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Exploiting More Associations Between Slots for Multi-Domain
Dialog State Tracking

Hui Bai, Yan Yang�, and Jie Wang

Abstract: Dialog State Tracking (DST) aims to extract the current state from the conversation and plays an

important role in dialog systems. Existing methods usually predict the value of each slot independently and do not

consider the correlations among slots, which will exacerbate the data sparsity problem because of the increased

number of candidate values. In this paper, we propose a multi-domain DST model that integrates slot-relevant

information. In particular, certain connections may exist among slots in different domains, and their corresponding

values can be obtained through explicit or implicit reasoning. Therefore, we use the graph adjacency matrix to

determine the correlation between slots, so that the slots can incorporate more slot-value transformer information.

Experimental results show that our approach has performed well on the Multi-domain Wizard-Of-Oz (MultiWOZ) 2.0

and MultiWOZ2.1 datasets, demonstrating the effectiveness and necessity of incorporating slot-relevant information.

Key words: slot-relevant attention; multi-domain dialog state tracking; task-oriented dialog system

1 Introduction

Dialg State Tracker (DST) is an indispensable
component in task-oriented dialog systems. Effective
and accurate DST performance is essential for the update
of the internal state of dialog systems and the formulation
of dialog strategies. As a language understanding task of
contextual knowledge[1], DST aims to extract users’goals
and intentions in each turn of a dialog according to
the dialogue context, and represent them as a compact
dialog state, which is a set of slot-value pairs. The dialog
state can provide a basis for selection of system actions
and responses. Although the dialog system for specific
tasks is constantly developing, with the diversification
of user needs and the gradual increase in the complexity
of user goals, ordinary single-domain dialog systems
can no longer meet the needs of users. Accordingly,
Budzianowski et al.[2] proposed a new challenge for
the DST task, and called it multi-domain DST. This
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challenge allows users to conduct dialog in multiple
domains with the system, and is no longer limited to
dialogs around a single domain to complete certain
requirements. Table 1 shows the process of a user
booking a hotel first and then booking a taxi.

The commonly used DST method[3, 4] assumes that
all slot-value pair candidate values have been given
in advance, and they rely on a predefined ontology.
This method completes the DST task by scoring all
possible slot-value pairs in the ontology and selecting
the highest score as the predicted value of the slot. The
advantage of the predefined ontology-based method
is to simplify the DST task into a classification task
to improve performance, but these methods may be
unsuitable in practical situations. A complete ontology
is difficult to be obtained in the real world, and even if
there is a complete ontology, the number of domains-
slots in the ontology may be huge and variable[4]. Its
actual use range is relatively small, and is suitable for
a small number of domains and can enumerate all slot-
value dialog scenarios. To overcome these issues, recent
studies have focused on open-vocabulary methods. This
type of method has no predefined ontology, and most
studies have used an encoder-decoder structure and copy
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mechanism to directly generate or extract a value from
the dialog context for each slot. The advantage of
this method is that it breaks through the limitations
of the ontology and can track slots in unknown areas.
Therefore, the model proposed in this paper will also be
based on the open-vocabulary method.

The goal of multi-domain DST is to predict the value
of each domain-slot pair based on the dialog history and
the state of the previous turn of dialog. However, with
the increase in the number of dialog turns and domains,
the number of domain-slot pairs and their candidate
values are also increasing. If the DST method is still
generating a slot value for each slot individually[5–7],
it will exacerbate the data sparsity problem and is not
conducive to model training. To alleviate this problem,
we should further examine slot-relevant information to
enhance the inferential capability of DST. If two slots
are related, then they are likely to share slot values in
a dialog. The relevant information is helpful for slots
to learn implicit connections. Taking the dialog shown
in Table 1 as an example, the user’s goal is to book a
taxi to the hotel. The semantics implied in this case is
that the taxi destination should be the hotel-name. DST
should learn the ability to infer implicit connections
between dialogs. In this dialog, the relevant information
of “taxi-destination” is the “hotel-name”. Therefore, the
slots “taxi-destination” and “hotel-name” should share
the same value, i.e., “warkworth house”.

Inspired by learning more slot-related information for
each slot, in this paper, we propose a multi-domain DST
model that uses graphs to mine relevant information
between slots. To alleviate the data sparsity problem and
enhance the ability of implicit connection in the model

Table 1 Example of multi-domain dialogs. The “hotel-
name” and “taxi-destination” in red indicate that they have
an implicit relationship and should share the same value
“warkworth house”.
User: I need to book a hotel in the east that has 4 stars.
State: hotel-area=east, hotel-stars=4.
System: I would recommend the warkworth house.
User: Ok. Could you book it for 1 night , 1 person on Friday?
State: hotel-area=east, hotel-stars=4, hotel-name=warkworth
house, hotel-book stay, hotel-book people=1, hotel-book day=1.
System:Booking is successful! Can I help you with anything
else today?
User: I also need a taxi to get me to the hotel.
State: hotel-area=east, hotel-stars=4, hotel-name=warkworth
house, hotel-book stay, hotel-book people=1, hotel-book day=1,
taxi-destination=warkworth house.

reasoning dialog, we use a stacked Integrate Relevant
Information (IRI) module to incorporate the associated
information between each domains-slots after feature
extraction. In this way, each slot not only learns the
information in the context of the dialog, but also learns
from the relevant slots. Finally, the soft-gated copy
mechanism is used to extract the value from the dialogue
context or generate it from the vocabulary to improve
the model’s ability to generate unknown slot values. The
contributions of this work are summarized as follows:
� We propose a multi-domain DST model that

integrates slot-relevant information to fully exploit
implicit reasoning relationships between dialogs.
� We design an IRI module that uses a graph

adjacency matrix to model the information association
between slots.
� Experimental results show that our method has

achieved a good performance. Our ablation studies can
confirm that incorporating slot relevant information is
important.

The rest of this paper is organized as follows. In
Section 2, we discuss the previous research about
predefined ontology based DST and open vocabulary
DST. In Section 3, we present the relevant definition of
the multi-domain DST task and introduce our proposed
model. In Section 4, we provide our experiments and the
results on two benchmark datasets. Finally, in Section 5,
we discuss the conclusions of our work.

2 Related Work

The early research on DST[8–10] relied on the semantics
extracted by the Natural Language Understanding (NLU)
module. However, because the errors generated by the
NLU module can be accumulated and transferred to DST,
it is unreasonable to train the two modules separately. To
solve this issue, later studies focused on a joint training
method[3, 11, 12]. With the development of deep learning,
Mrkšić et al.[13] proposed a novel neural belief tracking
framework which can learn the distributed representation
of the dialog context using pretrained word vectors. In
recent years, considerable research has mainly focused
on predefined ontology based and open-vocabulary DST.

Predefined ontology DST: Eric et al.[14] proposed
the FJST model that uses a bidirectional Long Short-
Term Memory (LSTM) network[15] to encode dialog
history and a feedforward neural network to select the
value of each slot. They also put forward the HJST
model. Its encoding stage is similar to FJST, but it
uses a hierarchical network. The disadvantage of this
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type of method is that it cannot easily add a new
slot, which makes the ontology setting lack flexibility.
Accordingly, the SUMBT model[16] uses a contextual
semantic encoder to learn the relationship between the
domain-slot type and the slot value that appears in the
dialog, and then uses nonparametric distance to predict
the value of each slot. Zhou and Small[17] modeled multi-
domain DST as a question-and-answer problem with a
dynamically evolving knowledge graph and proposed
the DSTQA model, which heavily relies on predefined
ontology. The model abstracts DST as a process of
answering one question to another. It generates a
question and then asks the value of each (domain, slot)
pair.

By modeling the relationship between slots, Chen
et al.[18] expressed slots in different domains and
the relationship between them as pattern graphs, and
proposed the SST model. It uses a graph attention
matching network to fuse utterances and schema graph
and a recurrent graph attention network to control state
updates. Shan et al.[19] designed the CHAN-DST model,
which uses a context hierarchical attention network
based on Bidirectional Encoder Representations from
Transformers (BERT)[20], and introduced an adaptive
target that dynamically adjusts the weights of different
slots during the training process to relieve the slot
imbalance problem.

Open-vocabulary DST: Similar to the DSTQA
model, inspired by reading comprehension tasks, Gao
et al.[21] modeled the dialog state tracking task as a
reading comprehension task, and proposed the DST-
Reader model. It expresses the DST problem as an
extractive question-and-answer task, and uses BERT to
contextualize the word vector and extract the slot value
from the input using the predicted span. Zhang et al.[22]

put forward the DST-SPAN model which uses BERT as
the encoder and a problem-solving method similar to the
DST-Reader model.

The TRADE[23] model uses a bidirectional Gated
Recurrent Unit (GRU) to encode the dialog history and
a GRU[24] decoder combined with the copy mechanism
to decode the value of each state to obtain the slot
value. Considering the serious computational complexity
of multi-domain DST relying on predefined ontology,
Ren et al.[25] proposed the COMER model. Given
each turn of user utterance and system response, the
model can generate a series of belief states using
a hierarchical encoder-decoder structure. This design
makes the computational complexity of the model

constant. Le et al.[26] designed a new non-autoregressive
DST framework, which uses a transformer-based non-
autoregressive decoder to generate the current state.
The non-autoregressive nature can not only significantly
reduce the waiting time of DST for real-time dialog
response generation, but also detect dependencies
between slots other than the token level.

Kim et al.[27] regarded the dialog state as an explicit
fixed-size memory and advanced a selective coverage
mechanism to improve the efficiency of DST. This
model divides DST into two subtasks: state operation
prediction and slot value generation. State operation
prediction classifies the encoder output representation
into four categories, and only decodes the slots classified
as UPDATE to generate values. This method of dividing
into two subtasks has gradually become the mainstream
framework of the open-vocabulary method. To increase
the model’s encoding capabilities, Zhu et al.[28] proposed
the Context and Schema Fusion Network (CSFN)-DST
model that employs a fusion network and graph-based
internal and external attention mechanisms.

3 Method

In this section, we describe our proposed model. The
whole model is an encoder-decoder architecture. The
encoder is mainly composed of four parts: feature
extraction layer, domain classifier module, IRI module,
and operation classifier module. The decoder contains a
value generator module. The overall architecture of the
model is shown in Fig. 1.

3.1 Problem statement

In the multi-domain DST task, we assume that there
are M domains involved D D fd1; d2; : : : ; dM g. Each
domain d 2 D has a set of slots Sd D fsd

1 ; sd
2 ; : : : ; sd

j g.
The number of slots in each domain is not fixed, so
j is also variable. Each domain and its slots form a
set of domain-slot pair P D fP1; P2; : : : ; PJ g, where
J is the total number of domain-slot pairs that are not
repeated. For example, in the Multi-domain Wizard-Of-
Oz (MultiWOZ) dataset, there are 5 domains, 17 slots,
and 30 domain-slot pairs.

A dialog with T turns can be represented as
f.D1; B1/; .D2; B2/; : : : ; .DT ; BT /g, where Dt is the
combination of the t-th turn of system response and user
utterance, and Bt represents the corresponding dialog
state. Dt is a token sequence, and Bt is a domain-slot
value tuple, e.g., train-day-Friday.

The goal of the multi-domain DST task is to provide
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Fig. 1 Architecture of the proposed model.

the dialog history and the dialog state of the previous turn
f.D1; B1/; .D2; B2/; : : : ; .Dt�1; Bt�1/; .Dt /g, and
then predict the current dialog state Bt .

3.2 Encoder

Kim et al.[27] demonstrated the influence of dialog
history on DST performance, and most turns of a dialog
state depend on the previous turn of the dialog history.
Thus, in this study, we only use the previous turn of the
dialog history Dt�1, Bt�1, and the current turn dialog
Dt to predict the current corresponding dialog state Bt .
We concatenate the three elements as the model input.

3.2.1 Feature extraction layer
To obtain the context representation from the dialog
history and dialog state, we embed the input sequences
as vectors and use BERT to extract the latent features
according to the embedding representation.

Input representation: We denote the t-th turn dialog
Dt as Dt D Rt˚I˚Ut , where Rt is the system
response and Ut is the user utterance. [SEP] is a special
token used to separate different conversation turns. The
previous dialog state Bt contains all (domain, slot, value)
tuples, which are denoted as

ŒSLOT�˚ domain˚�˚ slot˚�˚ value.

The function of [SLOT] is similar to that of [CLS]

in BERT, and it can be used as the information
representation of aggregated (domain, slot, and value)
tuples. “�” is used to a separate token, and “˚” is used
to concatenate two elements. For tuples with actual
values, we fill in the corresponding value, otherwise, fill
in [NULL], which means the value is none. We employ
the pretrained BERT model to extract features, so its
input is
Xt D ŒCLS�˚Dt�1 ˚ ŒSEP�˚Dt ˚ ŒSEP�˚ Bt�1:

Due to the input requirements of BERT, the
input embeddings of Xt are the sum of the token,
segmentation, and position embeddings.

Output representation: The output of BERT after
extracting features from Xt is Ht 2 RjXt j�d . The
special tokens [CLS] and [SLOT] are expressed as
h

ŒCLS�
t 2 Rd and h

ŒSLOT�
t 2 Rd , respectively. d is the

hidden size of the model.
3.2.2 Domain classifier
Because [CLS] can be regarded as the information
aggregation representation of the entire input sequence,
it can be used as a basis for evaluating the domain
involved in the current dialog turn. Domain classification
can help the model learn the correlation information
between slots and domains in dialog turns, and improve
the accuracy of generating slot values for domain-related
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slots. It maps h
ŒCLS�
t to a linear space of domain numbers

and uses softmax to calculate the most likely domain of
the current turn,

P dom
t D softmax.Wdomh

ŒCLS�
t / (1)

where Wdom 2 Rddom�d is a learnable linear
transformation parameter, and ddom is the total
number of domains. P dom

t 2 Rd is the probability
distribution of all domains in the t-th turn. Therefore,
the predicted domain of the t -th turn of a dialog is

Odomt D arg max
dom

P dom
t (2)

3.2.3 Integrate relevant information
Because the location of [SLOT] incorporates the
information of the domain-slot-value, we can regard
h

ŒSLOT�j
t as the feature representation of the j -th domain-

slot pair (the following will be abbreviated as “slot”)
in the t-th turn of dialog. To integrate the relevant
information into the slot and improve its ability to learn
implicit connections in dialog turns, we design the IRI
module according to the idea of the transformer. This
module stacks several identical layers, and each layer
includes two sub-layers: the first is used to learn the
relevant information between slots, and the second is
used to provide non-linear learning capabilities. To
facilitate training, we concatenate the representations
of all [SLOT] positions into a new input vector,

St D Œh
ŒSLOT�1
t ; h

ŒSLOT�2
t ; : : : ; h

ŒSLOT�J
t � (3)

where St 2 Rd�J .
Graph-based attention sublayer: Multi-head

attention[29] can be described as mapping a query and a
set of key-value pairs to an output. To incorporate the
relevant information into the multi-head attention, we
use the graph G D .N; E/ to represent the associations
between slots. In the graph, a node means the slot, and
the edge represents whether two nodes are related. An
example is shown in Fig. 2. We employ the adjacency
matrix M 2 RjJ j�jJ j to represent the graph, and Mij 2

f0; 1g. In this matrix, if Mij D 1, then there is relevant

Fig. 2 Example of the graph describing associations
between nodes. Nodes are in green and edges are in red.

information between the i -th and j -th slots.
Because we need to use multi-head attention to

calculate the relevant information between slots, we
assume that there are three vectors of query Q D

fqig
jQj
iD1, key K D fkj g

jKj
jD1, and value V D fvkg

jV j

kD1
,

where qi ; kj ; and vk 2 R1�d . Actually, the three
vectors are the representations of all slots. The attention-
weighted calculation of the query vector qi is as follows:

e
.h/
ij D

8<:
.qi W

.h/
Q

/.kj W
.h/

K
/T

p
dk=H

; if Mij D 1I

�1; otherwise
(4)

a
.h/
ij D

exp.e
.h/
ij /

jKjX
nD1

exp.e
.h/
in /

(5)

c
.h/
i D

jV jX
kD1

a
.h/

ik
� .vkW

.h/
V / (6)

cH
i D Œc1

i ; c2
i ; : : : ; cH

i �WO (7)

where W
.h/

Q ; W
.h/

K ; and W
.h/

V 2 Rd�.d=H/ are different
learnable matrices, h is the attention head, and H is the
total number of h. cH

i brings together the representation
of H attention heads at the i-th position in the query
vector, and WO 2 Rd�d is the parameter matrix. The
entire process is denoted as GraphAtt( ),

C D GraphAtt.query; key; value; M/ (8)
where C is the result of the query vector that incorporates
the graph-based attention weights. By learning on
multiple attention heads, the query vector finally
incorporates more important information from key and
value vectors.

Therefore, to incorporate relevant information into St ,
its update in this sublayer is as follows:

C l
t D GraphAtt.S l

t ; S l
t ; S l

t ; M/C S l
t (9)

where l is the update times and S l
t is the l-th update

of St . Because the adjacency matrix M contains all
possible connections between slots, the vectors of the
query, key, and value which calculated by GraphAtt()
are all the same.

FFN sublayer: This sublayer can make the slots learn
more nonlinear information and help parameter update,

S l
t D FFN.C l

t /C C l
t ;

FFN.y/ D W2ReLu.W1y C b1/C b2 (10)

where W1 and W2 2 Rd�d , b1 and b2 2 Rd . The
rectified linear unit[30] is an activation function.

In addition, each sublayer will add a LayerNorm[31]

before being updated. After updating for L layers,
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SLC1
t D fsLC1

t;1 ; sLC1
t;2 ; : : : ; sLC1

t;J g has learned slot
relevant information for each slot as much as possible.

3.2.4 Operation classifier
In a dialog turn, only a few slots need to
generate new values. Therefore, we use a four-way
classifier to select the operation to be performed for
each slot. The operation of the four-way classifier
is fUPDATE; DELETE; DONTCARE; CARRYOVERg.
UPDATE means that the slot needs to generate a new
value, DELETE means that the slot’s corresponding
value is none, DONTCARE means that the slot’s value
could not be tracked, and CARRYOVER means that
the slot’s value is not changed. We add a linear layer
to SLC1

t in the previous section to classify each slot
operation,

P
j
op;t D softmax.WopsLC1

t;j / (11)

where Wop 2 R4�d . The prediction operation for the
j -th slot is

Oopj;t D arg max
op

P
j
op;t (12)

3.3 Decoder

According to the content in the previous section, the
model generates the value for the slot, whose operation
is UPDATE. Through the analysis of the dialog turns, we
know that some values are derived from the dialog inputs,
and some are derived from the vocabulary. Therefore,
we use a combination of the GRU decoder and soft-gated
copy mechanism[32, 33] to generate the corresponding
value. The soft-gated copy mechanism combines the
word distribution of the source input sequence and the
vocabulary into an overall word probability distribution,
and selects the word with the highest probability as the
decoded word.

The initialization of the GRU is

x
j;0
t D sLC1

t;j ;

g
j;0
t D h

ŒCLS�
t (13)

where x
j;0
t is the word embedding of the 0-th decoding

step of the j -th slot in the t-th dialog turn, and g
j;0
t is

the hidden state. Then the updated hidden state of the
GRU is

g
j;k
t D GRU.x

j;k
t ; g

j;k�1
t / (14)

The hidden state decoded by the GRU can be used
to calculate the probability distribution of generating
a word from the vocabulary P

j;k
vocab, and the probability

distribution of copying a word from the input sequence

P
j;k
input is as follows:

P
j;k
vocab;t D softmax.Evocab � g

j;k
t /;

P
j;k
input;t D softmax.Ht � g

j;k
t / (15)

where P
j;k
vocab;t 2 Rdvocab and P

j;k
input;t 2 RjXt j. Evocab 2

Rdvocab�d is the vocabulary embedding matrix, and dvocab

is the vocabulary size.
Then, the soft-gated copy mechanism is used

to calculate the final distribution through the two
distributions,
P

j;k
fianl;t D p

j;k
gen;t �P

j;k
vocab;t C .1�p

j;k
gen;t /�P

j;k
input;t (16)

where P
j;k
fianl;t 2 Rdvocab is the final distribution in the

vocabulary. The operation of mapping P
j;k
input to a linear

space of the vocabulary is omitted here. It aims to
achieve the same dimension of two distributions. p

j;k
gen;t is

the gate threshold of generating a word and is calculated
as follows:

p
j;k
gen;t D sigmoid.W1 � Œg

j;k
t I x

j;k
t I c

j;k
t �/ (17)

where W1 2 R1�3d is a learnable linear transformation
parameter, and c

j;k
t 2 Rd is the context vector calculated

by c
j;k
t D P

j;k
input �Ht .

Finally, the model’s k-th generated word in the j -th
slot of the t-th dialog turn is the vocabulary word with
maximum probability,

Oy
value;k
t;j D arg max P

j;k
fianl;t (18)

3.4 Optimization

During training, we optimize the domain classifier,
operation classifier, and value generator,

lossdom;t D �Ydom;t log.Pdom;t /;

lossj
op;t D �

JX
jD1

Y
j

op;t log.P
j
op;t /;

lossj
gen;t D �

JX
jD1

jNj jX
kD1

Y
j;k

gen;t log.P
j;k
final;t / (19)

where Ydom;t ; Y
j

op;t ; and Ygen;t are the ground-truths of
the corresponding domain, operation, and value, and Nj

is the number of value tokens in the j -th slot. The final
loss of the model at t -th dialog turn is

losst D lossdom;t C lossop;t C lossgen;t (20)

4 Experiment

4.1 Datasets and evaluation metric

The MultiWOZ dataset is a series of human-machine
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dialog sets that span multiple domains and topics.
We use two public datasets, i.e., MultiWOZ2.0[2] and
MultiWOZ2.1[14], to experiment with our model. The
latter is a corrected version of the former. The dataset
includes a total of seven domains, but since there is
no dialogue from the hospital and police domains in
the validation set and test set, we use five of the seven
domains for training and testing. The preprocessed
dataset contains 5 domains, 17 slots, 30 domain-slot
pairs, and more than 4500 different values. The dataset
statistics are shown in Table 2.

We use the joint goal accuracy[34] to evaluate the
performance of the model. It is used to measure whether
the user’s goals are fully satisfied in each turn of the
dialog. The joint goal has been achieved only when the
predicted dialog states entirely match the ground truth.
Thus, it is the most important metric to evaluate the DST
performance.

4.2 Training details

We use BERT as the encoder which has 12 layers
with 768 hidden units and 12 self-attention heads. The
maximum length of the input is 256, and we set the batch
size to 32 and the training epoch to 30. In the IRI module,
we set the number of update layers to 4 and the attention
heads to 8. We employ Adam as the optimizer. We set
the learning rate to 1�10�4 and the warmup proportion
to 0.1. During training, we use the ground truth of the
previous dialog state.

4.3 Baseline models

We compare our model with the following previous
methods:

HJST[14] uses a bidirectional LSTM to encode the
dialog history and a feedforward network to select the
value of each slot.

FJST[14] encodes the dialog history using an LSTM,
like FJST, but utilizes a hierarchical network.

Table 2 Dataset statistics of MultiWOZ.
Domain Slot Train Validation Test

Attraction Area, name, type 2717 401 395

Hotel
Area, day, people, stay, internet
name, parking, price, stars, type

3381 406 394

Restaurant
Area, day, book people, time,

food, name, price
3813 438 437

Taxi
Arriveby, departure,
destination, leaveat

1654 207 195

Train
Arriveby, people, day,

departure, destination, leaveat
3103 484 494

SUMBT[16] uses BERT to initialize the encoder, and
then nonparametric distance is used to predict the value
of each slot.

DS-DST[22] uses two BERT encoders and designs a
hybrid method for predefined ontology based DST and
open-vocabulary DST.

DST-Picklist[22] uses a similar architecture to DS-DST,
but it only performs predefined ontology based DST by
treating all slots as picklist-based slots.

DSTQA[17] is abstracted as a question-and-answer
problem. It generates a question asking for the value of
each domain-slot pair.

SST[18] uses a graph attention matching network and
recurrent graph attention network to fully encode dialog
utterances and schema graphs.

CHAN-DST[19] employs a contextual hierarchical
attention network to enhance the DST, and uses
an adaptive objective to alleviate the slot imbalance
problem.

DST-Reader[21] formulates the problem of DST as
an extractive question-and-answer task, uses BERT
contextualized word embeddings, and extracts slot
values from the input by predicting spans.

DST-SPAN[22] uses BERT as the encoder, and uses the
question-and-answer method which is similar to DST-
Reader.

TRADE[23] employs a bidirectional GRU to encode
the dialog history and uses a copy-based GRU decoder
to decode the value for each slot.

COMER[25]uses BERT-large as an encoder and a
hierarchical LSTM decoder.

NADST[26] applies a transformer-based non-
autoregressive decoder to generate the current dialog
state.

SAS[34] uses slot attention and slot information
sharing to enhance the expressiveness of the information
passed to each slot.

SOM-DST[27] applies a predictor generator
framework. It uses BERT to encode the previous
and current dialog utterances and the dialog state.

CSFN-DST[28] uses a schema graph to consider the
relations among domains and slots. It uses the BERT
encoder and a copy-based RNN decoder.

4.4 Experimental results

4.4.1 Joint goal accuracy
We first show the joint goal accuracy of our model and
the baselines on the MultiWOZ2.0 and MultiWOZ2.1
datasets in Table 3. Our model belongs to the



48 Big Data Mining and Analytics, March 2022, 5(1): 41–52

Table 3 Joint goal accuracy on MultiWOZ.
(%)

Method Model MultiWOZ2.0 MultiWOZ2.1
HJST 38.40 35.55
FJST 40.02 38.00

SUMBT 42.40 –
Predefined ontology DS-DST – 51.21

DST-Plicklist – 53.30
DSTQA 51.44 51.17

SST 51.17 55.23
CHAN-DST 52.68 58.55
DST-Reader 39.41 36.40
DST-SPAN 42.59 40.00

TRADE 48.60 45.60
COMER 48.79 –

Open-vocabulary NADST 50.52 49.04
SAS 51.03 –

SOM-DST 51.38 52.57
CSFN-DST 51.57 52.88

Ours 52.26 53.59

open-vocabulary method. Table 3 illustrates that our
model achieves the highest joint goal accuracy in
the open-vocabulary DST: 52.26% in MultiWOZ2.0
and 53.59% in MultiWOZ2.1. The accuracy of this
model in MultiWOZ2.0 is generally lower than that in
MultiWOZ2.1 because the latter fixes some notation
errors in the former. Therefore, these models can obtain
more useful context information when encoding dialog
inputs.

Compared with the predefined ontology based DST,
the accuracy of our model is lower than that of SST and
CHAN-DST. Because the predefined ontology based
DST essentially functions to classify the correct slot
value, normally, the accuracy of the open-vocabulary
model is lower than that of the predefined method.
Although the performance of the open-vocabulary
method is slightly low, it does not need to know all
the slot value information in advance. Thus, it can solve
the problem of generating unknown words and is more
suitable for real scenes.

4.4.2 Domain-specific accuracy
In Table 4, we show the domain-specific accuracy for
each domain, which is the accuracy of using joint goal
accuracy to measure the model performance on a single
domain.

The results show that our model has achieved the
highest score in hotel, restaurant, and train domains.
Through the analysis, we found that the reason why the
performance of our model is lower than SOM-DST in the

Table 4 Domain-specific accuracy on MultiWOZ2.1.
(%)

Model
Domain

Attraction Hotel Restaurant Taxi Train
NADST 66.83 48.76 65.37 33.80 62.36

SOM-DST 69.83 49.53 65.72 59.96 70.36
Ours 68.63 50.92 66.03 59.03 71.82

attraction and taxi domains is that the amount of data in
this two domains is less than that in the above mentioned
three domains. This condition makes our model lack
the ability to learn slot-relevant information in the two
domains during training. From Table 2, we can also
see that the hotel domain has the largest number of slots,
hence making the accuracy of the hotel domain relatively
low.

4.5 Case analysis

Figure 3 shows an example of our model output in a test
set dialog. This conversation has six turns. U represents
user utterance, and S is the system response. The user’s
demand is to book a restaurant first and then a train ticket.
In the whole interaction process, the user constantly
puts forward the attribute conditions of demand, such as
restaurant area and price range. Figure 3 shows that our
model outputs the dialog state that needs to be updated
in each turn of dialog.

However, in the sixth dialog turn, the model does
not pay attention to the user’s attitude toward the
departure time (i.e., “dontcare”). In other words, it



Hui Bai et al.: Exploiting More Associations Between Slots for Multi-Domain Dialog State Tracking 49

Fig. 3 Example of our model output on a dialog (dialog ID: MUL1598.json) in the test set of MultiWOZ2.1. To save space, we
have omitted some parts of the dialog. The green font indicates the state that needs to be tracked. The blue font represents the
state that is correctly predicted in each round. The red font indicates the false predictions or unpredicted items.

does not associate the semantics of the “departure
time” and “train-leaveat” slots. The model does not
learn such semantic association information. Hence, our
future work should not only consider the association
information between slots, but also learn from the global
semantics.

4.6 Ablation analysis

Table 5 shows the results of our ablation experiments.
When we remove the calculation of slot-related
information from the model, the IRI module will become
a full connection layer of slot information. It no longer
has the ability to selectively learn slot correlation
knowledge, but to learn the relevant information from
all slots. This condition allows the non-associated slot

Table 5 Joint goal accuracy of the ablation study on
MultiWOZ.

(%)

Model MultiWOZ2.0 MultiWOZ2.1
Ours 52.26 53.59

Without graph 51.92 52.76

connections to participate in the calculation. However,
this error makes the model performance drop by 0.34%
on MultiWOZ2.0 and 0.83% on MultiWOZ2.1.

After removing the graph adjacency matrix, our model
can be regarded as the automatic learning of relevant
information between slots. At this time, it does not
require any prior knowledge and is entirely driven by
data. However, even so, the accuracy of the model is
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basically higher than that of the model based on the open-
vocabulary method. This finding illustrates the necessity
of learning slot-relevant information.

In the training process of the model, we use the ground
truth of the previous dialog state as the input to learn the
training dataset. In the iterative process, each epoch is
tested on the validation set. After the iteration, the model
with the best performance will be used as the output
model to be tested in the test set and finally evaluate the
model performance. To verify the effect of the output of
each module on the performance of the model, we use
the ground truth of the previous dialog state t pstate and
slot operation classification t op for testing.

As shown in Fig. 4, all the models are tested on
the MultiWOZ2.1 test set. The evaluation metric is
the joint goal accuracy. The purple bar chart (right)
shows the model with IRI module and, the blue one
(left) represents the model with the fully connected
IRI module. “model” represents the original test model,
“model+t pstate” means that the model uses the correctly
previous dialog state as the input, and “model+t op”
refers to the model directly using the real result in the
operation classifier module. Through the histogram, we
can find that the correct slot operation classification
result has the greatest effect on the performance of the
model. This finding also shows that multi-domain DST
tasks need to fuse rich information for slots to enhance
their ability to track the slot value in the context of the
conversation.

5 Conclusion

In this paper, we propose a multi-domain DST model that
uses a graph to mine the association information between
slots. To improve the ability to learn implicit connections

Fig. 4 Effects of different module outputs on model
performance.

in the model, we design a module using a graph-based
multi-head attention mechanism that can incorporate the
information of associated slots into each slot. The fused
slot representations can provide richer semantic features
for the decoding stage to generate more accurate and
effective slot values. Experimental results show that
our approach has achieved good performance on the
MultiWOZ2.0 and MultiWOZ2.1 datasets, proving the
effectiveness and necessity of the IRI module.

We use the same graph adjacency matrix in all
dialogs, but actually, there is no slot connection in
some conversations. Therefore, in future works, we
will design a new model to establish unique slot-
relevant information for each dialogue. Through the
analysis of the previous experimental results, we will
continue to study the methods of enhancing the semantic
representation of slots and integrating global semantics.
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