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Abstract: We  consider  a  downlink  multi-user  scenario  and  investigate  the  use  of  reconfigurable  intelligent  surfaces

(RISs)  to  maximize  the  dirty-paper-coding  (DPC)  sum  rate  of  the  RIS-assisted  broadcast  channel.  Different  from  prior

works,  which  maximize  the  rate  achievable  by  linear  precoders,  we  assume  a  capacity-achieving  DPC  scheme  is

employed at the transmitter and optimize the transmit covariances and RIS reflection coefficients to directly maximize

the sum capacity of the broadcast channel. We propose an optimization algorithm that iteratively alternates between

optimizing  the  transmit  covariances  using  convex  optimization  and  the  RIS  reflection  coefficients  using  Riemannian

manifold  optimization.  Our  results  show  that  the  proposed  technique  can  be  used  to  effectively  improve  the  sum

capacity in a variety of scenarios compared to benchmark schemes.

Key words: broadcast  channels;  dirty-paper  coding;  multiple-input-multiple-output  (MIMO);  reconfigurable  intelligent

surfaces

1    Introduction

Reconfigurable  intelligent  surfaces  (RISs)  challenge
the  conventional  wisdom  that  wireless  propagation
environment  is  uncontrollable.  Some  surfaces  in  the
wireless environment can be coated by electromagnetic
materials  that  can  intelligently  interact  with
electromagnetic  waves  incident  upon  it,  ultimately
controlling  the  propagation  characteristics  and  giving
rise  to  intelligent  and  reconfigurable  radio

environments[1, 2].
The  ability  to  control  propagation  can  be  leveraged

to  engineer  the  channel  realizations  observed  by  the
communicating  nodes  to  optimize  different
performance  metrics  in  numerous  scenarios  leading  to
impressive  gains[3−8].  Of  most  practical  relevance  are
multi-user  multiple-access  (MAC)  and  broadcast
channels  (BCs)  corresponding  to  the  uplink  and
downlink  of  some  commercially  prevalent  wireless
systems.  Downlink  scenarios,  in  particular,  have
received a lot of attention[3−6]. It has been demonstrated
that the use of RISs results in substantial gains both in
terms of energy efficiency[3, 4] and achievable rates[5, 6],
and  could  achieve  gains  similar  to  massive  multiple-
input-multiple-output  (MIMO)  systems  but  with
drastically more efficient hardware.

In  this  paper,  we  investigate  the  use  of  RISs  to
improve  the  dirty-paper  coding  rate  (DPC),  i.e.,  the
capacity  of  a  multi-user  MIMO  Gaussian  BC.  Our
contributions can be summarized as follows.

●  Unlike  prior  works  in  Refs.  [5, 6],  which
considered  a  multi-user  multiple-input-single-output
(MISO) system with linear precoding at the transmitter,
we  assume  a  multi-user  MIMO  Gaussian  broadcast
channel  with  a  non-linear  capacity-achieving  DPC
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scheme.
●  Unlike  prior  works  in  Refs.  [4, 9],  which  rely  on

the  signal-to-noise-plus-interference  ratios  (SINRs)
achieved  by  linear  precoders,  we  assume  a  non-linear
capacity-achieving  DPC scheme and  aim to  maximize
the sum rate capacity.

● We exploit universal channel knowledge with BC-
MAC  duality  to  map  the  broadcast  problem  into  a
computationally  friendlier  dual-MAC  problem  that
achieves  the  same  sum  rate  capacity[10].  Then,  we
develop an alternating optimization algorithm to solve
the  dual  problem  by  iteratively  optimizing  the  dual
covariances  and  the  RIS  reflection  coefficients
independently. After solving the dual problem, the dual
reflection  coefficients  solution  will  be  equal  to  the
original  problem’s reflection coefficients solution,  i.e.,
the  duality  gap  is  zero.  On  the  other  hand,  the  dual
covariances  solutions  will  be  transformed  to  the
original problem covariances in closed-form[10].

●  We  provide  numerical  simulation  results
demonstrating  that  the  proposed  optimization  scheme
can  be  used  to  effectively  improve  the  sum  rate
capacity  in  a  variety  of  scenarios  compared  to
benchmark schemes.

2    System model

N M ⩾ KN

x =
∑K

k=1 xk

We consider a downlink multi-user broadcast  scenario
with  a  base  station  with M antennas  and K multi-
antenna  users  with  antennas  each,  where .
As  shown  in Fig.  1,  the  link  is  assisted  by  a  single
L-element  reflectarray-based  RIS[2].  Let 
denote  the  transmitted  vector  from  the  base  station,

xk k
Rk

k

where  is the DPC vector transmitted to the -th user
whose  covariance  is  to  be  optimized.  Hence,  the
baseband received signal at the -th user can be written
as
 

yk = Hk x+ nk (1)

Hk N ×M

k

nk N ×1 k

σ2

CN
(
0,σ2

n

)

where  is  the  effective  channel  matrix  from
the base station to the -th user including the effects of
the RIS, and  is the  noise vector at the -th user
whose  elements  are  distributed  as  independent  and
identically  distributed  (i.i.d.)  zero  mean  complex
Gaussian  random  variables  with  variance,  i.e.,

.

Hk

k

Unlike  a  traditional  system,  the  effective  channel,
,  between  the  base  station  and  the  users  can  be

controlled  by  changing  the  RIS  configuration.  We
assume a reflectarray-based RIS, which is the simplest
way to implement an RIS. In reflectarray-based RIS, a
passive  reflectarray  whose  elements  are  traditional
antennas  is  connected  to  phase  shifters  that  can  be
controlled  electronically  to  phase-shift  the  incident
signal[2].  Therefore,  we  can  write  the  RIS-assisted
channel for the -th user as
 

Hk = Dk +FkQG (2)

Dk N ×M

k Fk N ×L

k G L×M

Q

Dk Fk Gk

CN (0,βd) CN
(
0,β f

)
CN

(
0,βg

)
βd β f βg

where  denotes  the  direct,  i.e.,  not
controllable  by  the  RIS,  channel  between  the  base
station and the -th user,  denotes the  channel
between the RIS and the -th user,  denotes the 
channel  between  the  base  station  and  the  RIS,  and 
denotes  the  RIS  controllable  interaction  matrix.  We
assume  the  elements  of , ,  and  are  i.i.d.  with
distributions , ,  and ,
respectively,  where  parameters , ,  and  are
determined  by  the  path  loss  model  to  be  discussed  in
Section 4.

Assuming  no  coupling  between  the  RIS  antenna
elements, the interaction matrix can be written as
 

Q = diag (ψ1,ψ2, . . . ,ψL) (3)

ψi

i

|ψi| = 1 ,

∀i = 1, 2, . . . , L

where  represents  the  complex  reflection  coefficient
of the -th element. Since the RIS does not possess any
amplification capabilities and can only reflect and shift
the  phase  of  the  incident  signals,  we  assume 

.  Finally,  similar  to  Refs.  [4−6, 9],  we
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Fig. 1    System model.
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assume  both  the  base  station  and  all  users  have  prior
knowledge  of  all  relevant  channels,  which  can  be
obtained  using  the  techniques  in  the  literature,  e.g.,
Refs. [11, 12].

3    Capacity  maximization  for  RIS-assisted
broadcast MIMO transmissions

{Rk}Kk=1

Q

In  this  paper,  we  assume  a  capacity-achieving  DPC
scheme  is  used  at  the  base  station  and  aim  to  jointly
optimize the transmit covariances, , and the RIS
interaction  matrix, ,  to  maximize  the  DPC sum rate,
i.e.,  the  sum  capacity,  of  the  RIS-assisted  MIMO-BC
channel.

Assuming the users are encoded in the order of their
indices,  the  achievable  MIMO-BC  sum  rate  using  a
DPC  scheme,  for  arbitrary  transmit  covariances  and
RIS configuration, can be written as
 

RBC
sum =

K∑
k=1

log2 det

I+
1
σ2

n
Hk Rk H†k

(
I+Hk

K∑
k=1

1
σ2

n
Rk H†k

)−1
(4)

Hk = Dk +FkQG (·)†

{Rk}Kk=1

Q

P

where I is an identity matrix, , and 
denotes the matrix Hermitian transpose. Our goal is to
find a set  of  transmit  covariances, ,  and an RIS
configuration  that  approximately  maximizes  the
achievable sum rate  in  Eq.  (4)  given a  transmit  power
constraint . This problem can be formulated as
 

maximize
{Rk}Kk=1, Q

RBC
sum,

subject to Q = diag (ψ1,ψ2, . . . ,ψL) ,
|ψℓ | = 1, ∀ℓ = 1,2, . . . ,L;
Rk ≽ 0,
K∑

k=1
tr (Rk) ⩽ P

(5)

{Rk}Kk=1 Q
Unfortunately,  the  objective  in  Formula  (5)  is  not

convex in  and . Additionally, the first and the
second  constraints  constitute  non-convex  sets  which
render  the  problem  very  hard  to  solve.  In  the  sequel,
we  propose  an  alternating  optimization  scheme  to
obtain  a  sub-optimal  solution  for  Formula  (5)※ .  In
particular,  as  shown  in Fig.  2,  we  break  Formula  (5)
into  two  sub-problems  over  the  RIS  reflection

Q {Rk}Kk=1coefficients, ,  and  the  transmit  covariances, ,
individually.  The  two  problems  are  then  alternately
solved until convergence to a locally optimal solution.

3.1    RIS interaction matrix optimization

In  this  section,  we  present  the  RIS  reflection
coefficients  optimization  problem given  a  set  of  fixed
transmit  covariances.  Again,  it  is  advantageous  to
leverage  duality  to  work  with  the  more  tractable  dual
MAC  sum  rate  expression.  Given  a  fixed  set  of
covariances,  the  problem  of  optimizing  the  RIS
reflection coefficients can be written as
 

maximize
Q

log2 det
(
I+

1
σ2

n

K∑
k=1

H†k RdMAC
k Hk

)
,

subject to Q = diag (ψ1,ψ2, . . . ,ψL) ,
|ψℓ | = 1, ∀ℓ = 1,2, . . . ,L

(6)

H = [H1, H2, . . . , HK]

R = blkdiag (R1,R2, . . . ,RK)

k

k Rk

We  transform  the  dual  MAC  into  an  equivalent
single-user (SU)-MIMO channel with a block diagonal
constraint  on the transmit covariance.  In particular,  let

 denote the composite channel of
all  users  and  denote  the
block diagonal matrix whose -th diagonal block is the
-th  user  transmit  covariance, .  Hence,  we  can

rewrite Formula (6) as
 

minimize
Q

− log2 det
(
I+

1
σ2

n
H†RH

)
,

subject to Q = diag (ψ1,ψ2, . . . ,ψL) ,
|ψℓ | = 1, ∀ℓ = 1,2, . . . ,L

(7)

H

CL

Note that the above objective function resembles the
mutual information of a linear vector Gaussian channel
whose gradient  with respect  to  the channel  matrix, ,
has been obtained in closed-form in Ref. [13], and the
constraint  set  can  be  geometrically  interpreted  as
restricting  the  solution  to  lie  on  the  complex  circle
manifold,  which is  a  smooth Riemannian submanifold
of [14] formally defined as
 

M =
{
ψ ∈ CL : |ψ1| = |ψ2| = · · · = |ψL| = 1

}
(8)

Hence,  the  above  problem  can  be  cast  as  an
unconstrained  manifold  optimization  problem.
Riemannian  manifold  optimization  has  been  shown to
perform  well  in  solving  hybrid/constant  envelope
precoding  problems[15] and  SU  multiple-input-single-
output  (MISO)  RIS-assisted  channels[16].  Many  of  the
classical  gradient  based  unconstrained  optimization

※Alternating optimization algorithms have been widely utilized in Refs.
[4, 6, 9].  It  was  shown  that,  in  general,  alternating  optimization
algorithms  converge  to  a  locally  optimal  point  and  can  achieve  quite
good performance.
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algorithms  in  Euclidean  space  have  generalized
counterparts  in  Riemannian  manifolds.  In  this  article,
in Algorithm 1, we use the Riemannian Polak-Reibére
conjugate  gradient  algorithm[14],  which  we  briefly
summarize for the complex circle manifold case next.

ψm

∇M f (ψm)

ψm

v ∈ CL

Starting  from  a  point  on  the  surface  of  the
manifold, we find a descent direction. The Riemannian
gradient, ,  is  defined  as  the  direction  of  the
greatest  increase  of  the  objective  function  at  a  given
point  on  the  manifold  but  restricted  to  its  tangent
space,  which  is  defined  for  any  rector ,  for  the
complex circle manifold as
 

TψmM =
{
v ∈ CL :ℜ

(
v⊙ψ†m = 0L

)}
(9)

ℜ{·} ⊙where  and  denote the element-wise real-part of
a  complex  vector  and  the  Hadamard  element-wise
multiplication,  respectively.  Numerically,  the
Riemannian  gradient  is  found  by  projecting  the
Euclidean gradient into the tangent space, which for the
complex circle manifold is expressed as
 

∇M f (ψm) = ∇ f (ψm)−ℜ
{
∇ f (ψm)⊙ψ†m

}
⊙ψm (10)

f

ψℓ Hk

Hence,  we  first  find  the  Euclidean  gradient  of  the
objective  in  Formula  (7)  with  respect  to  the  RIS
reflection  coefficients.  Let  denote  the  objective  of
Formula  (7),  which  is  a  real-valued  function  that
depends on reflection coefficient  through , which

ℓ

∇ f (ψm)
∂ f
∂ψℓ

are both complex.  Thus,  the chain rule  from Ref.  [13]
can  be  used  to  find  the -th  element  of  the  gradient,

, i.e.,  to be
 

∂ f
∂ψℓ
= tr

(
∇H f .

∂H†

∂ψℓ

)
+ tr

(
∇†H f .

∂H
∂ψℓ

)
(11)

tr (·)where  denotes the matrix trace operator.
∇ψH ∇H f kNow, we find  and . Note that the -th user

channel can be rewritten as
 

Hk = Dk +
L∑
ℓ=1

ψℓ [Fk]:,ℓ ⊗ [G]ℓ,: (12)

[Fk]:,ℓ ℓ Fk [G]ℓ,:
ℓ G ⊗

k

ℓ

where  denotes  the -th  column  of , 
denotes  the -th  row  of ,  and  denotes  the
Kronecker product. Hence, for the -th user, the matrix
of partial derivatives with respect to the -th phase shift
is given by
 

∂Hk

∂ψℓ
= [Fk]:,ℓ ⊗ [G]ℓ,: (13)

and the  composite  matrix  of  partial  derivatives  can be
written as
 

∂H
∂ψℓ
=

[
∂H1

∂ψℓ
,
∂H2

∂ψℓ
, . . . ,

∂HK

∂ψℓ

]
(14)

∇H fFrom Ref. [13],  can be expressed as
 

∇H f =
1
σ2

n
HR

(
I+

1
σ2

n
H†HR

)−1
(15)

ψm

ηm TψmM
⟨ηm,∇ f (ψm)⟩ < 0

(m+1)

Starting  at  any  point  on  the  manifold, ,  the
Riemannian  gradient  can  be  used  to  find  a  descent
direction  in  the  tangent  space  such  that

.  As  alluded  to  above,  we  use  the
Polak-Reibére  conjugate  gradient  algorithm¶.  In
Euclidean space, the Polak-Reibére descent direction at
the -th iteration is given by
 

ηm+1 = −∇M f (ψm+1)+βPR
m+1 ηm (16)

βPR
m+1where  is  the  conjugate  parameter  for  the  Polak-

 

Q, {Rk
dMAC}K

k=1 {Rk
dMAC}K

k=1Q

Initialize Solve Eq. (8)
to update

Solve Formula (6)
to update Convergence?

No

Yes Transform MAC
precoders to BC

precoders
 

Fig. 2    Proposed alternating optimization scheme.
 

 

Algorithm 1　Riemannian Polak-Reibére conjugate
gradient algorithm

α1Data: all CSI information, 
m = 1 αm = α1

ψm = ψ1

(1) Initially: Iterations , step size = , initial point =
　 
(2) Compute the Riemannian gradient in Eq. (10);

βPR−M
m+1

(3) Calculate the Polak-Reibére conjugate parameter for the
　 manifold generalization  in Eq. (19);

(m+1)
ηMm+1

(4) Calculate the Polak-Reibére descent direction at the -th
　  iteration  in Eq. (22);
(5) while: No Convergence do

ψm+1 = R
(
ψm +αmη

M
m+1

)
　　　　 ;
　　　　m = m+1;
　　　　Return to Step (2);
　end
 

¶The Polak-Reibére  conjugate  gradient  algorithm is  known to  converge
superlinearly  with  little  added  complexity  compared  to  steepest-
descent[14].  In  general,  the  convergence  of  the  conjugate  gradient
algorithms has been addressed in Refs. [17−19].
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Reibére algorithm, which is given by[14]
 

βPR
m+1 =

∇ f (ψm+1)† (∇ f (ψm+1)−∇ f (ψm))

∥∇ f (ψm)∥2
(17)

∥∇ f (ψm)∥2

∇ f (ψm)
∥∇ f (ψm)∥2 = ∇ f (ψm)†∇ f (ψm)

where  denotes  the  square  of  the  Euclidean
norm  of  and  is  given  by

.

∇M f (ψm+1)
ψm+1 Tψm+1M

ηm ∇M f (ψm) ψm

TψmM

Tψm 7→ψm+1 : TψmM 7→ Tψm+1M

The update equation above cannot be directly applied
to manifold optimization. In particular,  lies
in the tangent space at point ,  i.e., ,  while

 and  lie  in  the  tangent  space  at  point ,
i.e., ;  hence,  they  cannot  be  directly
added/subtracted.  This  problem  is  circumvented  by
means  of  a  vector  transport  operation,

,  which  takes  a  vector
from the tangent space at one point on the manifold to
the  tangent  space  at  another  point  on  the  manifold.  In
the  case  of  the  complex  circle  manifold,  the  vector
transport operation can be expressed as[14]
 

Tψm 7→ψm+1 (v) = v−ℜ
{
v⊙ψ†m+1

}
⊙ψm+1 (18)

which is equivalent to an additional projection from the
old tangent space to the new tangent space. Leveraging
vector  transport  operator,  we  define  the  conjugate
parameter  for  the  manifold  generalization  of  Polak-
Reibére as
 

βPR−M
m+1 = ∇ f (ψm+1)†

(
∇ f (ψm+1)−Tψm 7→ψm+1 (∇ f (ψm))

)
∥∇ f (ψm)∥2

(19)
ψm+1

TψmM
M

Finally,  note  that  an  updated  point  lies  in  the
tangent space  and not necessarily on the surface
of  the  manifold .  Hence,  an  additional  mapping  is
needed  to  ensure  the  updated  point  remains  on  the
manifold.  This  mapping  is  referred  to  as  a  retraction
and for the case of the complex circle manifold can be
expressed as[14]
 

R (v) = v⊘ |v| (20)

|·| ⊘where  and  denote element-wise absolute value and
element-wise  Hadamard  division,  respectively.
Combining  everything  we  described  earlier,  the
solution is iteratively updated using the formula
 

ψm+1 = R
(
ψm+αmη

M
m+1

)
(21)

where
 

ηMm+1 = −∇M f (ψm+1)+βPR−M
m+1 Tψm 7→ψm+1

(
ηm

)
(22)

αm

f (ψm+1) ⩽ f (ψm)

and  is the step size, which can be chosen using any
one-dimensional  line  search  algorithm.  In  particular,
we  use  the  well-known  Armijo  backtracking  line
search  algorithm[14],  which  ensures  that  the  objective
function  is  non-increasing,  i.e., .  The
proposed alternating solution algorithm is summarized
in Algorithm 2.

3.2    Transmit covariances optimization

Q Q

Q

In  this  section,  we  present  the  transmit  covariances
optimization  problem  with  fixed  RIS  reflection
coefficients  matrix .  Given  a  fixed ,  the  effective
channel  matrix  will  be  fixed,  and  the  optimization
problem  in  Foumula (5)  reduces  to  the  traditional
MIMO-BC  covariance  optimization  problem.  Even  if
the problem remains non-convex even for a fixed , it
can be cast  into a convex dual  problem using the BC-
MAC duality relationship. In particular, the MIMO-BC
is  transformed  into  a  dual  MIMO  MAC  with  a  sum
power  constraint  over  all  users.  This  problem  can  be
readily solved using convex optimization techniques to
obtain  the  set  of  dual  MAC  covariances.  The  sum
capacity of the dual MIMO MAC has been shown to be
equal to the original MIMO-BC, i.e., the duality gap is
zero,  and  the  BC  covariances  can  be  readily  obtained
using simple closed-form transformations[10].
 

Algorithm 2　Proposed alternating optimization scheme
Data: all CSI information.

I = 1(1) Initially: Iterations .

Q {RdMAC}Kk=1(2) Initialize , ;
(3) RIS interaction matrix optimization

{RdMAC}Kk=1　　(a) For fixed , formulate the RIS reflection
　　　  coefficients optimization problem in Formula (6);
　　(b) Transform the dual MAC problem into an equivalent
　　　  single-user (SU)-MIMO channel problem in Formula (7);
　　(c) Apply the Riemannian Polak-Reibére conjugate
　  　　gradient algorithm to solve Formula (7);

Q　　(d) Update ;
(4) Transmit covariances optimization

Q　　(a) For the value of  obtained in Steps (3) and (4), formulate
　 　　 and solve the transmit covariances optimization
　  　　problem in Formula (23);

{RdMAC}Kk=1　　(b) Update ;
(5) If Solution Converges then
　 Transform MAC precoders to BC precoders;
　　else

I = I+1　 ; Return to Step (3);
　　end
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{
RdMAC

k

}K

k=1
Let  denote  the  dual  MAC  transmit

covariances.  The  problem  of  optimizing  the  transmit
covariances of  the dual  MIMO MAC with sum power
constraint can be written as
 

maximize{
RdMAC

k

}K
k=1

log2 det
(
I+

1
σ2

n

K∑
k=1

H†k RdMAC
k Hk

)
,

subject to RdMAC
k ≽ 0,

K∑
k=1

tr
(
RdMAC

k

)
⩽ P

(23)

{
RdMAC

k

}K

k=1

{Rk}Kk=1

which  can  be  easily  solved  to  obtain .  The
BC  transmit  covariances, ,  can  then  be  readily
obtained using the transformations in Ref. [10].

To  prove  the  convergence  of  Algorithm 2,  we  need
to show that first, the optimal solution of Formula (5) is
bounded,  second,  that  the  objective  function  in
Formula  (5)  is  non-decreasing  over  the  iterations  of
Algorithm  2.  It  is  clear  that  the  optimal  solution  of
Formula  (5)  is  bounded  from  above  by  the  transmit
power  constraint.  Therefore,  the  convergence  of
Algorithm 2  is  guaranteed  if  the  objective  function  in
Formula  (5)  is  non-decreasing  over  the  iterations  of
Algorithm  2,  which  is  proved  by  the  following
proposition.

Proposition  1　The  objective  function  in  Formula
(5) is non-decreasing over the iterations of Algorithm 2.

RBC
sum R({Rk}Kk=1 , Q)

({Rk}Kk=1 , Q)

([{Rk}Kk=1]I , [Q]I)

Proof:  Denote  as  for  a  feasible
solution , and the solution obtained at the I-th
iteration is .

[{Rk}Kk=1]I

R([{Rk}Kk=1]I , [Q]I+1) ⩾ R([{Rk}Kk=1]I , [Q]I)

(1) From step (3), for a fixed , there exists a
feasible  solution  of  the  problem  in  Formula (6)  using
the  Riemannian  Polak-Reibére  conjugate  gradient
algorithm, i.e.,   

[Q]I+1

R([{Rk}Kk=1]I+1, [Q]I+1) ⩾ R([{Rk}Kk=1]I , [Q]I)

(2)  From  step  (4),  for  a  fixed ,  the  optimal
solution  of  the  problem  in  Formula  (23),  and
accordingly,  the  optimal  solution  for  transmit
covariances  optimization  problem  can  be  found,  i.e.,

  .

4    Numerical results

In this section, we present numerical simulation results
to  show  the  efficacy  of  the  proposed  optimization
technique.  As  shown  in Fig.  3,  we  assume  the  base
station  and  the  RIS  are  200  m  apart  on  the  same
horizontal  line,  and  the  users  are  randomly  and
uniformly distributed on a circle whose center is 30 m

βd β f βg

{Dk}Kk=1

G
{Fk}Kk=1

104

away from the RIS vertically and whose radius is 10 m.
3GPP  path-loss  models[20] at  2.5  GHz  are  used  to
calculate  the  path  loss  parameters,  i.e., , ,  and .
We assume the direct channels, , to be non line-
of-sight (NLOS) while the channels through the RIS, 
and ,  are  assumed  to  be  line-of-sight  (LOS).
Simulation  parameters  are  summarized  in Table  1.
Results  are  obtained  over  independent  channel
realizations  covering  100  random  locations  with  100
small scale fading realization in each location.

First,  we start by verifying the proposed algorithm’s
convergence. Figure  4 shows  the  achievable  MIMO-
BC  sum  rate  variation  with  the  algorithm’s  iterations.
As  shown  from  the  results  in Fig.  4,  the  proposed
algorithm  can  converge  to  a  locally  optimal  solution
after a limited number of iterations. Additionally, when
increasing  the  number  of  the  RIS  reflective  elements,
L,  the  algorithm  still  converges  but  with  more
iterations‡.  Additionally,  when the transmission power
is changed, the algorithm still converges.

Figure 5 shows the empirical cumulative distribution
function (CDF) of the sum rate capacities achieved by
the  proposed  scheme  compared  to  two  benchmarks.
The  first  benchmark,  Random  (no  RIS),  refers  to  the

 

30 m

(0, 0)

G Fk

Dk

R

(0, 200 m)
RIS

Base station 
Fig. 3    Illustration  of  the  geometric  scenario  used  for
calculating the distance dependent path loss parameters.
 

 

Table 1    Simulation parameters.

Parameter Value

LOS path loss (dB) 35.6+22.0log10 d

NLOS path loss (dB) 32.6+36.7log10 d

Transmission power (P) (dBm) 23
Number of RIS elements (L) 100

Channel bandwidth (kHz) 180
Thermal noise PSD (dBm/Hz) −170

 

‡ Increasing  the  number  of  the  RIS  reflective  elements  increases  the
number  of  optimization  parameters  in  Formula  (5),  and  accordingly,
more iterations will be needed to reach a locally-optimal solution.
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case  where  a  reflecting/scattering  surface  exists  but  is
not  intelligent,  i.e.,  we  cannot  control  the  reflection
coefficients  and  they  are  set  randomly§.  The  second
benchmark,  Greedy  AO,  refers  to  using  the  scheme
from Ref. [21]. It should be noted that the Greedy AO

%

%

iteratively  adjusts  each  phase-shift  individually  to
optimize  the  RIS  configuration.  The  authors  in
Ref.  [21]  have  proved  that  the  Greedy  AO  has  a
polynomial complexity/iteration in terms of the number
of  the  RIS  reflection  coefficients.  On  the  other  hand,
the  proposed  Riemannian  Polak-Reibére  conjugate
gradient  algorithm has  a  linear  complexity/iteration  in
terms  of  the  number  of  the  RIS  reflection
coefficients[22, 23].  We also  consider  the  case  when the
direct  link  is  completely  blocked,  which  is  a  rather
common  assumption  in  the  literature,  e.g.,  Ref.  [7].
From Fig.  5,  when the  direct  link exists,  the  proposed
technique  improves  sum  rate  capacity  by  about  25
compared  to  the  random configuration  case;  however,
it  is  only  very  slightly  better  than  the  algorithm  from
Ref. [21]. When the direct link is blocked, the channel
is  completely  controlled  by  the  RIS  and  its
configuration  quality  plays  an  important  role  in
determining  performance.  In  this  case,  the  proposed
technique  nearly  doubles  the  sum  rate  capacity  of  the
channel  compared  to  the  random  configuration  case
and significantly improves upon the performance of the
Greedy AO technique from Ref. [21] by about 10 .

Figure  6 shows  the  average  sum  rate  capacities
achieved by the proposed scheme versus the number of
RIS  elements  compared  to  the  same  two  benchmarks
discussed  above.  From Fig.  6,  when  the  direct  link
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Fig. 4    Convergence of the sum rate with the proposed algorithm’s iterations.
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Fig. 5    Empirical  cumulative  distribution  of  the  sum  rate
capacities  achieved  by  the  proposed  scheme  compared  to
benchmarks.  Baseline  (Greedy  AO)  refers  to  using  the
scheme from Ref. [21] to optimize the reflection coefficients.
 

§Since  the  reflecting  surfaces  are  not  intelligent,  i.e.,  they  are  not
reconfigurable  then,  we  can  assume  this  case  without  RIS  or  with  a
random configuration of the reflecting coefficients.
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exists, the performance gain of the proposed technique
over the random configuration widens as the number of
the  RIS  elements  increases;  however,  its  performance
advantage  over  the  baseline  from  Ref.  [21]  appears
negligible for the considered numbers of RIS elements.
When the direct link is blocked, the proposed technique
performance  gain  over  the  random  configuration
benchmark grows faster with the increasing number of
RIS  elements.  Moreover,  a  significant  improvement
over  the  performance  of  the  Greedy  AO  technique
from Ref. [21] is observed and it widens as the number
of RIS elements increases.

5    Conclusion

In  this  article,  we  have  investigated  the  use  of
reconfigurable intelligent surfaces to maximize the sum
capacity  of  the  RIS-assisted  BC.  We  assumed  a
capacity-achieving  dirty-paper  precoding  scheme  is
employed at the transmitter and proposed an alternating
optimization  scheme  that  iteratively  optimizes  the
transmit  covariances  and  RIS  reflection  coefficients
using  convex  optimization  and  Riemannian  manifold
optimization,  respectively.  Numerical  simulation
results have shown that the proposed technique can be
used  to  effectively  improve  the  sum  rate  capacity
compared to benchmark schemes.
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