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Guest Editorial
Introduction to the Special Issue on

Recent Advances in Point Cloud
Processing and Compression

I. INTRODUCTION

A POINT cloud is a set of 3D points that can be used
to represent a 3D surface. Each point has a spatial

position (x, y, z) and a vector of attributes, such as colors,
material reflection, or normal. As point clouds are capable of
reconstructing 3D objects or scenes, they have the potential to
be widely used in various applications such as auto-driving and
6-degree virtual reality. However, the following properties of
point cloud make the point cloud compression and processing
become rather challenging. 1) Unstructured. The point cloud
is a series of non-uniform sampled points. On the one hand,
it makes the correlations among various points difficult to be
utilized for compression. On the other hand, the convolutional
neural network that is widely used in image/video processing
cannot be applied to the point cloud processing. 2) Unordered.
Unlike images and videos, the point cloud is a set of points
without a specific order. Therefore, both the point cloud
processing and compression algorithms need to be invariant
to any permutations of the input point clouds.

Recent years have witnessed considerable research efforts in
point cloud processing and compression. Hence, the state-of-
the-art in point cloud processing and compression is getting
redefined. Yet, many research challenges still remain to be
addressed. 1) Efficient framework to compress the point cloud
especially the sparse point cloud is still an open problem. Both
the traditional compression framework from MPEG and the
end-to-end point cloud compression schemes are competing to
be the state-of-the-art. 2) Simple yet efficient quality metrics to
balance the trade-off between the geometry and the attribute
that can reflect human perception are needed. Point clouds
have two kinds of information: geometry and attribute. They
have their own quality metrics individually. However, how
do the qualities of geometry and attributes influence the
overall qualities of point clouds are still unknown. A good
quality metric is also important to guide the processing and
compression algorithms. 3) Efficient deep-learning network
structures for both point cloud low-level and high-level vision
tasks are anticipated. The development of point cloud object
detection and segmentation is still at an initial stage. More
sophisticated and efficient algorithms are to be developed.
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In this Special Issue, a total number of 14 articles that
present state-of-the-art results are accepted. They cover mainly
the following four topics: point cloud compression, point cloud
quality metric, and point cloud low-level and high-level vision
tasks. In the following, we will introduce these articles briefly
with one paragraph for each article.

II. POINT CLOUD COMPRESSION

Zhang and Gao [A1] propose an adaptive geometry partition
and coding scheme to improve the point cloud compression
efficiency. They first introduce quad-tree (QT) and binary
tree (BT) partitions as alternative geometry partition modes in
addition to the commonly used octree (OT) partition. In addi-
tion, to address the complexity issue brought from searching
for the optimal combination of OT, QT, and BT, they introduce
two hyper-parameters to specify conditions when QT and
BT partitions can be applied. Once they are determined, the
partition mode can be derived according to the geometry shape
of the current coding node. Finally, an adaptive parameter
selection scheme is presented to optimize the coding gain
adaptively. The proposed adaptive geometry partition scheme
has been adopted in the state-of-the-art MPEG geometry-based
PCC (G-PCC) standard because of its high coding efficiency.

Zhu et al. [A2] introduce region-wise processing to point
cloud geometry compression leveraging the region similarity
to exploit inter-region redundancies. First, the point cloud
geometry is first segmented into numerous local regions each
of which comprises a portion of point cloud surface, and
can be represented by a surface vector that describes the
geometry shape numerically in a projected principal space.
Second, these regions are grouped into several discriminative
clusters, assuring that inter-cluster similarity is minimized
and intra-cluster similarity is maximized simultaneously,
where the similarity is calculated using the regional surface
vectors. Third, in each cluster, a reference region having
the largest similarity score to the others is selected and
compressed using the lossless mode of G-PCC. The other
regions are predicted using the reference region with align-
ment transform. The effectiveness of the proposed method
is demonstrated experimentally using a variety of common
test sequences.

Zhao et al. [A3] present a novel image synthesis method for
effective point cloud attribute compression. First, it segments
a point cloud into a collection of fine-grained patches by
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performing geometric structure analysis. Second, it transforms
the patches from 3D to 2D using a low-dimensional embed-
ding algorithm and then convert them into patch attribute
images with patch rasterization and rectification. Finally,
it assembles all the attribute images of patches by formulating
it as a bin nesting problem and harvest an attribute image of
the whole point cloud for image/video-based compression. The
effectiveness of the proposed method in point cloud attribute
compression and its superiority over state-of-the-art codecs are
experimentally demonstrated.

Song et al. [A4] propose a novel layer-wise geometry
aggregation (LGA) framework for LiDAR point cloud lossless
geometry compression. Based on content properties, it adap-
tively partitions point clouds into ground, object, and noise
three layers. The ground layer is fit with a Gaussian Mixture
Model, which can represent ground points using much fewer
model parameters than adopting the original 3D coordinates.
The object layer is tightly packed to reduce the space between
objects. For the noise layer, the difference between neighbor-
ing points is reduced by reordering using Morton Code, and
the reduced residuals help save coding bits. It is demonstrated
by experimental results that LGA significantly outperforms
competitive methods without prior knowledge. Some other
properties of LGA such as robustness, stability, and time
complexity are also examined.

Nguyen et al. [A5] propose a lossless point cloud geometry
compression method that uses neural networks to estimate
the probability distribution of voxel occupancy. To take into
account the point cloud sparsity, the proposed method first
adaptively partitions a point cloud into multiple voxel block
sizes. The partitions are signaled using an octree. Then, a deep
auto-regressive generative model is employed to estimate the
occupancy probability of each voxel given the previously
encoded ones. A context-based arithmetic coder is used to
code a block efficiently, wherein the context may have vari-
able size and can expand beyond the current block to learn
more accurate probabilities. The authors also consider using
data augmentation techniques to increase the generalization
capability of the learned probability models, in particular in
the presence of noise and lower-density point clouds. The
performance of the proposed method is evaluated on a variety
of point clouds with diverse characteristics. The experimental
results demonstrate that the proposed method can significantly
reduce the rate for lossless coding compared to the state-of-
the-art MPEG codec.

III. POINT CLOUD QUALITY METRIC

Wu et al. [A6] consider the problem of subjective and
objective quality assessment for point clouds. First, they
introduce a publicly released subjective dataset, using a
head-mounted display with six degrees of freedom. It includes
340 distorted point clouds using MPEG point cloud compres-
sion. The impact of compression on geometry and texture
attributes is then investigated. Next, the authors propose two
projection-based objective quality assessment techniques. The
first one is based on a weighted view projection model,
whereas the second one is based on a patch projection model.
The dataset and the results of the article are proved to be

useful for point cloud coding and transmission, as well as in
the context of virtual reality applications.

Liu et al. [A7] propose a novel deep learning-based no
reference point cloud quality assessment method, namely,
PQA-Net. Specifically, the PQA-Net consists of a multi-view-
based joint feature extraction and fusion (MVFEF) module,
a distortion type identification (DTI) module, and a quality
vector prediction (QVP) module. The DTI and QVP modules
share the feature generated from the MVFEF module. Using
the distortion type labels, the DTI and MVFEF modules are
first pre-trained to initialize the network parameters, based on
which the whole network is then jointly trained to finally
evaluate the point cloud quality. The experimental results
demonstrate the effectiveness of the proposed method.

IV. POINT CLOUD LOW-LEVEL VISION

Ding et al. [A8] introduce a new learning-based technique
for upsampling sparse point clouds. More specifically, they
introduce an efficient neural network framework that encom-
passes feature extraction, perturbation learning, and coordinate
reconstruction. As a key element of the proposed approach, the
authors propose to learn a 2D perturbation through multilayer
perceptrons (MLPs) to estimate the coordinate shift from the
input point to the upsampled one. This 2D perturbation is
then combined with the extracted features to fine-tune the
coordinate shift. A large-scale point cloud dataset has been
produced for training purposes, which includes 36000 pairs.
The experiments show that the proposed scheme outperforms
state-of-the-art techniques in both qualitative and quantitative
evaluations. Moreover, the network size remains small when
compared to competing methods.

Zhang et al. [A9] introduce a novel progressive upsampling
framework for point clouds. More specifically, the authors
introduce an Up-UNet feature expansion module. It learns the
local and global point features via down-feature and up-feature
operators, in order to address the non-uniform distribution
during the upsampling process and to remove outliers. In addi-
tion, the authors present a hybrid loss function considering
both the multi-scale reconstruction loss and the rendering loss,
generating a denser point cloud while preserving its structures.
Qualitative and quantitative experimental results show that the
proposed technique achieves state-of-the-art performances.

Wang et al. [A10] propose a new sequential point cloud
upsampling method called SPU, which aims to upsample
sparse, non-uniform, and orderless point cloud sequences
by effectively exploiting rich and complementary temporal
dependency from multiple inputs. Specifically, these inputs
include a set of multi-scale short-term features from the 3D
points in three consecutive frames (i.e., the previous, current,
and subsequent frames) and a long-term latent representation
accumulated throughout the point cloud sequence. Consid-
ering that these temporal clues are not well aligned in the
coordinate space, they propose a new temporal alignment
module (TAM) to transform each individual feature into the
feature space of the current frame, which is analogous to the
cross-attention mechanism. They also propose a new gating
mechanism to learn the optimal weights for these transformed
features, based on which the transformed features can be
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effectively aggregated as the final fused feature. The fused
feature can be readily embedded into the existing single-frame-
based point cloud upsampling methods (e.g., PU-Net and PU-
GAN) to generate the dense point cloud for the current frame.
Comprehensive experiments demonstrate the effectiveness of
the proposed method for upsampling point cloud sequences.

Zhao et al. [A11] propose a learning-based mesh normal
denoising scheme, called NormalNet, which employs deep
neural networks to find the correlation between the volumetric
representation and denoised face normal. The proposed Nor-
malNet follows the iterative framework of filtering-based mesh
denoising and introduces normalization into mesh denois-
ing. Some other main contributions of this work include a
classification-based training-faces selection strategy for bal-
ancing the training set and a mismatched-faces rejection strat-
egy for removing the mismatched faces between noisy mesh
and ground truth. Compared to some state-of-the-art works,
NormalNet can effectively remove noise while preserving the
original features and avoiding pseudo-features.

V. POINT CLOUD HIGH-LEVEL VISION

Liu and Xu [A12] present a two-stream baseline method
referred to as GeometryMotion-Net for 3D action recognition.
In the proposed mechanism, the authors first represent each
point cloud video as a limited number of randomly sampled
frames with each frame consisting of a sparse set of points
and then use a new two-stream (i.e., the geometry stream
and the motion stream) framework for effective 3D action
recognition. Specifically, for each point in the current frame,
a set of 3D offset features relative to the neighboring points
in the reference frame are first produced and then local neigh-
borhood information of this point in the offset feature space
is exploited. Based on the newly generated virtual overall
geometry point cloud and multiple virtual forward/backward
motion point clouds, any existing point cloud analysis methods
(e.g., PointNet) can be used for extracting discriminant geom-
etry and bidirectional motion features in the geometry and
motion streams, respectively, which are further aggregated to
make the proposed two-stream network trainable in an end-to-
end fashion. Comprehensive experiments on both large-scale
and small-scale datasets demonstrated the effectiveness and
efficiency of the proposed method for 3D action recognition.

Deng et al. [A13] deem point clouds as the hollow-3D data
and present a new object detection architecture hallucinated
hollow-3D R-CNN (H23D R-CNN). First, multi-view features
are obtained by sequentially projecting point clouds into the
perspective and bird’s-eye views. Second, the 3D represen-
tation is hallucinated by a novel bilaterally guided multi-
view fusion block. Finally, 3D objects can be detected via
a box refinement module with a novel Hierarchical Voxel RoI
Pooling operation. In this way, the complementary information
can be effectively utilized in the proposed framework, and
finally, the extensive experiments show the superiority of the
proposed method.

Zhao et al. [A14] propose a simple but effective 3D
object detection method called Transformer3D-Det (T3D),
in which they additionally introduce a transformer-based vote
refinement module to refine the voting results of VoteNet

and can thus significantly improve the 3D object detection
performance. Specifically, their T3D framework consists of
three modules: a vote generation module, a vote refinement
module, and a bounding box generation module. Given an
input point cloud, they first utilize the vote generation module
to generate multiple coarse vote clusters. Then, the clustered
coarse votes will be refined by using a transformer-based vote
refinement module to produce more accurate and meaningful
votes. Finally, the bounding box generation module takes
the refined vote clusters as the input and generates the final
detection results for the input point cloud. To suppress the
effect of the inaccurate votes, they also propose a new non-vote
loss function to train the T3D. As a result, the T3D framework
can achieve better 3D object detection performance. Compre-
hensive experiments demonstrate the effectiveness of the T3D
framework for 3D object detection.

VI. CONCLUSION

The accepted articles in this Special Issue provide an
overview of the state-of-the-art as well as new results in the
field of point cloud compression and processing. The breadth
of the topics reported in this issue demonstrates the interest of
the community in this active research area. It is our hope that
this special issue will encourage further researches in this area.
As part of the new digital initiative for IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO (TCSVT),
accepted articles can also share a short 10-min presentation
of the work in the TCSVT YouTube channel (https://
www. youtube. com/channel/UC46cVfjkp7XLdDXsgGuG_Lg)
to help disseminating the main ideas. You are encouraged to
check that out.
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