:
A survey,” Comput. Netw., vol. 81, pp. 79–95, 2015.

[18] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of secur-
ing networks using software defined networking,” IEEE Trans. Rel.,
vol. 64, no. 3, pp. 1086–1097, Sep. 2015.

[19] J. Qadir and O. Hasan, “Applying formal methods to networking:
Theory, techniques, and applications,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 1, pp. 256–291, 1st Quart., 2015.

[20] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the differ-
entiated services field (DS field) in the IPv4 and IPv6 headers,” Internet
Eng. Task Force, Fremont, CA, USA, RFC 2474, 1998.

[21] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[22] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0:
Verification of probabilistic real-time systems,” in Proc. 23rd Int. Conf.
Comput.-Aided Verification (CAV), Snowbird, UT, USA, Jul. 2011,
pp. 585–591.

[23] J. Spragins, “OSPF: Anatomy of an Internet routing protocol [book
reviews],” IEEE Netw., vol. 12, no. 6, p. 4, Nov./Dec. 1998.

[24] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” Internet
Eng. Task Force, Fremont, CA, USA, RFC 1654, 1994.

[25] M. Canini, D. Venzano, P. Perešíni, D. Kostic, and J. Rexford, “A
NICE way to test openflow applications,” in Proc. 9th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), San Jose, CA, USA, Apr. 2012,
pp. 127–140.

[26] N. Gude et al., “NOX: Towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110,
Jul. 2008.

[27] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[28] A. Cimatti et al., “NuSMV 2: An OpenSource tool for symbolic model
checking,” in Proc. 14th Int. Conf. Comput.-Aided Verification (CAV),
Copenhagen, Denmark, Jul. 2002, pp. 359–364.

[29] D. Jackson, Software Abstractions—Logic, Language, and Analysis.
Cambridge, MA, USA: MIT Press, 2006. [Online]. Available:
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928

[30] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”
Int. J. Softw. Tools Technol. Transfer, vol. 1, nos. 1–2, pp. 134–152,
1997.

[31] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifica-
tions,” ACM Trans. Program. Lang. Syst., vol. 8, no. 2, pp. 244–263,
Apr. 1986.

[32] C. Baier and J. Katoen, Principles of Model Checking. Cambridge,
MA, USA: MIT Press, 2008.

[33] E. M. Clarke, “The birth of model checking,” in 25 Years of Model
Checking—History, Achievements, Perspectives. Heidelberg, Germany:
Springer-Verlag, 2008, pp. 1–26.

[34] D. Marker, Model Theory: An Introduction. New York, NY, USA:
Springer-Verlag, 2002.

[35] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines—A survey,” Proc. IEEE, vol. 84, no. 8, pp. 1090–1123,
Aug. 1996.

[36] P. Norvig, “Artificial intelligence: A modern approach,” in Applied
Mechanics Materials, vol. 263, 2nd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2003, pp. 2829–2833.

[37] S. S. Huang, T. J. Green, and B. T. Loo, “Datalog and emerging appli-
cations: An interactive tutorial,” in Proc. ACM SIGMOD Int. Conf.
Manag. Data (SIGMOD), Athens, Greece, Jun. 2011, pp. 1213–1216.

[38] E. A. Emerson, “Temporal and modal logic,” in Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Semantics (B). Amsterdam, The Netherlands: Elsevier, 1990,
pp. 995–1072.

[39] L. Lamport, “The temporal logic of actions,” ACM Trans. Program.
Lang. Syst., vol. 16, no. 3, pp. 872–923, 1994.

[40] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model check-
ing using satisfiability solving,” Formal Methods Syst. Design, vol. 19,
no. 1, pp. 7–34, 2001.

[41] E. M. Clarke, K. L. McMillan, S. V. A. Campos, and V. Hartonas-
Garmhausen, “Symbolic model checking,” in Proc. 8th Int. Conf.
Comput.-Aided Verification (CAV), New Brunswick, NJ, USA,
Jul./Aug. 1996, pp. 419–427.

[42] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Inf. Comput.,
vol. 98, no. 2, pp. 142–170, 1992.

[43] K. L. Mcmillan, “The SMV system,” in Symbolic Model Checking,
vol. 38. Boston, MA, USA: Springer, 1992, pp. 161–165.

[44] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Proc. Int. Conf. Tools Algorithms
Construct. Anal. Syst., 1999, pp. 193–207.

[45] A. P. Sistla, “Symmetry reductions in model-checking,” in Proc. 4th Int.
Conf. Verification Model Checking Abstract Interpretation (VMCAI),
New York, NY, USA, 2003, p. 25.

966 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

[46] J. M. Wing and M. Vaziri-Farahani, “Model checking software systems:
A case study,” in Proc. ACM SIGSOFT Symp. Found. Softw. Eng., 1995,
pp. 128–139.

[47] G. Singh and S. Shukla, Model-Checking Based Verification
for Hardware Designs Specified Using Bluespec System Verilog,
CiteSeerX, Jan. 2008, pp. 39–43.

[48] D. Sethi, S. Narayana, and S. Malik, “Abstractions for model check-
ing SDN controllers,” in Proc. Formal Methods Comput.-Aided Design
(FMCAD), Portland, OR, USA, Oct. 2013, pp. 145–148.

[49] R. Majumdar, S. D. Tetali, and Z. Wang, “Kuai: A model checker for
software-defined networks,” in Proc. Formal Methods Comput.-Aided
Design (FMCAD), Lausanne, Switzerland, Oct. 2014, pp. 163–170.

[50] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi,
“Tierless programming and reasoning for software-defined networks,”
in Proc. USENIX Conf. Netw. Syst. Design Implement., Seattle, WA,
USA, 2014, pp. 519–531.

[51] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures,” in Proc. ACM
Workshop Assurable Usable Security Configuration, 2010, pp. 37–44.

[52] M. Dobrescu and K. J. Argyraki, “Software dataplane verification,”
in Proc. 11th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
Seattle, WA, USA, Apr. 2014, pp. 101–114.

[53] D. L. Dill, “The murphi verification system,” in Proc. Int. Conf.
Comput.-Aided Verification, 1996, pp. 390–393.

[54] T. Ball et al., “VeriCon: Towards verifying controller programs in
software-defined networks,” ACM SIGPLAN Notices, vol. 49, no. 6,
pp. 282–293, 2014.

[55] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL—A Proof
Assistant for Higher-Order Logic (LNCS 2283). Heidelberg, Germany:
Springer, 2002.

[56] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development—Coq’Art: The Calculus of Inductive Constructions
(Texts in Theoretical Computer Science. An EATCS Series).
Heidelberg, Germany: Springer, 2004.

[57] A. Guha, M. Reitblatt, and N. Foster, “Machine-verified network
controllers,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), Seattle, WA, USA, Jun. 2013, pp. 483–494.

[58] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,”
in Proc. ACM SIGPLAN SIGACT Symp. Principles Program. Lang.,
2014, pp. 113–126.

[59] S. K. Fayaz, Y. Tobioka, S. Chaki, and V. Sekar, “Scalable testing of
context-dependent policies over stateful data planes with armstrong,”
CoRR, vol. abs/1505.03356, pp. 1–16, Jun. 2015. [Online]. Available:
http://arxiv.org/abs/1505.03356

[60] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proc. USENIX Conf. Oper. Syst. Design Implement., San Diego, CA,
USA, 2008, pp. 209–224.

[61] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “SymNet:
Scalable symbolic execution for modern networks,” in Proc.
ACM SIGCOMM Conf. (SIGCOMM), Florianópolis, Brazil, 2016,
pp. 314–327.

[62] S. Zhang and S. Malik, “SAT based verification of network data
planes,” in Automated Technology for Verification and Analysis,
vol. 8172. Cham, Switzerland: Springer Int., 2013, pp. 496–505.

[63] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model check-
ing invariant security properties in OpenFlow,” in Proc. IEEE Int. Conf.
Commun., 2013, pp. 1974–1979.

[64] L. De Moura and B. Dutertre, “Yices 1.0: An efficient SMT solver,”
Satisfiability Modulo Theories Competition, vol. 54, no. 8, p. 1, 2006.

[65] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in Proc. USENIX Conf. Netw.
Syst. Design Implement., 2015, pp. 499–512.

[66] M. J. C. Gordon, HOL: A Proof Generating System for Higher-Order
Logic. Boston, MA, USA: Springer, 1987.

[67] P. Godefroid, M. Y. Levin, and D. A. Molnar, “SAGE: Whitebox
fuzzing for security testing,” Commun. ACM, vol. 55, no. 3, pp. 40–44,
2012.

[68] N. Tillmann and J. D. Halleux, “Pex—White box test generation
for .NET,” in Proc. 2nd Int. Conf. Tests Proofs (TAP), Prato, Italy,
Apr. 2008, pp. 134–153.

[69] C. S. Păsăreanu et al., “Symbolic pathfinder: Integrating symbolic exe-
cution with model checking for Java bytecode analysis,” Autom. Softw.
Eng., vol. 20, no. 3, pp. 391–425, 2013.

[70] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. 14th Int. Conf. Tools Algorithms Construct. Anal. Syst. (TACAS),
Mar./Apr. 2008, pp. 337–340.

[71] T. Liang et al., “An efficient SMT solver for string constraints,” Formal
Methods Syst. Design, vol. 48, no. 3, pp. 206–234, 2016.

[72] N. Een, “MiniSat: A SAT solver with conflict-clause
minimization,” in Proc. Int. Conf. Theory Appl. Satisfiability
Test. (SAT), 2005, pp. 502–518. [Online]. Available:
https://ci.nii.ac.jp/naid/10027365050/en/

[73] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
Proc. TOOLS Algorithms Construct. Anal. Syst. Int. Conf. (TACAS),
2007, pp. 632–647.

[74] C. L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical
Theorem Proving (Computer Science Classics). Boston, MA, USA:
Academic, 1973.

[75] M. Davis, G. Logemann, and D. W. Loveland, “A machine program for
theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, 1962.

[76] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declarative
fault tolerance for software-defined networks,” in Proc. ACM
SIGCOMM Workshop Hot Topics Softw. Defined (NETWORKING),
2013, pp. 109–114.

[77] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.

[78] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[79] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “Buzz: Testing
context-dependent policies in stateful networks,” in Proc. 13th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2016, pp. 275–289.

[80] L. Gao, T. G. Griffin, and J. Rexford, “Inherently safe backup routing
with BGP,” in Proc. IEEE INFOCOM, vol. 1, 2001, pp. 547–556.

[81] S. Malik and L. Zhang, “Boolean satisfiability from theoretical hardness
to practical success,” Commun. ACM, vol. 52, no. 8, pp. 76–82, 2009.

[82] L. M. de Moura and N. Bjørner, “Satisfiability modulo theories:
Introduction and applications,” Commun. ACM, vol. 54, no. 9,
pp. 69–77, 2011.

[83] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability. Amsterdam, The
Netherlands: IOS Press, 2009, pp. 825–885.

[84] Y. Hamadi, L. Bordeaux, and L. Zhang, “Propositional satisfiability
and constraint programming: A comparative survey,” ACM Comput.
Surveys, vol. 38, no. 4, p. 12, 2006.

[85] M. Ben-Ari, Mathematical Logic for Computer Science, 3rd ed.
London, U.K.: Springer, 2012.

[86] SAT-Based Verification Framework. Boston, MA, USA: Springer, 2007.
[87] C. P. Gomes, H. A. Kautz, A. Sabharwal, and B. Selman, “Satisfiability

solvers,” in Handbook of Knowledge Representation. Amsterdam, The
Netherlands: Elsevier, 2008, pp. 89–134.

[88] P. Godefroid and J. Kinder, “Proving memory safety of floating-point
computations by combining static and dynamic program analysis,” in
Proc. Int. Symp. Softw. Testing Anal., 2010, pp. 1–12.

[89] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in Proc. Conf. ACM Special
Interest Group Data Commun., 2017, pp. 155–168.

[90] L. Yuan et al., “FIREMAN: A toolkit for firewall modeling and
analysis,” in Proc. IEEE Symp. Security Privacy, 2006, pp. 199–213.

[91] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” ACM SIGCOMM
Comput. Commun. Rev., vol. 42, no. 4, pp. 467–472, 2012.

[92] A. Panda, O. Lahav, K. J. Argyraki, M. Sagiv, and S. Shenker,
“Verifying isolation properties in the presence of middle-
boxes,” CoRR, vol. abs/1409.7687, 2014. [Online]. Available:
http://arxiv.org/abs/1409.7687

[93] Y. Zhang, W. Wu, S. Banerjee, J.-M. Kang, and M. A. Sanchez, “SLA-
verifier: Stateful and quantitative verification for service chaining,” in
Proc. IEEE Conf. Comput. Commun. (INFOCOM), Atlanta, GA, USA,
2017, pp. 1–9.

[94] A. Fogel et al., “A general approach to network configuration analysis,”
in Proc. 12th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
Oakland, CA, USA, 2015, pp. 469–483.

[95] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan,
“Fast control plane analysis using an abstract representation,” in Proc.
Conf. ACM SIGCOMM Conf., Aug. 2016, pp. 300–313.

[96] S. K. Fayaz et al., “Efficient network reachability analysis using a
succinct control plane representation,” in Proc. 12th USENIX Symp.
Oper. Syst. Design Implement. (OSDI), 2016, pp. 217–232.

[97] P. Peresini, M. Kuzniar, and D. Kostic, “Rule-level data plane monitor-
ing with monocle,” ACM SIGCOMM Comput. Commun. Rev., vol. 45,
no. 5, pp. 595–596, 2015.

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 967

[98] Y. Velner et al., “Some complexity results for stateful network verifi-
cation,” in Proc. Int. Conf. TOOLS Algorithms Construct. Anal. Syst.,
2016, pp. 811–830.

[99] H. Zeng, P. Kazemian, G. Varghese, and N. Mckeown, “Automatic
test packet generation,” IEEE/ACM Trans. Netw., vol. 22, no. 2,
pp. 554–566, Apr. 2014.

[100] J. Yao et al., “Model based black-box testing of SDN applica-
tions,” in Proc. CoNEXT Student Workshop (CoNEXT), Sydney,
NSW, Australia, Dec. 2014, pp. 37–39. [Online]. Available:
http://doi.acm.org/10.1145/2680821.2680828

[101] J. Yao et al., “Testing black-box SDN applications with formal behavior
models,” in Proc. IEEE MASCTOS, 2017, pp. 110–120.

[102] F. Le, G. G. Xie, and H. Zhang, “Instability free routing: Beyond one
protocol instance,” in Proc. ACM Conf. Emerg. Netw. Exp. Technol.
CoNEXT, 2008, p. 9.

[103] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
configuration in a box: Towards end-to-end verification of network
reachability and security,” in Proc. IEEE Int. Conf. Netw. Protocols,
2009, pp. 123–132.

[104] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” in Proc. 21st IEEE Int. Conf. Netw. Protocols
(ICNP), 2013, pp. 1–11.

[105] H. Zeng et al., “Libra: Divide and conquer to verify forwarding tables
in huge networks,” in Proc. USENIX NSDI, 2014, pp. 87–99.

[106] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and
G. Varghese, “Scaling network verification using symmetry and
surgery,” in Proc. ACM PLDI, 2014, pp. 69–83.

[107] P. Kazemian et al., “Real time network policy checking using header
space analysis,” in Proc. Usenix Conf. Netw. Syst. Design Implement.,
2013, pp. 99–111.

[108] A. Horn, A. Kheradmand, and M. Prasad, “Delta-net: Real-time
network verification using atoms,” in Proc. 14th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2017, pp. 735–749. [Online].
Available: https://www.usenix.org/conference/nsdi17/technicalsessions/
presentation/horn-alex

[109] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“VeriFlow: Verifying network-wide invariants in real time,” presented
at the 10th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
2013, pp. 15–27.

[110] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” ACM
SIGCOMM Comput. Commun. Rev., vol. 28, no. 4, pp. 203–214,
1999.

[111] N. P. Lopes, N. Bjørner, P. Godefroid, and G. Varghese, “Network
verification in the light of program verification,” MSR, Rep.,
2013. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/network-verification-in-the-light-of-program-verification/

[112] N. P. Lopes, N. Bjørner, P. Godefroid, and G. Varghese, “Automated
analysis and debugging of network connectivity policies,” MSR,
Seattle, WA, USA, Rep. MSR-TR-2014-102, Sep. 2013.

[113] Y.-W. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen, “Modeling
and understanding end-to-end class of service policies in operational
networks,” in Proc. ACM SIGCOMM Conf. Appl. Technol. Architect.
Protocols Comput. Commun., 2009, pp. 219–230.

[114] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker,
“Verifying reachability in networks with mutable datapaths,” in
Proc. 14th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2017,
pp. 699–718.

[115] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “SymNet:
Static checking for stateful networks,” in Proc. Workshop Hot Topics
Middleboxes Netw. Function Virtualization (HotMiddlebox), 2013,
pp. 31–36.

[116] N. Bjørner, G. Juniwal, R. Mahajan, S. A. Seshia, and G. Varghese,
“ddNF: An efficient data structure for header spaces,” in Hardware and
Software: Verification and Testing, R. Bloem and E. Arbel, Eds. Cham,
Switzerland: Springer Int., 2016, pp. 49–64.

[117] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang, “Shedding light on
the glue logic of the Internet routing architecture,” ACM SIGCOMM
Comput. Commun. Rev., vol. 38, no. 4, pp. 39–50, 2008.

[118] D. A. Maltz et al., “Routing design in operational networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 27–40,
2004.

[119] X. Qie and S. Narain, “Using service grammar to diagnose BGP con-
figuration errors,” in Proc. 17th Conf. Syst. Admin. (LISA), San Diego,
CA, USA, 2003, pp. 237–246.

[120] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations
in inter-domain routing,” Comput. Netw., vol. 32, no. 1, pp. 1–16, 2000.

[121] T. G. Griffin, F. B. Shepherd, and G. T. Wilfong, “The stable paths
problem and interdomain routing,” IEEE/ACM Trans. Netw., vol. 10,
no. 2, pp. 232–243, Apr. 2002.

[122] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis (awarded best paper),” in Proc. 2nd Symp. Netw.
Syst. Design Implement. (NSDI), 2005, pp. 43–56.

[123] M. Hendriks and K. G. Larsen, “Exact acceleration of real-time
model checking,” Electron. Notes Theor. Comput. Sci., vol. 65, no. 6,
pp. 120–139, 2002.

[124] R. G. Bennetts, “Introduction to switching theory and logical design,”
IEE Proc. E Comput. Digit. Techn., vol. 128, no. 6, p. 261, Nov. 1981.

[125] The Intel Intrinsics Guide. Accessed: 2016. [Online]. Available:
http://intel.ly/24sk3uz

[126] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy anomalies in
distributed firewalls,” in Proc. IEEE 23rd Annu. Joint Conf. Comput.
Commun. Soc. (INFOCOM), Hong Kong, Mar. 2004, pp. 2605–2616.

[127] C. R. Kalmanek, S. Misra, and R. Yang, Guide to Reliable Internet
Services and Applications. London, U.K.: Springer, 2010.

[128] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The margrave tool for firewall analysis,” in Proc. Int. Conf. Large
Install. Syst. Admin., San Jose, CA, USA, 2010, pp. 1–8.

[129] R. W. Skowyra, A. Lapets, A. Bestavros, and A. J. Kfoury, “Verifiably-
safe software-defined networks for CPS,” in Proc. 2nd ACM Int. Conf.
High Confidence Netw. Syst. CPS Week (HiCoNS), Philadelphia, PA,
USA, Apr. 2013, pp. 101–110.

[130] R. Skowyra, A. Lapets, A. Bestavros, and A. J. Kfoury, “A verification
platform for SDN-enabled applications,” in Proc. IEEE Int. Conf. Cloud
Eng., Boston, MA, USA, Mar. 2014, pp. 337–342.

[131] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM Conf.,
Helsinki, Finland, 2012, pp. 323–334.

[132] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software defined networks,” in Proc. 10th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), Lombard, IL, USA, Apr. 2013,
pp. 1–13.

[133] C. Chen, L. Jia, W. Zhou, and B. T. Loo, “Proof-based verification of
software defined networks,” in Proc. Open Netw. Summit Res. Track
(ONS), Santa Clara, CA, USA, Mar. 2014, pp. 1–2.

[134] N. P. Katta, J. Rexford, and D. Walker, “Logic programming for
software-defined networks,” in Proc. Workshop Cross, 2013, pp. 1–3.

[135] N. Foster et al., “Languages for software-defined networks,” IEEE
Commun. Mag., vol. 51, no. 2, pp. 128–134, Feb. 2013.

[136] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
Simplifying SDN programming using algorithmic policies,” in Proc.
ACM SIGCOMM Conf. (SIGCOMM), Hong Kong, Aug. 2013,
pp. 87–98.

[137] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“A balance of power: Expressive, analyzable controller programming,”
in Proc. ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw.,
Hong Kong, 2013, pp. 79–84.

[138] P. Perešíni, M. Kuzniar, and D. Kostic, “Monocle: Dynamic, fine-
grained data plane monitoring,” in Proc. 11th ACM Conf. Emerg. Netw.
Exp. Technol. (CoNEXT), Heidelberg, Germany, Dec. 2015, pp. 1–32.

[139] M. Kuzniar, P. Perešíni, and D. Kostić, “Providing reliable FIB update
acknowledgments in SDN,” in Proc. ACM Int. Conf. Emerg. Netw. Exp.
Technol., 2014, pp. 415–422.

[140] K. Bu et al., “Is every flow on the right track? Inspect SDN forwarding
with RuleScope,” in Proc. IEEE INFOCOM IEEE Int. Conf. Comput.
Commun., San Francisco, CA, USA, 2016, pp. 1–9.

[141] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. Mckeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proc. USENIX Conf. Netw. Syst. Design
Implement., Seattle, WA, USA, 2014, pp. 71–85.

[142] H. Zeng et al., “Measuring and troubleshooting large operational
multipath networks with gray box testing,” Mountain Safety Res.,
Seattle, WA, USA, Rep. MSR-TR-2015-55, Jun. 2015.

[143] C. Guo et al., “Pingmesh: A large-scale system for data center
network latency measurement and analysis,” in Proc. ACM Conf. Spec.
Interest Group Data Commun. (SIGCOMM), London, U.K., Aug. 2015,
pp. 139–152.

[144] M. Kuzniar, P. Perešíni, M. Canini, D. Venzano, and D. Kostic, “A
SOFT way for OpenFlow switch interoperability testing,” in Proc.
Conf. Emerg. Netw. Exp. Technol. (CoNEXT), Nice, France, Dec. 2012,
pp. 265–276.

[145] N. Ruchansky and D. Proserpio, “A (not) NICE way to verify the
OpenFlow switch specification: Formal modelling of the OpenFlow
switch using alloy,” in Proc. ACM SIGCOMM Conf. SIGCOMM
(SIGCOMM), New York, NY, USA, 2013, pp. 527–528.

968 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

[146] OpenFlow Switch Specification, OpenFlow Consortium, Denmark, SC,
USA, 2015.

[147] J. Yao, Z. Wang, X. Yin, X. Shi, and J. Wu, “Formal modeling and
systematic black-box testing of SDN data plane,” in Proc. 22nd IEEE
Int. Conf. Netw. Protocols (ICNP), Raleigh, NC, USA, Oct. 2014,
pp. 179–190.

[148] Oftest LC Validating OpenFlow Swtiches. Accessed: 2014. [Online].
Available: http://www.projectfloodlight.org/oftest/

[149] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,” in
Proc. Passive Active Meas. 13th Int. Conf. (PAM), Vienna, Austria,
Mar. 2012, pp. 85–95.

[150] M. Kuzniar, M. Canini, and D. Kostic, “OFTEN testing OpenFlow
networks,” in Proc. Eur. Workshop Softw. Defined Netw. (EWSDN),
Darmstadt, Germany, Oct. 2012, pp. 54–60.

[151] M. Kuzniar, P. Perešíni, and D. Kostic, “What you need to know about
SDN flow tables,” in Proc. Passive Active Meas. 16th Int. Conf. (PAM),
New York, NY, USA, Mar. 2015, pp. 347–359.

[152] W. Wu, Y. Zhang, and S. Banerjee, “Automatic synthesis of NF models
by program analysis,” in Proc. 15th ACM Workshop Hot Topics Netw.
(HotNets), Atlanta, GA, USA, Nov. 2016, pp. 29–35.

[153] B. Tschaen et al., “SFC-checker: Checking the correct forward-
ing behavior of service function chaining,” in Proc. IEEE Conf.
Netw. Function Virtual. Softw. Defined Netw. (NFV-SDN), Nov. 2016,
pp. 134–140.

[154] X. Yin, Z. L. Wang, C. M. Jing, and X. G. Shi, “A TTCN-3-based
protocol testing system and its extension,” Sci. China Inf. Sci., vol. 51,
no. 11, pp. 1703–1722, 2008.

[155] S. K. Fayaz and V. Sekar, “Testing stateful and dynamic data planes
with FlowTest,” in Proc. 3rd Workshop Hot Topics Softw. Defined Netw.
(HotSDN), Chicago, IL, USA, Aug. 2014, pp. 79–84.

[156] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Proc. 12th Int.
Conf. Comput.-Aided Verification (CAV), Chicago, IL, USA, Jul. 2000,
pp. 154–169.

[157] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer invariant-
constrained models,” in Proc. SIGSOFT/FSE 19th ACM SIGSOFT
Symp. Found. Softw. Eng. (FSE) 13th Eur. Softw. Eng. Conf. (ESEC),
Szeged, Hungary, Sep. 2011, pp. 267–277.

[158] Y. Yakuwa, N. Tomizawa, and T. Tonouchi, “Efficient model checking
of OpenFlow networks using SDPOR-DS,” in Proc. 16th Asia–Pac.
Netw. Oper. Manag. Symp. (APNOMS), Hsinchu, Taiwan, Sep. 2014,
pp. 1–6.

[159] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in Proc. ACM SIGPLAN-SIGACT Symp.
Principles Program. Lang., 2005, pp. 110–121.

[160] J. Croft, R. Mahajan, M. Caesar, and M. Musuvathi, “Systematically
exploring the behavior of control programs,” in Proc. USENIX
Annu. Tech. Conf. USENIX ATC, Santa Clara, CA, USA, Jul. 2015,
pp. 165–176.

[161] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994.

[162] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL—A tool suite for automatic verification of real-time
systems,” in Proc. DIMACS/SYCON Workshop Hybrid Syst. III
Verification Control, 1996, pp. 232–243.

[163] C. Daws and S. Yovine, “Reducing the number of clock variables of
timed automata,” in Proc. Real Time Syst. Symp., Washington, DC,
USA, 1996, pp. 73–81.

[164] C. Scott et al., “Troubleshooting blackbox SDN control software
with minimal causal sequences,” in Proc. ACM SIGCOMM Conf.
(SIGCOMM), Chicago, IL, USA, Aug. 2014, pp. 395–406.

[165] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[166] D. Lebrun, S. Vissicchio, and O. Bonaventure, “Towards test-driven
software defined networking,” in Proc. IEEE Netw. Oper. Manag. Symp.
(NOMS), Kraków, Poland, May 2014, pp. 1–9.

[167] N. Shelly et al., “Destroying networks for fun (and profit),” in
Proc. 14th ACM Workshop Hot Topics Netw., Philadelphia, PA, USA,
Nov. 2015, p. 6.

[168] M. A. Chang, B. Tschaen, T. Benson, and L. Vanbever, “Chaos monkey:
Increasing SDN reliability through systematic network destruction,” in
Proc. ACM Conf. Spec. Interest Group Data Commun. (SIGCOMM),
London, U.K., Aug. 2015, pp. 371–372.

[169] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 163–174.

[170] A. Dill and T. Sun, “Synergistic derepression of gibberellin signaling
by removing RGA and GAI function in arabidopsis thaliana,” Genetics,
vol. 159, no. 2, pp. 777–785, 2001.

[171] G. Klein et al., “SeL4: Formal verification of an OS kernel,” in
Proc. 22nd ACM Symp. Oper. Syst. Principles (SOSP), Big Sky, MT,
USA, Oct. 2009, pp. 207–220.

[172] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in Proc. Design Autom. Conf., Jun. 2010,
pp. 755–760.

[173] T. Benson, A. Akella, and D. A. Maltz, “Mining policies from enter-
prise network configuration,” in Proc. ACM SIGCOMM Conf. Internet
Meas. Conf., Chicago, IL, USA, 2009, pp. 136–142.

[174] A. P. Sistla and P. Godefroid, “Symmetry and reduced symmetry in
model checking,” in Proc. Comput.-Aided Verification 13th Int. Conf.
(CAV), Paris, France, Jul. 2001, pp. 91–103.

[175] X. Amatriain and J. Basilico. (2015). Recommender Systems
in Industry: A Netflix Case Study. [Online]. Available: https://
conferences.oreilly.com/velocity/vl-ca-2018/public/schedule/detail/
66606/

[176] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. 9th ACM
Workshop Hot Topics Netw. (HotNets), Monterey, CA, USA, Oct. 2010,
p. 19.

[177] Buddy: A BDD Package. Accessed: 2016. [Online]. Available: http://
buddy.sourceforge.net/manual/main.html

[178] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. Mcmanus,
“Requirements for traffic engineering over MPLS,” J. Evidence Based
Soc. Work, vol. 10, no. 2, pp. 63–72, 1999.

[179] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann,
“OFRewind: Enabling record and replay troubleshooting for networks,”
in Proc. USENIX Conf. USENIX Tech., 2011, p. 29.

[180] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “Differential
provenance: Better network diagnostics with reference events,” in Proc.
ACM Workshop Hot Topics Netw., 2015, p. 25.

[181] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, “Diagnosing
missing events in distributed systems with negative provenance,” in
Proc. ACM Conf. SIGCOMM, 2014, pp. 383–394.

[182] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The good, the
bad, and the differences: Better network diagnostics with differential
provenance,” in Proc. Conf. ACM SIGCOMM, Florianópolis, Brazil,
2016, pp. 115–128.

[183] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system
rules using system-specific, programmer-written compiler extensions,”
in Proc. 4th Conf. Symp. Oper. Syst. Design Implement. (OSDI), 2000,
Art. no. 1.

Yahui Li received the B.S. degree from the College
of Software, Jilin University, China, in 2015. She is
currently pursuing the Ph.D. degree with Tsinghua
University. Her research concerns network verifica-
tion, network testing, and formal methods.

Xia Yin received the B.E., M.E., and Ph.D. degrees
in computer science from Tsinghua University
in 1995, 1997, and 2000, respectively, where
she is a Full Professor with the Department of
Computer Science and Technology. Her research
interests include future Internet architectures, formal
methods, protocol testing, and large-scale Internet
routing.

LI et al.: SURVEY ON NETWORK VERIFICATION AND TESTING WITH FORMAL METHODS: APPROACHES AND CHALLENGES 969

Zhiliang Wang received the B.E., M.E., and
Ph.D. degrees in computer science from Tsinghua
University, China, in 2001, 2003, and 2006,
respectively, where he is currently an Associate
Professor with the Institute for Network Sciences
and Cyberspace. His research interests include for-
mal methods and protocol testing, next-generation
Internet, and network measurement.

Jiangyuan Yao received the B.E. degree in engi-
neering mechanics from the Shandong University
of Science and Technology, the M.E. degree in
network information and security from Beijing
Jiaotong University, and the Ph.D. degree in com-
puter science from Tsinghua University. He is an
Associate Professor with the College of Information
Science and Technology, Hainan University. His
research concerns formal methods, protocol testing,
and cyberspace security.

Xingang Shi received the B.S. degree from
Tsinghua University and the Ph.D. degree from
the Chinese University of Hong Kong. He is cur-
rently with the Institute for Network Sciences
and Cyberspace, Tsinghua University. His research
interests include network measurement and routing
protocols.

Jianping Wu received the B.S., M.S., and
Ph.D. degrees from Tsinghua University. He is a
Full Professor and the Director of the Network
Research Center and the Ph.D. Supervisor with
the Department of Computer Science, Tsinghua
University. Since 1994, he has been in charge of
the China Education and Research Network. He is
a member of the Information Advisory Committee,
Office of National Information Infrastructure, the
Secretariat of State Council of China and is also
a Vice President of the Internet Society of China.

His research interests include next-generation Internet, IPv6 deployment and
technologies, and Internet protocol design and engineering.

Han Zhang (M’14) received the B.S. degree in com-
puter science and technology from Jilin University
and the Ph.D. degree from Tsinghua University.
He is currently with the School of Cyber Science
and Technology, Beihang University. His research
concerns computer networks, network security,
and AI.

Qing Wang received the B.S. degree in computer
science and technology from Tsinghua University,
China, in 2015, where she is currently pursuing
the M.S. degree. Her research concerns interdomain
routing and routing scalability.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

