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Abstract——With the increasingly widespread of advanced me‐
tering infrastructure, electric load clustering is becoming more
essential for its great potential in analytics of consumers’ ener‐
gy consumption patterns and preference through data mining.
Moreover, a variety of electric load clustering techniques have
been put into practice to obtain the distribution of load data,
observe the characteristics of load clusters, and classify the com‐
ponents of the total load. This can give rise to the development
of related techniques and research in the smart grid, such as de‐
mand-side response. This paper summarizes the basic concepts
and the general process in electric load clustering. Several simi‐
larity measurements and five major categories in electric load
clustering are then comprehensively summarized along with
their advantages and disadvantages. Afterwards, eight indices
widely used to evaluate the validity of electric load clustering
are described. Finally, vital applications are discussed thorough‐
ly along with future trends including the tariff design, anomaly
detection, load forecasting, data security and big data, etc.

Index Terms——Electric load clustering, similarity measure‐
ment, clustering technique, cluster validity indicator, smart grid.

I. INTRODUCTION

WITH the development of the smart grid, advanced me‐
tering infrastructure (AMI) has been gradually popu‐

larized. By 2020, the cosmopolitan smart meter installation
is expected to reach 780 million [1]. AMI can achieve multi-
dimension data measurement of millions of customers with
fine-grained data. Therefore, it makes data in the smart grid
developed to be real-time and diverse with a higher resolu‐
tion and a larger volume, which provides an ideal environ‐

ment for the research of electric load clustering based on da‐
ta mining techniques. By analyzing the load data and related
influencing factors, electric load clustering can extract the
power consumption patterns as well as characteristics, and
realize consumer classification, thereby supporting progress
in other smart grid fields such as load forecasting and de‐
mand-side response (DSR). Prior to the widespread distribu‐
tion of AMI, through statistics, utilities can only obtain the
monthly consumption and grid-connected information of
households, e.g., voltage levels and nominal demand. By ac‐
cessing and analyzing load data from AMI, electric load clus‐
tering can help obtain the usage habits of households, and
even assess the impacts of various variables on consumption
patterns, which can be cast into residential characteristics, de‐
mographic and socio-economic factors, attitudes toward ener‐
gy usage (e.g., attention towards energy conservation), pow‐
er consumption knowledge, and energy efficiency goals [2],
[3]. Based on the valuable knowledge mined, electric load
clustering helps utilities better implement energy policy and
infrastructure planning strategies.

The large-scale integration of renewable energies and the
development of electric vehicles also make electric load clus‐
tering more meaningful and necessary. On the one hand, the
increasing integration of renewable energies [4], [5] has long
been a vision of the smart grid, however, the inherent fluctu‐
ations, intermittence, and uncertainty generally pose new
challenges to modern power systems [6], [7]. In line with in‐
ternational climate goals and national sustainable develop‐
ment plans, renewable energy will occupy more than two-
thirds of the global generation by 2040, with solar photovol‐
taic (PV) and wind energy occupying 40% of the total gener‐
ation [8]. On the other hand, the commissioning of plug-in
electric vehicles (PEVs) and hybrid electric vehicles is ex‐
pected to increase considerably [9] - [11]. The low controlla‐
bility of electric vehicles and the stronger coupling between
the supply and demand sides further enhance the complexity
of the safe and stable operation of the power grid. Demand-
side management (DSM) and storage [12] have already
aroused great interest in addressing challenges in predictabili‐
ty and controllability of future power supply and system sta‐
bility. Clustering approaches [13]-[15] have been used to dis‐
cover power usage patterns based on various measures of
power usage data [16]-[20]. The excavation of consumption
patterns can help improve the accuracy of load forecasting
and support DSR.
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This paper aims at giving a global view of electric load
clustering techniques in the smart grid scenario. After ex‐
pounding the concept of electric load clustering and the ba‐
sic process, we provide a systematic summary of five major
category clustering algorithms, including partition-based, hi‐
erarchical, density-based, grid-based and model-based algo‐
rithms. The advantages and disadvantages of each algorithm
are compared and analyzed from the perspective of practical
problems encountered in electric load clustering researches
and aspects of improving directions. Similarity measure‐
ments that lay the basis of electric load clustering and evalu‐
ation indices commonly used in electric load clustering are
also summarized in detail. After the summary of methodolo‐
gies, a discussion is carried out on the applications and fur‐
ther development in electric load clustering brought by com‐
binations of new progress which includes data privacy, artifi‐
cial intelligence (AI), big data, renewable energy, and devel‐
opment of Energy Internet. The contributions in this paper
can be summarized as follows.

1) Typical algorithms for electric load clustering are classi‐
fied and summarized thoroughly with the analysis of advan‐
tages and disadvantages.

2) Similarity measurements and evaluation indices of elec‐
tric load clustering algorithms are summarized in detail.

3) A view on the applications of electric load clustering in
the smart grid is presented and its future trends are illustrat‐
ed.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the basic concept of electric load cluster‐
ing and illustrates the five key parts in electric load cluster‐
ing. Section III makes an analytic on several common simi‐
larity measurements of load data and gives a systematical
summary on different electric load clustering algorithms. Sec‐
tion IV holds a mathematical discussion on evaluation indi‐
ces of electric load clustering performance. Section V puts
forward current applications and future trends of electric
load clustering. Eventually, the conclusion is drawn in Sec‐
tion VI.

II. CONCEPT AND PROCESS OF ELECTRIC LOAD CLUSTERING

A. Definition and Mathematical Interpretation

Clustering is a kind of popular unsupervised data mining
technique. In the context of electric load, clustering can be
used to mine and analyze load datasets provided by massive
power consumers. Electric load clustering algorithms can di‐
vide massive load profiles into as many groups (clusters) as
possible based on similarity evaluations of samples and dis‐
cover potential patterns among consumers. Generally, the ob‐
jective of clustering algorithms is to make instances belong‐
ing to the same cluster more similar than those belonging to
different clusters, that is, high intra-cluster similarity and
low inter-cluster similarity should be fulfilled. Mathematical‐
ly, dataset D which contains n samples can be divided into
K disjoint clusters C1, C2, , CK and the union of all clus‐
ters constitute the complete D.

D= ∪
i = 1

K

Ci (1)

Especially, the concept of membership is introduced in
fuzzy clustering, that is, each sample belongs to each cluster
with a membership degree less than one numerically, and the
sum of all membership degrees equals to one.

B. Basic Process for Electric Load Clustering

The process of electric load clustering is split into five
phases: data preprocessing, data size reduction and feature
selection, primary clustering stage, assessment of clustering
performance, and formation/selection of customer clusters. It
is visually interpreted in Fig. 1.

1) Data Preprocessing
In practical applications, “dirty data” are often encoun‐

tered [21], and the data preprocessing mainly aims at han‐
dling data damage caused by abnormal conditions such as
noise, extreme weather events, and faults. The negative ef‐
fects on the later generalization can be evaded by discover‐
ing and processing lost data and outliers in load datasets.
Raw data may share negative characteristics such as incom‐
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Objective: handle data damage caused by abnormal conditions

Data cleansing
Data description

Data transformation (scaling and combination)
Feature selection/combination

Data size reduction and feature extraction
Objective: address the complexity of high dimensional data
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Ultimate target of clustering
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Limitations of analyzing and
    calculating devices

Objective: evaluate clustering performance
Tight intra-cluster distance Large inter-cluster distances

Objective: for particular situations
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     the total load profile

Modified
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Fig. 1. Basic process of electric load clustering.
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pleteness (empty attribute value), noise, inconsistency, redun‐
dancy (quantity of data or number of attributes exceeds the
need), imbalance (quantities of data vary stupendously
among different categories), outliers (data far from the major‐
ity in terms of numerical), and duplicate (data occurs multi‐
ple times). Data preprocessing stages fundamentally involve
procedures which are data cleansing [22], data transforma‐
tion such as scaling and normalization [15], data description,
feature selection or feature combination, etc.
2) Data Size Reduction and Feature Extraction

This stage processes smart meter data before the primary
clustering to reduce the size of input data or define more
meaningful characteristics for the later clustering stage. The
objective is to address the puzzle of high complexity caused
by high dimensional data in subsequent algorithms and to
better classify power consumers through various methods
such as dimension reduction. The techniques mentioned in
literature can be roughly categorized into feature definition
that contains feature extraction based on expert knowledge
and data compression. Particularly, in data compression,
lossy compression and feature extraction are closely linked.
An effective feature extraction mechanism is required to mit‐
igate the data storage and processing burden. Methods such
as symbolic aggregate approximation (SAX) [23], principle
component analysis (PCA) [24], singular value decomposi‐
tion (SVD) [25], and discrete wavelet transformation (DWT)
[26] are the most prevailing for purpose of feature extrac‐
tion. In addition, in [24], a convolutional autoencoder was
utilized to reduce the dimensionality of original input data.

When using piecewise aggregate approximation (PAA) to
reduce the data size for the load dataset, the time axis would
be divided into several intervals, and the amplitudes within
each one would be replaced with their respective averages
[27]. Based on PAA, SAX divides the axis that represents
the power consumption amplitude into intervals and uses ap‐
propriate symbols for the explicit representations of each in‐
terval. The SAX representation of the time-domain load pro‐
file is drawn according to the time intervals divided lastly.
However, due to the segmentation properties of SAX, some
partition-based clustering algorithms, e. g., K-means, cannot
be applied for further processing after all transformations of
load profiles, while hierarchical clustering and density-based
spatial clustering of applications with noise (DBSCAN) are
suitable for subsequent clustering processes.

The principle of applying PCA to load data size reduction
is to select the dimension with large information entropy nu‐
merically in a smart meter dataset and remove the dimension
with the small information entropy. Load data are trans‐
formed from the original coordinate system to a new one
that consists of a few new orthogonal axes with the largest
variance of raw data. Large variances represent large differ‐
ences between different data, which contain a large amount
of distinguishable information.
3) Primary Clustering

In the primary stage of electric load clustering, it is signif‐
icant to select appropriate clustering algorithms for specific
situations and set parameters reasonably. The choice highly

depends on factors such as the size and granularity of the
given dataset, the ultimate target of clustering, online or of‐
fline [28], limitations of analyzing and calculating devices.
From the perspective of data dimension and size, extensive
scales of consumers and attributes will increase the computa‐
tional burden of the clustering algorithm that requires dis‐
tance matrices, e.g., hierarchical clustering [29].

In some studies, integrated electric load clustering algo‐
rithms [30], [31] can speed up the procedure and achieve
better results.
4) Assessment of Clustering Performance

Unlike classification tasks with certain optimal goals and
learning processes, clustering tasks are unsupervised without
certain objectives and uniform criterion to assess the validity
[32]. Intuitively, since the clustering process does not in‐
volve labels, the quality is generally evaluated by internal
evaluation indicators, which is on account of the calculation
of closeness within each cluster and cluster separation. An
ideal clustering performance results in tight intra-cluster and
large inter-cluster distances [33]. On the other hand, electric
load clustering can also be assessed by external evaluation
indicators in the case that reference labels are given based
on actual application requirements. Various clustering validi‐
ty indices (CVIs) have been proposed to assess the results, e.
g., the F-measure, Davies-Bouldin index (DBI) [34], mean
square error (MSE) [35], silhouette coefficient (SC) [36],
mean index adequacy (MIA) [37], ratio of within-cluster
sum of squares to between cluster variation (WCBCR) [38],
Dunn index, silhouette width criterion (SWC) [39], purity
[40], and Rand index (RI) [41]. Moreover, evaluations based
on fuzzy partitioning are known as Xie-Beni index and non-
fuzzy index [42], [43].
5) Formation/selection of Customer Clusters

In view of specific electric load clustering scenarios, sub‐
sequent processing of formed clusters is required. Clusters
should be chosen to meet the needs of particular applica‐
tions. Herein, two classical scenes are implemented.

Electric load clustering can realize the classification of
DSR resources and support fine implementations of DSM
strategies. Supposing that electric load clustering is applied
in the formation of DSM strategies, the ultimate number of
clusters is not expected to exceed the predetermined sum re‐
stricted by practical application constraints, and the level of
segmentation may be specified by the needs of distribution
network operators (DNOs) and retailers. In this case, some
clusters with similar patterns can be merged [44].

It has also aroused the interest of researchers about how
to perform clustering on load datasets to improve the load
forecasting accuracy. In general, consumers are merged by
clustering based on similarities in consumption behaviors
and then load forecasting is conducted for each colony. Espe‐
cially, the dynamic characteristics of load are considered by
researchers in order to support load forecasting preferably
[19]. Since the target is to improve the result of load fore‐
casting, evaluation indicators such as mean absolute percent‐
age error (MAPE) common to load forecasting are used as
the criterion to determine the formation of clusters [45].
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III. CLUSTERING ALGORITHM

This section begins with a summary of common measures
in electric load clustering stage, followed by an overview of
some classical electric load clustering algorithms. They are
specifically designed due to different practical constraints
such as the structure of provided load data, scale of dataset,
dimensionality of data (sampling frequency), number of out‐
liers, complexity requirement, dependency on the input or‐
der, and dependency on each consumer’s preset or priori

knowledge. To facilitate an intuitive understanding, we clas‐
sify electric load clustering algorithms into five major cate‐
gories which include partition-based, hierarchical, density-
based, grid-based, and model-based clustering algorithms.
Figure 2 depicts the electric load clustering algorithms men‐
tioned in this paper, where the dark blue indicates the major
categories, the light blue indicates the typical algorithms, the
dark green indicates the subdivision of general algorithms,
the green indicates the improvement of algorithms, and the
light green indicates the specific algorithms.

A. Measurements in Electric Load Clustering

The concept of using similarity or dissimilarity metrics to
construct clusters is prevalent in various types of clustering
algorithms. The task is to group instances in a mathematical
expression that represents the degree of similarity or dissimi‐
larity between samples [14]. The selection of metrics de‐
pends on the data type, the significance of data magnitude,
and the data sparsity. After calculating the similarity or dis‐
similarity among samples, load data are transformed into a
similarity or dissimilarity space in the form of matrix analy‐
sis. Different kinds of measurements are summarized in [46]
from a technical point of view.
1) Minkowski Distance

Minkowski distance (Lp-norm distance) is one of the most
popular measures in various literature.

Lp = (∑
i = 1

dim

| xdi - ydi |
p)

1
p

(2)

where dim is the feature dimension of samples; xdi and ydi

are the samples of ith dimension; and p is a constant.
This formula calculates the distance value based on the

difference between the features of two objects. When p = 1,
the Minkowski distance is noted as Manhattan distance.
Most commonly, when p = 2, the Minkowski distance is

known as Euclidean distance [47]. When p→ +∞, the
Minkowski distance is called Chebyshev distance. Among
the distances listed above, Euclidean distance is most widely
used for clustering smart meter data to discover residential
load patterns [48], while the defect is that it is unable to rec‐
ognize the relationship between different shapes [27]. The
principle drawback of Minkowski distance is that it does not
treat scales of individual components differently and does
not consider differences in distributions of the individual
components such as expectations and variances. The min-
max method is employed for the sensitivity of Euclidean dis‐
tance to the difference of load data amplitude [27].
2) Gower’s Distance

Gower’s distance is purposed to calculate the degree of
similarity between instances i and j based on the attribute k,
and a value sijk is assigned in the process based on the de‐
gree of similarity between the instances, and the possibility
index δ ijk of comparing i and j is put forward. When δ ijk = 1,
it means that the attribute k can be compared between i and
j, otherwise the value equals 0. When δ ijk = 1, sijk is unknown
and is set to be 0 normally, and the similarity between i and
j is defined as the average of all the possible comparisons
(attributes may not exist or cannot be compared for the lack
of information or in the case of dichotomous variables).

Density-based DBSCAN Detection of
different density CFSFDP

Grid-based
Competition mechanism

Applying wavelet transform

SOM

WaveClusterPartition-based

Sensitivity to
outliers
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parameter setting

Overlapping
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K-means

FCM K-shape
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Fuzzy
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Hidden stage
description

GMM

HMM
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Information gain Noise-resistant
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algorithms
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Time-series
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Fig. 2. Classification of electric load clustering algorithms.

240



SI et al.: ELECTRIC LOAD CLUSTERING IN SMART GRID: METHODOLOGIES, APPLICATIONS, AND FUTURE

TRENDS

Gower’s distance normalizes the variables in [0,1] and us‐
es weighted linear combinations to calculate ultimate dis‐
tance matrix. The advantage is that Gower’s distance is easy
to compute, but its drawback is the susceptibility to outliers
of unstandardized continuous variables. Therefore, the data
transformation process is essential, which will consume a
large amount of memory.

In the agglomerative algorithm proposed in [49], Gower’s
distance was used to measure the similarity of both quantita‐
tive and qualitative information.
3) Canberra Distance

Canberra distance can be viewed as a weighted version of
Manhattan distance. The measurement is very sensitive to
nonnegative changes close to 0. Similar to Mahalanobis dis‐
tance, the measurement is insensitive to the scale of data.
However, Canberra distance assumes that variables are inde‐
pendent of each other, without considering the correlation be‐
tween them. There is no significant difference in the compu‐
tation cost between Canberra distance and Euclidean dis‐
tance on the same dataset, but the correlation obtained by
Canberra distance is always higher than that obtained by Eu‐
clidean distance [50].

A K-means-based load estimation method was proposed in
[51] for the smart meter data of households, and the effects
of adopting Canberra distance, Manhattan distance, Euclide‐
an distance, and Pearson correlation coefficient were studied
in the case.
4) Cosine Similarity

The similarity between two vectors can be evaluated by
measuring the cosine of the angle between them. The result
is independent of the length and only relevant to the direc‐
tion of vectors. In data mining fields, cosine similarity is
used to measure the degree of aggregation within clusters.

The similarity of load profiles in [52] was described by
the angle cosine values between two vectors, where the ele‐
ments were the hourly consumption data in the proposed sta‐
tistic-fuzzy technique.
5) Pearson Correlation Coefficient

Pearson correlation coefficient is used to measure the cor‐
relation between sets Xi and Xj for linearly correlated contin‐
uous data of bivariate normal distribution within the range
of [-1,1]. The correlation between Xi and Xj enhances with
the increase of the absolute value of the correlation coeffi‐
cient, and a positive or negative coefficient indicates that Xi

is positively or negatively correlated with Xj, respectively.
The extreme value in the dataset may result in a serious

deviation of coefficient, so it needs to be processed before
the calculation of Pearson correlation coefficient. In addi‐
tion, Pearson correlation coefficient cannot detect more com‐
plex associations such as quadratic, cubic, and time varying
relationship [53].
6) Kullback-Leibler (KL) Divergence

KL divergence based on information theory is to describe
the difference between two probability distributions X and Y
obtained from two load datasets, respectively.

For discrete random variables, we can obtain

DKL (X Y)=∑
i

X (i)ln
X (i)
Y (i)

(3)

where DKL(X Y) is the difference between the two probabili‐
ty distributions X and Y; and X(i) and Y(i) are the probabili‐
ties of element i in the distributions X and Y, respectively.

For continuous random variables, we can obtain

DKL (X Y)= ∫
i

X (i)ln
X (i)
Y (i)

di (4)

A symmetric generalized KL divergence was used in [54]
as the measurement of distributions, where typical load pat‐
terns (TLPs) were extracted by hierarchical clustering.
7) Dynamic Time Warping (DTW)

DTW which applies dynamic programming is served for
time-warping calculations. To evaluate the similarity of two
time series, one can use DTW to find the optimal alignment
between two time-correlated sequences. In many cases of
electric load clustering, the linear scaling or stretching of
load curves cannot take into account the variability in the du‐
ration of the segments in load curves. The practical applica‐
tion of DTW is to perform nonlinear processing on the time
axis to make shapes of sequences as similar as possible.
DTW is a frequently used measurement for comparing time-
series datasets and has the highest alignment performance
compared with other algorithms [55].

To better classify and predict consumption behaviors at
the household level, a DTW-based approach was proposed
in [19]. The approach has been optimized to better estimate
which electrical devices will be used in which hours.

B. Partition-based Clustering Algorithm

The ideology of partition-based clustering algorithm is to
achieve the effect that clusters are sufficiently distant from
each other and samples in each cluster are sufficiently close
to each other [56]. When applied to electric load clustering,
the partition-based clustering algorithm creates K partitions
on the original consumption dataset obtained by AMI. It se‐
lects K cluster centroids according to a predefined limit and
then performs iterative relocation based on the predefined
heuristic algorithm until the desired objective has been
achieved. In fact, partition-based clustering needs to run
many times in different initial states to get better results. K-
means is widely used among partition-based clustering algo‐
rithms [56] in addition to fuzzy c-means (FCM) based on
fuzzy theory, which can be considered as another typical ex‐
ample [57].

A number of improvements based on K-means have been
proposed to deal with different limitations of prototype algo‐
rithms in different applications of electric load clustering. Al‐
gorithms that contains K-medoids [58] and K-medians [59]
are applied to address the shortcoming that K-means is sensi‐
tive to noisy data and outliers occurred in the process of ac‐
quiring load data. Moreover, K-shape is proposed to address
the shortcoming that K-means can only handle numerical
samples and is not suitable for shape-like load samples [60].
1) K-means

K-means is the most popular and simplest electric load
clustering algorithm for its outstanding computational effi‐
ciency on the large-scale and high-dimension load datasets
[45]. In K-means, cluster centroids are computed as the aver‐
age of cluster members. The ideal dissimilarity measurement
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summarized from various literature is Euclidean distance
generally. Although the algorithm has advantages of easy im‐
plementation and high efficiency, it has the drawback of not
being applicable to the case with discrete characteristics, and
cluster centroids may not be similar to any other instances
when dealing with load data containing outliers or asymmet‐
rically distributed load data. When the dataset is consider‐
ably large, there is a considerable probability that K-means
will fall into a local optimal solution, so it is necessary to
handle the non-convex problem under this circumstance.

Based on the original K-means using Euclidean distance
as a similarity measure, a shape clustering was proposed in
[35] based on the segmental slope of load curves, which
showed the feasibility in improving the accuracy and effi‐
ciency of clustering by capturing shape features of load
curves. A hierarchical K-means was developed in [61] to im‐
prove the clustering performance under big data problems in
distributed AMI circumstances considering the shortcomings
of local optimal solutions for K-means. To decompose daily
usage patterns into total daily usage and standardized daily
load patterns, a two-stage approach that consists of the adap‐
tive K-means and hierarchical algorithms was used in [62].
2) K-medians

Since outliers may exist in load profiles in practical cases,
K-medians, which can avoid the effect of outliers in smart
meter data on the overall cluster generation, is introduced in
electric load clustering research. Cluster centroids for K-me‐
dians are the median of all cluster members, and the optimal
measurement of coherence is Manhattan distance (vector 1-
norm). The advantage of choosing the cluster centroid as the
median is that the effect on the median value is even negligi‐
ble when there are particularly influential noisy data or outli‐
ers in load datasets obtained by AMI. Without loss of gener‐
ality, compared with K-means, K-medians is more robust to
asymmetric distributed data and outliers. Since cluster cen‐
troids may be different from any sample, the computation
cost is higher.

A comparison of six algorithms was carried out in [59]
for down-scaling annual load consumption data to a compos‐
ite typical load demand day for the energy system. It took
seasonal and monthly classification of electrical load into
consideration along with complex electric load clustering al‐
gorithms. K-medians and K-medoids show the best perfor‐
mance when analyzing the design, operation, and cost struc‐
ture of the resulting energy systems.
3) K-medoids

In electric load clustering scenarios, K-means requires that
all load consumption samples to be in a Euclidean space and
can be extremely error-prone to noise. For non-numerical
samples, it is not possible to calculate real variables such as
the mean. Different from K-means whose cluster centroids
are distributed in continuous space, K-medoids can only take
load consumption samples as its cluster centroids. The itera‐
tive steps are roughly the same for both algorithms.

K-medoids shares similar advantages with K-medians in
terms of the robustness to noise and outliers in smart meter
data, and guarantees convergence. The disadvantage is that

K-medoids is computationally expensive, which makes it dif‐
ficult to be adapted to the clustering of large-scale and high-
dimension load datasets.

K-means and K-medoids were examined in [63]. Among
several electric load clustering algorithms, the best-perform‐
ing one was selected according to different indices so that
they could be divided into groups based on different house‐
hold daily load patterns. Various clustering indices of K-
means, K-medoids, and hierarchical clustering were evaluat‐
ed for electric load clustering in [64].
4) Adaptive K-means

In electric load clustering studies, predetermining the
amounts of clusters is often a tough issue because a small
number of clusters will make the electric load clustering re‐
sults less persuasive, while a huge number of clusters make
applications of electric load clustering rather complex. In
contrast to the original K-means that the amount of clusters
K is needed to be predetermined, adaptive K-means is able
to determine the ultimate number of clusters during the clus‐
ter formation process without trying alternative K. Adaptive
K-means starts with an initial optimal guess for K, and al‐
lows the number to be changed at any time in course of for‐
mation.

Adaptive K-means differentiates from the classical K-
means in the following aspects.

1) The cluster number in adaptive K-means can be dynam‐
ically adjusted depending on whether a distortion threshold
condition is satisfied.

2) Adaptive K-means retains complete information on iso‐
lated load samples by dividing them into individual clusters.

3) Adaptive K-means independently applies K ′-means to
the offending cluster (K ′ is predetermined) and thus has the
potential for parallel computation.

An advanced method that integrated adaptive K-means
with hierarchical clustering was proposed for decomposing
daily power consumption patterns into total daily usage and
standardizing daily load shapes in [62].

Time domain along with fluctuation characteristics was
considered in [65] in the local modeling, where adaptive K-
means was used to cluster the load curves.
5) FCM

Considering the drawbacks of exclusive electric load clus‐
tering, that is, load curves in one cluster may be also similar
to those in other clusters, the introduction of fuzzy theory
can solve the problem by defining the membership degree of
a load curve to different clusters. In K-center algorithms ap‐
plying fuzzy theory, FCM is a well-known algorithm. Differ‐
ent from K-means, in FCM, each load profile belongs to
each cluster with a membership degree [57]. Its concept
characterizes the uncertainty that load profiles belonging to
two or more clusters. Fuzzy theory makes the result of elec‐
tric load clustering more reasonable, but its specific applica‐
tion significance needs to be explored. The membership ma‐
trix defines the membership degree of each load curve to
each cluster, requiring that the total sum of membership de‐
grees of load curves in all clusters is 1. Moreover, any load
curve should be a member of at least one cluster. With the
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introduction of a membership degree in FCM, the iteration
of the centroids is easier to achieve global optimum.

A hesitation index was introduced in the membership and
non-membership functions to deal with the uncertainty of
electric load in [66], and FCM was applied to deal with the
load data representation problem of fuzzy rules.

A technique, which combines FCM and artificial neural
network (ANN) based pattern recognition techniques, was in‐
troduced for initial screening of electric load shapes using
load studies and monthly energy usage data of customers
in [67].
6) K-shape

K-shape is a novel time-series algorithm [60] that can be
applied in electric load clustering studies as load curves
share the time-series characteristics. Unlike the original K-
means that treats time-series load data as independent attri‐
butes, K-shape creates a consistent set that is also well-sepa‐
rated in the process. To effectively compare time-series load
data, cluster centroids are calculated based on shape-based

distance (SBD), which are used recursively to capture shared
characteristics of underlying data and update the allocation
of load curves. Time-series data clusters are divided based
on the similarity of load profiles without considering differ‐
ences in load magnitudes and phases. K-shape can be cast in‐
to three parts intuitively, including the selection of SBD, the
extraction of time-series load profiles, and shape-based elec‐
tric load clustering analysis. Since the obtained load profiles
exist in the form of time series, K-shape applies SBD with
curve characteristics taken into account and thus has its ad‐
vantages.

Different algorithms that include K-means, K-medoids, hi‐
erarchical, DTW Barycenter averaging and K-shape were
compared in [68]. The conclusion showed that K-shape has
better performance than traditional algorithms in the specific
problems using intra-daily variability.

Fundamental characteristics of the mentioned partition-
based clustering algorithms are clearly illustrated in Table I.

C. Hierarchical Clustering Algorithm

In hierarchical clustering algorithm [69], load curves to be
classified need to be numerically measured on a set of attri‐
butes, and rows of the constructed array are analyzed. Rows
of matrices can be considered as a vector where the number
of dimensions is the number of attributes in a multi-dimen‐
sional space. Hierarchical clustering algorithm is more flexi‐
ble and explicit compared with K-center families, so it also
arouses the interest of electric load clustering researchers.

Hierarchical clustering algorithm has significant merits
such as easy to define, which does not require a predeter‐
mined number of clusters, and has fewer restrictions on the
similarity of distances and rules. The hierarchical clustering
algorithm is also highly exploitable in terms of hierarchical
relationships and has a variety of cluster shapes. On the oth‐
er hand, the disadvantages are the higher complexity, being
more sensitive to singular values, and the higher possibility

to aggregate into chains eventually compared with K-means.
Adopting hierarchical clustering algorithms to cluster load
curves can help intercept the desired number of clusters
from any hierarchy according to the specific scenario ap‐
plied by the electric load clustering process.
1) Agglomerative Algorithm

The agglomerative algorithm is considered as greedy, and
the hierarchy is constructed through a series of irreversible
steps [70]. Its clustering is based on a similarity measure.
First, distance d(i,j)∈D (D denotes the similarity matrix) be‐
tween load profiles (observation) i and j is established using
distance criterion. Based on matrix D, electric load instances
are grouped by linkage criteria using evaluation functions,
where the linkage criteria indicate the best candidates for
merging and have an essential influence on the results of
electric load clustering. Therefore, at each level, the closest
pair of clusters in D is merged until a single cluster contain‐

TABLE I
CHARACTERISTICS OF PARTITION-BASED CLUSTERING ALGORITHMS

Algorithm

K-means

K-medians

K-medoids

Adaptive K-
means

FCM

K-shape

Calculation of centroids

Mean of members

Median of members

The least dissimilar member to others
generally

1) Mean of clusters
2) Final cluster number is determined
during the cluster formation

1) Mean of members
2) An instance may not be classified
into a sole cluster

On account of the cross-correlation
characteristics

Best measure

Euclidean

Manhattan

Various
measurements

Euclidean

Euclidean

SBD

Advantage

1) Operational ease
2) Quick convergence
3) Highly explanatory
4) Preferable load clustering result

Robust to noisy data in load dataset

1) Noise and outlier resistant
2) Stability of convergence

1) Cluster number adjusted adaptively
2) Potential of parallel computation

1) Uncertainty modeling
2) Easier to reach global optimum
3) Robust to outliers

Able to explore sequential features

Disadvantage

1) Sensitive to outliers
2) Easy to fall into a local optimum

1) Dissimilarity between cluster cen‐
troids and instances

2) More costly to calculate

More expensive computationally than K-
means and K-medians

1) Sensitive to outliers
2) Easy to fall into a local optimum

Higher computational complexity over
K-means

1) Hard to be extended to large datasets
2) Limits of validity to specific datasets
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ing all load profiles is obtained.
Agglomerative algorithms can be divided into two broad

categories based on whether a particular cluster centroid is
selected. The first category is the linkage methods that can
be represented using graphs that include single linkage [71],
complete linkage [72], [73], and average linkage [46]. The
second category is the algorithms that select the cluster cen‐
troids particularly (e. g., select the mean value or weighted
mean of samples as the cluster centroid), where the ward’s
linkage [74], [75] is classical. Algorithms in the second cate‐
gory can specify cluster centroids individually or according
to the coordinates and dissimilarities of the centroids.

In the linkage methods that can be presented using
graphs, two common algorithms are chosen as samples,
where the first one is complete linkage, and the other is aver‐
age linkage. Firstly, the complete linkage allows for more
compactly shaped clusters and is sensitive to outliers in load
consumption data. The similarity between two load clusters
is based on the similarity of the least similar load profile at‐
tributed to each of them. Secondly, the average linkage is ex‐
pensive in computation for massive smart metering load da‐
ta, but it is noise-resistant and is a compromise between sin‐
gle linkage and complete linkage. The average linkage crite‐
rion considers the similarities between all pairs of load
curves in two clusters.

A novel computational method based on complete linkage
was applied to analyze hourly power usage data in [76] and
it was capable of handling large amounts of data.

Applications of several electric load clustering algorithms
and indicators for classifying power consumers were de‐
scribed in [77]. The results showed that an improved version
based on average linkage was the most appropriate.

Among methods that select cluster centroids particularly,
the ward’s linkage method is the most popular one in the
electric load scenario, which is in conjunction with the no‐
tion of information gain and considers the minimization of
the intra-cluster membership of all clusters with the cluster
sum of squared differences between centroids of mass. For
each of the two clusters Cj and Cj, the ward’s linkage meth‐
od merges them in Ci Cj, and the resulting value of clus‐
ters’ error sum of squares (ESS) increases. In practical appli‐
cations, the ward’s linkage method avoids these negative ef‐
fects as single linkage ends up with a small number of large
clusters, while the complete linkage can end up with too
many clusters [78].

Considering the number of clusters in different groups,
and based on the average daily net electric load model, a hi‐
erarchical clustering algorithm with the ward’s linkage was
proposed in [79] to obtain the clustering labels for each cus‐
tomer.
2) Divisive Algorithm

In two general classifications of hierarchical electric load
clustering algorithms, divisive algorithm adopts an opposite
strategy from the agglomerative one, which can be regarded
as an inverse algorithm. From the other side, by combining
with other electric load clustering algorithms, divisive algo‐
rithm is not only less complex than the agglomerative one,
but also easier to obtain higher clustering robustness, since

divisive algorithm starts from the whole and thus allows for
a better analysis of noise and outliers in power consumption
datasets. However, the divisive algorithm is more technically
challenging to be implemented, mainly in terms of ensuring
the correct load dataset splitting and setting up split termina‐
tion conditions suitable for electric load clustering.

A double-level electric load clustering algorithm that inte‐
grates K-means and divisive algorithm was developed in
[80], which combined the speed of K-means and divisive al‐
gorithm used in hierarchical clustering to cluster the smart
metering data.

The mathematical descriptions and fundamental features
of agglomerative algorithms mentioned for electric load clus‐
tering are illustrated in Table II in detail, where ci and cj are
the centroids of Ci and Cj, respectively; and ni and nj are the
numbers of data points belonging to the ith and jth cluster, re‐
spectively.

D. Density-based Clustering Algorithm

Due to the similarity and dissimilarity of load profiles ob‐
tained in actual practice, there are both high-density and low-
density areas in the vector space consisting of load data, so
the density-based clustering algorithm has its rationality. The
density-based algorithm is a nonparametric algorithm that
does not take the number of clusters as an input parameter,
and does not need to assume the potential density p(x) and
the potential intra-cluster variance in the load consumption
dataset. This category of algorithm can effectively process
noise by only scanning the dataset once, so it can support
load anomaly detection. A significant difference from other
algorithms is that the dense point areas are separated by
sparse point areas, where clusters are considered as dense ar‐
eas of density p(x). Therefore, the shape of density-based
clusters and the distribution of points in the cluster are not
necessarily convex. As measured by various distance func‐
tions, they can fit any shape in the data space, which makes
density-based methods capable to realize electric load cluster‐
ing reasonably in non-convex feature space.
1) DBSCAN

DBSCAN adopts a set of parameters on the concept of
“neighborhood” to describe the compactness of the load pat‐
tern distribution, divides areas with sufficient density into
clusters, and discovers clusters of any shape under noisy con‐
ditions [81] obtained in the processing of AMI. The core of

TABLE Ⅱ
CHARACTERISTICS OF AGGLOMERATIVE ALGORITHMS

Linkage criterion

Complete linkage

Average linkage

Ward’s linkage

Description

max
xÎCiyÎCj

d(xy)

1
ninj

∑
xÎCiyÎCj

d(xy)

ninj

ni + nj

d(cicj)

Feature

1) More compact shaped clusters
2) Sensitive to outliers

1) Compromise between single
and complete linkages

2) Computationally expensive,
especially for large datasets

3) Noise resistant

Based on the objective function
instead of similarities between
data points of the two clusters
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DBSCAN can be summarized as expanding from an initially
selected core load pattern to a region of patterns with reach‐
able density, resulting in a maximum region containing core
points and boundary points, where any two load patterns
(points) are connected taking density as the criterion.

In DBSCAN, it does not need to specify the number of
clusters in advance and clusters of arbitrary shape can be dis‐
covered. Moreover, it is insensitive to load anomalies and is
able to automatically identify them during the process [81].

Apart from fine properties mentioned above, DBSCAN
has the disadvantages as follows: the quality of clustering be‐
comes worse for datasets with non-uniform density or with
large differences in distribution between clusters; it takes lon‐
ger to converge when the dataset is large; the parameters eps
and minSam are considered at the same time, so the parame‐
ter adjustment is complicated [81].

The pricing of power retail was studied in [82], in which
DBSCAN was used for load pattern analysis to mine inher‐
ent power consumption patterns from historical load data. In
order to better capture the load patterns of terminal consum‐
ers, the historical load consumption was analyzed statistical‐
ly.
2) Clustering by Fast Search and Find of Density Peaks
(CFSFDP)

An improved version of DBSCAN namely clustering by
CFSFDP [83] adopts visualization methods to help find dif‐
ferent clusters of different densities. This algorithm is partic‐
ularly useful for analyzing massive high-dimension load pro‐
files because it requires no repeated iterations and is highly
efficient.

CFSFDP is able to find load clusters in different densities,
while the drawback is that each load cluster must have a
maximum density point as the cluster centroid. If the density
of a cluster is uniform or if there are multiple high-density
points, some load clusters will be separated into several sub-
clusters. The number of clusters should be specified in
CFSFDP.

CFSFDP was incorporated in process with KL distance to
evaluate the differences between the two load patterns and
obtain the typical dynamics of consumer behavior [84].

The characteristics of the density-based clustering algo‐
rithms are shown in Table III.

E. Grid-based Clustering Algorithm

Grid-based clustering algorithms make use of multi-dimen‐
sion grid structures of feature spaces and divide the feature
space of load into a finite number of units [85]. The advan‐
tage is that the processing time is independent of the number
of load curves and the order of input load data. Therefore, it
can handle arbitrary types of load consumption data. In the
meantime, the disadvantage is that the processing time is
limited by the number of units divided in each dimensional
space.
1) Self-organizing Map (SOM)

In load characterization, one of the most used algorithms
is SOM. It visually projects input load patterns into a re‐
duced output space and keeps the topology unchanged at the
same time. Then, the results are grouped via visual inspec‐
tion. Iterative learning of the input pattern allows the weight‐
ed vector space to be consistent with the probability distribu‐
tion region of the input pattern.

The advantage of SOM is that clusters of mutual nearest
neighbors are more correlated than the others, which facili‐
tates the interpretability and visual representation of electric
load clustering results. The drawbacks include the need to se‐
lect parameters, neighborhood function, grid type, centroid
number, and the lack of a specific objective function. The
clusters in SOM do not often correspond to natural clusters
for the possible merging and splitting of natural clusters.
Moreover, SOM does not guarantee convergence.

To obtain the SOM graph, two different demand data pro‐
cessing methods in frequency and time domain were tested
and their respective advantages were evaluated, and the abili‐
ty of SOM to classify new customers in different clusters
was investigated finally in [86].
2) Other Grid-based Clustering Algorithms

Among other grid-based clustering algorithms, WaveClus‐
ter treats multi-dimension load usage as multi-dimension sig‐
nals [85]. The algorithm is proposed to deal with the high di‐
mensionality within load datasets with its high computing
power. It first divides the data space and forms the structure
of a grid. Subsequently, the wavelet transform is used to
transform load data space into a frequency domain. After
performing convolution calculations with a kernel function
in the frequency space, the clustering properties of the load
data can be well represented.

To reduce the number of features that represent each load
pattern relative to the time domain data, a discrete wavelet
transform was used to extract some spectra features [66]. A
fused load curve clustering on account of wavelet transform
(FCCWT) was presented in [39], which aimed to obtain the
daily load patterns of power consumers. Since the clustering
based on wavelet transformation always detects edges, its
performance may not be excellent for cases without signifi‐
cant edges between clusters.

The characteristics of the above-mentioned grid-based
clustering algorithms are illustrated in Table IV.

TABLE Ⅲ
CHARACTERISTICS OF DENSITY-BASED CLUSTERING ALGORITHMS

Algorithm

DBSCAN

CFSFDP

Advantage

1) No need to specify the
cluster number in advance

2) Capable to discover clus‐
ters of arbitrary shape

3) Insensitive to anomalies
4) Anomalies identification
automatically

Able to find clusters of dif‐
ferent densities

Disadvantage

1) Worse clustering quality for
load datasets with non-uniform
density or with large differences
in distribution between clusters

2) High time complexity
3) Complicated parameter adjust‐
ment

1) Needs for a maximum density
point as the cluster centroid in
each cluster

2) Needs to specify the number
of clusters
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F. Model-based Clustering Algorithm

Model-based clustering algorithm fits probability distribu‐
tions for different load clusters and assumes that the load da‐
ta conform to some distribution functions. This subsection
depicts two algorithms of model-based clustering commonly
seen in electric load scenarios, which are Gaussian mixed
model (GMM) and hidden Markov model (HMM).
1) GMM

The most common Gaussian distribution is also often used
in electric load clustering because load data themselves con‐
form to characteristics of a probability distribution and incor‐
porate the advantages of the aforementioned soft clustering.
Accordingly, GMM can be considered as a type of soft clus‐
tering in model-based clustering algorithms which gives the
probability of electric load samples being assigned to each
cluster [87]. The problem is to estimate the parameters for
each cluster and determine the cluster that produces each ob‐
servation [88]. In practice, all components in the model are
from the same kind of distribution. By adding models, a
mixed model can be used to approximate any continuous
probability distribution. GMM is one of the most popular
representation, in which components are Gaussian distribu‐
tions with different mean and variance. From the perspective
of probability distributions, GMM gives the probability that

load curves belong to each cluster, which makes up for the
defect of exclusive electric load clustering.

In [89], Bayesian information criterion (BIC) and
Akaike’s information criterion (AIC) are vital guideline to
select the optimal number of components in GMM. A multi-
resolution clustering was used to extract the spectral features
of load curves from the multi-resolution smart meter data in
the first phase, and then GMM is used to cluster the spectral
features of the load curves in the second phase [26].
2) Other Model-based Clustering Algorithms

Due to the time-varying feature of load profiles, HMM
can be seen as a kind of time-series probability model that
describes a sequence of hidden states randomly generated by
a hidden Markov chain [90]. Random observations generated
in each hidden state form an observable random sequence.
HMM provides a good perspective to model the dynamic
characteristics of the consumption behavior of power custom‐
ers. It can well identify power consumption modes at differ‐
ent levels.

HMM can infer occupancy status from the time-series
load dataset of power consumers [90]. Characteristics of oc‐
cupancy including magnitude, duration, and variability were
contained in the model proposed by [90].

The characteristics of the above-mentioned model-based
clustering algorithms are illustrated in Table V.

IV. EVALUATION OF ELECTRIC LOAD CLUSTERING

Due to the difference of input data, algorithm, and the ini‐
tialization of parameters, the electric load clustering validity
will be different. In practical research, CVIs for electric load
clustering can be divided into two categories, i. e., internal
and external evaluation indicators.

Internal evaluation indicators can evaluate electric load
clustering validity by calculating the compactness within
each load cluster and the separation among load clusters. Ex‐
ternal evaluation indicators can assess the validity of electric

load clustering by comparing the distribution of labels ob‐
tained by clustering with the reference labels.

CVIs can be used for different purposes in process of clus‐
tering power consumers: identifying an appropriate number
of power consumer groups [91], [92], comparing the perfor‐
mance of different electric load clustering algorithms [46],
[93], studying the effects of parameters on electric load clus‐
tering results [61], [94], and evaluating the performance of
clustering when changing (adding or removing) certain attri‐
butes [95], [96].

TABLE Ⅳ
CHARACTERISTICS OF GRID-BASED CLUSTERING ALGORITHMS

Algorithm

SOM

WaveCluster

Brief description

Unsupervised neural network

Grid-based algorithm with wave‐
let transformation principle

Advantage

1) Capable to identify the most significant characteristics with
self-stability

2) Strong ability of anti-noise

1) Used for large-scale high-dimension data containing a large
number of isolated outliers

2) Robust to noise and insensitive to input sequence
3) Capable to find clusters of complex structure with different
precisions without assuming any particular shape

4) Independent of the prior knowledge of cluster number

Disadvantage

Prone to be affected by factors such
as weights of network connection,
etc.

Slightly less effective when there are
no obvious edges between clusters

TABLE Ⅴ
CHARACTERISTICS OF MODEL-BASED CLUSTERING ALGORITHMS

Algorithm

GMM

HMM

Brief description

Parametric model that can be viewed as combi‐
nation of K single Gaussian models

Probability model of time series

Advantage

Capable to model the probability of electric
load samples being assigned to each cluster

Memory-free

Disadvantage

1) Computationally intensive iteration
2) Possibility of falling into a local optimum

Assuming that current state is only related to
the previous state
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In conjunction with the content mentioned previously, this
section focuses on metrics that are commonly used in elec‐
tric load clustering literature. Assuming that a dataset con‐
tains N electric load instances, K is the number of load clus‐
ters, Ck is the kth cluster, ck is the centroid of the kth cluster,
and Ck′ is the cluster other than cluster Ck.

A. Internal Evaluation Indicators for Electric Load Cluster‐
ing

1) MSE calculates the sum of square Euclidean distances
within each load cluster and takes their average value to
measure the cluster compactness.

MSE =
1
N∑k = 1

K ∑
xiÎCk

d 2 (xick) (5)

where xi is the ith load instance that belongs to cluster Ck.
2) SC is an evaluation index of the density and dispersion

of load clusters. It ranges from -1 to 1. The more closer to
1 it is, the more compact the load clusters are; on the con‐
trary, the more closer to -1 it is, the looser the load clusters
are. Compact clusters indicate an ideal clustering perfor‐
mance.

SC =
1
K∑i = 1

K 1
ni
( )∑

xjÎCi

ψ( j)- φ( j)

max ( )ψ( j)φ( j)
(6)

φ( j)=
1

nk - 1 ∑
xiÎCkxi ¹ xj

d(xixj) (7)

ψ( j)= min
k′ ¹ k ( 1

nk′
∑
xiÎC

k′

d(xixj)) (8)

where φ( j) is the within-cluster mean distance; and ψ( j) is
the smallest one of all mean distances to other clusters.

3) DBI is an evaluation index that utilizes the inherent
quantities and characteristics in a partitioned cluster to verify
the effectiveness of methods. It measures the mean of the
maximum similarity for each load cluster. The smaller the
DBI is, the better the clustering performance will be, due to
the lower degree of dispersion.

DBI =
1
K∑i = 1

K

max
j ¹ i

1
ni
∑
xÎCi

d(xci)+
1
nj
∑
xÎCj

d(xcj)

d(cicj)
(9)

4) MIA gives a value that depends on the compactness of
clusters, indicating the distance between load curves of the
same type. It represents the average distance between each
cluster centroid and all other samples in the corresponding
cluster.

MIA= ( 1
K∑k = 1

K

d 2
Ck)

1
2

(10)

where dCk
is the distance between the cluster centroid ck and

the member of kth cluster, dCk
=

1
nk
∑
xiÎCk

d 2 (xick).

5) The value of WCBCR depends on the sum of squares
of distances between each input set and its representative
set, as well as the similarity of cluster centroids. The smaller

the value is, the better the performance of electric load clus‐
tering will be.

WCBCR=
∑
k = 1

K ∑
xiÎCk

d 2 (xick)

∑
k = 1k ¹ i

K

d 2 (cick)
(11)

6) Dunn index IDunn is used to evaluate the clustering per‐
formance, the higher the value is, the better the performance
will be. Dunn index assumes that ideal clusters are compact
and well separated from others.

IDunn =
min

i ¹ j
d(ij)

max
i

Di

(12)

where Di is the largest distance between two instances that
both belong to cluster i.

B. External Evaluation Indicators for Electric Load Cluster‐
ing

1) The F-measure of clustering result F1score can be
viewed as the weighted harmonic mean of precision indica‐
tor IP and recall indicator IR. Precision and recall are often
mutually constrained in massive smart metering datasets. An
ideal performance expects both indicators to be high, but in
general, recall is low when precision is high and vice versa.

F1score =
2 × TP

2 × TP +FN +FP
(13)

IP =
TP

TP +FP
(14)

IR =
TP

TP +FN
(15)

where the value of true positive TP predicts a positive class
as a positive class; the value of true negative TN predicts a
negative class as a negative class; the value of false positive
FP predicts a negative class as a positive class; and the val‐
ue of false negative FN predicts a positive class as a nega‐
tive class.

2) RI is used to compare the clustering results with the
true classification. The principle of RI is to enumerate all
pairs in load instances and then observe the number of pairs
that are consistent in the clustering algorithm and in the real
circumstance.

RI =
a+ b

C2
N

(16)

where a is the number of sample pairs that belong to the
same cluster both in clustering and reference partitions; b is
the number of sample pairs that do not belong to the same
cluster either in clustering or reference partition; and C2

N is
the number of possible sample pairs.

Apart from the classical CVIs shown above, a series of
improved versions have been proposed. For example, TSI
was applied to assess clustering stability in [27], the smaller
the TSI is, the better the stability will be. A stability index
for selecting the most appropriate clustering algorithm was
developed in [56], and a priority index was proposed to de‐
termine the priority of clusters based on the stability index.
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In recent years, different CVIs have been involved in the im‐
provement of algorithms in different power scenarios. For ex‐
ample, in [97], the clustering and the qualitative validation
process were combined, and the optimal results were extract‐
ed based on validity indices considering both the compact‐
ness and separateness.

V. APPLICATIONS AND FUTURE TRENDS

For the present, with the popularity of AMI and the large-
scale integration of renewable energy to the power grid [98],
[99], a variety of electric load clustering algorithms have
been applied to the field of electric load clustering with the
feasibility on different power consumption datasets verified.
Load clustering research has promising application prospects
in areas such as consumer segmentation and enactment of
tariff policy [100], [101], load anomaly detection, load fore‐
casting, and DSR and DSM programs [27], [102]. For the fu‐
ture, the data security concern, the big data problems, the or‐
ganic integration with AI, connections of new energies, and
the technology expansion for Energy Internet would be hot
spots for later researchers to run studies.

A. Applications of Electric Load Clustering

1) Consumer Segmentation and Enactment of Tariff Policy
Most researches in user segmentation focus on consumer

preference for power and marketing management [103]. Al‐
most all the segmentation of these areas depends on the cog‐
nitive psychological survey of consumers’ self-worth, atti‐
tude, knowledge, and behavior. Consumer segmentation
which based on electric load clustering can help obtain the
number of consumption categories without a prior knowl‐
edge. Therefore, it is considered as a fine tool for early ex‐
ploration when there lacks sufficient understanding of con‐
sumers. However, current methods based on electric load
clustering still have their own defects. Firstly, they cannot
automatically recognize the importance of different features.
Secondly, it is difficult to distinguish the influence of correla‐
tions between power features on the clustering results. Final‐
ly, high-dimension features may make electric load cluster‐
ing results lack practical significance, which is also the fu‐
ture development direction of research in this field.

With the gradual opening of the power market, consumer
segmentation based on electric load clustering will usher in
a series of new developments, providing decision informa‐
tion for customizing price design.
2) Load Anomaly Detection

Electric load clustering has already been widely used in
detecting abnormal power consumption. Globally, unexpect‐
ed events such as power theft, fraud, etc. cause utilities $96
billion in non-technical losses yearly [104]. These losses
may have serious consequences such as pushing up the elec‐
tricity price of paying customers and preventing the utilities
from obtaining resources needed for future capital invest‐
ment [105]. Due to customer fraud, power suppliers in the
United States suffer an economic loss up to $6 billion [106].
Electric load clustering can help solve this problem by min‐
ing load patterns. Abnormal phenomena from conventional
curves can be distinguished through the organic combination

of electric load clustering and non-intrusive load monitoring
(NILM).
3) Load Forecasting

Due to the time-varying characteristics of the load and the
susceptibility to social, meteorological, and other factors,
utilities and operators have the requirement of short-term
load forecasting for power generation scheduling and daily
decision making [107], [108]. By means of load pattern ex‐
traction based on the analysis of energy consumption charac‐
teristics of users, electric load clustering can provide prior
distribution knowledge of load characteristics for load fore‐
casting. Besides, electric load clustering can also provide us‐
ers’ data with similar patterns for load forecasting to im‐
prove forecasting accuracy in the absence of samples.
4) DSR and DSM Programs

In general, consumers with low volatility and high usage
are suitable for incentive-based DSR programs (e. g., direct
load control) for their predictability. However, customers
with high volatility and high usage are suitable for price-
based DSR programs (e.g., time of use pricing) due to their
flexibility in electricity usage planning. For decision makers,
the effectiveness of the program can be evaluated based on
consumption data [109]. Both programs can be further de‐
signed to ultimately achieve orderly electricity utilization
and operational optimization of power grids. Since different
types of households have their own consumption preferenc‐
es, it is necessary for utilities to use clustering to gain in‐
sight into the electricity consumption of different types of
households. The data-supported decision allows flexible and
personalized DSR plans and increases satisfaction at the
same time [110].

Table VI provides the corresponding references and the
aims for each application of electric load clustering.

B. Future Trend of Electric Load Clustering

1) Data Security
DNOs and retailers utilize clustering to learn consumers’

behavior centrally. The traditional electric load clustering
process requires an access to all smart meter data, which can
lead to privacy issues for both electricity consumers and re‐
tailers. Therefore, it is essential to propose a distributed
framework that can protect the privacy. For instance, with

TABLE Ⅵ
CORRESPONDING REFERENCES AND AIMS FOR APPLICATIONS OF ELECTRIC

LOAD CLUSTERING

Application

Consumer seg‐
mentation

Enactment of
tariff policy

Load anomaly
detection

Load forecasting

DSR and DSM
programs

Reference

[29], [46], [47],
[56], [57], [77]

[78], [82], [95],
[100], [102]

[23], [53], [111]

[19], [20], [62],
[81]

[2], [12], [27],
[54], [62], [89]

Aim

Manage power and market

Offer differentiate services and
conduct electricity price packages

Ensure safe operation of power
grid and reduce non-technical
loss

Improve the accuracy of load fore‐
casting

Alleviate voltage shortage and re‐
duce electricity costs
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the aid of accelerated mean consistency with convergence
for load analysis, the privacy-preserving accelerated average
consensus algorithm proposed in [112] performed only
through local computation and information sharing between
neighboring data without sacrificing privacy. Furthermore, in‐
formation from multiple industries often needs to be taken
into account in electric load clustering to improve accuracy,
though these data are difficult to communicate due to barri‐
ers and leakage concerns. The development of federated
learning framework for holistic considerations can address
the security challenges to data access. Unlike the former lin‐
ear models used in privacy protection, the federated learning
framework [113] can protect multi-party security dynamical‐
ly via sharing trained models rather than data to each other.
2) Big Data

In recent years, the scale and complexity of load data
have increased geometrically, which generate a big data sce‐
nario with respect to electric load clustering. Current electric
load clustering algorithms cannot be entirely satisfactory in
face of massive power consumers due to the insufficient
computing power. For example, to reduce the impacts of un‐
der-computing on electric load clustering and the computa‐
tion pressure of head servers, edge computing [114] charac‐
terized by local computing can partition load data by distri‐
bution areas and cluster load on much smaller datasets.
Then, the clustering results can be uploaded to the cloud
computing center for unified data management and model
calculation. The process will facilitate hierarchical and zonal
control of the power grid. In addition, a large number of
links and heterogeneous convergence of edge computing
[115] will have broad prospects in data-driven operation and
control of the power grid.
3) AI

In recent years, besides clustering, various AI technologies
such as fuzzy logic, deep learning, and adversarial learning
have made continuous breakthroughs in data resolution,
learning, and computing ability, which will have broad appli‐
cation prospects in the research of electric load clustering
[116]. In addition, with the increasing load complexity, the
organic combination of AI technologies in electric load clus‐
tering will matter a lot. It includes intelligent real-time per‐
ception combined with physical state, data-driven models
combined with simulation and assistant decision-making
combined with operation control. It can change the limita‐
tion of traditional electric load clustering algorithms and pro‐
vide more refined information on load profile. Consequently,
it can help improve the operation security of power grid and
change the operation and service mode.
4) Integration of Renewable Energy

With the development of renewable energy, distributed PV
generations that could be installed in households are becom‐
ing a hotspot for residential power consumption. Distributed
PV generation converts solar energy into power for self-gen‐
eration and uses, with the remainder fed into the power grid.
The integration of PV generation has greatly changed the
electric load characteristics of consumers, which transformed
the traditional load nodes into the generalized load nodes
[117]. The random fluctuation and intermittence of renew‐

able energies increased the uncertainty of generalized load
nodes [118]. Therefore, in the background of renewable ener‐
gy access, it is important to conduct electric load clustering
studies for generalized load nodes in power system analysis.
5) Development of Energy Internet

The Energy Internet is proposed and developed as a com‐
plex multi-network stream system that takes the internet and
other advanced information technologies as the basis, and
the distributed renewable energy as the main primary energy
source. In the Energy Internet, the electric power system is
the core, which is coupled closely with other energy net‐
works and transportation systems. It is an extremely mean‐
ingful research area to extend electric load clustering to the
clustering of various energy consumption data with coupling
characteristics, so as to fully portray the energy portrait of
users in the Energy Internet.

At present, in research on the smart grid, controllable
loads mainly take localized absorption and control. While in
the Energy Internet, due to the massive number of distribut‐
ed devices, the research focus will shift from localized ab‐
sorption to wide-area coordination. Different kinds of renew‐
able energies are coupled with each other and the analysis of
relations between loads and generations will be more diffi‐
cult. In the future, as an important distributed device of the
power system, the controllable load with its fast response
time and wide geographic distribution can be an effective
mean to suppress the intermittence of renewable energies
and maintain the power balance of the system in the event
of failure [119]. It is also a future research trend about how
to model the complex characteristics of controllable loads
and realize reasonable electric load clustering considering
the loads coupled with multi-energy on the basis of the mod‐
eled feature space.

VI. CONCLUSION

The spread of AMI and the access of renewable energy
promote the research of electric load clustering. Through da‐
ta analysis, electric load clustering can help detect different
load patterns and provide theoretical support for other re‐
searches and applications in smart grid. In this paper, previ‐
ous clustering algorithms in load scenarios are thoroughly
summarized. We first illustrate the process of electric load
clustering stage by stage and introduce the common similari‐
ty measures in electric load clustering. Several well-known
clustering algorithms are then explained separately with their
virtues and drawbacks summarized. In addition, eight indices
for evaluating the validity of electric load clustering are in‐
troduced. Finally, the applications and future trends of elec‐
tric load clustering are discussed in detail.
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