2019 IEEE/CVF International Conference on Computer Vision (ICCV) ICCV 2019

Table of Contents

Message from the General and Program Chairs	cx
2019 Organizing Committee	cxi
2019 Area Chairs	cxii
2019 Reviewers	cxiii

Poster 1.1

Deep Learning

FaceForensics++: Learning to Detect Manipulated Facial Images	, 1
DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration Weixin Lu (Baidu ADU), Guowei Wan (Baidu Company), Yao Zhou (Baidu ADT), Xiangyu Fu (Baidu), Pengfei Yuan (Baidu), and Shiyu Song (Baidu ADU)	12
Shape Reconstruction Using Differentiable Projections and Deep Priors	22
Fine-Grained Segmentation Networks: Self-Supervised Segmentation for Improved Long-Term Visual Localization	31
SANet: Scene Agnostic Network for Camera Localization	42

Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning 52 Pedro Hermosilla Casajus (Ulm University), Tobias Ritschel (UCL), and 52 Timo Ropinski (Ulm University) 52
 Hierarchical Self-Attention Network for Action Localization in Videos
Goal-Driven Sequential Data Abstraction
Jointly Aligning Millions of Images With Deep Penalised Reconstruction Congealing
Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation
NLNL: Negative Learning for Noisy Labels
 Adversarial Robustness vs. Model Compression, or Both?
On the Design of Black-Box Adversarial Examples by Leveraging Gradient-Free Optimization and 121 Operator Splitting Method 121 Pu Zhao (Northeastern University), Sijia Liu (IBM), Pin-Yu Chen (IBM 121 Research), Nghia Hoang (IBM Research), Kaidi Xu (Northeastern 101 University), Bhavya Kailkhura (LLNL), and Xue Lin (Northeastern 101 University) 101
DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks
Learning Robust Facial Landmark Detection via Hierarchical Structured Ensemble
 Remote Heart Rate Measurement From Highly Compressed Facial Videos: An End-to-End Deep Learning Solution With Video Enhancement

 Face-to-Parameter Translation for Game Character Auto-Creation	. 161
Visual Deprojection: Probabilistic Recovery of Collapsed Dimensions Guha Balakrishnan (MIT), Adrian Dalca (MIT), Amy Zhao (MIT), John Guttag (MIT), Fredo Durand (MIT), and William Freeman (MIT)	171
 StructureFlow: Image Inpainting via Structure-Aware Appearance Flow	181
Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization	191
Generative Adversarial Training for Weakly Supervised Cloud Matting Zhengxia Zou (University of Michigan), Wenyuan Li (Beihang University), Tianyang Shi (NetEase Fuxi AI Lab), Zhenwei Shi (Beihang University), and Jieping Ye (Didi Chuxing & University of Michigan)	. 201
PAMTRI: Pose-Aware Multi-Task Learning for Vehicle Re-Identification Using Highly Randomized Synthetic Data	. 211
Generative Adversarial Networks for Extreme Learned Image Compression Eirikur Agustsson (ETH Zurich), Michael Tschannen (Google Brain), Fabian Mentzer (ETH Zurich), Radu Timofte (ETH Zurich), and Luc Van Gool (ETH Zurich)	221
Instance-Guided Context Rendering for Cross-Domain Person Re-Identification Yanbei Chen (Queen Mary University of London), Xiatian Zhu (Vision Semantics Limited), and Shaogang Gong (Queen Mary University of London)	. 232
What Else Can Fool Deep Learning? Addressing Color Constancy Errors on Deep Neural Network Performance Mahmoud Afifi (York University) and Michael Brown (York University)	243
Beyond Cartesian Representations for Local Descriptors Patrick Ebel (EPFL), Eduard Trulls (Google), Kwang Moo Yi (University of Victoria), Pascal Fua (EPFL. Switzerland), and Anastasiia Mishchuk (EPFL)	253

Distilling Knowledge From a Deep Pose Regressor Network	263
Instance-Level Future Motion Estimation in a Single Image Based on Ordinal Regression	273
 Vision-Infused Deep Audio Inpainting	283
 HAWQ: Hessian AWare Quantization of Neural Networks With Mixed-Precision	293
 Evaluating Robustness of Deep Image Super-Resolution Against Adversarial Attacks	303
Overcoming Catastrophic Forgetting With Unlabeled Data in the Wild	312
Symmetric Cross Entropy for Robust Learning With Noisy Labels	322
Few-Shot Learning With Embedded Class Models and Shot-Free Meta Training	331
Dual Directed Capsule Network for Very Low Resolution Image Recognition	340
Recognizing Part Attributes With Insufficient Data	350
USIP: Unsupervised Stable Interest Point Detection From 3D Point Clouds	361
Mixed High-Order Attention Network for Person Re-Identification	371

Budget-Aware Adapters for Multi-Domain Learning Rodrigo Berriel (UFES), Stephane Lathuillere (University of Trento), Moin Nabi (SAP), Tassilo Klein (SAP), Thiago Oliveira-Santos (UFES), Nicu Sebe (University of Trento), and Elisa Ricci (FBK - Technologies of Vision)	
Compact Trilinear Interaction for Visual Question Answering Tuong Do (AIOZ), Huy Tran (AIOZ), Thanh-Toan Do (The University of Liverpool), Erman Tjiputra (AIOZ), and Quang Tran (AIOZ)	
Towards Latent Attribute Discovery From Triplet Similarities Ishan Nigam (CMU), Pavel Tokmakov (CMU), and Deva Ramanan (Carnegie Mellon University)	
GeoStyle: Discovering Fashion Trends and Events Utkarsh Mall (Cornell University), Kevin Matzen (Facebook), Bharath Hariharan (Cornell University), Noah Snavely (Cornell University and Google AI), and Kavita Bala (Cornell)	411
Towards Adversarially Robust Object Detection Haichao Zhang (Baidu Research) and Jianyu Wang (Baidu Research USA)	421
Recognition	
Automatic and Robust Skull Registration Based on Discrete Uniformization Junli Zhao (Qingdao University), Xin Qi (Stony Brook University), Chengfeng Wen (Stony Brook University), Na Lei (Dalian University of Technology), and Xianfeng Gu (Stony Brook University)	431
 Few-Shot Image Recognition With Knowledge Transfer	441
Fine-Grained Action Retrieval Through Multiple Parts-of-Speech Embeddings Michael Wray (University of Bristol), Gabriela Csurka (Naver Labs Europe), Diane Larlus (Naver Labs Europe), and Dima Damen (University of Bristol)	450
 Vehicle Re-Identification in Aerial Imagery: Dataset and Approach Peng Wang (Northwestern Polytechnical University), Bingliang Jiao (Northwestern Polytechnical University), Lu Yang (Northwestern Polytechnical University), Yifei Yang (Northwestern Polytechnical University), Shizhou Zhang (NorthWestern Polytechnical University), Wei Wei (Northwestern Polytechnical University), and Yanning Zhang (Northwestern Polytechnical University) 	460
Bridging the Domain Gap for Ground-to-Aerial Image Matching Krishna Regmi (University of Central Florida) and Mubarak Shah (University of Central Florida)	470
A Robust Learning Approach to Domain Adaptive Object Detection Mehran Khodabandeh (Simon Fraser University), Arash Vahdat (NVIDIA), Mani Ranjbar (Quadrant AI), and William Macready (Quadrant AI)	480

Graph-Based Object Classification for Neuromorphic Vision Sensing Yin Bi (University College London), Aaron Chadha (University College London), Alhabib Abbas (University College London), Eirina Bourtsoulatze (University College London), and Yiannis Andreopoulos (University College London)	. 491
 Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving Jiwoong Choi (Seoul National University), Dayoung Chun (Seoul National University), Hyun Kim (Seoul National University of Science and Technology), and Hyuk-Jae Lee (SNU) 	502
 Sharpen Focus: Learning With Attention Separability and Consistency	. 512
Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition Tianshui Chen (Sun Yat-Sen University), Muxin Xu (Sun Yat-sen University), Xiaolu Hui (Sun Yat-sen University), Hefeng Wu (Sun Yat-sen University; Guangdong University of Foreign Studies), and Liang Lin (Sun Yat-sen University)	. 522
DeceptionNet: Network-Driven Domain Randomization	. 532
Pose-Guided Feature Alignment for Occluded Person Re-Identification Jiaxu Miao (University of Technology Sydney), Yu Wu (University of Technology Sydney), Ping Liu (UTS), Yuhang Ding (University of Technology. Sydney), and Yi Yang (UTS)	. 542
Robust Person Re-Identification by Modelling Feature Uncertainty <i>Tianyuan Yu (University of Surrey), Da Li (QMUL), Yongxin Yang</i> <i>(University of Edinburgh), Timothy Hospedales (Edinburgh University),</i> <i>and Tao Xiang (University of Surrey)</i>	. 552
Co-Segmentation Inspired Attention Networks for Video-Based Person Re-Identification Arulkumar Subramaniam (Indian Institute of Technology Madras), Athira Nambiar (Indian Institute of Technology Madras), and Anurag Mittal (Indian Institute of Technology Madras)	. 562
A Delay Metric for Video Object Detection: What Average Precision Fails to Tell Huizi Mao (stanford university), Xiaodong Yang (NVIDIA Research), and Bill Dally (stanford university)	. 573
IL2M: Class Incremental Learning With Dual Memory Eden Belouadah (CEA LIST) and Adrian Popescu (CEA LIST)	. 583

Segmentation, Grouping, & Shape

Asymmetric Non-Local Neural Networks for Semantic Segmentation	593
CCNet: Criss-Cross Attention for Semantic Segmentation Zilong Huang (Huazhong Univ. of Science and Technology), Xinggang Wang (Huazhong University of Science and Technology), Lichao Huang (Horizon Robotics), Chang Huang (Horizon Robotics), Yunchao Wei (UIUC), and Wenyu Liu (Huazhong University of Science and Technology)	603
Convex Shape Prior for Multi-Object Segmentation Using a Single Level Set Function Shousheng Luo (Beijing Computational Science Research Center), Xue-Cheng Tai (Hong Kong Baptist University), Limei Huo (Henan University), Yang Wang (HKUST), and Roland Glowinski (University of Houston)	613
Feature Weighting and Boosting for Few-Shot Segmentation Khoi Nguyen (Oregon State University) and Sinisa Todorovic (Oregon State U)	622
Surface Networks via General Covers Niv Haim (Weizmann Institute of Science), Nimrod Segol (Weizmann Institute of Science), Heli Ben-Hamu (Weizmann Institute of Science), Haggai Maron (Weizmann Institute of Science), and Yaron Lipman (Weizmann Institute of Science)	632
 SSAP: Single-Shot Instance Segmentation With Affinity Pyramid	642
Learning Propagation for Arbitrarily-Structured Data Sifei Liu (NVIDIA), Xueting Li (University of California Merced), Varun Jampani (Nvidia Research), Shalini Mello (NVIDIA Research), and Jan Kautz (NVIDIA)	652
MultiSeg: Semantically Meaningful, Scale-Diverse Segmentations From Minimal User Input Jun Hao Liew (NUS), Scott Cohen (Adobe Research), Brian Price (Adobe), Long Mai (Adobe Research), Sim-Heng Ong (NUS), and Jiashi Feng (NUS)	662
Robust Motion Segmentation From Pairwise Matches Federica Arrigoni (Czech Technical University in Prague) and Tomas Pajdla (Czech Technical University in Prague)	671
InstaBoost: Boosting Instance Segmentation via Probability Map Guided Copy-Pasting Hao-Shu Fang (SJTU), Jianhua Sun (Shanghai Jiaotong Univ), Runzhong Wang (Shanghai Jiao Tong University), Minghao Gou (Shanghai Jiao Tong University), Yong-Lu Li (Shanghai Jiao Tong University), and Cewu Lu (Shanghai Jiao Tong University)	682

Face & Body

 Racial Faces in the Wild: Reducing Racial Bias by Information Maximization Adaptation Network	692
Uncertainty Modeling of Contextual-Connections Between Tracklets for Unconstrained Video-Based Face Recognition Jingxiao Zheng (University of Maryland. College Park), Ruichi Yu (Waymo LLC.), Jun-Cheng Chen (University of Maryland), Boyu Lu (University of Maryland), Carlos Castillo (University of Maryland), and Rama Chellappa (University of Maryland)	703
Spatio-Temporal Fusion Based Convolutional Sequence Learning for Lip Reading Xingxuan Zhang (Shanghai Jiao Tong University), Feng Cheng (Shanghai Jiao Tong University), and Wang Shilin (sjtu)	713
Occlusion-Aware Networks for 3D Human Pose Estimation in Video Yu Cheng (National University of Singapore), Bo Yang (Tencent America), Bo Wang (Tencent America), Yan Wending (National University of Singapore), and Robby Tan (Yale-NUS College. Singapore)	723
Context-Aware Feature and Label Fusion for Facial Action Unit Intensity Estimation With Partially Labeled Data	733
Distill Knowledge From NRSfM for Weakly Supervised 3D Pose Learning Chaoyang Wang (Carnegie Mellon University), Chen Kong (CMU), and Simon Lucey (CMU)	743
MONET: Multiview Semi-Supervised Keypoint Detection via Epipolar Divergence Yuan Yao (University of Minnesota), Yasamin Jafarian (University of Minnesota), and Hyun Soo Park (The University of Minnesota)	.753
 Talking With Hands 16.2M: A Large-Scale Dataset of Synchronized Body-Finger Motion and Audio for Conversational Motion Analysis and Synthesis <i>Gilwoo Lee (University of Washington), Zhiwei Deng (Simon Fraser</i> <i>University), Shugao Ma (Facebook), Takaaki Shiratori (Facebook Reality</i> <i>Labs), Siddhartha Srinivasa (University of Washington), and Yaser</i> <i>Sheikh (Facebook Reality Labs)</i> 	763
Occlusion Robust Face Recognition Based on Mask Learning With Pairwise Differential Siamese Network Lingxue Song (Tsinghua University), Dihong Gong (Tencent AI Lab), Zhifeng Li (Tencent AI Lab), Changsong Liu (Tsinghua University), and Wei Liu (Tencent)	773
Teacher Supervises Students How to Learn From Partially Labeled Images for Facial Landmark Detection	783

Xuanyi Dong (UTS) and Yi Yang (UTS)

 A2J: Anchor-to-Joint Regression Network for 3D Articulated Pose Estimation From a Single Depth Image 793 Fu Xiong (Huazhong University of Science and Technology), Boshen Zhang (School of Artificial Intelligence and Automation. HUST), Yang Xiao (Huazhong Univ. of Sci.&Tech.), Zhiguo Cao (Huazhong Univ. of Sci.&Tech.), Taidong Yu (Huazhong University of Science and Technology), Joey Tianyi Zhou (IHPC. ASTAR), and Junsong Yuan (State University of New York at Buffalo. USA)
TexturePose: Supervising Human Mesh Estimation With Texture Consistency
 FreiHAND: A Dataset for Markerless Capture of Hand Pose and Shape From Single RGB Images
 Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles

Action & Video

Toyota Smarthome: Real-World Activities of Daily Living	333
Relation Parsing Neural Network for Human-Object Interaction Detection	343
DistInit: Learning Video Representations Without a Single Labeled Video	352
Zero-Shot Anticipation for Instructional Activities	362
Making the Invisible Visible: Action Recognition Through Walls and Occlusions	372

Recursive Visual Sound Separation Using Minus-Plus Net	
Xudong Xu (the Chinese University of Hong Kong), Bo Dai (the Chinese	
University of Hong Kong), and Dahua Lin (The Chinese University of	
Hong Kong)	

Motion & Tracking

Unsupervised Video Interpolation Using Cycle Consistency <i>Fitsum Reda (NVIDIA), Deqing Sun (Google), Aysegul Dundar (NVIDIA),</i> <i>Mohammad Shoeybi (NVIDIA), Guilin Liu (NVIDIA), Kevin Shih (NVIDIA),</i> <i>Andrew Tao (NVIDIA), Jan Kautz (NVIDIA), and Bryan Catanzaro (NVIDIA)</i>	
Deformable Surface Tracking by Graph Matching <i>Tao Wang (Beijing Jiaotong University), Haibin Ling (Temple</i> <i>University), Congyan Lang (Beijing Jiaotong University), Songhe Feng</i> <i>(School of Computer and Information Technology. Beijing Jiaotong</i> <i>University), and Xiaohui Hou (HiScene)</i>	901
Deep Meta Learning for Real-Time Target-Aware Visual Tracking Janghoon Choi (Seoul National University), Junseok Kwon (Chung-Ang Univ Korea), and Kyoung Mu Lee (Seoul National University)	
Looking to Relations for Future Trajectory Forecast Chiho Choi (Honda Research Institute US) and Behzad Dariush (Honda Research Institute US)	921
Anchor Diffusion for Unsupervised Video Object Segmentation Zhao Yang (University of Oxford), Qiang Wang (CASIA), Luca Bertinetto (University of Oxford), Song Bai (University of Oxford), Weiming Hu (Institute of AutomationChinese Academy of Sciences), and Philip Torr (University of Oxford)	
Tracking Without Bells and Whistles Philipp Bergmann (Technical University of Munich), Tim Meinhardt (TUM), and Laura Leal-Taixé (TUM)	941

Scene Understanding

Perspective-Guided Convolution Networks for Crowd Counting Zhaoyi Yan (Harbin Institute of Technology), Yuchen Yuan (Baidu Inc.), Wangmeng Zuo (Harbin Institute of Technology. China), Xiao Tan (Baidu Inc.), Yezhen Wang (Harbin Institute of Technology), Shilei Wen (Baidu Research), and Errui Ding (Baidu Inc.)	952
End-to-End Wireframe Parsing Yichao Zhou (UC Berkeley), Haozhi Qi (UC Berkeley), and Yi Ma (UC Berkeley)	962
Incremental Class Discovery for Semantic Segmentation With RGBD Sensing Yoshikatsu Nakajima (Keio University), Byeongkeun Kang (Seoul National University of Science and Technology), Hideo Saito (Keio University), and Kris Kitani (CMU)	972

 SSF-DAN: Separated Semantic Feature Based Domain Adaptation Network for Semantic Segmentation 982 Liang Du (Fudan University), Jingang Tan (SIMIT), Hongye Yang (SIMIT), Jianfeng Feng (Fudan University), Xiangyang Xue (Fudan University), Qibao Zheng (Fudan University), Xiaoqing Ye (SIMIT), and Xiaolin Zhang (SIMIT)
SpaceNet MVOI: A Multi-View Overhead Imagery Dataset
Nicholas Weir (CosmiQ Works. In-Q-Tel), David Lindenbaum (CosmiQ
Works. In-Q-Tel), Alexei Bastidas (Intel AI Lab), Adam Van Etten
(CosmiQ Works. In-Q-Tel), Varun Kumar (Intel AI Lab), Sean Mcpherson
(Intel AI Lab), Jacob Shermeyer (CosmiQ Works. In-Q-Tel), and Hanlin
Tang (Intel Corporation)
Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting
Learning Lightweight Lane Detection CNNs by Self Attention Distillation
SplitNet: Sim2Sim and Task2Task Transfer for Embodied Visual Navigation

3D From Multiview & Sensors

Cascaded Parallel Filtering for Memory-Efficient Image-Based Localization Wentao Cheng (Nanyang Technological University), Weisi Lin (Nanyang Technological University. Singapore), Kan Chen (Fraunhofer Singapore), and Xinfeng Zhang (City University of Hong Kong)	. 1032
Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation Chao Wen (Fudan University), Yinda Zhang (Google LLC), Zhuwen Li (Nuro), and Yanwei Fu (Fudan University)	. 1042
A Differential Volumetric Approach to Multi-View Photometric Stereo Fotios Logothetis (cambridge university), Roberto Mecca (Toshiba Research Europe Ltd), and Roberto Cipolla (University of Cambridge)	. 1052
Revisiting Radial Distortion Absolute Pose Viktor Larsson (ETH Zurich), Torsten Sattler (Chalmers University of Technology), Zuzana Kukelova (Czech Technical University in Prague), and Marc Pollefeys (ETH Zurich / Microsoft)	1062
Estimating the Fundamental Matrix Without Point Correspondences With Application to Transmission Imaging Tobias Wuerfl (Friedrich-Alexander-Universität Erlangen-Nürnberg), Andre Aichert (Siemens Healthineers), Nicole Maass (Siemens Healthineers), Frank Dennerlein (Siemens Healthineers), and Andreas Maier (Pattern Recognition Lab. FAU Erlangen-Nuremberg)	. 1072

QUARCH: A New Quasi-Affine Reconstruction Stratum From Vague Relative Camera Orientation Knowledge 1082

Devesh Adlakha (University of Strasbourg), Adlane Habed (University of	
Strasbourg), Fabio Morbidi (University of Picardie Jules vernes),	
Cedric Demonceaux (Univ. Bourgogne Franche-Comte. France), and Michel	
De Mathelin (University of Strasbourg)	
Homography From Two Orientation and Scale Covariant Features	1(

Homography From Two Orientation- and Scale-Covariant Features 1	1091
Dániel Baráth (MTA SZTAKI. CMP Prague) and Zuzana Kukelova (Czech	
Technical University in Prague)	

Applications. Medical, & Robotics

Hiding Video in Audio via Reversible Generative Models
GSLAM: A General SLAM Framework and Benchmark
Elaborate Monocular Point and Line SLAM With Robust Initialization
Adaptive Density Map Generation for Crowd Counting
 Attention-Aware Polarity Sensitive Embedding for Affective Image Retrieval
Zero-Shot Emotion Recognition via Affective Structural Embedding
 FW-GAN: Flow-Navigated Warping GAN for Video Virtual Try-On
Interactive Sketch & Fill: Multiclass Sketch-to-Image Translation

Attention-Based Autism Spectrum Disorder Screening With Privileged Modality
Image Aesthetic Assessment Based on Pairwise Comparison - A Unified Approach to Score Regression, Binary Classification, and Personalization
Delving Into Robust Object Detection From Unmanned Aerial Vehicles: A Deep Nuisance Disentanglement 1201 Approach 1201 Zhenyu Wu (Texas A&M University), Karthik Suresh (Texas A&M 1201 University), Priya Narayanan (U.S. Army Research Laboratory), Hongyu Xu (University of Maryland), Heesung Kwon (U.S. Army Research Laboratory), and Zhangyang Wang (TAMU)
Bit-Flip Attack: Crushing Neural Network With Progressive Bit Search
Pushing the Frontiers of Unconstrained Crowd Counting: New Dataset and Benchmark Method
Employing Deep Part-Object Relationships for Salient Object Detection
Self-Supervised Deep Depth Denoising
Cost-Aware Fine-Grained Recognition for IoTs Based on Sequential Fixations
Layout-Induced Video Representation for Recognizing Agent-in-Place Actions
Anomaly Detection in Video Sequence With Appearance-Motion Correspondence

Oral 1.2A

Architectures, Multi-Task Learning, Domain Adaptation

Exploring Randomly Wired Neural Networks for Image Recognition
Progressive Differentiable Architecture Search: Bridging the Depth Gap Between Search and Evaluation 1294 Xin Chen (Tongji University), Lingxi Xie (Huawei Noah's Ark Lab), Jun Wu (Tongji University), and Qi Tian (Huawei Noah's Ark Lab)
 Multinomial Distribution Learning for Effective Neural Architecture Search
 Searching for MobileNetV3
Data-Free Quantization Through Weight Equalization and Bias Correction
A Camera That CNNs: Towards Embedded Neural Networks on Pixel Processor Arrays
 Knowledge Distillation via Route Constrained Optimization
Distillation-Based Training for Multi-Exit Architectures
Similarity-Preserving Knowledge Distillation
Many Task Learning With Task Routing
Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels 1385 Felix Bragman (University College London), Ryutaro Tanno (University College London), Sebastien Ourselin (King's College London), Daniel Alexander (University College London), and Jorge Cardoso (Kings College London)

Transferability and Hardness of Supervised Classification Tasks
Moment Matching for Multi-Source Domain Adaptation
Unsupervised Domain Adaptation via Regularized Conditional Alignment
 Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation 1426 Ruijia Xu (Sun Yat-sen University), Guanbin Li (Sun Yat-sen University), Jihan Yang (Sun Yat-sen University), and Liang Lin (Sun Yat-sen University)
 UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation
 Episodic Training for Domain Generalization
Domain Adaptation for Structured Output via Discriminative Patch Representations
Semi-Supervised Learning by Augmented Distribution Alignment
S4L: Self-Supervised Semi-Supervised Learning

Oral 1.2B

Multi-View Geometry, 3D Scene Understanding

Privacy Preserving Image Queries for Camera Localization Pablo Speciale (ETH Zurich), Johannes Schönberger (Microsoft), Sudipta Sinha (Microsoft Research), and Marc Pollefeys (ETH Zurich / Microsoft)	1486
Calibration Wizard: A Guidance System for Camera Calibration Based on Modelling Geometric and Corner Uncertainty	1497
Gated2Depth: Real-Time Dense Lidar From Gated Images <i>Tobias Gruber (Daimler AG), Frank Julca-Aguilar (Algolux), Mario</i> <i>Bijelic (Daimler AG), and Felix Heide (Princeton University)</i>	1506

X-Section: Cross-Section Prediction for Enhanced RGB-D Fusion	517
Learning an Event Sequence Embedding for Dense Event-Based Deep Stereo	527
Point-Based Multi-View Stereo Network	538
Discrete Laplace Operator Estimation for Dynamic 3D Reconstruction	548
Deep Non-Rigid Structure From Motion	558
Equivariant Multi-View Networks	568
Interpolated Convolutional Networks for 3D Point Cloud Understanding	578
 Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data	.588
 PointCloud Saliency Maps	598
ShellNet: Efficient Point Cloud Convolutional Neural Networks Using Concentric Shells Statistics	607
Unsupervised Deep Learning for Structured Shape Matching	617
Linearly Converging Quasi Branch and Bound Algorithms for Global Rigid Registration	628
Consensus Maximization Tree Search Revisited	637

Quasi-Globally Optimal and Efficient Vanishing Point Estimation in Manhattan World	46
An Efficient Solution to the Homography-Based Relative Pose Problem With a Common Reference Direction	55
A Quaternion-Based Certifiably Optimal Solution to the Wahba Problem With Outliers	65
PLMP - Point-Line Minimal Problems in Complete Multi-View Visibility	75

Poster 1.2

Deep Learning

 Variational Few-Shot Learning	685
Generative Adversarial Minority Oversampling	695
 Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection	705
Topological Map Extraction From Overhead Images1'Zuoyue Li (ETH Zurich), Jan Dirk Wegner (ETH Zurich), and Aurelien1'Lucchi (ETH Zurich)1'	715
 Exploiting Temporal Consistency for Real-Time Video Depth Estimation	725

The Sound of Motions	735
SC-FEGAN: Face Editing Generative Adversarial Network With User's Sketch and Color	745
 Exploring Overall Contextual Information for Image Captioning in Human-Like Cognitive Style	754
 Order-Aware Generative Modeling Using the 3D-Craft Dataset	764
Crowd Counting With Deep Structured Scale Integration Network	774
Bidirectional One-Shot Unsupervised Domain Mapping	784
 Evolving Space-Time Neural Architectures for Videos	793
Universally Slimmable Networks and Improved Training Techniques	803
AutoDispNet: Improving Disparity Estimation With AutoML	812
of Freiburg), Arber Zela (University of Freiburg), Frank Hutter (University of Freiburg), and Thomas Brox (University of Freiburg)	
of Freiburg), Arber Zela (University of Freiburg), Frank Hutter (University of Freiburg), and Thomas Brox (University of Freiburg) Deep Meta Functionals for Shape Representation	824
 of Freiburg), Arber Zela (University of Freiburg), Frank Hutter (University of Freiburg), and Thomas Brox (University of Freiburg) Deep Meta Functionals for Shape Representation	824 834

SRM: A Style-Based Recalibration Module for Convolutional Neural Networks	54
Switchable Whitening for Deep Representation Learning186Xingang Pan (The Chinese University of Hong Kong), Xiaohang Zhan (The Chinese University of Hong Kong), Jianping Shi (Sensetime Group Limited), Xiaoou Tang (The Chinese University of Hong Kong), and Ping Luo (The Chinese University of Hong Kong)	63
Adaptative Inference Cost With Convolutional Neural Mixture Models	72
On Network Design Spaces for Visual Recognition	82
Improved Techniques for Training Adaptive Deep Networks	91
Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help? 190 Yunyang Xiong (University of Wisconsin-Madison), Ronak Mehta (University of Wisconsin-Madison), and Vikas Singh (University of Wisconsin-Madison USA)	01
 ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks	11
 A Comprehensive Overhaul of Feature Distillation	21
Recognition	
Transferable Semi-Supervised 3D Object Detection From RGB-D Data 193 Yew Siang Tang (National University of Singapore) and Gim Hee Lee 193 (National University of Singapore) 193	31
DPOD: 6D Pose Object Detector and Refiner	41
 STD: Sparse-to-Dense 3D Object Detector for Point Cloud	51

DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point Clouds Defense	961
Learning Rich Features at High-Speed for Single-Shot Object Detection	971
Detecting Unseen Visual Relations Using Analogies	981
Disentangling Monocular 3D Object Detection	991
STM: SpatioTemporal and Motion Encoding for Action Recognition	000
Dynamic Context Correspondence Network for Semantic Alignment 20 Shuaiyi Huang (ShanghaiTech University), Qiuyue Wang (Northwestern 20 Polytechnical University), Songyang Zhang (ShanghaiTech University), Shipeng Yan (ShanghaiTech University), and Xuming He (ShanghaiTech University) 10	010
Fooling Network Interpretation in Image Classification	020
Unconstrained Foreground Object Search	030
 Embodied Amodal Recognition: Learning to Move to Perceive Objects	040
SpatialSense: An Adversarially Crowdsourced Benchmark for Spatial Relation Recognition	051

TensorMask: A Foundation for Dense Object Segmentation	2061
Xinlei Chen (Facebook AI Research), Ross Girshick (FAIR), Kaiming He	
(Facebook AI Research), and Piotr Dollar (FAIR)	
Integral Object Mining via Online Attention Accumulation	2070
Peng-Tao Jiang (Nankai University), Qibin Hou (Nankai University),	
Yang Cao (Nankai University), Ming-Ming Cheng (Nankai University),	
Yunchao Wei (UIUC), and Hongkai Xiong (Shanghai Jiao Tong University)	

Segmentation, Grouping, & Shape

Accelerated Gravitational Point Set Alignment With Altered Physical Laws	180
Domain Adaptation for Semantic Segmentation With Maximum Squares Loss	90
Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization Without Accessing Target Domain Data 210 Xiangyu Yue (UC Berkeley), Yang Zhang (University of Central Florida), 210 Sicheng Zhao (University of California Berkeley), Alberto 300 Sangiovanni-Vincentelli (University of California. Berkeley), Kurt Keutzer (EECS. UC Berkeley), and Boqing Gong (Google / ICSI Berkeley)	00
 Semi-Supervised Skin Detection by Network With Mutual Guidance	11
ACE: Adapting to Changing Environments for Semantic Segmentation	21
Efficient Segmentation: Learning Downsampling Near Semantic Boundaries	31
Recurrent U-Net for Resource-Constrained Segmentation	42
Detecting the Unexpected via Image Resynthesis	52

3D From Single View & RGBD

Self-Supervised Monocular Depth Hints Jamie Watson (Niantic), Michael Firman (Niantic), Gabriel Brostow (University College London), and Daniyar Turmukhambetov (Niantic)	2162
3D Scene Reconstruction With Multi-Layer Depth and Epipolar Transformers Daeyun Shin (University of California. Irvine), Zhile Ren (Georgia Institute of Technology), Erik Sudderth (University of California. Irvine), and Charless Fowlkes (UC Irvine)	2172
How Do Neural Networks See Depth in Single Images? Tom Van Dijk (Technische Universiteit Delft) and Guido De Croon (TU Delft)	2183
On Boosting Single-Frame 3D Human Pose Estimation via Monocular Videos Zhi Li (Xi'an Jiaotong University), Xuan Wang (Xi'an Jiaotong University), Fei Wang (Xi'an Jiaotong University), and Peilin Jiang (Xi'an Jiaotong University)	2192
Canonical Surface Mapping via Geometric Cycle Consistency Nilesh Kulkarni (Carnegie Mellon University), Shubham Tulsiani (Facebook AI Research), and Abhinav Gupta (CMU/FAIR)	2202
3D-RelNet: Joint Object and Relational Network for 3D Prediction Nilesh Kulkarni (Carnegie Mellon University), Ishan Misra (Facebook AI Research), Shubham Tulsiani (Facebook AI Research), and Abhinav Gupta (CMU/FAIR)	2212
 GP2C: Geometric Projection Parameter Consensus for Joint 3D Pose and Focal Length Estimation in the Wild Alexander Grabner (Graz University of Technology), Peter Roth (Graz University of Technology. Austria), and Vincent Lepetit (TU Graz) 	2222
Face & Body	
Moulding Humans: Non-Parametric 3D Human Shape Estimation From Single Images Valentin Gabeur (Inria), Jean-Sebastien Franco (INRIA), Xavier Martin (Inria), Cordelia Schmid (INRIA), and Gregory Rogez (NAVER LABS Europe)	2232
3DPeople: Modeling the Geometry of Dressed Humans	2242
Learning to Reconstruct 3D Human Pose and Shape via Model-Fitting in the Loop Nikos Kolotouros (University of Pennsylvania), Georgios Pavlakos (University of Pennsylvania), Michael Black (Max Planck Institute for Intelligent Systems), and Kostas Daniilidis (University of Pennsylvania)	2252
Optimizing Network Structure for 3D Human Pose Estimation Hai Ci (Peking University), Chunyu Wang (Microsoft Research asia), Xiaoxuan Ma (Peking University), and Yizhou Wang (PKU)	2262

 Exploiting Spatial-Temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks 2272 Yujun Cai (Nanyang Technological University), Liuhao Ge (Nanyang Technological University), Jun Liu (Nanyang Technological University), Jianfei Cai (Nanyang Technological University), Tat-Jen Cham (Nanyang Technological University), Junsong Yuan (State University of New York at Buffalo. USA), and Nadia Magnenat Thalmann (Nanyang Technological University)
Resolving 3D Human Pose Ambiguities With 3D Scene Constraints
Tex2Shape: Detailed Full Human Body Geometry From a Single Image
PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reconstruction
Monocular 3D Human Pose Estimation by Generation and Ordinal Ranking
Aligning Latent Spaces for 3D Hand Pose Estimation
 HEMlets Pose: Learning Part-Centric Heatmap Triplets for Accurate 3D Human Pose Estimation
 End-to-End Hand Mesh Recovery From a Monocular RGB Image

Motion & Tracking

Robust Multi-Modality Multi-Object Tracking
The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs 2375 Boris Ivanovic (Stanford University) and Marco Pavone (Stanford University)
'Skimming-Perusal' Tracking: A Framework for Real-Time and Robust Long-Term Tracking
TASED-Net: Temporally-Aggregating Spatial Encoder-Decoder Network for Video Saliency Detection 2394 Kyle Min (University of Michigan) and Jason Corso (University of Michigan)
Attacking Optical Flow 2404 Anurag Ranjan (MPI for Intelligent Systems), Joel Janai (Max Planck Institute for Intelligent Systems), Andreas Geiger (MPI-IS and University of Tuebingen), and Michael Black (Max Planck Institute for Institute for Intelligent Systems) Intelligent Systems)

Computational Photography & Graphics

Pro-Cam SSfM: Projector-Camera System for Structure and Spectral Reflectance From Motion Chunyu Li (Tokyo Institute of Technology), Yusuke Monno (Tokyo Institute of Technology), Hironori Hidaka (Tokyo Institute of Technology), and Masatoshi Okutomi (Tokyo Institute of Technology)	2414
Mop Moiré Patterns Using MopNet Bin He (Peking University), Ce Wang (Peking University), Boxin Shi (Peking University), and Lingyu Duan (Peking University)	2424
Kernel Modeling Super-Resolution on Real Low-Resolution Images Ruofan Zhou (EPFL) and Sabine Süsstrunk (EPFL)	
Learning to Jointly Generate and Separate Reflections Daiqian Ma (Peking University), Renjie Wan (Nanyang Technological University), Boxin Shi (Peking University), Alex Kot (Nanyang Technological University), and Lingyu Duan (Peking University)	2444
Deep Multi-Model Fusion for Single-Image Dehazing	2453

Deep Learning for Seeing Through Window With Raindrops 2	2463
Yuhui Quan (South China Univ Tech), Shijie Deng (South China Univ	
Tech), Yixin Chen (South China Univ Tech), and Hui Ji (National	
University of Singapore)	
Mask-ShadowGAN: Learning to Remove Shadows From Unpaired Data	2472
Xiaowei Hu (The Chinese University of Hong Kong), Yitong Jiang (The	
Chinese University of Hong Kong), Chi-Wing Fu (The Chinese University	
of Hong Kong), and Pheng-Ann Heng (The Chinese Univsersity of Hong	
Kong)	

Low-Level Vision & Optimization

Spatio-Temporal Filter Adaptive Network for Video Deblurring Shangchen Zhou (Nanyang Technological University), Jiawei Zhang (Sensetime Research), Jinshan Pan (Nanjing University of Science and Technology), Wangmeng Zuo (Harbin Institute of Technology. China), Haozhe Xie (Harbin Institute of Technology), and Jimmy Ren (SenseTime Research)	2482
Learning Deep Priors for Image Dehazing	
University of Science and Technology), Jimmy Ren (SenseTime Research), and Zhixun Su (Dalian University of Technology)	
 JPEG Artifacts Reduction via Deep Convolutional Sparse Coding	2501
Self-Guided Network for Fast Image Denoising Shuhang Gu (ETH Zurich), Yawei Li (ETH Zurich), Luc Van Gool (ETH Zurich), and Radu Timofte (ETH Zurich)	2511
Non-Local Intrinsic Decomposition With Near-Infrared Priors Ziang Cheng (Australian National University), Yinqiang Zheng (National Institute of Informatics), Shaodi You (Data61-CSIRO), and Imari Sato (National Institute of Informatics)	2521

Scene Understanding

VideoMem: Constructing, Analyzing, Predicting Short-Term and Long-Term Video Memorability Romain Cohendet (Technicolor), Claire-Helene Demarty (Technicolor), Ngoc Duong (Technicolor), and Martin Engilberge (Technicolor)	2531
Rescan: Inductive Instance Segmentation for Indoor RGBD Scans	
Maciej Halber (Princeton University), Yifei Shi (National University	
of Defense Technology), Kai Xu (National University of Defense	
Technology), and Thomas Funkhouser (Princeton University)	

End-to-End CAD Model Retrieval and 9DoF Alignment in 3D Scans	51
Making History Matter: History-Advantage Sequence Training for Visual Dialog	51
Stochastic Attraction-Repulsion Embedding for Large Scale Image Localization	70
Scene Graph Prediction With Limited Labels	30

Language & Reasoning

 Taking a HINT: Leveraging Explanations to Make Vision and Language Models More Grounded	91
 Align2Ground: Weakly Supervised Phrase Grounding Guided by Image-Caption Alignment	01
 Adaptive Reconstruction Network for Weakly Supervised Referring Expression Grounding	11
Hierarchy Parsing for Image Captioning	21
HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips 26 Antoine Miech (Inria), Dimitri Zhukov (Inria), Jean-Baptiste Alayrac (DeepMind), Makarand Tapaswi (INRIA), Ivan Laptev (INRIA Paris), and Josef Sivic (Inria and Czech Technical University)	30
Controllable Video Captioning With POS Sequence Guidance Based on Gated Fusion Network	41

3D From Multiview & Sensors

Multi-View Stereo by Temporal Nonparametric Fusion Yuxin Hou (Aalto University), Juho Kannala (Aalto University. Finland), and Arno Solin (Aalto University)	2651
Floor-SP: Inverse CAD for Floorplans by Sequential Room-Wise Shortest Path Jiacheng Chen (Simon Fraser University), Chen Liu (Washington University in St. Louis), Jiaye Wu (Washington University in St.Louis), and Yasutaka Furukawa (Simon Fraser University)	2661
Polarimetric Relative Pose Estimation Zhaopeng Cui (ETH Zurich), Viktor Larsson (ETH Zurich), and Marc Pollefeys (ETH Zurich / Microsoft)	2671
Closed-Form Optimal Two-View Triangulation Based on Angular Errors Seong Hun Lee (University of Zaragoza) and Javier Civera (Universidad de Zaragoza)	2681
Pix2Vox: Context-Aware 3D Reconstruction From Single and Multi-View Images Haozhe Xie (Harbin Institute of Technology), Hongxun Yao (Harbin Institute of Technology), Xiaoshuai Sun (Harbin Institute of Technology), Shangchen Zhou (Nanyang Technological University), and Shengping Zhang (Harbin Institute of Technology)	2690

Image & Video Synthesis

Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis	:699
 SROBB: Targeted Perceptual Loss for Single Image Super-Resolution	:710
An Internal Learning Approach to Video Inpainting	:720
Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement	:730
 Adversarial Defense via Learning to Generate Diverse Attacks	2740

Image Generation From Small Datasets via Batch Statistics Adaptation Atsuhiro Noguchi (The University of Tokyo) and Tatsuya Harada (The University of Tokyo / RIKEN)	2750
Lifelong GAN: Continual Learning for Conditional Image Generation Mengyao Zhai (Simon Fraser University), Lei Chen (Simon Fraser Univeristy), Fred Tung (Simon Fraser University), Jiawei He (Simon Fraser University), Megha Nawhal (Simon Fraser University), and Greg Mori (Simon Fraser University)	2759

Applications. Medical, & Robotics

Bayesian Relational Memory for Semantic Visual Navigation
Mono-SF: Multi-View Geometry Meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes
Prior Guided Dropout for Robust Visual Localization in Dynamic Environments
Drive&Act: A Multi-Modal Dataset for Fine-Grained Driver Behavior Recognition in Autonomous Vehicles. 2801 Manuel Martin (Fraunhofer IOSB), Alina Roitberg (KIT), Monica Haurilet (KIT), Matthias Horne (Herr), Simon Reiß (Karlsruhe Institute of Technology), Michael Voit (Fraunhofer IOSB), and Rainer Stiefelhagen (Karlsruhe Institute of Technology)
Depth Completion From Sparse LiDAR Data With Depth-Normal Constraints
PRECOG: PREdiction Conditioned on Goals in Visual Multi-Agent Settings
LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis
Local Supports Global: Deep Camera Relocalization With Sequence Enhancement

Sequential Adversarial Learning for Self-Supervised Deep Visual Odometry
TextPlace: Visual Place Recognition and Topological Localization Through Reading Scene Texts
CamNet: Coarse-to-Fine Retrieval for Camera Re-Localization
Situational Fusion of Visual Representation for Visual Navigation
Learning Aberrance Repressed Correlation Filters for Real-Time UAV Tracking
6-DOF GraspNet: Variational Grasp Generation for Object Manipulation
 DAGMapper: Learning to Map by Discovering Lane Topology
3D-LaneNet: End-to-End 3D Multiple Lane Detection

Oral 2.1A

Feature Representations, Similarity Learning

Sampling-Free Epistemic Uncertainty Estimation Using Approximated Variance Propagation	2931
(Autonomous Intelligent Driving GmbH), Huseyin Coskun (Technical	
University of Munich), Nassir Navab (TU Munich. Germany), and Federico	
Tombari (TUM. Google)	
Universal Adversarial Perturbation via Prior Driven Uncertainty Approximation	2941
Hong Liu (Xiamen University), Rongrong Ji (Xiamen University. China),	
Jie Li (Xiamen University), Baochang Zhang (Beihang University), Yue	
Gao (Tsinghua University), Yongjian Wu (Tencent Technology. Shanghai	
Co.), and Feiyue Huang (Tencent)	

Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Unsupervised Pre-Training of Image Features on Non-Curated Data
Learning Local Descriptors With a CDF-Based Dynamic Soft Margin
Bayes-Factor-VAE: Hierarchical Bayesian Deep Auto-Encoder Models for Factor Disentanglement
Linearized Multi-Sampling for Differentiable Image Transformation
AdaTransform: Adaptive Data Transformation2998Zhiqiang Tang (Rutgers), Xi Peng (University of Delaware), Tingfeng Li (Rutgers University), Yizhe Zhu (Rutgers University), and Dimitris Metaxas (Rutgers)
CARAFE: Content-Aware ReAssembly of FEatures
 AFD-Net: Aggregated Feature Difference Learning for Cross-Spectral Image Patch Matching
Deep Joint-Semantics Reconstructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval
Unsupervised Neural Quantization for Compressed-Domain Similarity Search
Siamese Networks: The Tale of Two Manifolds
Learning Combinatorial Embedding Networks for Deep Graph Matching

Fashion Retrieval via Graph Reasoning Networks on a Similarity Pyramid	3066
Zhanghui Kuang (Sensetime Ltd.), Yiming Gao (Sun Yat-sen University),	
Guanbin Li (Sun Yat-sen University), Ping Luo (The Chinese University	
of Hong Kong), Yimin Chen (sensetime), Liang Lin (Sun Yat-sen	
University), and Wayne Zhang (SenseTime Research)	

Oral 2.1B

Low Level Vision

Wavelet Domain Style Transfer for an Effective Perception-Distortion Tradeoff in Single Image Super-Resolution Xin Deng (Imperial College London), Ren Yang (ETH Zurich), Mai Xu (BUAA), and Pier Luigi Dragotti (Imperial College London)
 Toward Real-World Single Image Super-Resolution: A New Benchmark and a New Model
RankSRGAN: Generative Adversarial Networks With Ranker for Image Super-Resolution
 Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations
 Deep SR-ITM: Joint Learning of Super-Resolution and Inverse Tone-Mapping for 4K UHD HDR Applications 3116 Soo Ye Kim (KAIST), Jihyong Oh (KAIST), and Munchurl Kim (KAIST-VICLab)
Dynamic PET Image Reconstruction Using Nonnegative Matrix Factorization Incorporated With Deep Image Prior 3126 Tatsuya Yokota (Nagoya Institute of Technology), Kazuya Kawai (Nagoya Institute of Technology), Muneyuki Sakata (Tokyo Metropolitan Institute of Gerontology), Yuichi Kimura (Kindai University), and Hidekata Hontani (Nagoya Institute of Technology)
DSIC: Deep Stereo Image Compression
Variable Rate Deep Image Compression With a Conditional Autoencoder

Real Image Denoising With Feature Attention	3155
Noise Flow: Noise Modeling With Conditional Normalizing Flows Abdelrahman Abdelhamed (York University), Marcus Brubaker (Borealis AI), and Michael Brown (York University)	3165
Bottleneck Potentials in Markov Random Fields Ahmed Abbas (MPI-INF) and Paul Swoboda (MPI fuer Informatik. Saarbruecken)	
Seeing Motion in the Dark Chen Chen (UIUC), Qifeng Chen (HKUST), Minh Do (UIUC), and Vladlen Koltun (Intel Labs)	
SENSE: A Shared Encoder Network for Scene-Flow Estimation Huaizu Jiang (UMass Amherst), Deqing Sun (Google), Varun Jampani (Nvidia Research), Zhaoyang Lv (GEORGIA TECH), Erik Learned-Miller (University of Massachusetts. Amherst), and Jan Kautz (NVIDIA)	3194

Poster 2.1

Deep Learning

Adversarial Feedback Loop <i>Firas Shama (Technion), Roey Mechrez (Technion), Alon Shoshan</i> <i>(Technion), and Lihi Zelnik-Manor (Technion)</i>	3204
Dynamic-Net: Tuning the Objective Without Re-Training for Synthesis Tasks Alon Shoshan (Technion), Roey Mechrez (Technion), and Lihi Zelnik-Manor (Technion)	3214
AutoGAN: Neural Architecture Search for Generative Adversarial Networks Xinyu Gong (Texas A&M University), Shiyu Chang (IBM Research), Yifan Jiang (Huazhong University of Science and Technology), and Zhangyang Wang (TAMU)	3223
Co-Evolutionary Compression for Unpaired Image Translation Han Shu (Huawei Noah's Ark Lab), Yunhe Wang (Huawei Noah's Ark Lab), Xu Jia (Huawei Noah's Ark Lab), Kai Han (Huawei Noah's Ark Lab), Hanting Chen (Peking University), Chunjing Xu (Huawei Noah's Ark Lab), Qi Tian (Huawei Noah's Ark Lab), and Chang Xu (University of Sydney)	3234
Self-Supervised Representation Learning From Multi-Domain Data Zeyu Feng (University of Sydney), Chang Xu (University of Sydney), and Dacheng Tao (University of Sydney)	3244
Controlling Neural Networks via Energy Dissipation Michael Moeller (University of Siegen), Thomas Moellenhoff (Technical University of Munich), and Daniel Cremers (TU Munich)	3255
Indices Matter: Learning to Index for Deep Image Matting Hao Lu (The University of Adelaide), Yutong Dai (The University of Adelaide), Chunhua Shen (University of Adelaide), and Songcen Xu (Noah's Ark Lab. Huawei Technologies Co Ltd.)	3265

 LAP-Net: Level-Aware Progressive Network for Image Dehazing	
Attention Augmented Convolutional Networks 3285 Irwan Bello (Google), Barret Zoph (Google), Quoc Le (Google Brain), Ashish Vaswani (Google Brain), and Jonathon Shlens (Google)	j
 MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning	, .
 Accelerate CNN via Recursive Bayesian Pruning	
HBONet: Harmonious Bottleneck on Two Orthogonal Dimensions	j
O2U-Net: A Simple Noisy Label Detection Approach for Deep Neural Networks	j
Continual Learning by Asymmetric Loss Approximation With Single-Side Overestimation	
Label-PEnet: Sequential Label Propagation and Enhancement Networks for Weakly Supervised Instance Segmentation	ŀ
LIP: Local Importance-Based Pooling	F
Global Feature Guided Local Pooling	Ļ
Conditional Coupled Generative Adversarial Networks for Zero-Shot Domain Adaptation	-

Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks	84
 Hyperpixel Flow: Semantic Correspondence With Multi-Layer Neural Features	;94
Information Entropy Based Feature Pooling for Convolutional Neural Networks	104
Patchwork: A Patch-Wise Attention Network for Efficient Object Detection and Segmentation in Video Streams	14
AttentionRNN: A Structured Spatial Attention Mechanism	124
Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks With Octave Convolution. 34 Yunpeng Chen (National University of Singapore), Haoqi Fan (Facebook AI Research), Bing Xu (Facebook AI), Zhicheng Yan (Facebook AI), Yannis Kalantidis (Facebook Research), Marcus Rohrbach (Facebook AI Research), Yan Shuicheng (National University of Singapore), and Jiashi Feng (NUS)	34
Domain Intersection and Domain Difference	44
Learned Video Compression	53
Local Relation Networks for Image Recognition	63
DiscoNet: Shapes Learning on Disconnected Manifolds for 3D Editing	73
Deep Residual Learning in the JPEG Transform Domain	183
Approximated Bilinear Modules for Temporal Modeling	93

Customizing Student Networks From Heterogeneous Teachers via Adaptive Knowledge Amalgamation 3503 Chengchao Shen (Zhejiang University), Mengqi Xue (Zhejiang University), Xinchao Wang (Stevens Institute of Technology), Jie Song (College of Computer Science and Technology. Zhejiang University), Li Sun (Zhejiang University), and Mingli Song (Zhejiang University)
 Data-Free Learning of Student Networks
Deep Closest Point: Learning Representations for Point Cloud Registration
Orientation-Aware Semantic Segmentation on Icosahedron Spheres
Differentiable Learning-to-Group Channels via Groupable Convolutional Neural Networks
 HarDNet: A Low Memory Traffic Network
Dynamic Multi-Scale Filters for Semantic Segmentation 3561 Junjun He (SJTU), Zhongying Deng (SIAT), and Yu Qiao (Shenzhen Institutes of Advanced Technology. Chinese Academy of Sciences)
Online Model Distillation for Efficient Video Inference

Recognition

Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective Kai Li (Northeastern University), Martin Renqiang Min (NEC Labs America-Princeton), and Yun Fu (Northeastern University)	3582
Task-Driven Modular Networks for Zero-Shot Compositional Learning	
Senthil Purushwalkam (Carnegie Mellon University), Maximillian Nickel	
(Facebook AI Research), Abhinav Gupta (CMU/FAIR), and Marc'aurelio	
Ranzato (Facebook)	

 Transductive Episodic-Wise Adaptive Metric for Few-Shot Learning	2
Deep Multiple-Attribute-Perceived Network for Real-World Texture Recognition	2
RGB-Infrared Cross-Modality Person Re-Identification via Joint Pixel and Feature Alignment	2
EvalNorm: Estimating Batch Normalization Statistics for Evaluation	2
 Beyond Human Parts: Dual Part-Aligned Representations for Person Re-Identification	1
Person Search by Text Attribute Query As Zero-Shot Learning	1
Semantic-Aware Knowledge Preservation for Zero-Shot Sketch-Based Image Retrieval	1
Active Learning for Deep Detection Neural Networks	1
One-Shot Neural Architecture Search via Self-Evaluated Template Network)
Batch DropBlock Network for Person Re-Identification and Beyond)
Omni-Scale Feature Learning for Person Re-Identification	1
Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation 3712 Linfeng Zhang (Tsinghua University), Jiebo Song (Institute for Interdisciplinary Information Core Technology), Anni Gao (Institute for Interdisciplinary Information Core Technology), Jingwei Chen (Tusinghua University), Chenglong Bao (Tsinghua University), and Kaisheng Ma (Tsinghua University)	
--	
Diversity With Cooperation: Ensemble Methods for Few-Shot Classification	
 Enhancing 2D Representation via Adjacent Views for 3D Shape Retrieval	
Adversarial Fine-Grained Composition Learning for Unseen Attribute-Object Recognition	
 Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification	
Second-Order Non-Local Attention Networks for Person Re-Identification	

Segmentation, Grouping, & Shape

 Fast Computation of Content-Sensitive Superpixels and Supervoxels Using Q-Distances
Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm
Structured Modeling of Joint Deep Feature and Prediction Refinement for Salient Object Detection
Selectivity or Invariance: Boundary-Aware Salient Object Detection

Online Unsupervised Learning of the 3D Kinematic Structure of Arbitrary Rigid Bodies	3808
Urbano Miguel Nunes (Imperial College London) and Yiannis Demiris	
(Imperial College London)	

3D From Single View & RGBD

University)	
Digging Into Self-Supervised Monocular Depth Estimation Clement Godard (University College London), Oisin Mac Aodha (Caltech), Michael Firman (Niantic), and Gabriel Brostow (University College London)	3827
Learning Object-Specific Distance From a Monocular Image Jing Zhu (New York University) and Yi Fang (New York University)	3838
Unsupervised 3D Reconstruction Networks	3848
3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions Dongwook Shu (Chung-Ang Univ Korea), Sung Woo Park (Chung-Ang Univ Korea), and Junseok Kwon (Chung-Ang Univ Korea)	3858
Visualization of Convolutional Neural Networks for Monocular Depth Estimation Junjie Hu (Tohoku University), Yan Zhang (RIKEN AIP), and Takayuki Okatani (Tohoku University/RIKEN AIP)	3868

Action & Video

Co-Separating Sounds of Visual Objects Ruohan Gao (University of Texas at Austin) and Kristen Grauman (Facebook AI Research & UT Austin)	3878
BMN: Boundary-Matching Network for Temporal Action Proposal Generation Tianwei Lin (Baidu), Xiao Liu (Baidu), Xin Li (Baidu), Errui Ding (Baidu Inc.), and Shilei Wen (Baidu Research)	3888
 Weakly Supervised Temporal Action Localization Through Contrast Based Evaluation Networks Ziyi Liu (Xi'an Jiaotong University), Le Wang (Xi'an Jiaotong University), Qilin Zhang (HERE Technologies), Zhanning Gao (Alibaba Group), Zhenxing Niu (Alibaba Group), Nanning Zheng (Xi'an Jiaotong University), and Gang Hua (Wormpex AI Research) 	3898
 Progressive Sparse Local Attention for Video Object Detection	3908

Reasoning About Human-Object Interactions Through Dual Attention Networks
DMM-Net: Differentiable Mask-Matching Network for Video Object Segmentation
Asymmetric Cross-Guided Attention Network for Actor and Action Video Segmentation From Natural Language Query
AGSS-VOS: Attention Guided Single-Shot Video Object Segmentation
Global-Local Temporal Representations for Video Person Re-Identification
 AdvIT: Adversarial Frames Identifier Based on Temporal Consistency in Videos

Motion & Tracking

RANet: Ranking Attention Network for Fast Video Object Segmentation	}77
 Spatial-Temporal Relation Networks for Multi-Object Tracking	987
Bridging the Gap Between Detection and Tracking: A Unified Approach) 98

Learning the Model Update for Siamese Trackers	4009
Lichao Zhang (Computer Vision Center), Abel Gonzalez-Garcia (Computer	
Vision Center), Joost Van De Weijer (Computer Vision Center), Martin	
Danelljan (ETH Zurich), and Fahad Shahbaz Khan (Inception Institute of	
Artificial Intelligence)	
Fast-deepKCF Without Boundary Effect	
Linyu Zheng (Institute of Automation. Chinese Academy of Sciences),	
Ming Tang (Chinese Academy of Sciences. China), Yingying Chen (CASIA),	
Jinqiao Wang (Institute of Automation. Chinese Academy of Sciences),	
and Hanqing Lu (NLPR. Institute of Automation. CAS)	

Computational Photography & Graphics

Program-Guided Image Manipulators Xiuming Zhang (MIT), Jiayuan Mao (Tsinghua University), Yikai Li (Shanghai Jiao Tong University), William Freeman (MIT), Joshua Tenenbaum (MIT), and Jiajun Wu (MIT)	
Calibration of Axial Fisheye Cameras Through Generic Virtual Central Models Pierre-André Brousseau (Université de Montréal) and Sebastien Roy (Montreal University)	4039
Micro-Baseline Structured Light Vishwanath Saragadam Raja Venkata (Carnegie Mellon University), Jian Wang (Snap), Shree Nayar (Snap), and Mohit Gupta (University of Wisconsin-Madison. USA)	4048
lambda-Net: Reconstruct Hyperspectral Images From a Snapshot Measurement Xin Miao (The University of Texas at Arlington), Xin Yuan (Bell Labs), Yunchen Pu (facebook), and Vassilis Athitsos (University of Texas at Arlington)	4058
Deep Depth From Aberration Map Masako Kashiwagi (Toshiba), Nao Mishima (Toshiba Research and Development Center), Tatsuo Kozakaya (Toshiba), and Shinsaku Hiura (Hiroshima city univ.)	4069
A Dataset of Multi-Illumination Images in the Wild Lukas Murmann (MIT CSAIL), Michael Gharbi (Adobe), Miika Aittala (MIT), and Fredo Durand (MIT)	4079
Monocular Neural Image Based Rendering With Continuous View Control Jie Song (ETH Zurich), Xu Chen (ETH Zürich), and Otmar Hilliges (ETH Zurich)	4089
Multi-View Image Fusion Marc Comino Trinidad (Universitat Politècnica de Catalunya), Ricardo Martin-Brualla (Google), Florian Kainz (Google), and Janne Kontkanen (Google)	4100

Low-Level & Optimization

Enhancing Low Light Videos by Exploring High Sensitivity Camera Noise	4110
Deep Restoration of Vintage Photographs From Scanned Halftone Prints Qifan Gao (Shanghai Jiao Tong University), Xiao Shu (McMaster University; Shanghai Jiao Tong University), and Xiaolin Wu (McMaster University; Shanghai Jiao Tong University)	4119
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation Qiqi Hou (Portland State University) and Feng Liu (Portland State University)	4129
CFSNet: Toward a Controllable Feature Space for Image Restoration Wei Wang (Tsinghua University), Ruiming Guo (The Chinese University of Hong Kong), Yapeng Tian (University of Rochester), and Wenming Yang (Tsinghua University)	4139
Deep Blind Hyperspectral Image Fusion Wu Wang (Xiamen University), Weihong Zeng (Xiamen University), Yue Huang (Xiamen University), Xinghao Ding (Xiamen University), and John Paisley (Columbia University)	4149
Fully Convolutional Pixel Adaptive Image Denoiser Sungmin Cha (Sungkyunkwan University) and Taesup Moon (Sungkyunkwan University)	4159
Coherent Semantic Attention for Image Inpainting Hongyu Liu (Hunan University), Bin Jiang (Hunan University), Yi Xiao (Hunan University), and Chao Yang (Hunan University)	
Embedded Block Residual Network: A Recursive Restoration Model for Single-Image Super-Rest Yajun Qiu (Yunnan University), Ruxin Wang (Union Vision Innovation Co Ltd.), Dapeng Tao (Yunnan University), and Jun Cheng (Shenzhen Institutes of Advanced Technology. Chinese Academy of Sciences)	olution 4179
Fast Image Restoration With Multi-Bin Trainable Linear Units Shuhang Gu (ETH Zurich), Wen Li (ETH Zurich), Luc Van Gool (ETH Zurich), and Radu Timofte (ETH Zurich)	4189

Scene Understanding

Counting With Focus for Free	199
SynDeMo: Synergistic Deep Feature Alignment for Joint Learning of Depth and Ego-Motion 4	1209
Behzad Bozorgtabar (EPFL), Mohammad Saeed Rad (EPFL), Dwarikanath	
Mahapatra (IBM Research Australia), and Jean-Philippe Thiran (École	
Polytechnique Fédérale de Lausanne)	
Diverse Image Synthesis From Semantic Layouts via Conditional IMLE	1219
Ke Li (UC Berkeley), Tianhao Zhang (Nanjing University), and Jitendra	
Malik (University of California at Berkley)	

Towards Bridging Semantic Gap to Improve Semantic Segmentation	4229
Yanwei Pang (Tianjin University), Yazhao Li (Tianjin University),	
Jianbing Shen (Inception Institute of Artificial Intelligence), and	
Ling Shao (Inception Institute of Artificial Intelligence)	

Language & Reasoning

Generating Diverse and Descriptive Image Captions Using Visual Paraphrases
Learning to Collocate Neural Modules for Image Captioning
Sequential Latent Spaces for Modeling the Intention During Diverse Image Captioning
 Why Does a Visual Question Have Different Answers?
G3raphGround: Graph-Based Language Grounding
 Scene Text Visual Question Answering

3D From Multiview & Sensors

Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep
SLAM
Lu Sheng (Beihang University), Dan Xu (University of Oxford), Wanli
Ouyang (The University of Sydney), and Xiaogang Wang (Chinese
University of Hong Kong. Hong Kong)
MVSCRF: Learning Multi-View Stereo With Conditional Random Fields
Youze Xue (Tsinghua University), Jiansheng Chen (Tsinghua University),
Weitao Wan (Tsinghua University), Yiqing Huang (Tsinghua University),
Cheng Yu (Tsinghua University), Tianpeng Li (Tsinghua University), and
Jiayu Bao (Tsinghua University)

Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses
Efficient Learning on Point Clouds With Basis Point Sets
Cross View Fusion for 3D Human Pose Estimation
Shape-Aware Human Pose and Shape Reconstruction Using Multi-View Images
Monocular Piecewise Depth Estimation in Dynamic Scenes by Exploiting Superpixel Relations
Is This the Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization
DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch

Image & Video Synthesis

Convolutional Sequence Generation for Skeleton-Based Action Synthesis	1393
Onion-Peel Networks for Deep Video Completion	1402
Copy-and-Paste Networks for Deep Video Inpainting	1412
Content and Style Disentanglement for Artistic Style Transfer	1421

Oral 3.1A

Generative Modeling & Synthesis

Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?	4431
Controllable Artistic Text Style Transfer via Shape-Matching GAN Shuai Yang (Peking University), Zhangyang Wang (TAMU), Zhaowen Wang (Adobe Research), Ning Xu (Adobe Research), Jiaying Liu (Peking University), and Zongming Guo (Peking University)	4441
Understanding Generalized Whitening and Coloring Transform for Universal Style Transfer Tai-Yin Chiu (University of Texas)	
Learning Implicit Generative Models by Matching Perceptual Features Cicero Nogueira Dos Santos (IBM Research), Youssef Mroueh (IBM Research), Inkit Padhi (IBM Research), and Pierre Dognin (IBM Research)	4460
Free-Form Image Inpainting With Gated Convolution Jiahui Yu (UIUC), Zhe Lin (Adobe Research), Jimei Yang (Adobe), Xiaohui Shen (ByteDance AI Lab), Xin Lu (Adobe), and Thomas Huang (UIUC)	4470
FiNet: Compatible and Diverse Fashion Image Inpainting Xintong Han (Malong Technologies), Zuxuan Wu (UMD), Weilin Huang (Malong Technologies), Matthew Scott (Malong Technologies), and Larry Davis (University of Maryland)	
InGAN: Capturing and Retargeting the "DNA" of a Natural Image Assaf Shocher (Weizmann Institute of Science), Shai Bagon (Weizmann Institute of Science), Phillip Isola (MIT), and Michal Irani (Weizmann Institute. Israel)	4491
Seeing What a GAN Cannot Generate David Bau (MIT), Jun-Yan Zhu (MIT), Jonas Wulff (MIT), William Peebles (MIT), Bolei Zhou (CUHK), Hendrik Strobelt (IBM Research), and Antonio Torralba (MIT)	4501
COCO-GAN: Generation by Parts via Conditional Coordinating Chieh Hubert Lin (National Tsing Hua University), Chia-Che Chang (MediaTek), Yu-Sheng Chen (National Taiwan University), Da-Cheng Juan (Google), Wei Wei (Google), and Hwann-Tzong Chen (National Tsing Hua University)	4511
Neural Turtle Graphics for Modeling City Road Layouts Hang Chu (University of Toronto), Daiqing Li (NVIDIA), David Acuna (University of Toronto), Amlan Kar (University of Toronto), Maria Shugrina (University of Toronto), Xinkai Wei (University of Waterloo), Ming-Yu Liu (NVIDIA), Antonio Torralba (MIT), and Sanja Fidler (University of Toronto. NVIDIA)	4521

Texture Fields: Learning Texture Representations in Function Space
 PointFlow: 3D Point Cloud Generation With Continuous Normalizing Flows
 Meta-Sim: Learning to Generate Synthetic Datasets
Specifying Object Attributes and Relations in Interactive Scene Generation
SinGAN: Learning a Generative Model From a Single Natural Image

Oral 3.1B

Vision, Language, & Text

VaTeX: A Large-Scale, High-Quality Multilingual Dataset for Video-and-Language Research
 A Graph-Based Framework to Bridge Movies and Synopses
From Strings to Things: Knowledge-Enabled VQA Model That Can Read and Reason
Counterfactual Critic Multi-Agent Training for Scene Graph Generation
Robust Change Captioning

Attention on Attention for Image Captioning	4633
Dynamic Graph Attention for Referring Expression Comprehension	4643
Visual Semantic Reasoning for Image-Text Matching	4653
Phrase Localization Without Paired Training Examples	1662
Learning to Assemble Neural Module Tree Networks for Visual Grounding	4672
A Fast and Accurate One-Stage Approach to Visual Grounding	1682
Zero-Shot Grounding of Objects From Natural Language Queries	1693
Towards Unconstrained End-to-End Text Spotting	1703
 What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis	1714

Poster 3.1

Deep Learning

Sparse and Imperceivable Adversarial Attacks	4723
Francesco Croce (University of Tübingen) and Matthias Hein (University	
of Tübingen)	

 Enhancing Adversarial Example Transferability With an Intermediate Level Attack	32
 Implicit Surface Representations As Layers in Neural Networks	42
 A Tour of Convolutional Networks Guided by Linear Interpreters	52
 Small Steps and Giant Leaps: Minimal Newton Solvers for Deep Learning	62
Semantic Adversarial Attacks: Parametric Transformations That Fool Deep Classifiers	72
 Hilbert-Based Generative Defense for Adversarial Examples	83
On the Efficacy of Knowledge Distillation	93
 Sym-Parameterized Dynamic Inference for Mixed-Domain Image Translation	02
 Better and Faster: Exponential Loss for Image Patch Matching	11
Physical Adversarial Textures That Fool Visual Object Tracking	21
 Wasserstein GAN With Quadratic Transport Cost	31

Scalable Verified Training for Provably Robust Image Classification Sven Gowal (DeepMind), Krishnamurthy Dvijotham (DeepMind), Robert Stanforth (Deepmind), Rudy Bunel (University of Oxford), Chongli Qin (DeepMind), Jonathan Uesato (DeepMind), Relja Arandjelovic (DeepMind), Timothy Arthur Mann, and Pushmeet Kohli (DeepMind)	4841
Differentiable Soft Quantization: Bridging Full-Precision and Low-Bit Neural Networks Ruihao Gong (Beihang University), Xianglong Liu (Beihang University), Shenghu Jiang (Beihang University), Tianxiang Li (Beijing Institute of Technology), Peng Hu (Beihang University), Jiazhen Lin (Beihang University), Fengwei Yu (Sensetime Research), and Junjie Yan (Sensetime Group Limited)	4851
The LogBarrier Adversarial Attack: Making Effective Use of Decision Boundary Information Chris Finlay (McGill University), Aram-Alexandre Pooladian (McGill University), and Adam Oberman (McGill University)	4861
Proximal Mean-Field for Neural Network Quantization Thalaiyasingam Ajanthan (ANU), Puneet Dokania (University of Oxford), Richard Hartley (Australian National University. Australia), and Philip Torr (University of Oxford)	4870
Improving Adversarial Robustness via Guided Complement Entropy Hao-Yun Chen (National Tsing Hua University), Jhao-Hong Liang (National Tsing Hua University), Shih-Chieh Chang (National Tsing Hua University), Jia-Yu Pan (Google), Yu-Ting Chen (Google), Wei Wei (Google), and Da-Cheng Juan (Google)	4880
A Geometry-Inspired Decision-Based Attack Yujia Liu (University of Science and Technology of China), Seyed-Mohsen Moosavi-Dezfooli (EPFL), and Pascal Frossard (EPFL)	4889
Universal Perturbation Attack Against Image Retrieval Jie Li (Xiamen University), Rongrong Ji (Xiamen University. China), Hong Liu (Xiamen University), Xiaopeng Hong (Xi'an Jiaotong University), Yue Gao (Tsinghua University), and Qi Tian (Huawei Noah's Ark Lab)	4898
Bayesian Optimized 1-Bit CNNs Jiaxin Gu (Beihang University), Junhe Zhao (Beihang University), Xiaolong Jiang (Beihang Unviersity), Baochang Zhang (Beihang University), Jianzhuang Liu (Huawei Noah's Ark Lab), Guodong Guo (Baidu), and Rongrong Ji (Xiamen University. China)	4908
Rethinking ImageNet Pre-Training Kaiming He (Facebook AI Research), Ross Girshick (FAIR), and Piotr Dollar (FAIR)	4917
Defending Against Universal Perturbations With Shared Adversarial Training Chaithanya Kumar Mummadi (Robert Bosch GmbH), Thomas Brox (University of Freiburg), and Jan Hendrik Metzen (Robert Bosch GmbH)	4927
Adaptive Activation Thresholding: Dynamic Routing Type Behavior for Interpretability in Convolutional Neural Networks	4937

XRAI: Better Attributions Through Regions
Guessing Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks
Recognition
Mask-Guided Attention Network for Occluded Pedestrian Detection
Spectral Feature Transformation for Person Re-Identification
 Permutation-Invariant Feature Restructuring for Correlation-Aware Image Set-Based Recognition
Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific
Localization
 Correlation Congruence for Knowledge Distillation
Dynamic Curriculum Learning for Imbalanced Data Classification
Video Face Clustering With Unknown Number of Clusters

 Targeted Mismatch Adversarial Attack: Query With a Flower to Retrieve the Tower	5
 Fashion++: Minimal Edits for Outfit Improvement	5
 Semi-Supervised Pedestrian Instance Synthesis and Detection With Mutual Reinforcement	5
SILCO: Show a Few Images, Localize the Common Object	5
A Deep Step Pattern Representation for Multimodal Retinal Image Registration	5
Deep Graphical Feature Learning for the Feature Matching Problem	6
Minimum Delay Object Detection From Video 5090 Dong Lao (KAUST) and Ganesh Sundaramoorthi (Kaust) 5090	6
Learning With Average Precision: Training Image Retrieval With a Listwise Loss	6
Learning to Find Common Objects Across Few Image Collections	5
 Weakly Aligned Cross-Modal Learning for Multispectral Pedestrian Detection	5
Deep Self-Learning From Noisy Labels	7

DSConv: Efficient Convolution Operator	47
Marcelo Gennari Do Nascimento (Unviersity of Oxford), Victor	
Prisacariu (University of Oxford), and Roger Fawcett (Intel)	
Once a MAN: Towards Multi-Target Attack via Learning Multi-Target Adversarial Network Once	57
Jiangfan Han (The Chinese University of Hong Kong), Xiaoyi Dong	
(University of Science and Technology of China), Ruimao Zhang (The	
Chinese University of Hong Kong), Dongdong Chen (university of science	
and technology of china), Weiming Zhang (University of Science and	
Technology of China), Nenghai Yu (University of Science and Technology	
of China), Ping Luo (The Chinese University of Hong Kong), and	

Xiaogang Wang (Chinese University of Hong Kong. Hong Kong)

Segmentation, Grouping, & Shape

Explicit Shape Encoding for Real-Time Instance Segmentation Wenqiang Xu (Shanghai Jiaotong University), Haiyang Wang (SHANG HAI JIAO TONG UNIVERSITY), Fubo Qi (Shanghai JiaoTong University), and Cewu Lu (Shanghai Jiao Tong University)	5167
IMP: Instance Mask Projection for High Accuracy Semantic Segmentation of Things Cheng-Yang Fu (UNC-Chapel Hill), Tamara Berg (University on North carolina), and Alexander Berg (University of North Carolina. USA)	5177
Video Instance Segmentation Linjie Yang (ByteDance AI Lab), Yuchen Fan (University of Illinois at Urbana-Champaign), and Ning Xu (Adobe Research)	5187
Attention Bridging Network for Knowledge Transfer <i>Kunpeng Li (Northeastern University), Yulun Zhang (Northeastern</i> <i>University), Kai Li (Northeastern University), Yuanyuan Li</i> <i>(Northeastern University), and Yun Fu (Northeastern University)</i>	5197
Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation	5207
 SPGNet: Semantic Prediction Guidance for Scene Parsing	5217
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa (University of Waterloo), David Acuna (University of Toronto), Varun Jampani (Nvidia Research), and Sanja Fidler (University of Toronto. NVIDIA)	5228
 DensePoint: Learning Densely Contextual Representation for Efficient Point Cloud Processing Yongcheng Liu (Institute of Automation. Chinese Academy of Sciences), Bin Fan (Institute of Automation. Chinese Academy of Sciences. China), Gaofeng Meng (Chinese Academy of Sciences), Jiwen Lu (Tsinghua University), Shiming Xiang (Chinese Academy of Sciences. China), and Chunhong Pan (Institute of Automation. Chinese Academy of Sciences) 	5238

AMP: Adaptive Masked Proxies for Few-Shot Segmentation	5248
Mennatullah Siam (University of Alberta), Boris Oreshkin (Element AI),	
and Martin Jagersand (University of Alberta)	
Universal Semi-Supervised Semantic Segmentation	5258
Tarun Kalluri (IIIT Hyderbad), Girish Varma (IIIT Hyderabad), Manmohan	
Chandraker (UC San Diego), and C.V. Jawahar (IIIT-Hyderabad)	

Statistics, Physics, Theory & Datasets

Accelerate Learning of Deep Hashing With Gradient Attention Long-Kai Huang (NTU. Singapore), Jianda Chen (Nanyang Technological University), and Sinno Pan (NTU. Singapore)	5270
SVD: A Large-Scale Short Video Dataset for Near-Duplicate Video Retrieval	5280
Block Annotation: Better Image Annotation With Sub-Image Decomposition Hubert Lin (Cornell University), Paul Upchurch (Cornell), and Kavita Bala (Cornell)	5289
Probabilistic Deep Ordinal Regression Based on Gaussian Processes Yanzhu Liu (Nanyang Technological University), Fan Wang (Nanyang Technological University), and Wai-Kin Adams Kong (Nanyang Technological University)	5300
Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations	5309
Teacher Guided Architecture Search Pouya Bashivan (Massachusetts Institute of Technology), Mark Tensen (University of Amsterdam), and James Dicarlo (Massachusetts Institute of Technology)	5319

3D From Single View & RGBD

FACSIMILE: Fast and Accurate Scans From an Image in Less Than a Second David Smith (Amazon), Matthew Loper (Amazon), Xiaochen Hu (Amazon), Paris Mavroidis (Amazon), and Javier Romero (Amazon)	5329
Delving Deep Into Hybrid Annotations for 3D Human Recovery in the Wild Yu Rong (The Chinese University of Hong Kong), Ziwei Liu (The Chinese University of Hong Kong), Cheng Li (SenseTime Research), Kaidi Cao (Starford University) and Chan Change Law (Namera Tachaglasical)	5339
(Stanford University), and Chen Change Loy (Nanyang Technological University)	

Human Mesh Recovery From Monocular Images via a Skeleton-Disentangled Representation
Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture From Images "In the Wild"
Object-Driven Multi-Layer Scene Decomposition From a Single Image
Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics
Joint Monocular 3D Vehicle Detection and Tracking

Face & Body

 Fingerspelling Recognition in the Wild With Iterative Visual Attention	9 9
PointAE: Point Auto-Encoder for 3D Statistical Shape and Texture Modelling)9
Multi-Garment Net: Learning to Dress 3D People From Images	19
Skeleton-Aware 3D Human Shape Reconstruction From Point Clouds	30
 AMASS: Archive of Motion Capture As Surface Shapes	41
 Person-in-WiFi: Fine-Grained Person Perception Using WiFi	51

FAB: A Robust Facial Landmark Detection Framework for Motion-Blurred Videos	461
Keqiang Sun (Tsinghua University), Wayne Wu (Tsinghua University.	
SenseTime Research), Tinghao Liu (SenseTime), Shuo Yang (Amazon), Quan	
Wang (Sensetime), Qiang Zhou (Tsinghua University), Zuochang Ye	
(Tsinghua University), and Chen Qian (SenseTime)	
Attentional Feature-Pair Relation Networks for Accurate Face Recognition	471
Bong-Nam Kang (POSTECH), Yonghyun Kim (POSTECH), Bongjin Jun	
(StradVision. Inc.), and Daijin Kim (Pohang University of Science and	
Technology)	

Action & Video

Action Recognition With Spatial-Temporal Discriminative Filter Banks Brais Martínez Martínez (Amazon. USA), Davide Modolo (Amazon), Yuanjun Xiong (Amazon), and Joseph Tighe (Amazon)	5481
EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric Action Recognition Evangelos Kazakos (University of Bristol), Arsha Nagrani (Oxford University), Andrew Zisserman (University of Oxford), and Dima Damen (University of Bristol)	5491
Weakly-Supervised Action Localization With Background Modeling Phuc Nguyen (UC Irvine), Deva Ramanan (Carnegie Mellon University), and Charless Fowlkes (UC Irvine)	5501
Grouped Spatial-Temporal Aggregation for Efficient Action Recognition Chenxu Luo (Johns Hopkins University) and Alan Yuille (Johns Hopkins University)	5511
Temporal Structure Mining for Weakly Supervised Action Detection <i>Tan Yu (Nanyang Technological University), Zhou Ren (Wormpex AI</i> <i>Research), Yuncheng Li (Snap), Enxu Yan (Snap Inc.), Ning Xu (-), and</i> <i>Junsong Yuan (State University of New York at Buffalo. USA)</i>	5521
Temporal Recurrent Networks for Online Action Detection Mingze Xu (Indiana University), Mingfei Gao (University of Maryland), Yi-Ting Chen (Honda Research Institute USA), Larry Davis (University of Maryland), and David Crandall (Indiana University)	5531
StartNet: Online Detection of Action Start in Untrimmed Videos Mingfei Gao (University of Maryland), Mingze Xu (Indiana University), Larry Davis (University of Maryland), Richard Socher (Salesforce), and Caiming Xiong (Salesforce Research)	5541
Video Classification With Channel-Separated Convolutional Networks Du Tran (Facebook Research), Heng Wang (Facebook Research), Matt Feiszli (Facebook Research), and Lorenzo Torresani (Facebook AI Research)	5551
Predicting the Future: A Jointly Learnt Model for Action Anticipation Harshala Gammulle (Queensland University of Technology), Simon Denman (Queensland University of Technology. Australia), Sridha Sridharan (QUT), and Clinton Fookes (Queensland University of Technology)	5561

(QUT), and Clinton Fookes (Queensland University of Technology)

Low-Level & Optimization

Human-Aware Motion Deblurring Ziyi Shen (Inception Institute of Artificial Intelligence), Wenguan Wang (Inception Institute of Artificial Intelligence), Xiankai Lu (Inception Institute of Artificial Intelligence), Jianbing Shen (Inception Institute of Artificial Intelligence), Haibin Ling (Temple University), Tingfa Xu (Beijing Institute of Technology), and Ling Shao (Inception Institute of Artificial Intelligence)	5571
 Fast Video Object Segmentation via Dynamic Targeting Network	5581
Solving Vision Problems via Filtering Sean Young (Stanford University), Aous Naman (University of New South Wales), Bernd Girod (Stanford University), and David Taubman (University of New South Wales)	5591
GAN-Based Projector for Faster Recovery With Convergence Guarantees in Linear Inverse Problems Ankit Raj (University of Illinois at Urbana-Champaign), Yuqi Li (University of Illinois Urbana-Champaign), and Yoram Bresler (UIUC)	5601
 Scoot: A Perceptual Metric for Facial Sketches	5611
Learning Filter Basis for Convolutional Neural Network Compression	5622
End-to-End Learning of Representations for Asynchronous Event-Based Data Daniel Gehrig (University of Zurich & ETH Zurich), Antonio Loquercio (ETH / University of Zurich), Konstantinos Derpanis (Ryerson University), and Davide Scaramuzza (University of Zurich & ETH Zurich. Switzerland)	5632
ERL-Net: Entangled Representation Learning for Single Image De-Raining Guoqing Wang (UNSW; Csiro Data61), Changming Sun (CSIRO Data61), and Arcot Sowmya (UNSW)	5643
Perceptual Deep Depth Super-Resolution Oleg Voynov (Skoltech), Alexey Artemov (Skoltech), Vage Egiazarian (Skoltech), Alexandr Notchenko (Skoltech), Gleb Bobrovskikh (Higher School of Economics), Evgeny Burnaev (Skoltech), and Denis Zorin (New York University)	5652

Scene Understanding

3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera	63
Floorplan-Jigsaw: Jointly Estimating Scene Layout and Aligning Partial Scans	73
Enforcing Geometric Constraints of Virtual Normal for Depth Prediction	83
 Deep Contextual Attention for Human-Object Interaction Detection	93
Learning Compositional Neural Information Fusion for Human Parsing	02
 Attentional Neural Fields for Crowd Counting	13
 Understanding Human Gaze Communication by Spatio-Temporal Graph Reasoning	23
Controllable Attention for Structured Layered Video Decomposition	33
GANalyze: Toward Visual Definitions of Cognitive Image Properties	43

Language & Reasoning

Saliency-Guided Attention Network for Image-Sentence Matching	5753
CAMP: Cross-Modal Adaptive Message Passing for Text-Image Retrieval Zihao Wang (Sensetime), Xihui Liu (The Chinese University of Hong Kong), Hongsheng Li (Chinese University of Hong Kong), Lu Sheng (Beihang University), Junjie Yan (Sensetime Group Limited), Xiaogang Wang (Chinese University of Hong Kong. Hong Kong), and Jing Shao (Sensetime)	5763
ACMM: Aligned Cross-Modal Memory for Few-Shot Image and Sentence Matching Yan Huang (Institute of Automation. Chinese Academy of Sciences) and Liang Wang (NLPR. China)	5773
Creativity Inspired Zero-Shot Learning Mohamed Elhoseiny (KAUST and Baidu) and Mohamed Elfeki (CRCV)	5783
Generating Easy-to-Understand Referring Expressions for Target Identifications Mikihiro Tanaka (The University of Tokyo), Takayuki Itamochi (NVIDIA), Kenichi Narioka (DENSO CORPORATION), Ikuro Sato (Denso IT Laboratory), Yoshitaka Ushiku (The University of Tokyo), and Tatsuya Harada (The University of Tokyo / RIKEN)	5793
Language-Agnostic Visual-Semantic Embeddings Jonatas Wehrmann (PUCRS), Maurício Armani Lopes (PUCRS), Douglas Souza (PUCRS), and Rodrigo Barros (PUCRS)	5803
Adversarial Representation Learning for Text-to-Image Matching Nikolaos Sarafianos (University of Houston), Xiang Xu (University of Houston), and Ioannis Kakadiaris (University of Houston)	5813
Multi-Modality Latent Interaction Network for Visual Question Answering Gao Peng (Chinese university of hong kong), Haoxuan You (Tsinghua University), Zhanpeng Zhang (SenseTime Group Limited), Xiaogang Wang (Chinese University of Hong Kong. Hong Kong), and Hongsheng Li (Chinese University of Hong Kong)	5824

3D From Multiview & Sensors

 Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters	835
Learning Two-View Correspondences and Geometry Using Order-Aware Network	844
Jiahui Zhang (Tsinghua University), Dawei Sun (Tsinghua University),	
Zixin Luo (HKUST), Anbang Yao (Intel Labs China), Lei Zhou (HKUST),	
Tianwei Shen (HKUST), Yurong Chen (Intel Labs China), Hongen Liao	
(Tsinghua University), and Long Quan (Hong Kong University of Science and Technology)	

Learning Meshes for Dense Visual SLAM	54
EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association	64
 ClusterSLAM: A SLAM Backend for Simultaneous Rigid Body Clustering and Motion Estimation	74
Efficient and Robust Registration on the 3D Special Euclidean Group	84
Algebraic Characterization of Essential Matrices and Their Averaging in Multiview Settings	94

Image & Video Synthesis

Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis	. 5903
Wen Liu (ShanghaiTech University), Zhixin Piao (ShanghaiTech University), Jie Min (ShanghaiTech University), Wenhan Luo (Tencent AI Lab), Lin Ma (Tencent AI Lab), and Shenghua Gao (Shanghaitech University)	
RelGAN: Multi-Domain Image-to-Image Translation via Relative Attributes	5913
Attribute-Driven Spontaneous Motion in Unpaired Image Translation Ruizheng Wu (The Chinese University of Hong KONG), Xin Tao (Tencent), Xiaodong Gu (Harbin Institute of Technology. Shenzhen), Xiaoyong Shen (Tencent), and Jiaya Jia (Chinese University of Hong Kong)	5922
Everybody Dance Now Caroline Chan (UC Berkeley), Shiry Ginosar (UC Berkeley), Tinghui Zhou (Berkeley), and Alexei Efros (UC Berkeley)	. 5932
Multimodal Style Transfer via Graph Cuts Yulun Zhang (Northeastern University), Chen Fang (ByteDance), Yilin Wang (Adobe), Zhaowen Wang (Adobe Research), Zhe Lin (Adobe Research), Yun Fu (Northeastern University), and Jimei Yang (Adobe)	5942
A Closed-Form Solution to Universal Style Transfer Ming Lu (Tsinghua University), Hao Zhao (Tsinghua University), Anbang Yao (Intel Labs China), Yurong Chen (Intel Labs China), Feng Xu (Tsinghua University), and Li Zhang (Tsinghua University)	5951

Progressive Reconstruction of Visual Structure for Image Inpainting	5961
Jingyuan Li (Wuhan University), Fengxiang He (The University of	
Sydney), Lefei Zhang (Wuhan University), Bo Du (School of Compuer	
Science. Wuhan University), and Dacheng Tao (University of Sydney)	

Oral 3.2A

Recognition, Detection, & Re-Identification

Variational Adversarial Active Learning Samrath Sinha (University of Toronto), Sayna Ebrahimi (UC Berkeley), and Trevor Darrell (UC Berkeley)	5971
Confidence Regularized Self-Training Yang Zou (Carnegie Mellon University), Zhiding Yu (NVIDIA), Xiaofeng Liu (CMU), B. V. K. Vijaya Kumar (CMU. USA), and Jinsong Wang (General Motors)	5981
Anchor Loss: Modulating Loss Scale Based on Prediction Difficulty Serim Ryou (California Institute of Technology), Seong-Gyun Jeong (code42.ai), and Pietro Perona (California Institute of Technology)	
Local Aggregation for Unsupervised Learning of Visual Embeddings Chengxu Zhuang (Stanford University), Alex Zhai (Stanford University), and Daniel Yamins (Stanford University)	6001
PR Product: A Substitute for Inner Product in Neural Networks	6012
CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features Sangdoo Yun (Clova AI Research. NAVER Corp.), Dongyoon Han (Clova AI Research. NAVER Corp.), Sanghyuk Chun (Clova AI Research. NAVER Corp.), Seong Joon Oh (Clova AI Research. LINE Plus), Youngjoon Yoo (Clova AI Research. NAVER Corp.), and Junsuk Choe (Yonsei University)	6022
Towards Interpretable Object Detection by Unfolding Latent Structures <i>Tianfu Wu (NC State University) and Xi Song (None)</i>	
Scaling Object Detection by Transferring Classification Weights Jason Kuen (Nanyang Technological University), Federico Perazzi (Adobe Research), Zhe Lin (Adobe Research), Jianming Zhang (Adobe Research), and Yap-Peng Tan (Nanyang Technological University. Singapore)	6043
Scale-Aware Trident Networks for Object Detection	6053
Object-Aware Instance Labeling for Weakly Supervised Object Detection Satoshi Kosugi (The University of Tokyo), Toshihiko Yamasaki (The University of Tokyo), and Kiyoharu Aizawa (The University of Tokyo)	6063
Generative Modeling for Small-Data Object Detection Lanlan Liu (University of Michigan), Michael Muelly (Google), Jia Deng (Princeton University), Tomas Pfister (Google), and Li-Jia Li (Stanford)	

Transductive Learning for Zero-Shot Object Detection	1
Self-Training and Adversarial Background Regularization for Unsupervised Domain Adaptive One-Stage Object Detection	1
 Memory-Based Neighbourhood Embedding for Visual Recognition	1
 Self-Similarity Grouping: A Simple Unsupervised Cross Domain Adaptation Approach for Person Re-Identification	1
Deep Reinforcement Active Learning for Human-in-the-Loop Person Re-Identification	.1
A Dual-Path Model With Adaptive Attention for Vehicle Re-Identification	1
Bayesian Loss for Crowd Count Estimation With Point Supervision	.1
Learning Spatial Awareness to Improve Crowd Counting	1

Oral 3.2B

Video & Action Underst&ing

GradNet: Gradient-Guided Network for Visual Object Tracking	6161
Peixia Li (Dalian University of Technology), Boyu Chen (Dalian	
University of Technology), Wanli Ouyang (The University of Sydney),	
Dong Wang (Dalian University of Technology), Xiaoyun Yang (China	
Science IntelliCloud Technology Co Ltd), and Huchuan Lu (Dalian	
University of Technology)	

FAMNet: Joint Learning of Feature, Affinity and Multi-Dimensional Assignment for Online Multiple Object Tracking
Learning Discriminative Model Prediction for Tracking
DynamoNet: Dynamic Action and Motion Network
SlowFast Networks for Video Recognition
 Generative Multi-View Human Action Recognition
Multi-Agent Reinforcement Learning Based Frame Sampling for Effective Untrimmed Video Recognition 6221 Wenhao Wu (Shenzhen Institutes of Advanced Technology. Chinese Academy of Sciences), Dongliang He (Baidu), Xiao Tan (Baidu Research), Shifeng Chen (SIAT), and Shilei Wen (Baidu Research)
SCSampler: Sampling Salient Clips From Video for Efficient Action Recognition
 Weakly Supervised Energy-Based Learning for Action Segmentation
What Would You Expect? Anticipating Egocentric Actions With Rolling-Unrolling LSTMs and Modality Attention Antonino Furnari (University of Catania) and Giovanni Farinella
(University of Catania. Italy)
PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and Trajectory Prediction 6261 Amir Rasouli (York University), Iuliia Kotseruba (York University), Toni Kunic (York University), and John Tsotsos (York University)
 STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction
Learning Motion in Feature Space: Locally-Consistent Deformable Convolution Networks for Fine-Grained Action Detection
(UIUC), Jinjun Xiong (IBM Thomas J. Watson Research Center), Rogerio Feris (IBM Research AI. MIT-IBM Watson AI Lab), and Minh Do (UIUC)

Dual Attention Matching for Audio-Visual Event Localization	1
Uncertainty-Aware Audiovisual Activity Recognition Using Deep Bayesian Variational Inference	0
Non-Local Recurrent Neural Memory for Supervised Sequence Modeling	0
 Temporal Attentive Alignment for Large-Scale Video Domain Adaptation	0
Action Assessment by Joint Relation Graphs	0
Unsupervised Procedure Learning via Joint Dynamic Summarization	0
 ViSiL: Fine-Grained Spatio-Temporal Video Similarity Learning	0

Poster 3.2

Deep Learning

Unsupervised Learning of Landmarks by Descriptor Vector Exchange
Learning Compositional Representations for Few-Shot Recognition
Spectral Regularization for Combating Mode Collapse in GANs
Scaling and Benchmarking Self-Supervised Visual Representation Learning

Learning an Effective Equivariant 3D Descriptor Without Supervision	5400
 KPConv: Flexible and Deformable Convolution for Point Clouds	5410
Neural Inter-Frame Compression for Video Coding	5420
 Task2Vec: Task Embedding for Meta-Learning	5429
Deep Clustering by Gaussian Mixture Variational Autoencoders With Graph Embedding	5439
SoftTriple Loss: Deep Metric Learning Without Triplet Sampling	5449
A Weakly Supervised Fine Label Classifier Enhanced by Coarse Supervision	5458
Gaussian Affinity for Max-Margin Class Imbalanced Learning	5468
AttPool: Towards Hierarchical Feature Representation in Graph Convolutional Networks via Attention Mechanism	6479
Deep Metric Learning With Tuplet Margin Loss	5489

Normalized Wasserstein for Mixture Distributions With Applications in Adversarial Learning and Domain Adaptation	199
Yogesh Balaji (University of Maryland. College Park), Rama Chellappa (University of Maryland), and Soheil Feizi (University of Maryland)	
 Fast and Practical Neural Architecture Search	;08
Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning	;18
Deep Elastic Networks With Model Selection for Multi-Task Learning	528
Metric Learning With HORDE: High-Order Regularizer for Deep Embeddings	538
Adversarial Learning With Margin-Based Triplet Embedding Regularization	548

Recognition

Simultaneous Multi-View Instance Detection With Learned Geometric Soft-Constraints
CenterNet: Keypoint Triplets for Object Detection
 Online Hyper-Parameter Learning for Auto-Augmentation Strategy
DANet: Divergent Activation for Weakly Supervised Object Localization

Selective Sparse Sampling for Fine-Grained Image Recognition
Dynamic Anchor Feature Selection for Single-Shot Object Detection
Incremental Learning Using Conditional Adversarial Networks
Bilateral Adversarial Training: Towards Fast Training of More Robust Models Against Adversarial Attacks
View Confusion Feature Learning for Person Re-Identification
 Auto-FPN: Automatic Network Architecture Adaptation for Object Detection Beyond Classification
PARN: Position-Aware Relation Networks for Few-Shot Learning
Multi-Adversarial Faster-RCNN for Unrestricted Object Detection
Object Guided External Memory Network for Video Object Detection
An Empirical Study of Spatial Attention Mechanisms in Deep Networks
Attribute Attention for Semantic Disambiguation in Zero-Shot Learning
CIIDefence: Defeating Adversarial Attacks by Fusing Class-Specific Image Inpainting and Image Denoising

 ThunderNet: Towards Real-Time Generic Object Detection on Mobile Devices	7
Dual Student: Breaking the Limits of the Teacher in Semi-Supervised Learning	7
MVP Matching: A Maximum-Value Perfect Matching for Mining Hard Samples, With Application to Person Re-Identification	6

Segmentation, Grouping, & Shape

Adaptive Context Network for Scene Parsing	. 6747
Jun Fu (National Laboratory of Pattern Recognition. Institute of	
Automation. Chinese Academy of Sciences and University of Chinese	
Academy of Sciences), Jing Liu (National Lab of Pattern Recognition.	
Institute of Automation), Yuhang Wang (Institute of Automation.	
Chinese Academy of Sciences), Yong Li (Business Growth BU. JD.com),	
Yongjun Bao (JD.com), Jinnui Tang (Nanjing University of Science and Tashu alasy) and Hanging Ly (NI DD, Institute of Automation, CAS)	
Technology), and Hanqing Lu (NLFK. Institute of Automation. CAS)	
Constructing Self-Motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation: A	
Non-Adversarial Approach	. 6757
Qing Lian (University of Electronic Science and Technology of China),	
Lixin Duan (University of Electronic Science and Technology of China).	
Fenomao I.v. (University of Electronic Science and Technology of China)	
and Boging Cong (Coogle / ICSI Barkelay)	
and boying dong (doogle / ICSI berkeley)	
SparseMask: Differentiable Connectivity Learning for Dense Image Prediction	6767
Huikai Wu (CASIA), Junge Zhang (CASIA), and Kaiqi Huang (Institute of	
Automation. Chinese Academy of Sciences)	
Significance-Aware Information Bottleneck for Domain Adaptive Semantic Segmentation	6///
Yawei Luo (University of Technology Sydney), Ping Liu (UTS), Tao Guan	
(Huazhong University of Science and Technology), Junqing Yu (Huazhong	
University of Science & Technology), and Yi Yang (UTS)	
Palational Attention Network for Crowd Counting	6787
Annan Zhang (Paihang University) Jiavi Shan (Paihang University)	.0787
Antan Zhang (Demang University), Jiayi Shen (Demang University),	
Zehao Xiao (Beihang University), Fan Zhu (Inception Institute of	
Artificial Intelligence), Xiantong Zhen (Inception Institute of	
Artificial Intelligence), Xianbin Cao (Beihang University. China), and	
Ling Shao (Inception Institute of Artificial Intelligence)	

ACFNet: Attentional Class Feature Network for Semantic Segmentation	6797
Fan Zhang (Institute of Software. Chinese Academy of Sciences), Yanqin	
Chen (Baidu Inc.), Zhihang Li (Institute of Automation. Chinese	
Academy of Science), Zhibin Hong (Baidu Inc.), Jingtuo Liu (baidu),	
Feifei Ma (Institute of Software. Chinese Academy of Sciences), Junyu	
Han (Baidu Inc.), and Errui Ding (Baidu Inc.)	
Frame-to-Frame Aggregation of Active Regions in Web Videos for Weakly Supervised Semantic	
Segmentation	6807
Jungbeom Lee (Seoul National University), Eunji Kim (Seoul National	
University), Sungmin Lee (Seoul National University), Jangho Lee	
(Seoul National University), and Sungroh Yoon (Seoul National	
University)	
Boundary-Aware Feature Propagation for Scene Segmentation	6818
Henghui Ding (Nanyang Technological University), Xudong Jiang (Nanyang	
Technological University), Ai Qun Liu (Nanyang Technological	
University), Nadia Magnenat Thalmann (Nanyang Technological	
University), and Gang Wang (Alibaba Group)	
Solf Encembling With CAN Deced Date Augmentation for Domain Adoptation in Semantic Segmentation	6020

Self-Ensembling With GAN-Based Data Augmentation for Domain Adaptation in Semantic Segmentation 6829 Jaehoon Choi (KAIST), Taekyung Kim (KAIST), and Changick Kim (KAIST)

3D From Single View & RGBD

 Explaining the Ambiguity of Object Detection and 6D Pose From Visual Data
Accurate Monocular 3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving . 6850 Xinzhu Ma (Dalian University of Technology), Zhihui Wang (Dalian University of Technology), Haojie Li (Dalian University of Technology), Pengbo Zhang (Dalian University of Technology), Wanli Ouyang (The University of Sydney), and Xin Fan (Dalian University of Technology)
MonoLoco: Monocular 3D Pedestrian Localization and Uncertainty Estimation
Unsupervised High-Resolution Depth Learning From Videos With Dual Networks

Face & Body

Bayesian Graph Convolution LSTM for Skeleton Based Action Recognition	
Rui Zhao (Amazon), Kang Wang (RPI), Hui Su (IBM), and Qiang Ji	
(Rensselaer Polytechnic Institute)	

DeCaFA: Deep Convolutional Cascade for Face Alignment in the Wild	6892
Probabilistic Face Embeddings Yichun Shi (Michigan State University) and Anil Jain (Michigan State University)	6901
Gaze360: Physically Unconstrained Gaze Estimation in the Wild Petr Kellnhofer (MIT), Adria Recasens (Massachusetts Institute of Technology), Simon Stent (Toyota Research Institute), Wojciech Matusik (MIT), and Antonio Torralba (MIT)	6911
Unsupervised Person Re-Identification by Camera-Aware Similarity Consistency Learning Ancong Wu (Sun Yat-sen University), Wei-Shi Zheng (Sun Yat-sen University. China), and Jian-Huang Lai (Sun Yat-sen University)	6921
Photo-Realistic Monocular Gaze Redirection Using Generative Adversarial Networks Zhe He (ETH Zürich and University of Zürich), Adrian Spurr (ETH), Xucong Zhang (ETH Zurich), and Otmar Hilliges (ETH Zurich)	6931
Dynamic Kernel Distillation for Efficient Pose Estimation in Videos Xuecheng Nie (NUS), Yuncheng Li (Snap), Linjie Luo (Snap Inc), Ning Zhang (UC Berkeley), and Jiashi Feng (NUS)	6941
Single-Stage Multi-Person Pose Machines Xuecheng Nie (NUS), Jiashi Feng (NUS), Jianfeng Zhang (National University of Singapore), and Shuicheng Yan (Qihoo/360)	6950
SO-HandNet: Self-Organizing Network for 3D Hand Pose Estimation With Semi-Supervised Learning Yujin Chen (Wuhan University), Zhigang Tu (Wuhan University), Liuhao Ge (Nanyang Technological University), Dejun Zhang (China University of Geosciences. Wuhan), Ruizhi Chen (Wuhan University), and Junsong Yuan (State University of New York at Buffalo. USA)	6960
Adaptive Wing Loss for Robust Face Alignment via Heatmap Regression Xinyao Wang (Oregon State University), Liefeng Bo (JD Finance), and Li Fuxin (Oregon State University)	6970
Single-Network Whole-Body Pose Estimation Gines Hidalgo Martinez (Carnegie Mellon University), Yaadhav Raaj (CMU), Haroon Idrees (RetailNext), Donglai Xiang (Carnegie Mellon University), Hanbyul Joo (Facebook AI Research), Tomas Simon (Carnegie Mellon University), and Yaser Sheikh (CMU)	6981
Face Alignment With Kernel Density Deep Neural Network Lisha Chen (RENSSELAER POLYTECHNIC INST), Hui Su (IBM), and Qiang Ji (Rensselaer Polytechnic Institute)	6991

Action & Video

Spatiotemporal Feature Residual Propagation for Action Prediction	7002
He Zhao (York University) and Rick Wildes (York University)	

Identity From Here, Pose From There: Self-Supervised Disentanglement and Generation of Objects Using	
Unlabeled Videos	12
Fanyi Xiao (University of California Davis), Haotian Liu (Zhejiang University), and Yong Jae Lee (University of California. Davis)	
 Relation Distillation Networks for Video Object Detection	22
Video Compression With Rate-Distortion Autoencoders	32
Non-Local ConvLSTM for Video Compression Artifact Reduction	42
Self-Supervised Moving Vehicle Tracking With Stereo Sound	52
Self-Supervised Learning With Geometric Constraints in Monocular Video: Connecting Flow, Depth, and Camera	62
Yuhua Chen (ETH Zurich), Cordelia Schmid (Google), and Cristian Sminchisescu (Lund University)	
Learning Temporal Action Proposals With Fewer Labels	72
TSM: Temporal Shift Module for Efficient Video Understanding	82
Graph Convolutional Networks for Temporal Action Localization	ЭЗ
Fast Object Detection in Compressed Video)3

Motion & Tracking

Predicting 3D Human Dynamics From Video	7113
Jason Zhang (University of California. Berkeley), Panna Felsen	
(University of California Berkeley), Angjoo Kanazawa (University of	
California Berkeley), and Jitendra Malik (University of California at	
Berkley)	

Imitation Learning for Human Pose Prediction	7123
Borui Wang (Stanford University), Ehsan Adeli (Stanford University),	
Hsu-Kuang Chiu (Stanford University), De-An Huang (Stanford	
University), and Juan Carlos Niebles (Stanford University)	
Human Motion Prediction via Spatio-Temporal Inpainting	7133
Alejandro Hernandez (Institut de Robotica i Informatica Industrial),	
Jürgen Gall (University of Bonn), and Francesc Moreno (IRI)	
Structured Prediction Helps 3D Human Motion Modelling	7143
Emre Aksan (ETH Zurich), Manuel Kaufmann (ETH Zurich), and Otmar	
Hilliges (ETH Zurich)	

Computational Photography & Graphics

Learning Shape Templates With Structured Implicit Functions Kyle Genova (Princeton University), Forrester Cole (Google Research), Daniel Vlasic (Google), Aaron Sarna (Google), William Freeman (Google), and Thomas Funkhouser (Princeton University)	7153
CompenNet++: End-to-End Full Projector Compensation Bingyao Huang (Temple University) and Haibin Ling (Temple University)	7164
Deep Parametric Indoor Lighting Estimation Marc-André Gardner (Université Laval), Yannick Hold-Geoffroy (Adobe Research), Kalyan Sunkavalli (Adobe Research), Christian Gagné (Université Laval), and Jean-Francois Lalonde (Université Laval)	7174
FSGAN: Subject Agnostic Face Swapping and Reenactment	7183
Deep Single-Image Portrait Relighting Hao Zhou (UMD), Sunil Hadap (Adobe), Kalyan Sunkavalli (Adobe Research), and David Jacobs (University of Maryland. USA)	7193
PU-GAN: A Point Cloud Upsampling Adversarial Network Ruihui Li (The Chinese University of Hong Kong), Xianzhi Li (The Chinese University of Hong Kong), Chi-Wing Fu (The Chinese University of Hong Kong), Daniel Cohen-Or (Tel Aviv University), and Pheng-Ann Heng (The Chinese University of Hong Kong)	7202
Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation Giorgos Bouritsas (Imperial College London), Sergiy Bokhnyak (Università della Svizzera italiana), Stylianos Ploumpis (Imperial College London), Stefanos Zafeiriou (Imperial College Londong), and Michael Bronstein (Imperial College)	7212

Low-Level & Optimization

Towards High-Resolution Salient Object Detection Yi Zeng (Dalian University of Technology), Pingping Zhang (Dalian University of Technology), Zhe Lin (Adobe Research), Jianming Zhang (Adobe Research), and Huchuan Lu (Dalian University of Technology)	7233
Event-Based Motion Segmentation by Motion Compensation	7243
Depth-Induced Multi-Scale Recurrent Attention Network for Saliency Detection	7253
Stacked Cross Refinement Network for Edge-Aware Salient Object Detection Zhe Wu (University of Chinese Academy of Sciences), Li Su (University of Chinese Academy of Sciences), and Qingming Huang (University of Chinese Academy of Sciences)	7263
Motion Guided Attention for Video Salient Object Detection	7273
 Semi-Supervised Video Salient Object Detection Using Pseudo-Labels	7283
Joint Learning of Semantic Alignment and Object Landmark Detection	7293
RainFlow: Optical Flow Under Rain Streaks and Rain Veiling Effect	7303
GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing	7313
Learning to See Moving Objects in the Dark	7323

Scene Understanding

 SegSort: Segmentation by Discriminative Sorting of Segments	7333
What Synthesis Is Missing: Depth Adaptation Integrated With Weak Supervision for Indoor Scene Parsing 7	7344
Keng-Chi Liu (National Taiwan University), Yi-Ting Shen (National Taiwan University), Jan Klopp (National Taiwan University), and Liang-Gee Chen (National Taiwan University)	
 AdaptIS: Adaptive Instance Selection Network	'354
 DADA: Depth-Aware Domain Adaptation in Semantic Segmentation	1363
 Guided Curriculum Model Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation	1373
SceneGraphNet: Neural Message Passing for 3D Indoor Scene Augmentation	/383
 SkyScapes - Fine-Grained Semantic Understanding of Aerial Scenes	'392

Language & Reasoning

Transferable Representation Learning in Vision-and-Language Navigation	7403
Towards Unsupervised Image Captioning With Shared Multimodal Embeddings	7413
ViCo: Word Embeddings From Visual Co-Occurrences	7424
Seq-SG2SL: Inferring Semantic Layout From Scene Graph Through Sequence to Sequence Learning	

U-CAM: Visual Explanation Using Uncertainty Based Class Activation Maps	
See-Through-Text Grouping for Referring Image Segmentation	
VideoBERT: A Joint Model for Video and Language Representation Learning	
Language Features Matter: Effective Language Representations for Vision-Language Tasks	

3D From Multiview & Sensors

Semantic Stereo Matching With Pyramid Cost Volumes
Spatial Correspondence With Generative Adversarial Network: Learning Depth From Monocular Videos 7493 Zhenyao Wu (University of South Carolina), Xinyi Wu (University of South Carolina), Xiaoping Zhang (Wuhan University), Song Wang (University of South Carolina), and Lili Ju (University of South Carolina)
Learning Relationships for Multi-View 3D Object Recognition
 View N-Gram Network for 3D Object Retrieval
Expert Sample Consensus Applied to Camera Re-Localization
 Semantic Part Detection via Matching: Learning to Generalize to Novel Viewpoints From Limited Training Data

Dynamic Points Agglomeration for Hierarchical Point Sets Learning	7545
Jinxian Liu (Shanghai Jiao Tong University), Bingbing Ni (Shanghai	
Jiao Tong University), Caiyuan Li (Shanghai Jiao Tong University),	
Jiancheng Yang (Shanghai Jiao Tong University), and Qi Tian (Huawei	
Noah's Ark Lab)	

Image & Video Synthesis

Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints
Dual Adversarial Inference for Text-to-Image Synthesis
 View-LSTM: Novel-View Video Synthesis Through View Decomposition
HoloGAN: Unsupervised Learning of 3D Representations From Natural Images
Unpaired Image-to-Speech Synthesis With Multimodal Information Bottleneck
Improved Conditional VRNNs for Video Prediction
 Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery

Oral 4.1A

Single-View 3D Modeling, Pose Estimation

Learning Single Camera Depth Estimation Using Dual-Pixels	
Rahul Garg (Google), Neal Wadhwa (Google), Sameer Ansari (Google), and	
Jonathan Barron (-)	

Domain-Adaptive Single-View 3D Reconstruction Pedro O. Pinheiro (Element AI), Negar Rostamzadeh (Element AI), and Sungjin Ahn (Rutgers University)	7637
Transformable Bottleneck Networks Kyle Olszewski (University of Southern California), Sergey Tulyakov (Snap Inc), Oliver Woodford (Snap Inc.), Hao Li (Pinscreen/University of Southern California/USC ICT), and Linjie Luo (Snap Inc)	. 7647
RIO: 3D Object Instance Re-Localization in Changing Indoor Environments Johanna Wald (Technical University of Munich), Armen Avetisyan (Technical University of Munich), Nassir Navab (TU Munich. Germany), Federico Tombari (TUM. Google), and Matthias Niessner (Technical University of Munich)	7657
Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation Kiru Park (TU Wien), Timothy Patten (TU Wien), and Markus Vincze (TU Wien)	7667
CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation	. 7677
C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion David Novotny (Facebook AI Research), Nikhila Ravi (Facebook AI Research), Ben Graham (Facebook Research), Natalia Neverova (Facebook AI Research), and Andrea Vedaldi (University of Oxford / Facebook AI Research)	7687
Learning to Reconstruct 3D Manhattan Wireframes From a Single Image Yichao Zhou (UC Berkeley), Haozhi Qi (UC Berkeley), Yuexiang Zhai (UC Berkeley), Qi Sun (Adobe Research), Zhili Chen (ByteDance AI Lab), Li-Yi Wei (Adobe Research), and Yi Ma (UC Berkeley)	7697
Soft Rasterizer: A Differentiable Renderer for Image-Based 3D Reasoning Shichen Liu (University of Southern California), Weikai Chen (USC Institute for Creative Technology), Tianye Li (University of Southern California), and Hao Li (Pinscreen/University of Southern California/USC ICT)	.7707
Learnable Triangulation of Human Pose Karim Iskakov (Samsung), Egor Burkov (Samsung AI Center Moscow), Victor Lempitsky (Samsung), and Yury Malkov (Samsung AI Center Moscow)	. 7717
xR-EgoPose: Egocentric 3D Human Pose From an HMD Camera Denis Tome (UCL), Patrick Peluse (Facebook), Lourdes Agapito (University College London), and Hernan Badino (Facebook)	7727
DeepHuman: 3D Human Reconstruction From a Single Image Zerong Zheng (Tsinghua University), Tao Yu (Beihang University), Yixuan Wei (Tsinghua University), Qionghai Dai (Tsinghua University), and Yebin Liu (Tsinghua University)	7738
A Neural Network for Detailed Human Depth Estimation From a Single Image Sicong Tang (Simon Fraser University), Feitong Tan (Simon Fraser University), Kelvin Cheng (Simon Fraser University), Zhaoyang Li (Simon Fraser University), Siyu Zhu (Alibaba A.I. Labs), and Ping Tan (Simon Fraser University)	. 7749

DenseRaC: Joint 3D Pose and Shape Estimation by Dense Render-and-Compare	7759
Yuanlu Xu (University of California. Los Angeles), Song-Chun Zhu	
(UCLA), and Tony Tung (Facebook Reality Labs)	
Not All Parts Are Created Equal: 3D Pose Estimation by Modeling Bi-Directional Dependencies of Body	
Parts	7770
Jue Wang (University of Technology Sydney), Shaoli Huang (University	
of Sydney), Xinchao Wang (Stevens Institute of Technology), and	
Dacheng Tao (University of Sydney)	

Dacheng Tao (University of Sydney)

Oral 4.1B

Computational Photography

Extreme View Synthesis	780
 View Independent Generative Adversarial Network for Novel View Synthesis	790
Cascaded Context Pyramid for Full-Resolution 3D Semantic Scene Completion	300
 View-Consistent 4D Light Field Superpixel Segmentation	310
GLoSH: Global-Local Spherical Harmonics for Intrinsic Image Decomposition	319
Surface Normals and Shape From Water	329
Restoration of Non-Rigidly Distorted Underwater Images Using a Combination of Compressive Sensing and Local Polynomial Image Representations	338

Learning Perspective Undistortion of Portraits Yajie Zhao (Institution for Creative Technologies. University of Southern California), Zeng Huang (University of Southern California), Tianye Li (University of Southern California), Weikai Chen (USC Institute for Creative Technology), Chloe Legendre (USC Institute for Creative Technology), Xinglei Ren (Institution for Creative Technologies. University of Southern California), Ari Shapiro (USC Institute for Creative Technologies), and Hao Li (Pinscreen/University of Southern California/USC ICT)	7848
Towards Photorealistic Reconstruction of Highly Multiplexed Lensless Images Salman Siddique Khan (IIT Madras), Adarsh V R (IIT Madras), Vivek Boominathan (Rice University), Jasper Tan (Rice University), Ashok Veeraraghavan (Rice University), and Kaushik Mitra (IIT Madras)	7859
Unconstrained Motion Deblurring for Dual-Lens Cameras Mahesh Mohan M R (Indian Institute of Technology Madras), Sharath Girish (IIT Madras), and Rajagopalan Ambasamudram (Indian Institute of Technology Madras)	7869
Stochastic Exposure Coding for Handling Multi-ToF-Camera Interference	7879
Convolutional Approximations to the General Non-Line-of-Sight Imaging Operator Byeongjoo Ahn (Carnegie Mellon University), Akshat Dave (Rice University), Ashok Veeraraghavan (Rice University), Ioannis Gkioulekas (Carnegie Mellon University), and Aswin Sankaranarayanan (Carnegie Mellon University)	7888
Agile Depth Sensing Using Triangulation Light Curtains Joseph Bartels (Carnegie Mellon University), Jian Wang (Snap), William Whittaker (Carnegie Mellon University), and Srinivasa Narasimhan (Carnegie Mellon University)	7899
Asynchronous Single-Photon 3D Imaging Anant Gupta (University of Wisconsin Madison), Atul Ingle (University of Wisconsin-Madison), and Mohit Gupta (University of Wisconsin-Madison. USA)	7908

Poster 4.1

Deep Learning

Cross-Dataset Person Re-Identification via Unsupervised Pose Disentanglement and Adaptation Yu-Jhe Li (National Taiwan University), Ci-Siang Lin (National Taiwan University), Yan-Bo Lin (National Taiwan Unviersity), and Yu-Chiang Frank Wang (National Taiwan University)	7918
A Learned Representation for Scalable Vector Graphics	7929
Eck (Google Brain), and Jonathon Shlens (Google)	

ELF: Embedded Localisation of Features in Pre-Trained CNN Assia Benbihi (GeorgiaTech Lorraine), Matthieu Geist (Google Brain), and Cedric Pradalier (GeorgiaTech Lorraine)	7939
Joint Group Feature Selection and Discriminative Filter Learning for Robust Visual Object Tracking <i>Tianyang Xu (Jiangnan University), Zhen-Hua Feng (University of</i> <i>Surrey), Xiao-Jun Wu (Jiangnan University), and Josef Kittler</i> <i>(University of Surrey. UK)</i>	7949
Sampling Wisely: Deep Image Embedding by Top-K Precision Optimization Jing Lu (Business Growth BU JD.com), Chaofan Xu (Harbin Institute of Technology), Wei Zhang (JD AI Research), Lingyu Duan (Peking University), and Tao Mei (AI Research of JD.com)	7960
On the Global Optima of Kernelized Adversarial Representation Learning Bashir Sadeghi (Michigan State University), Runyi Yu (Eastern Mediterranean University), and Vishnu Boddeti (Michigan State University)	7970
Addressing Model Vulnerability to Distributional Shifts Over Image Transformation Sets Riccardo Volpi (Istituto Italiano di Tecnologia) and Vittorio Murino (Istituto Italiano di Tecnologia)	7979
Attract or Distract: Exploit the Margin of Open Set Qianyu Feng (University of Technology Sydney), Guoliang Kang (UTS), Hehe Fan (UTS), and Yi Yang (University of Technology. Sydney)	7989
MIC: Mining Interclass Characteristics for Improved Metric Learning Biagio Brattoli (Heidelberg University), Karsten Roth (Heidelberg University), and Bjorn Ommer (Heidelberg University)	7999
Self-Supervised Representation Learning via Neighborhood-Relational Encoding Mohammad Sabokrou (Institute for Research in fundamental science. IPM), Mohammad Khalooei (Amirkabir University of Technology), and Ehsan Adeli (Stanford University)	8009
AWSD: Adaptive Weighted Spatiotemporal Distillation for Video Representation Mohammad Tavakolian (University of Oulu), Hamed Rezazadegan Tavakoli (Aalto University), and Abdenour Hadid (Finland)	8019
Bilinear Attention Networks for Person Retrieval Pengfei Fang (The Australian National University), Jieming Zhou (The Australian National University), Soumava Roy (AUSTRALIAN NATIONAL UNIVERSITY), Lars Petersson (Data61/CSIRO), and Mehrtash Harandi (Monash University)	8029
Discriminative Feature Learning With Consistent Attention Regularization for Person	
Ke-Identification Sanping Zhou (Xi'an Jiaotong University), Fei Wang (Xi'an Jiaotong University), Zeyi Huang (Carnegie Mellon University), and Jinjun Wang (Xi'an Jiaotong University)	8039
Semi-Supervised Domain Adaptation via Minimax Entropy Kuniaki Saito (Boston University), Donghyun Kim (Boston University), Stan Sclaroff (Boston University), Trevor Darrell (UC Berkeley), and Kate Saenko (Boston University)	8049

Boosting Few-Shot Visual Learning With Self-Supervision	;
FDA: Feature Disruptive Attack	;
A Novel Unsupervised Camera-Aware Domain Adaptation Framework for Person Re-Identification)
Recover and Identify: A Generative Dual Model for Cross-Resolution Person Re-Identification)
Cross-View Policy Learning for Street Navigation	,
Learning Across Tasks and Domains	,
EMPNet: Neural Localisation and Mapping Using Embedded Memory Points)
AVT: Unsupervised Learning of Transformation Equivariant Representations by Autoencoding Variational Transformations)
Composite Shape Modeling via Latent Space Factorization)
Deep Comprehensive Correlation Mining for Image Clustering)
Unsupervised Multi-Task Feature Learning on Point Clouds)

 Reciprocal Multi-Layer Subspace Learning for Multi-View Clustering	1
Geometric Disentanglement for Generative Latent Shape Models	0
 GAN-Tree: An Incrementally Learned Hierarchical Generative Framework for Multi-Modal Data Distributions	0
GODS: Generalized One-Class Discriminative Subspaces for Anomaly Detection	0
Neighborhood Preserving Hashing for Scalable Video Retrieval	1

Recognition

Self-Training With Progressive Augmentation for Unsupervised Cross-Domain Person Re-Identification 8221 Xinyu Zhang (Tongji University), Jiewei Cao (The University of Adelaide), Chunhua Shen (University of Adelaide), and Mingyu You (Tongji University)
 SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects
Cross-X Learning for Fine-Grained Visual Categorization
Maximum-Margin Hamming Hashing

Conservative Wasserstein Training for Pose Estimation Xiaofeng Liu (CMU), Yang Zou (Carnegie Mellon University), Tong Che (MILA), Ping Jia (CIOMP), Peng Ding (Changchun Institute of Optics. Fine Mechanics and Physics), Jane You (HK Poly U), and B. V. K. Vijaya Kumar (CMU. USA)	8261
Learning to Rank Proposals for Object Detection Zhiyu Tan (Alibaba Group), Xuecheng Nie (NUS), Qi Qian (Alibaba Group), Nan Li (Alibaba), and Hao Li (Alibaba Group)	8272
Vehicle Re-Identification With Viewpoint-Aware Metric Learning Ruihang Chu (Beihang Univeristy), Yifan Sun (Tsinghua University), Yadong Li (Megvii Inc. Face++), Zheng Liu (Megvii Research), Chi Zhang (Megvii Inc.), and Yichen Wei (Megvii Research Shanghai)	8281
 WSOD2: Learning Bottom-Up and Top-Down Objectness Distillation for Weakly-Supervised Object Detection	8291
Localization of Deep Inpainting Using High-Pass Fully Convolutional Network Haodong Li (Shenzhen University) and Jiwu Huang (Shenzhen University)	8300
Clustered Object Detection in Aerial Images Fan Yang (Temple University), Heng Fan (Temple University), Peng Chu (Temple University), Erik Blasch (air force research lab), and Haibin Ling (Temple University)	8310
Unsupervised Graph Association for Person Re-Identification Jinlin Wu (Institute of Automation. Chinese Academy of Sciences. Beijing. China), Hao Liu (NLPR. CASIA), Yang Yang (Chinese Academy of Sciences), Zhen Lei (NLPR. CASIA. China), Shengcai Liao (Inception Institute of Artificial Intelligence), and Stan Li (National Lab. of Pattern Recognition. China)	8320
Learning a Mixture of Granularity-Specific Experts for Fine-Grained Categorization Lianbo Zhang (University of Technology Sydney), Shaoli Huang (University of Sydney), Wei Liu (UTS), and Dacheng Tao (University of Sydney)	8330
advPattern: Physical-World Attacks on Deep Person Re-Identification via Adversarially Transformable Patterns Zhibo Wang (Wuhan University), Siyan Zheng (Wuhan University), Mengkai Song (Wuhan University), Qian Wang (Wuhan University), Alireza Rahimpour (University of Tennessee-Knoxville), and Hairong Qi (University of Tennessee-Knoxville)	8340
ABD-Net: Attentive but Diverse Person Re-Identification Tianlong Chen (Texas A&M University), Shaojin Ding (Texas A&M University), Jingyi Xie (University of Science and Technology of China), Ye Yuan (Texas A&M University), Wuyang Chen (Texas A&M University), Yang Yang (Walmart Technology), Zhou Ren (Wormpex AI Research), and Zhangyang Wang (TAMU)	8350

 From Open Set to Closed Set: Counting Objects by Spatial Divide-and-Conquer	361
Towards Precise End-to-End Weakly Supervised Object Detection Network	371
Learn to Scale: Generating Multipolar Normalized Density Maps for Crowd Counting	381
 Ground-to-Aerial Image Geo-Localization With a Hard Exemplar Reweighting Triplet Loss	390
Learning to Discover Novel Visual Categories via Deep Transfer Clustering	100
 AM-LFS: AutoML for Loss Function Search	109
 Few-Shot Object Detection via Feature Reweighting	419
 Objects365: A Large-Scale, High-Quality Dataset for Object Detection	129
Efficient and Accurate Arbitrary-Shaped Text Detection With Pixel Aggregation Network	139
Foreground-Aware Pyramid Reconstruction for Alignment-Free Occluded Person Re-Identification	149

Collect and Select: Semantic Alignment Metric Learning for Few-Shot Learning	3459
Fusheng Hao (Shenzhen Institutes of Advanced Technology. Chinese	
Academy of Sciences), Fengxiang He (The University of Sydney), Jun	
Cheng (Shenzhen Institutes of Advanced Technology. Chinese Academy of	
Sciences), Lei Wang (Shenzhen Institutes of Advanced Technology.	
Chinese Academy of Sciences), Jianzhong Cao (Xi'an Institute of Optics	
and Precision Mechanics), and Dacheng Tao (University of Sydney)	

Segmentation, Grouping, & Shape

Bayesian Adaptive Superpixel Segmentation	8469
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing	3479
BAE-NET: Branched Autoencoder for Shape Co-Segmentation	3489
 VV-Net: Voxel VAE Net With Group Convolutions for Point Cloud Segmentation	3499
Miss Detection vs. False Alarm: Adversarial Learning for Small Object Segmentation in Infrared Images	8508
 Group-Wise Deep Object Co-Segmentation With Co-Attention Recurrent Neural Network	3518

Statistics, Physics, Theory & Datasets

Human Attention in Image Captioning: Dataset and Analysis Sen He (University of Exeter), Hamed Rezazadegan Tavakoli (Aalto University), Ali Borji (University of Central Florida), and Nicolas Pugeault (Exeter)	8528
Variational Uncalibrated Photometric Stereo Under General Lighting	
Zhenzhang Ye (TU Munich), Bjoern Haefner (Technical University of	
Munich), Maolin Gao (Artisense), Tao Wu (TU Munich), Yvain Queau	
(CNRS), and Daniel Cremers (TU Munich)	

SPLINE-Net: Sparse Photometric Stereo Through Lighting Interpolation and Normal Estimation Networks 8548 Qian Zheng (Nanyang Technological University), Yiming Jia (Tsinghua University), Boxin Shi (Peking University), Xudong Jiang (Nanyang Technological University), Lingyu Duan (Peking University), and Alex Kot (Nanyang Technological University)	;
 Hyperspectral Image Reconstruction Using Deep External and Internal Learning	;
Gravity as a Reference for Estimating a Person's Height From Video	3
Shadow Removal via Shadow Image Decomposition	1
OperatorNet: Recovering 3D Shapes From Difference Operators	1
 Neural Inverse Rendering of an Indoor Scene From a Single Image	,

3D From Single View & RGBD

ForkNet: Multi-Branch Volumetric Semantic Completion From a Single Depth Image	507
 Moving Indoor: Unsupervised Video Depth Learning in Challenging Environments	517
 GraphX-Convolution for Point Cloud Deformation in 2D-to-3D Conversion	527
FrameNet: Learning Local Canonical Frames of 3D Surfaces From a Single RGB Image	537
 Holistic++ Scene Understanding: Single-View 3D Holistic Scene Parsing and Human Pose Estimation With Human-Object Interaction and Physical Commonsense <i>Yixin Chen (UCLA), Siyuan Huang (UCLA), Tao Yuan (UCLA), Yixin Zhu</i> <i>(UCLA), Siyuan Qi (UCLA), and Song-Chun Zhu (UCLA)</i> 	547

Action & Video

MMAct: A Large-Scale Dataset for Cross Modal Human Action Understanding	7
HACS: Human Action Clips and Segments Dataset for Recognition and Temporal Localization	7
 3C-Net: Category Count and Center Loss for Weakly-Supervised Action Localization	3
Grounded Human-Object Interaction Hotspots From Video	7
 Hallucinating IDT Descriptors and I3D Optical Flow Features for Action Recognition With CNNs	7

Computational Photography & Graphics

Learning to Paint With Model-Based Deep Reinforcement Learning Zhewei Huang (Peking University), Shuchang Zhou (Megvii), and Wen Heng (Megvii inc.)	
Neural Re-Simulation for Generating Bounces in Single Images	8718
Carlo Innamorati (University College London), Bryan Russell (Adobe	
Research), Danny Kaufman (Adobe Research), and Niloy Mitra (university college london)	
Deep Appearance Maps	
Maxim Maximov (TUM), Tobias Ritschel (UCL), Laura Leal-Taixé (TUM),	
and Mario Fritz (CISPA Helmholtz Center for Information Security)	
GarNet: A Two-Stream Network for Fast and Accurate 3D Cloth Draping	
Erhan Gundogdu (EPFL), Victor Constantin (EPFL), Amrollah Seifoddini	
(Fision Technologies), Minh Dang (Fision Technologies), Mathieu	
Salzmann (EPFL), and Pascal Fua (EPFL. Switzerland)	
Joint Embedding of 3D Scan and CAD Objects	
Manuel Dahnert (Technical University of Munich), Angela Dai (Technical	
University of Munich), Leonidas Guibas (Stanford University), and	
Matthias Niessner (Technical University of Munich)	

CompoNet: Learning to Generate the Unseen by Part Synthesis and Composition Nadav Schor (Tel Aviv University), Oren Katzir (Tel Aviv University), Hao Zhang (Simon Fraser University), and Daniel Cohen-Or (Tel Aviv University)	8758
DDSL: Deep Differentiable Simplex Layer for Learning Geometric Signals Chiyu Jiang (UC Berkeley), Dana Lansigan (UC Berkeley), Philip Marcus (UC Berkeley), and Matthias Niessner (Technical University of Munich)	8768
Low-Level & Optimization	
EGNet: Edge Guidance Network for Salient Object Detection Jiaxing Zhao (Nankai University), Jiang-Jiang Liu (Nankai University), Deng-Ping Fan (Inception Institute of Artificial Intelligence), Yang Cao (Nankai University), Jufeng Yang (Nankai University), and Ming-Ming Cheng (Nankai University)	8778
SID4VAM: A Benchmark Dataset With Synthetic Images for Visual Attention Modeling David Berga (Computer Vision Center), Xosé Ramón Fernández Vidal (University of Santiago de Compostela), Xavier Otazu (Computer Vision Center), and Xosé M. Pardo (Universidade de Santiago de Compostela)	8788
Two-Stream Action Recognition-Oriented Video Super-Resolution Haochen Zhang (University of Science and Technology of China), Dong Liu (University of Science and Technology of China), and Zhiwei Xiong (University of Science and Technology of China)	8798
 Where Is My Mirror? Xin Yang (Dalian University of Technology), Haiyang Mei (Dalian University of Technology), Ke Xu (Dalian University of Technology; City University of Hong Kong), Xiaopeng Wei (Dalian University of Technology), Baocai Yin (Dalian University of Technology), and Rynson Lau (City University of Hong Kong) 	8808
Disentangled Image Matting Shaofan Cai (Megvii Inc. face++), Xiaoshuai Zhang (Peking University), Haoqiang Fan (Megvii Inc face++), Haibin Huang (Megvii Technology), Jiangyu Liu (megvii inc), Jiaming Liu (Megvii), Jiaying Liu (Peking University), Jue Wang (Megvii Technology), and Jian Sun (Megvii Technology)	8818
Guided Super-Resolution As Pixel-to-Pixel Transformation Riccardo De Lutio (ETHZ), Stefano D'aronco (ETHZ), Jan Dirk Wegner (ETH Zurich), and Konrad Schindler (ETH)	8828
Deep Learning for Light Field Saliency Detection <i>Tiantian Wang (Dalian University of Technology), Yongri Piao (Dalian University of Technology), Huchuan Lu (Dalian University of Technology), Xiao Li (Dalian University of Technology), and Lihe Zhang (Dalian University of Technology)</i>	8837
Optimizing the F-Measure for Threshold-Free Salient Object Detection Kai Zhao (Nankai University), Shanghua Gao (Nankai University), Wenguan Wang (Inception Institute of Artificial Intelligence), and Ming-Ming Cheng (Nankai University)	8848

Image Inpainting With Learnable Bidirectional Attention Maps 8	3857
Chaohao Xie (Harbin Institute of Technology), Shaohui Liu (Harbin	
Institute of Technology), Chao Li (Baidu), Ming-Ming Cheng (Nankai	
University), Wangmeng Zuo (Harbin Institute of Technology. China),	
Xiao Liu (Baidu), Shilei Wen (Baidu Research), and Errui Ding (Baidu	
Inc.)	
Joint Demosaicking and Denoising by Fine-Tuning of Bursts of Raw Images	3867
Thibaud Ehret (CMLA. ENS Cachan), Axel Davy (ENS Paris-Saclay), Pablo	
Arias (ENS Paris-Saclay), and Gabriele Facciolo (ENS Paris - Saclay)	
DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better	3877
Orest Kupyn (Ukrainian Catholic University), Tetiana Martyniuk	
(Ukrainian Catholic University), Junru Wu (Texas A&M University), and	
Zhangyang Wang (TAMU)	

Language & Reasoning

Reflective Decoding Network for Image Captioning Lei Ke (HKUST), Wenjie Pei (Tencent), Ruiyu Li (Tencent), Xiaoyong Shen (Tencent), and Yu-Wing Tai (Tencent)	8887
Joint Optimization for Cooperative Image Captioning Gilad Vered (Bar-ILan University), Gal Oren (Bar Ilan University), Yuval Atzmon (Bar-Ilan University. NVIDIA Research), and Gal Chechik (Bar Ilan University)	8897
 Watch, Listen and Tell: Multi-Modal Weakly Supervised Dense Event Captioning Tanzila Rahman (University of British Columbia), Bicheng Xu (University of British Columbia), and Leonid Sigal (University of British Columbia) 	8907
Joint Syntax Representation Learning and Visual Cue Translation for Video Captioning Jingyi Hou (Beijing Institute of Technology), Xinxiao Wu (Beijing Institute of Technology), Wentian Zhao (Beijing Institute of Technology), Jiebo Luo (University of Rochester), and Yunde Jia (Beijing Institute of Technology)	8917
Entangled Transformer for Image Captioning Guang Li (University of Technology Sydney), Linchao Zhu (University of Technology. Sydney), Ping Liu (UTS), and Yi Yang (UTS)	8927
Shapeglot: Learning Language for Shape Differentiation Panos Achlioptas (Stanford University), Leonidas Guibas (Stanford University), Noah Goodman (Stanford University), Judy Fan (Stanford), and Robert Hawkins (Stanford)	8937
nocaps: novel object captioning at scale Harsh Agrawal (Georgia Institute of Technology), Karan Desai (Georgia Tech), Yufei Wang (Macquarie University), Xinlei Chen (Facebook AI Research), Rishabh Jain (Georgia Tech), Mark Johnson (Macquarie University), Dhruv Batra (Georgia Tech & Facebook AI Research), Devi Parikh (Georgia Tech & Facebook AI Research), Stefan Lee (Georgia Institute of Technology), and Peter Anderson (Georgia Tech)	8947

3D From Multiview & Sensors

Fully Convolutional Geometric Features	957
Learning Local RGB-to-CAD Correspondences for Object Pose Estimation	966
Depth From Videos in the Wild: Unsupervised Monocular Depth Learning From Unknown Cameras	976
OmniMVS: End-to-End Learning for Omnidirectional Stereo Matching	986
On the Over-Smoothing Problem of CNN Based Disparity Estimation	996

Image & Video Synthesis

Disentangling Propagation and Generation for Video Prediction Hang Gao (UC Berkeley), Huazhe Xu (UC Berkeley), Qi-Zhi Cai (Sinovation Ventures AI Institute), Ruth Wang (UC Berkeley), Fisher Yu (UC Berkeley), and Trevor Darrell (UC Berkeley)	9005
Guided Image-to-Image Translation With Bi-Directional Feature Transformation Badour Albahar (Virginia Tech) and Jia-Bin Huang (Virginia Tech)	
Towards Multi-Pose Guided Virtual Try-On Network	
Photorealistic Style Transfer via Wavelet Transforms Jaejun Yoo (Clova AI Research. NAVER Corp.), Youngjung Uh (Clova AI Research. NAVER Corp.), Sanghyuk Chun (Clova AI Research. NAVER Corp.), Byeongkyu Kang (Yonsei University), and Jung-Woo Ha (Clova AI Research. NAVER Corp.)	
Personalized Fashion Design Cong Yu (University of Electronic Science and Technology of China), Yang Hu (University of Electronic Science and Technology of China), Yan Chen (University of Electronic Science and Technology of China), and Bing Zeng (University of Electronic Science and Technology of China)	9045
Tag2Pix: Line Art Colorization Using Text Tag With SECat and Changing Loss Hyunsu Kim (Seoul National University), Ho Young Jhoo (Seoul National University), Eunhyeok Park (Seoul National University), and Sungjoo Yoo (Seoul National University)	

Free-Form Video Inpainting With 3D Gated Convolution and Temporal PatchGAN	9065
Ya-Liang Chang (National Taiwan University), Zhe Yu Liu (National	
Taiwan University), Kuan-Ying Lee (National Taiwan University), and	
Winston Hsu (National Taiwan University)	

Applications, Medical & Robotics

TextDragon: An End-to-End Framework for Arbitrary Shaped Text Spotting
Chinese Street View Text: Large-Scale Chinese Text Reading With Partially Supervised Learning
Deep Floor Plan Recognition Using a Multi-Task Network With Room-Boundary-Guided Attention
GA-DAN: Geometry-Aware Domain Adaptation Network for Scene Text Detection and Recognition
Large-Scale Tag-Based Font Retrieval With Generative Feature Learning
Convolutional Character Networks
 Geometry Normalization Networks for Accurate Scene Text Detection
Symmetry-Constrained Rectification Network for Scene Text Recognition

Oral 4.2A

Segmentation, Detection, 3D Scene Understanding

YOLACT: Real-Time Instance Segmentation Daniel Bolya (University of California. Davis), Chong Zhou (University of California. Davis), Fanyi Xiao (University of California Davis), and Yong Jae Lee (University of California. Davis)	9156
Expectation-Maximization Attention Networks for Semantic Segmentation Xia Li (Peking University Shenzhen Graduate School), Zhisheng Zhong (Peking University), Jianlong Wu (Peking University), Yibo Yang (Peking University), Zhouchen Lin (Peking University), and Hong Liu (Peking University Shenzhen Graduate School)	9166
Multi-Class Part Parsing With Joint Boundary-Semantic AwarenessYifan Zhao (Beihang University), Jia Li (Beihang University), Yu Zhang(Beihang University), and Yonghong Tian (PKU)	9176
Explaining Neural Networks Semantically and Quantitatively Runjin Chen (Shanghai Jiao Tong University), Hao Chen (Huazhong University of Science and Technology), Ge Huang (Shanghai Jiao Tong University), Jie Ren (Shanghai Jiao Tong University), and Quanshi Zhang (Shanghai Jiao Tong University)	9186
 PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment Kaixin Wang (National University of Singapore), Jun Hao Liew (NUS), Yingtian Zou (National University of Singapore), Daquan Zhou (National University of Singapore), and Jiashi Feng (NUS) 	9196
ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors	9206
Sequence Level Semantics Aggregation for Video Object Detection Haiping Wu (McGill University), Yuntao Chen (CASIA), Naiyan Wang (TuSimple), and Zhao-Xiang Zhang (Chinese Academy of Sciences. China)	9216
Video Object Segmentation Using Space-Time Memory Networks Seoung Wug Oh (Yonsei Univeristy), Joon-Young Lee (Adobe Research), Ning Xu (Adobe Research), and Seon Joo Kim (Yonsei Univ.)	9225
Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks	9235
MeteorNet: Deep Learning on Dynamic 3D Point Cloud Sequences	9245
³ D Instance Segmentation via Multi-Task Metric Learning Jean Lahoud (KAUST), Bernard Ghanem (KAUST), Martin R. Oswald (ETH Zurich), and Marc Pollefeys (ETH Zurich / Microsoft)	9255

DeepGCNs: Can GCNs Go As Deep As CNNs? Guohao Li (King Abdullah University of Science and Technology. KAUST), Matthias Müller (King Abdullah University of Science and Technology. KAUST), Ali Thabet (KAUST), and Bernard Ghanem (KAUST)	. 9266
Deep Hough Voting for 3D Object Detection in Point Clouds Charles R. Qi (Facebook AI Research), Or Litany (Facebook AI Research), Kaiming He (Facebook AI Research), and Leonidas Guibas (Stanford University)	. 9276
M3D-RPN: Monocular 3D Region Proposal Network for Object Detection Garrick Brazil (Michigan State University) and Xiaoming Liu (Michigan State University)	9286
SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences Jens Behley (University of Bonn), Martin Garbade (University of Bonn), Andres Milioto (University of Bonn), Jan Quenzel (University of Bonn), Sven Behnke (University of Bonn), Cyrill Stachniss (University of Bonn), and Jürgen Gall (University of Bonn)	. 9296
 WoodScape: A Multi-Task, Multi-Camera Fisheye Dataset for Autonomous Driving	. 9307
Scalable Place Recognition Under Appearance Change for Autonomous Driving Dzung Doan (The University of Adelaide), Yasir Latif (The University of Adelaide), Tat-Jun Chin (University of Adelaide), Yu Liu (The University of Adelaide), Thanh-Toan Do (The University of Liverpool), and Ian Reid (University of Adelaide. Australia)	. 9318
Exploring the Limitations of Behavior Cloning for Autonomous Driving Felipe Codevilla (UAB), Eder Santana (University of Florida), Antonio Lopez (CVC & UAB), and Adrien Gaidon (Toyota Research Institute)	. 9328
 Habitat: A Platform for Embodied AI Research	. 9338

Oral 4.2B

Face & Body Modeling

Towards Interpretable Face Recognition	47
 Co-Mining: Deep Face Recognition With Noisy Labels	57
 Few-Shot Adaptive Gaze Estimation	67
Live Face De-Identification in Video	77
 Face Video Deblurring Using 3D Facial Priors	87
Semi-Supervised Monocular 3D Face Reconstruction With End-to-End Shape-Preserved Domain Transfer 939 Jingtan Piao (CUHK MMLab), Chen Qian (SenseTime), and Hongsheng Li (Chinese University of Hong Kong)	97
3D Face Modeling From Diverse Raw Scan Data	.07
A Decoupled 3D Facial Shape Model by Adversarial Training	18
Photo-Realistic Facial Details Synthesis From Single Image	28
 S2GAN: Share Aging Factors Across Ages and Share Aging Trends Among Individuals	39
PuppetGAN: Cross-Domain Image Manipulation by Demonstration	.49

 Few-Shot Adversarial Learning of Realistic Neural Talking Head Models	458
Pose-Aware Multi-Level Feature Network for Human Object Interaction Detection	468
 TRB: A Novel Triplet Representation for Understanding 2D Human Body	478
Learning Trajectory Dependencies for Human Motion Prediction	488
Cross-Domain Adaptation for Animal Pose Estimation	497

Poster 4.2

Recognition

NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection	9507
Unsupervised Out-of-Distribution Detection by Maximum Classifier Discrepancy	9517
SBSGAN: Suppression of Inter-Domain Background Shift for Person Re-Identification	9526
Enriched Feature Guided Refinement Network for Object Detection	9536
Deep Meta Metric Learning	9546

Discriminative Feature Transformation for Occluded Pedestrian Detection Chunluan Zhou (Nanyang Technological University), Ming Yang (Horizon Robotics), and Junsong Yuan (State University of New York at Buffalo. USA)	9556
Contextual Attention for Hand Detection in the Wild Supreeth Narasimhaswamy (Stony Brook University), Zhengwei Wei (Stony Brook University), Yang Wang (Stony Brook University), Justin Zhang (Caltech), and Minh Hoai Nguyen (Stony Brook University)	9566
Meta R-CNN: Towards General Solver for Instance-Level Low-Shot Learning Xiaopeng Yan (Sun Yat-sen University), Ziliang Chen (Sun Yat-sen University), Anni Xu (Sun Yat-sen University), Xiaoxi Wang (Sun Yat-Sen University), Xiaodan Liang (Sun Yat-sen University), and Liang Lin (Sun Yat-sen University)	.9576
 Pyramid Graph Networks With Connection Attentions for Region-Based One-Shot Semantic Segmentation Chi Zhang (Nanyang Technological University), Guosheng Lin (Nanyang Technological University), Fayao Liu (Institute for Infocomm Research. ASTAR), Jiushuang Guo (Stanford University), Qingyao Wu (South China University of Technology), and Rui Yao (China University of Mining and Technology) 	9586
Presence-Only Geographical Priors for Fine-Grained Image Classification Oisin Mac Aodha (Caltech), Elijah Cole (Caltech), and Pietro Perona (California Institute of Technology)	9595
 POD: Practical Object Detection With Scale-Sensitive Network Junran Peng (Chinese Academy of Sciences), Ming Sun (sensetime.com), Zhao-Xiang Zhang (Chinese Academy of Sciences. China), Tieniu Tan (NLPR. China), and Junjie Yan (Sensetime Group Limited) 	9606
Human Uncertainty Makes Classification More Robust Joshua Peterson (Princeton University), Ruairidh Battleday (Princeton University), Thomas Griffiths (Princeton University), and Olga Russakovsky (Princeton University)	9616
FCOS: Fully Convolutional One-Stage Object Detection Zhi Tian (The University of Adelaide), Chunhua Shen (University of Adelaide), Hao Chen (The University of Adelaide), and Tong He (The University of Adelaide)	9626
Self-Critical Attention Learning for Person Re-Identification Guangyi Chen (Tsinghua University), Chunze Lin (Tsinghua University), Liangliang Ren (Tsinghua University), Jiwen Lu (Tsinghua University), and Jie Zhou (Tsinghua University)	.9636
Temporal Knowledge Propagation for Image-to-Video Person Re-Identification Xinqian Gu (University of Chinese Academy of Sciences), Bingpeng Ma (University of Chinese Academy of Sciences), Hong Chang (Chinese Academy of Sciences), Shiguang Shan (Chinese Academy of Sciences), and Xilin Chen (Institute of Computing Technology. Chinese Academy of Sciences)	9646
RepPoints: Point Set Representation for Object Detection	9656

 SegEQA: Video Segmentation Based Visual Attention for Embodied Question Answering
No-Frills Human-Object Interaction Detection: Factorization, Layout Encodings, and Training Techniques
Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection
No Fear of the Dark: Image Retrieval Under Varying Illumination Conditions
 Hierarchical Shot Detector
 Few-Shot Learning With Global Class Representations
Better to Follow, Follow to Be Better: Towards Precise Supervision of Feature Super-Resolution for Small Object Detection
 Weakly Supervised Object Detection With Segmentation Collaboration
AutoFocus: Efficient Multi-Scale Inference
Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection
Transferable Contrastive Network for Generalized Zero-Shot Learning

Fast Point R-CNN 9774 Yilun Chen (Chinese University of Hong Kong), Shu Liu (Tencent), 9774 Xiaoyong Shen (Tencent), and Jiaya Jia (Chinese University of Hong Kong) 9774	4
Mesh R-CNN	4
Georgia Gkioxari (Facebook), Justin Johnson (Facebook AI Research), and Jitendra Malik (University of California at Berkley)	
Deep Supervised Hashing With Anchor Graph	5
Detecting 11K Classes: Large Scale Object Detection Without Fine-Grained Bounding Boxes	4
Re-ID Driven Localization Refinement for Person Search	3
 Hierarchical Encoding of Sequential Data With Compact and Sub-Linear Storage Cost	3
C-MIDN: Coupled Multiple Instance Detection Network With Segmentation Guidance for Weakly Supervised Object Detection	3
Learning Feature-to-Feature Translator by Alternating Back-Propagation for Generative Zero-Shot Learning	3
Deep Constrained Dominant Sets for Person Re-Identification	4
Invariant Information Clustering for Unsupervised Image Classification and Segmentation	4

Statistics, Physics, Theory & Datasets

Subspace Structure-Aware Spectral Clustering for Robust Subspace Clustering Masataka Yamaguchi (NTT Corporation), Go Irie (NTT Communication Science Laboratories), Takahito Kawanishi (NTT Corporation), and Kunio Kashino (NTT Corporation)	
Order-Preserving Wasserstein Discriminant Analysis Bing Su (Institute of Software Chinese Academy of Sciences), Jiahuan Zhou (Northwestern University), and Ying Wu (Northwestern University)	
LayoutVAE: Stochastic Scene Layout Generation From a Label Set Akash Abdu Jyothi (Simon Fraser University), Thibaut Durand (Simon Fraser University), Jiawei He (Simon Fraser University), Leonid Sigal (University of British Columbia), and Greg Mori (Simon Fraser University)	9894
Robust Variational Bayesian Point Set Registration Jie Zhou (Yunnan Normal University), Xinke Ma (Yunnan Normal University), Li Liang (Yunnan Normal University), Liu Yuhe (312), Shijin Xu (Yun nan Normal University), Sim-Heng Ong (NUS), and Yang Yang (Yunnan Normal University)	
Is an Affine Constraint Needed for Affine Subspace Clustering? Chong You (University of California. Berkeley), Chun-Guang Li (Beijing University of Posts & Telecommunications), Daniel Robinson (Johns Hopkins University), and Rene Vidal (Johns Hopkins University)	
Meta-Learning to Detect Rare Objects Yu-Xiong Wang (Carnegie Mellon University), Deva Ramanan (Carnegie Mellon University), and Martial Hebert (Carnegie Mellon University)	
New Convex Relaxations for MRF Inference With Unknown Graphs Zhenhua Wang (Zhejiang University of Technology), Tong Liu (Zhejiang University of Technology), Qinfeng Shi (University of Adelaide), M. Pawan Kumar (University of Oxford), and Jianhua Zhang (Zhejiang University of Technology)	
Cluster Alignment With a Teacher for Unsupervised Domain Adaptation Zhijie Deng (Tsinghua University), Yucen Luo (Tsinghua University), and Jun Zhu (Tsinghua University)	
Analyzing the Variety Loss in the Context of Probabilistic Trajectory Prediction Luca Thiede (University of Göttingen) and Pratik Brahma (Volkswagen Electronics Research Lab)	

3D From Single View & RGBD

Deep Mesh Reconstruction From Single RGB Images via Topology Modification Networks	
Junyi Pan (South China University of Technology), Xiaoguang Han	
(Shenzhen Research Institute of Big Data. the Chinese University of	
Hong Kong. Shenzhen), Weikai Chen (USC Institute for Creative	
Technologies), Jiapeng Tang (South China University of Technology), and Kui Iia (South China University of Technology)	
ana Ku sia (Soun China Oniversity of Technology)	

UprightNet: Geometry-Aware Camera Orientation Estimation From Single Images
Escaping Plato's Cave: 3D Shape From Adversarial Rendering
Deep End-to-End Alignment and Refinement for Time-of-Flight RGB-D Module
GEOBIT: A Geodesic-Based Binary Descriptor Invariant to Non-Rigid Deformations for RGB-D Images 10003 Erickson Nascimento (UFMG), Guilherme Potje (UFMG), Renato Martins (UFMG & INRIA), Felipe Chamone (UFMG), Mario Campos (UFMG), and Ruzena Bajcsy (UC Berkeley)
CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark
Learning Joint 2D-3D Representations for Depth Completion

Face & Body

Make a Face: Towards Arbitrary High Fidelity Face Manipulation Shengju Qian (Chinese University of Hong Kong), Kwan-Yee Lin (Peking university), Wayne Wu (Tsinghua University. SenseTime Research), Yangxiaokang Liu (University of Electronic Science and Technology of China), Quan Wang (Sensetime), Fumin Shen (UESTC), Chen Qian (SenseTime), and Ran He (Institute of Automation. Chinese Academy of Sciences)	10032
M2FPA: A Multi-Yaw Multi-Pitch High-Quality Dataset and Benchmark for Facial Pose Analysis Peipei Li (Institute of Automation Chinese Academy of Sciences), Xiang Wu (Institue of Automation. Chinese Academy of Science), Yibo Hu (Institute of Automation. Chinese Academy of Sciences), Ran He (Institute of Automation. Chinese Academy of Sciences), and Zhenan Sun (Chinese of Academy of Sciences)	10042
 Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition	10051

Face De-Occlusion Using 3D Morphable Model and Generative Adversarial Network	061
Detecting Photoshopped Faces by Scripting Photoshop	071
Ego-Pose Estimation and Forecasting As Real-Time PD Control	081
 End-to-End Learning for Graph Decomposition	092
Laplace Landmark Localization	102
 Through-Wall Human Mesh Recovery Using Radio Signals	112
Discriminatively Learned Convex Models for Set Based Face Recognition	122
Camera Distance-Aware Top-Down Approach for 3D Multi-Person Pose Estimation From a Single RGB Image 10132 Gyeongsik Moon (Seoul National University), Ju Yong Chang (Kwangwoon University), and Kyoung Mu Lee (Seoul National University)	;
Context-Aware Emotion Recognition Networks	142
Aggregation via Separation: Boosting Facial Landmark Detector With Semi-Supervised Style Translation10 Shengju Qian (Chinese University of Hong Kong), Keqiang Sun (Tsinghua University), Wayne Wu (Tsinghua University. SenseTime Research), Chen Qian (SenseTime), and Jiaya Jia (Chinese University of Hong Kong)	152
Deep Head Pose Estimation Using Synthetic Images and Partial Adversarial Domain Adaption for Continuous Label Spaces	163

Computational Photography & Graphics

Flare in Interference-Based Hyperspectral Cameras	10173
Eden Sassoon (Technion), Tali Treibitz (University of Haifa), and	
Schechner Yoav (Technion)	

Computational Hyperspectral Imaging Based on Dimension-Discriminative Low-Rank Tensor Recovery 101 Shipeng Zhang (Xi'an Jiaotong University), Lizhi Wang (Beijing Institute of Technology), Ying Fu (Beijing Institute of Technology), Xiaoming Zhong (Beijing Institute of Space Mechanics and Electricity), and Hua Huang (Beijing Institute of Technology)	182
Deep Optics for Monocular Depth Estimation and 3D Object Detection	192
Physics-Based Rendering for Improving Robustness to Rain	202
 ARGAN: Attentive Recurrent Generative Adversarial Network for Shadow Detection and Removal	212
Deep Tensor ADMM-Net for Snapshot Compressive Imaging	222

Low-Level & Optimization

Convex Relaxations for Consensus and Non-Minimal Problems in 3D Vision Thomas Probst (ETH Zurich), Danda Pani Paudel (ETH Zürich), Ajad Chhatkuli (ETH Zurich), and Luc Van Gool (ETH Zurich)	10232
Pareto Meets Huber: Efficiently Avoiding Poor Minima in Robust Estimation Christopher Zach (Chalmers University) and Guillaume Bourmaud (University of Bordeaux)	10242
K-Best Transformation Synchronization Yifan Sun (UT Austin), Jiacheng Zhuo (The University of Texas at Austin), Arnav Mohan (Liberal Arts and Science Academy. LASA High School), and Qixing Huang (The University of Texas at Austin)	10251
Parametric Majorization for Data-Driven Energy Minimization Methods Jonas Geiping (University of Siegen) and Michael Moeller (University of Siegen)	10261
A Bayesian Optimization Framework for Neural Network Compression Xingchen Ma (KU Leuven), Amal Rannen Triki (KU Leuven), Maxim Berman (KU Leuven), Christos Sagonas (Onfido), Jacques Cali (Onfido), and Matthew Blaschko (KU Leuven)	10273
HiPPI: Higher-Order Projected Power Iterations for Scalable Multi-Matching Florian Bernard (Max Planck Institute for Informatics), Johan Thunberg (University of Luxembourg), Paul Swoboda (MPI fuer Informatik. Saarbruecken), and Christian Theobalt (MPI Informatik)	10283

Language & Reasoning

Language-Conditioned Graph Networks for Relational Reasoning Ronghang Hu (University of California. Berkeley), Anna Rohrbach (UC Berkeley), Trevor Darrell (UC Berkeley), and Kate Saenko (Boston University)	10293
 Tell, Draw, and Repeat: Generating and Modifying Images Based on Continual Linguistic Instruction Alaaeldin El-Nouby (University of Guelph), Shikhar Sharma (Microsoft Research), Hannes Schulz (Microsoft), R Devon Hjelm (Microsoft Research), Layla El Asri (Microsoft), Samira Ebrahimi Kahou (McGill/Mila), Yoshua Bengio (Mila), and Graham Taylor (University of Guelph) 	10303
Relation-Aware Graph Attention Network for Visual Question Answering Linjie Li (Microsoft), Zhe Gan (Microsoft), Yu Cheng (Microsoft), and Jingjing Liu (Microsoft)	10312
Unpaired Image Captioning via Scene Graph Alignments Jiuxiang Gu (Nanyang Technological University), Shafiq Joty (Nanyang Technological University), Jianfei Cai (Nanyang Technological University), Handong Zhao (Adobe Research), Xu Yang (Nanyang Technological University), and Gang Wang (Alibaba Group)	10322
Modeling Inter and Intra-Class Relations in the Triplet Loss for Zero-Shot Learning Yannick Le Cacheux (CEA LIST), Herve Le Borgne (CEA LIST), and Michel Crucianu (CEDRIC LAB. CNAM)	10332
Occlusion-Shared and Feature-Separated Network for Occlusion Relationship Reasoning Rui Lu (Beijing University of Posts and Telecommunications), Feng Xue (Beijing University of Posts and Telecommunications), Menghan Zhou (Beijing University of Posts and Telecommunications), Anlong Ming (Beijing University of Posts and Telecommunications), and Yu Zhou (Huazhong University of Science and Technology)	10342
Compositional Video Prediction	10352
Yufei Ye (Carnegie Mellon University), Maneesh Singh (Verisk Analytics), Abhinav Gupta (CMU/FAIR), and Shubham Tulsiani (Facebook AI Research)	
Mixture-Kernel Graph Attention Network for Situation Recognition Mohammed Suhail (University of British Columbia) and Leonid Sigal (University of British Columbia)	10362
Learning Similarity Conditions Without Explicit Supervision Reuben Tan (Boston University), Mariya Vasileva (University of Illinois at Urbana-Champaign), Kate Saenko (Boston University), and Bryan Plummer (Boston University)	10372
Joint Prediction for Kinematic Trajectories in Vehicle-Pedestrian-Mixed Scenes Huikun Bi (Institute of Computing Technology Chinese Academy of Sciences), Zhong Fang (Institute of Computing Technology Chinese Academy of Sciences), Tianlu Mao (Institute of Computing Technology Chinese Academy of Sciences), Zhaoqi Wang (Chinese Academy of Sciences), and Zhigang Deng (University of Houston)	10382

Learning to Caption Images Through a Lifetime by Asking Questions	10392
Tingke Shen (University of Toronto), Amlan Kar (University of	
Toronto), and Sanja Fidler (University of Toronto. NVIDIA)	
VrR-VG: Refocusing Visually-Relevant Relationships	10402
Yuanzhi Liang (Xi'an Jiaotong university), Yalong Bai (JD AI	
Research), Wei Zhang (JD AI Research), Xueming Qian (Xi'an Jiaotong	
University), Li Zhu (Xi'an Jiaotong University), and Tao Mei (AI	
Research of JD.com)	

3D From Multiview & Sensors

TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo 1 Andrea Romanoni (Politecnico di Milano) and Matteo Matteucci 1 (Politecnico di Milano) 1	0412
 U4D: Unsupervised 4D Dynamic Scene Understanding	u0422
 Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation	.0432
 Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D Point Clouds From Multiple Angles by Joint Self-Reconstruction and Half-to-Half Prediction	0441
 P-MVSNet: Learning Patch-Wise Matching Confidence Aggregation for Multi-View Stereo	.0451

Image & Video Synthesis

SME-Net: Sparse Motion Estimation for Parametric Video Prediction Through Reinforcement Learning Yung-Han Ho (NCTU), Chuan-Yuan Cho (NCTU), Guo-Lun Jin (NCTU), and Wen-Hsiao Peng (National Chiao Tung University)	10461
ClothFlow: A Flow-Based Model for Clothed Person Generation	10470
Xintong Han (Malong Technologies), Weilin Huang (Malong Technologies),	
Xiaojun Hu (Malong Technologies), and Matthew Scott (Malong	
Technologies)	

LADN: Local Adversarial Disentangling Network for Facial Makeup and De-Makeup	.0480
Point-to-Point Video Generation	L 0490
Semantics-Enhanced Adversarial Nets for Text-to-Image Synthesis	.0500
VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation	0510
Boundless: Generative Adversarial Networks for Image Extension	0520
Image Synthesis From Reconfigurable Layout and Style 1 Wei Sun (NC state university) and Tianfu Wu (NC State University)	0530
Attribute Manipulation Generative Adversarial Networks for Fashion Images	0540
 Few-Shot Unsupervised Image-to-Image Translation	0550
Very Long Natural Scenery Image Prediction by Outpainting	0560

Applications, Medical & Robotics

Scaling Recurrent Models via Orthogonal Approximations in Tensor Trains Ronak Mehta (University of Wisconsin-Madison), Rudrasis Chakraborty (University of California. Berkeley), Vikas Singh (University of Wisconsin-Madison USA), and Yunyang Xiong (University of Wisconsin-Madison)	10570
 A Deep Cybersickness Predictor Based on Brain Signal Analysis for Virtual Reality Contents Jinwoo Kim (Yonsei University), Woojae Kim (Yonsei University), Heeseok Oh (Electronics & Telecommunications Research Institute), Seongmin Lee (Yonsei University), and Sanghoon Lee (Yonsei University. Korea) 	10579

Learning With Unsure Data for Medical Image Diagnosis Botong Wu (Peking University), Xinwei Sun (Peking University), Lingjing Hu (Capital Medical University), and Yizhou Wang (PKU)	10589
Recursive Cascaded Networks for Unsupervised Medical Image Registration Shengyu Zhao (Tsinghua University), Yue Dong (Tsinghua University), Eric Chang (Microsoft Asia), and Yan Xu (Beihang University)	10599
DUAL-GLOW: Conditional Flow-Based Generative Model for Modality Transfer Haoliang Sun (Shandong University), Ronak Mehta (University of Wisconsin-Madison), Hao Zhou (University of Wisconsin Madison), Zhichun Huang (University of Wisconsin-Madison), Sterling Johnson (University of Wisconsin-Madison), Vivek Prabhakaran (University of Wisconsin-Madison), and Vikas Singh (University of Wisconsin-Madison USA)	10610
Dilated Convolutional Neural Networks for Sequential Manifold-Valued Data Rudrasis Chakraborty (University of California. Berkeley), Xingjian Zhen (University of Wisconsin-Madison), Nicholas Vogt (University of Wisconsin-Madison), Barbara Bendlin (University of Wisconsin-Madison), and Vikas Singh (University of Wisconsin-Madison USA)	10620
Align, Attend and Locate: Chest X-Ray Diagnosis via Contrast Induced Attention Network With Limited	10(21
Jingyu Liu (Peking University), Gangming Zhao (Deepwise AI Lab), Yu Fei (Peking University), Ming Zhang (Peking University. China), Yizhou Wang (PKU), and Yizhou Yu (Deepwise AI Lab)	10631
Joint Acne Image Grading and Counting via Label Distribution Learning Xiaoping Wu (Nankai University), Ni Wen (Beijing Tsinghua Changgung Hospital), Jie Liang (Nankai University), Yu-Kun Lai (Cardiff University), Dongyu She (Nankai University), Ming-Ming Cheng (Nankai University), and Jufeng Yang (Nankai University)	10641
An Alarm System for Segmentation Algorithm Based on Shape Model Fengze Liu (Johns Hopkins University), Yingda Xia (Johns Hopkins University), Dong Yang (NVIDIA Corporation), Alan Yuille (Johns Hopkins University), and Daguang Xu (NVIDIA Corporation)	10651
HistoSegNet: Semantic Segmentation of Histological Tissue Type in Whole Slide Images Lyndon Chan (University of Toronto), Mahdi Hosseini (University of Toronto), Corwyn Rowsell (st michael hospital), Konstantinos Plataniotis (UofT), and Savvas Damaskinos (Huron Digital Pathology)	10661
Prior-Aware Neural Network for Partially-Supervised Multi-Organ Segmentation Yuyin Zhou (Johns Hopkins University), Zhe Li (Google), Song Bai (University of Oxford), Xinlei Chen (Facebook AI Research), Mei Han (paii-labs.com), Chong Wang (ByteDance Inc.), Elliot Fishman (JHMI), and Alan Yuille (Johns Hopkins University)	10671

 CAMEL: A Weakly Supervised Learning Framework for Histopathology Image Segmentation	0681
Conditional Recurrent Flow: Conditional Generation of Longitudinal Samples With Applications to	
Neuroimaging	0691
 Multi-Stage Pathological Image Classification Using Semantic Segmentation	0701
 Semantic-Transferable Weakly-Supervised Endoscopic Lesions Segmentation	0711
 Unsupervised Microvascular Image Segmentation Using an Active Contours Mimicking Neural Network 10 Shir Gur (Tel Aviv University), Lior Wolf (Tel Aviv University. Israel), Lior Golgher (Tel Aviv University), and Pablo Blinder (Tel Aviv University) 	0721
GLAMpoints: Greedily Learned Accurate Match Points	0731