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Abstract— The time spent in collecting current sam-
ples for decoder calibration and the computational burden
brought by high-dimensional neural recordings remain two
challenging problems in intracortical brain-machine inter-
faces (iBMIs). Decoder calibration optimization approaches
have been proposed, and neuron selection methods have
been used to reduce computational burden. However, few
methods can solve both problems simultaneously. In this
article, we present a symmetrical-uncertainty-based trans-
fer learning (SUTL) method that combines transfer learning
with feature selection. The proposed method uses sym-
metrical uncertainty to quantitatively measure three indices
for feature selection: stationarity, importance and redun-
dancy of the feature. By selecting the stationary features,
the disparities between the historical data and current data
can be diminished, and the historical data can be effec-
tively used for decoder calibration, thereby reducing the
demand for current data. After selecting the important and
non-redundant features, only the channels corresponding
to them need to work; thus, the computational burden is
reduced. The proposed method was tested on neural data
recorded from two rhesus macaques to decode the reaching
position or grasping gesture. The results showed that the
SUTL method diminished the disparities between the histor-
ical data and current data, while achieving superior decod-
ing performance with the needs of only ten current samples
each category, less than 10% the number of features and
30% the number of neural recording channels. Addition-
ally, unlike most studies on iBMIs, feature selection was
implemented instead of neuron selection, and the average
decoding accuracy achieved by the former was 6.6% higher.
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I. INTRODUCTION

INTRACORTICAL brain-machine interfaces aim to help
paralysed patients and amputees regain motor functions,

by translating neural activities directly into motor commands
to control assistive devices [1]–[4]. Neural activities are
recorded by implanting neural electrodes into various brain
regions, such as the primary motor cortex (M1) [1], the pre-
motor cortex (PM) [5] and the posterior parietal cortex (PPC)
[6]. As technology has advanced, iBMIs have achieved great
progress [7], [8], and have been deployed in clinical research
[9], [10]. However, there are still many problems and chal-
lenges, especially in clinical research [11], [12].

With the development of micro-electronics technology, elec-
trodes with more channels have been developed, and more
neurons from different brain regions can now be recorded
synchronously [13], [14]. More channels guarantee more
information, which, however, corresponds to greater computa-
tional burden. Redundant information in the neural data might
affect the generalization ability and decoding accuracy of the
decoder [15], [16]. Large computational burden places high
demands on the hardware of the equipment, and results in high
power consumption, thereby limiting the clinical application
of the iBMIs. Therefore, our first question is, how can the
computational burden be reduced while ensuring decoding
performance?

Furthermore, a decoder always needs to be recalibrated
prior to usage, and recalibration requires large current sample
set [17]–[19]. Because the relationship between the recorded
neural activities and the specific movement intentions might
vary over time [19]–[21], the historical data cannot be used
directly for decoder calibration and it would take a long time
to collect the new data before using the iBMIs properly [22],
[23]. Hence, our second question is, how can the calibration
time be reduced while maintaining the decoder’s performance?

A major solution to the problem presented by the first
question is to ascertain the importance of each feature, and
eliminate redundant ones before proceeding with decoding;
this is known as feature selection in iBMIs [24], [25]. After
feature selection, less features are used to build the decoder to
achieve faster training speed. Only the channels corresponding
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to these selected features are required to record neural signals;
computational burden can be reduced with fewer channels
working. For the second question, one approach is to design
a calibration strategy that can achieve good performance by
maximising the historical data to reduce the demand for
current data, thereby significantly reducing the time devoted
to collecting new training data [18]. In this study, we aim to
find a method that can solve the two problems simultaneously.

Feature selection can be summarized as selecting relevance
features and removing redundant features for a classification
task [26]. Based on the dependency on the classifier in
evaluation criteria, feature selection can be roughly divided
into three categories, filter methods, wrapper methods and
embedded methods [27]. The filter methods use feature rank-
ing techniques to select the important features and filter out the
less relevant variables as a pre-processing step, which is inde-
pendent of the chosen classifier [28]. The filter methods select
feature subsets by exploiting the essential characteristics of the
training data, such as Distance measures, Information or uncer-
tainty measures, Dependency measures and so on [28]. Relief
[29], Fisher score [30] and Minimum-Redundancy-Maximum-
Relevance (mRmR) [31] are among the most representative
algorithms of the filter methods.

Different from the filter methods, the wrapper methods
require a predetermined classifier to select the features with
maximum predictive accuracy [28]. In additional to the classi-
fier, how to search the subset of features from all possible fea-
ture subsets is also important in the wrapper methods and can
be divided into two categories: Sequential and Metaheurisitc
algorithms. In general, wrapper methods can achieve better
predictive accuracy than the filter methods, but they require
much higher computational cost due to the repeated classifier
training.

The embedded methods combine the characteristics of both
the filter methods and the wrapper methods and incorporate
the feature selection as part of the classifier training. There
are mainly three types of embedded methods, the pruning
methods, the model methods with a build-in mechanism
and the regularization model methods. Feature selection has
been widely used in machine learning research field, such as
text categorization, image processing, gene selection and so
on [28]. Many brain-machine interface researches based on
electroencephalogram (EEG) also integrate feature selection
into their decoding algorithms [32]. However, in the iBMIs
researches, instead of feature selection, neuron selection is
often used, in which many features in a neuron are regarded
as a whole to be evaluated and each feature is not evaluated
separately.

Recently, several studies have provided tools for finding
important neurons in iBMIs. Sanchez et al. [15] proposed
three methods for quantitatively rating the importance of
neurons: single neuron correlation analysis, sensitivity analysis
using a vector linear model, and a model-independent cellular
directional tuning analysis. Wahnoun et al. [33] used the
individual removal error to measure each neurons contribution
to the overall control. Kai et al. [16] proposed a local-learning-
based method to rank neurons by maximizing the distance
between the local neuronal patterns while deploying L1 norm

regularization. More related studies are discussed in the review
[34]. Many neuron selection methods have been proposed;
however, these studies mainly focus on neuron selection, and
ignore feature selection; they also disregard the problems in
decoder calibration.

An effective way to improve the efficiency of decoder
calibration is to use large historical sample set and a small
current sample set. This is a typical transfer learning (TL)
task [35]. TL aims to extract knowledge from the source
domain (e.g. historical data) to the target domain (e.g. current
data) to diminish the disparities between the two domains
and does not require both domains to have the same sample
distribution [36]. TL has been widely used in EEG-based
brain-machine interface to transfer knowledge from session
to session or subject to subject [37]–[40], however, it is
rarely applied in iBMIs. In our previous study, we introduced
TL into iBMIs decoder calibration and proposed a principal
component analysis-based domain adaptation method which
projected the historical dataset and the current dataset to a
similar new feature space. Thus, the disparity among different
datasets was diminished and better decoding performance was
achieved [18]. Farshchian et al. proposed three TL methods
based on the canonical correlation analysis, Kullback-Leibler
divergence, and adversarial domain adaptation network; con-
sequently, they achieved stable decoding performance even
when there were very long intervals between the training
data and testing data [41]. These studies effectively exploited
the accumulated historical data towards achieving reliable
iBMIs while reducing decoder calibration time. However,
the problem of computational burden was not considered in
these studies and all the channels still had to record neural
signals.

In this study, we attempted to combine TL with feature
selection to solve the problem of decoder calibration and
reduce the computational burden of iBMIs. The SUTL method
was proposed and tested on neural data recorded from two rhe-
sus macaques to decode the reaching positions or grasping ges-
tures. The SUTL method used symmetrical uncertainty (SU) to
measure the stationarity of features between the historical data
and current data. A higher SU indicated greater stationarity,
and the disparity between the historical data and current data
could be diminished by using only the stationary features.
In addition to the stationarity of the features, the SUTL method
also considered the importance and redundancy of each feature
in finding the most appropriate features. For a better evaluation
of the performance of the SUTL method, different calibration
schemes were proposed and compared in a simulated online
situation.

The main contributions of this study are as follows: 1) A
combination of TL and feature selection was introduced to
simultaneously solve the problem of decoder calibration and
high computational burden in iBMIs. 2) Feature selection was
chosen over neuron selection in the SUTL method, as a result
of which better performance was achieved. 3) The SUTL
method achieved better decoding performance than other
calibration schemes while requiring fewer current samples,
fewer features, and fewer channels to record signals. Thus,
the time required for collecting new training data in decoder



62 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 1. The experiment procedure, electrodes implantation locations and the sequences of the experimental paradigm. (a) The experiment procedure.
The monkey was trained to perform spatial reaching and grasping task while neural signals were recorded from the cortex with the Omniplex system.
The raw data were bandpass filtered between 250 Hz and 6 kHz and then were applied with threshold crossing method to get spike counts. For
each bin in a decoding time window, spike counts were extracted as the features. After feature extraction, data could be used to calibrate the SVM
decoder with the SUTL method and then decode the neural activities into different reaching positions or grasping gestures. (b)Electrodes implantation
locations. (c) The sequence of the experimental paradigm.

calibration could be significantly reduced, and computational
burden could be decreased.

The rest of this article is organized as follows. Section II
describes the procedure of the animal behavioural task, neural
data acquisition, and feature extraction, followed by the
detailed description of the SUTL method and other decoder
calibration schemes. Section III presents the results of compar-
ing the decoding performance of feature selection and neuron
selection, and the effectiveness of the SUTL method and
other methods; it also presents the quantitative assessment of
the reduction of decoder calibration time and computational
burden, and the assessment of the disparities between the
historical data and current data after the SUTL method was
implemented. The properties of the features selected by the
SUTL were also explored. Section IV and Section V present
the discussion and a brief conclusion.

II. MATERIAL AND METHODS

All the experiments and surgical procedures in this study
were approved by the Institutional Animal Care and Use Com-
mittee at Wuhan University Center for Animal Experiment.

A. Experimental Set-up and Data Collection

The experimental procedure, electrode implant locations,
and data processing procedure are shown in Fig. 1. Two adult

male rhesus macaques (Monkeys M and B) were trained
to perform spatial reaching and grasping tasks with their
right hands; their left arms were restrained. The behavioural
task was guided by an experimental apparatus, as shown in
Fig. 1(a). The experimental apparatus mainly consisted of a
center pad at the bottom and three target objects on the
turntable of the front panel. Beside the center pad and each
target object, there was a light-emitting diode. For Monkey
M, the experimental apparatus contained three target objects
with the same shape, and the monkey was guided to grasp the
same shaped target object in different positions. For Monkey
B, the experimental apparatus contained three target objects of
different shapes (cube, triangle, and sphere). Monkey B was
guided to reach out in the same position to grasp the target
objects of different shapes; the target objects were transferred
to the same position using the turntable, which was connected
to a motor [42], [43].

The sequence of the behavioural task is shown in Fig. 1(c).
Each trial began with the center light on, and the monkey
was guided to put its hand on the center pad. After a holding
time of approximately 500 ms, the center light went out,
and one arbitrary target light came on, cueing the monkey
to reach out and grasp the target object. The events that the
monkey released the hand from the center pad and that the
hand touched the target object were called “Center Release”
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and “Target Hit”, respectively. After a target holding time,
the target light went out, and the monkey received a few
drops of water as reward when released the hand. A new trial
commenced after a time interval of approximately 2s.

After the monkeys had become familiar with this behav-
ioural task, electrodes were implanted into their cortices to
record neural signals. We surgically implanted two 32-channel
Utah arrays and one 16-channel floating microelectrode array
(FMA) (Microprobe Inc.) into the arm/hand area of the M1,
somatosensory cortex (S1), and PPC of Monkey M. Four 32-
channel FMA arrays were implanted in Monkey B, into the
M1, S1 and PPC (two electrodes were implanted into the S1,
marked as S1_a and S1_b respectively). The implantation sites
were identified based on the brain landmarks, and further con-
firmed through intracortical microstimulation. The electrode
implant locations are described in Fig. 1(b), and more details
about the surgical procedure can be found in [18].

Multichannel neural signals and behavioural data were
recorded using a 128-channel Omniplex system (Plexon, Inc.).
The sampling rate was 40 kHz, and the neural signals were
bandpass filtered between 250 Hz and 6 kHz. Spike counts
were detected using the threshold crossing method, and the
threshold was set to -4.5 times the root mean square value
of the spike band in each channel [44], [45]. The threshold
crossing method is a standard practice in iBMIs. All the
spikes recorded in one channel were regarded as emanating
from the same neuron. All 80 channels of the three arrays
implanted in Monkey M could record neural signals, whereas
only 66 channels from the arrays implanted into the S1 and
the PPC of Monkey B functioned properly. Therefore, in the
following analysis, there are 80 neurons for Monkey M, and
66 neurons for Monkey B.

B. Feature Extraction and Data Preparation

In this study, the neural recordings obtained from Monkey
M were used to decode reaching positions (three-category clas-
sification). The time period of 200 ms before and 100 ms after
the event, Center Release, was chosen to conduct the following
analysis. The neural recordings from Monkey B were used to
decode grasping gestures (three-category classification), and
the time period of 100 ms before and 200 ms after the event,
Target Hit, was chosen for analysis.

For both monkeys, the decoding time period was 300 ms
and was binned by a 50-ms window. As described in Fig. 2,
the spike counts in each bin were used as the feature, and each
neuron contained six features. The feature vectors of all the
neurons were combined, and employed as the neural activity
vector that was subsequently used for decoding. For feature
selection, each feature was evaluated separately; for neuron
selection, on the other hand, the six features were evaluated
as a whole. This was the difference between the feature
selection and the neuron selection. There were 80 neurons
and 66 neurons in Monkey M and Monkey B, respectively;
therefore, each dataset contained 480 features from Monkey
M, and 396 features from Monkey B. The experimental data
used in this study was obtained from three data sessions for
Monkey M, and one data session for Monkey B. Each of

Fig. 2. The procedure of the feature extraction. The decoding time period
was 300 ms and was binned into six windows. These black vertical lines
represent the spike activities. The spike counts in each bin were used
as the feature and the feature vector of a neuron could be obtained. For
each trial, the feature vectors of all neurons were combined to form the
neural activity vector.

Monkey M’s sessions contained four datasets corresponding to
four consecutive days; the data session of Monkey B contained
ten datasets corresponding to ten consecutive days. In each
session, the same number of trials were conducted for each
category in each dataset, adding up to a total of more than
300 trials in each dataset for both monkeys.

C. Symmetrical-Uncertainty-Based TL (SUTL)

The SUTL method selected features by measuring corre-
lation. The correlation of two variables could be effectively
and quantitatively measured based on the SU, which was
introduced by Hall [46], based on the information-theoretical
concept of entropy [47]–[49]. The values of the SU between
two variables lie between 0 and 1, and a higher SU value
indicates higher correlation between the two variables. The
value of the SU between two variables, X and Y , is defined
below:

SU(X, Y ) = 2 · I (X | Y )

H (X) + H (Y )
(1)

where I (X | Y ) is the mutual information between X and Y ;
H (X) and H (Y ) are the entropy of the variables, X and Y ,
respectively. The entropy is a measure of the uncertainty of a
random variable; the entropy of X is defined below:

H (x) = −
∑

i

P(xi )log2(P(xi )) (2)

The mutual information I (X | Y ) is a measure of the
exchanged information between these two variables and can
also measure the correlation. However, the mutual information
is biased in favor of features with more values; the SU
overcomes this drawback by normalizing its values within the
range [0, 1]. The I (X | Y ) is defined as:

I (X | Y ) = H (X) − H (X | Y ) (3)

where H (X | Y ) is the conditional entropy of X , given Y .
The conditional entropy quantifies the amount of information
required to describe the outcome of a random variable, X ,
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given that the value of another random variable, Y , is known.
The H (X | Y ) is defined as:

H (X | Y ) = −
∑

j

P(xi )
∑

i

P(xi | y j )log2(P(xi | y j )) (4)

where P(xi ) is the prior probability for all the values of X ,
and P(xi | yi ) is the posterior probability of X , given the
values of Y .

In the SUTL method, given the current data A = {pn}K
n=1,

pn∈R
M×1, p is the feature of the current data. K is the

number of the features, and M is the number of trials in the
current data. The label of the current data is Y , Y∈R

M×1.
Given the historical data from one day before as B =
{qn}K

n=1, qn∈R
N×1, N is the number of trials in the historical

data and N � M . The label of the historical data is T ,
T ∈R

N×1. The SUTL method was implemented by considering
the stationarity, importance and redundancy of the features.
First, the stationarity of a feature was evaluated using the SU
between the same feature in the historical data and current
data. The stationarity evaluation worked under the premise
that the data obtained on the same day were subject to the
same distribution. The stationarity evaluation was marked as
S, which was defined below:

S(n) = SU(pn, qn) (5)

where n is the feature number, n = 1 : K . Because the sample
size of the historical data was much larger than that of the
current data, the historical data had to be divided into many
parts; each part was composed of the same sample size as
the current data. Then, for each feature, each of these parts
was used to evaluate the stationarity with the current data, and
their mean value was taken as the final stationarity value. The
stationarity value could be ranked in descending order, and the
top-J values that exceeded the threshold would be preselected
as the subset of the features that were stationary.

In feature selection, the filter methods use the ranking
techniques to order the features and choose a suitable threshold
to select the appropriate number of top ranked features. The
selection of the threshold is important, however, there is no
theoretical basis to determine the threshold [50], [51]. For
most studies, the threshold is chosen empirically based on a
fixed number or percentage of the ranked features (such as
the top 50% of the ranked features) [52], which is fast and
easy to use in practical application. Additionally, threshold
can be selected automatically by measuring data complexity
[53], [54] or by using statistical support [51]. These researches
have achieved good performance, but there is still a small
problem. In these methods, the threshold is selected by a
coefficient which is further determined by experience. There
may not be essential difference between this method and the
fixed percentage threshold method. Threshold can also be
selected automatically by maximizing classification accuracy
[55]. In this method, different thresholds are picked and tested
to select the threshold with the best classification results.
However, this method has to implement repeated classifier
training which requires more time and higher computational
cost. Therefore, this method might not be suitable for online
application.

In the SU measurement studies, it is widely accepted by
researchers that the top-J values were chosen based on a user-
defined threshold [48] or by a user-defined proportion of the
features [49]. Therefore, in this study, we empirically selected
the top half features as the stationary features. The impact of
this proportion on the decoding performance was presented in
the results section and was further discussed in the discussion
section.

Subsequently, the importance of the features was evaluated
based on the SU between the feature and the label of the data,
and was marked as I , which was defined below:

I (n) = SU(qn, T ) (6)

where n is the feature number, n = 1 : K . Then, the features
were ranked in descending order of the value of I . As with the
stationarity, the top half ones were preselected as the subset
of the features that were important and most relevant to the
target variable. The intersection of the features between the
stationary feature subset and important feature subset was
selected as the new features.

For this new feature subset, the redundancy was further
considered. To measure how much a candidate feature was
redundant in this feature subset, we calculated the SU between
this feature and any other feature in this subset. The redun-
dancy value (R) of the feature m was defined below:

R(m) =
∑

k SU(Fm , Fk)

SU(Fm , T )
(7)

where F is the feature subset; and m and k were the feature
numbers. k = 1 : size of the preselected subset, and k �= m.
The threshold of the redundancy value was defined below:

T D = mean(
∑

k SU(Fn , Fk))

mean(SU(Fn, T ))
(8)

where F is the feature subset; and n and k are the feature
numbers. n = 1 : size of the preselected subset; k = 1 :size
of the preselected subset, and k �= n. The R exceeding the
threshold was considered redundant and removed from the
final subset. Then, the historical data (containing many trials)
and current data (containing only few trials) with selected
features were combined to train the decoder; future current
data could be tested by also using only these selected features.
The SUTL method is applicable to both the feature selection
and neuron selection, with the only difference being that
the feature will be replaced by the feature subsets in the
neuron selection. The pseudocode of this algorithm is shown
in Algorithm 1.

D. Quantitative Evaluation of the Sample Distribution
Before and After Applying the SUTL

We selected stationary and appropriate features using the
proposed SUTL method. Therefore, the data following the
application of the SUTL method should yield better cluster-
ing results. To quantitatively evaluate this clustering effect,
the Davies-Bouldin index (DBI) of the full-dimensional data
before and after applying the SUTL were measured and
compared. The DBI was an internal evaluation scheme based
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Algorithm 1 The SUTL.

Input: small current sample set with N features, {Fn}N
n=1,

Fn∈R
M×1; large historical sample set with N features,

{H Fn}N
n=1, H Fn∈R

(I∗M)×1; class label of current sample
set, T , T ∈R

M×1; class label of historical sample set, H T ,
H T∈R

(I∗M)×1;
Output: new sample set with K selected features, {Yk}K

k=1,
K < N , Yk∈R

(I∗M+M)×1;
1: //select the stationary features
2: Randomly divide the {H Fn}N

n=1 into I parts {H F Pn}N
n=1,

H F Pn∈R
M×1

3: for i = 1 to N do
4: for j = 1 to I do
5: SUst ( j)=SU(H F Pj , Fi );
6: end for
7: Compute the mean value of SUst ( j) as mean_SUst(i);
8: end for
9: mean_SUst(i) values were ranked in descending order;

10: Select the features corresponding to the top half of the
mean_SUst(i) values to be {STn}N/2

n=1;
11: //Select the important features
12: for i = 1 to N do
13: Compute the SU between feature and class variable,

SUnT (i) = SU(Fi , T );
14: end for
15: SUnT (i) values were ranked in descending order;
16: Select the features corresponding to the top half of the

SUnT values to be {SIn}N/2
n=1;

17: Select the feature intersection between {STn}N/2
n=1 and

{SIn}N/2
n=1 as {ST In}D

n=1
18: //Eliminate the redundant features
19: Compute the threshold T D in Eq.(8)
20: for i = 1 to D do
21: Compute the R in Eq.(7),
22: if R < T D then
23: This feature was selected to {Yk}.
24: end if
25: end for

on the ratio of the within-cluster and between-cluster distances,
which was defined as:

DB I = 1

k

k∑

i=1

max j �=i
{

Di, j
}

(9)

where Di, j was the ratio of the within-cluster and between-
cluster distance for the ith and jth clusters, and was defined
as:

Di, j = d̄i + d̄ j

di, j
(10)

d̄i was the average distance between each point in the ith

cluster and the centroid of the ith cluster. d̄ j was similar to
d̄i . di, j was the Euclidean distance between the centroids of
the ith and jth clusters. For the DBI of two clusters, the lower
score denotes more distinct clusters.

E. Decoder Calibration and Data Testing Schemes

In this study, we adopted the support vector machine (SVM)
to decode the reaching position or grasping gesture from
the neural activities. The SVM was used with the Radial
Basis Function (RBF) kernel and was implemented using the
LIBSVM [56]. Moreover, in the decoder calibration for each
dataset, the grid-search method introduced by the LIBSVM
was used to obtain the best penalty parameter, C, and the
kernel parameter, γ , which were the two main parameters for
the RBF kernel; they varied for each dataset testing.

To comprehensively evaluate the performance of the SUTL
method, five other calibration and testing schemes were
presented, and compared in a simulated online test. In the
simulated online test, only the historical data and small current
dataset (ten trials for each category) were used for decoder
calibration; the testing data were invisible. To describe these
six schemes more clearly, the diagram of the composition of
the training data and testing data is shown in Fig. 3. These
four schemes are as follows:

Short current session calibration (SCC): This scheme was
widely used in the online test [2], [3], [5]. A few samples
from the current data (ten trials of each category in this study)
were used to calibrate the decoder, and the testing data from
the current day were classified for testing.

Complete historical session calibration (CPC): This scheme
used the entire historical data from one day before as the
training data for calibrating the decoder and classified the
testing data from the current day [22], [57].

Mixed session calibration (MC): This scheme directly com-
bined the whole historical data from one day before with a
few current data to calibrate the decoder, and the testing data
for the current day were classified [18].

SUTL: As described in Section C, this scheme was similar
to the MC scheme, which used both the historical data from
one day before and a few of the current data as the training
data; however, these data were not mixed directly.

Recursive Feature Elimination for Support Vector
Machines(SVM-RFE): This was a widely used embedding
feature selection algorithm [58]. It trained an SVM classifier
iteratively and the least important features would be removed
in each iteration by using weight as the ranking criterion.
As with the filter method, ranked features could be obtained
after applying the SVM-RFE. The training and testing data
used in this algorithm were the same as in the SUTL.

Fisher score(Fscore): This was a widely used filter feature
selection algorithm and was a simple but effective technique
to measure the discrimination of two sets [30]. The training
and testing data used in this algorithm were the same as in
the SUTL. The Fscore and the SVM-RFE were presented to
be compared with the SUTL in feature selection.

To establish a better basis for comparing these decoder
calibration and testing schemes, the same testing data were
used in all of them. For the small portions of the current
data used in some schemes, the data for these 30 trials
were randomly chosen from the remaining current data and
were repeated 100 times to achieve the mean decoding
accuracy.
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Fig. 3. The diagram of the composition of training data and testing
data for the SCC, CPC, MC, SVM-RFE, Fscore and SUTL schemes.
The historical data from one day before contained 630 and 360 trials in
monkeys M and B, respectively. The same testing data were used in all
these schemes.

III. RESULTS

A. Comparison Between Feature Selection and Neuron
Selection in SUTL

Both the feature selection and neuron selection in the SUTL
method were expected to exhibit good and robust decoding
performance. To verify whether feature selection or neuron
selection was more effective, they were implemented sepa-
rately in the SUTL method, and the corresponding classifica-
tion results for all the data sessions are shown in Fig. 4. For
some datasets, the neuron selection achieved similar decoding
performance as the feature selection. However, for other
datasets, the neuron selection was significantly less effective,
compared to the feature selection. The decoding performance
of the neuron selection was not robust. In general, the feature
selection achieved better and more robust performance than
the neuron selection for both Monkeys (Monkey B: mean
decoding accuracy was 88.8% versus 84.4%, with a stan-
dard deviation of 5.8 versus 8.4; Monkey H: mean decoding
accuracy was 87.7% versus 79.0%, with a standard deviation
of 4.3 versus 11.2). The following analyses were based on the
feature selection.

B. Comparison of Decoding Performance Between
SUTL and Other Schemes

To evaluate our SUTL method, we implemented three com-
mon calibration schemes (SCC, CPC and MC) and two feature
selection algorithms (SVM-RFE and Fscore) for comparison.
The decoding accuracies and standard deviations of these
methods for each dataset are illustrated in Fig. 5. The decoding
accuracies and standard deviations of these methods across
all data sessions are shown in Table I. The SUTL method
significantly outperformed the other five methods for both
monkeys. For the SCC scheme, the available training data were
too few to guarantee the robustness of the calibrated decoder.
For the CPC and MC schemes, the historical data were directly

Fig. 4. Comparison of the performance of the SUTL method by feature
selection and neuron selection. The pink and blue bar represent the mean
classification accuracy of the decoders calibrated using SUTL method
with feature selection and with neuron selection respectively. Error bars
represent standard deviations of the 100 repeated decoding accuracies.
Datasets were labeled by name of the session and day, for example,
S1D1 meant the dataset was from the first day of session 1.

used for the decoder calibration, and the disparities between
the historical data and current data were not diminished.
Therefore, they exhibited good decoding performance only
when the disparities were small. The SVM-RFE and the
Fscore did not consider the stationarity of the feature between
the historical data and current data, which might affect the
decoding performance. By comparison, the SUTL method
effectively diminished the disparities between the historical
data and current data by selecting the stationary features, thus,
it could achieve good and robust decoding performance.

In the SUTL method, the proportion of the selected features
in the process of considering the stationarity and the impor-
tance of the feature would affect the final number of selected
features and the decoding performance. We subsequently
explored the impact of this proportion on the performance of
the SUTL method. The proportions of the selected features in
considering the stationarity and the importance were gradually
increased from 1/8 to all, with a step of 1/8 for Monkey M;
and were increased from 1/6 to all, with a step of 1/6 for
Monkey B. The corresponding classification accuracies for
these different proportions are shown in Fig. 6.

In general, the results indicated that the decoding accuracy
first increased with the increase in the proportion; subse-
quently, however, it later decreased with the increase in the
proportion for both the stationarity and importance. In consid-
ering only the stationarity, the best mean decoding accuracy
was achieved when the proportion for the stationarity was set
to 1/2 of all the features for both monkeys, which can be seen
from the mean accuracy of the column in Fig. 6. This may be
because a lower proportion would result in the loss of some
important features while a higher proportion might result in
the inclusion of more non-stationary features. For considering
only the importance, the best mean decoding accuracy could
be achieved when the proportion for the importance was set
to 1/2 of all the features for both monkeys, which can be seen
from the mean accuracy of the row in Fig. 6. The decoding
performance for the lower proportion would be more easily
affected by the important but non-stationary features, and
a higher proportion might result in the inclusion of more
unimportant features. To obtain a compromise between the
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Fig. 5. Comparison of the performance of six decoder calibration schemes across all sessions in two monkeys. The decoding accuracy of each
dataset was the mean value of 100 repeated computations, in which the current small sample set used for training were randomly selected from the
current data. The dark blue, orange, grey, green, light blue and red bars represent the mean classification accuracy of the decoders calibrated using
SCC, CPC, MC, SVM-RFE, Fsore and SUTL scheme, respectively. Error bars represent standard deviations of the 100 repeated decoding accuracies.
The results of chance level were presented for reference. Datasets were labeled by name of the session and day, for example, S1D2 meant the
testing dataset was from the second day of session 1.

TABLE I
THE MEAN DECODING ACCURACIES AND STANDARD DEVIATIONS FOR ALL DATA SESSIONS OF FOUR METHODS IN THE SIMULATED ONLINE TEST

stationarity and the importance, the proportion of 1/2 of all the
features for both the stationarity and the importance would be
a good choice. Therefore, in considering the stationarity and
the importance, the top half of the features were selected.

C. Quantitative Assessment of Decoder Calibration Time
Reduction in SUTL

To further evaluate the efficiency of the decoder calibration
in the proposed SUTL method, the SCC scheme, which is
the most commonly used method in decoder calibration for
iBMIs, was used for comparison. The decoder calibration time
mainly contained two parts, the time spent in collecting new
current samples and the running time of the algorithm. For
the time spent in collecting new current samples, it could be
measured by the number of new current samples that were
used in decoder calibration. Here, we used increased number
of experimental trials from the current dataset to calibrate the
decoder in the SCC scheme and identified how many current
samples were required by the SCC scheme to achieve the same
classification accuracy as the SUTL method employing only
ten current samples of each category. As shown in Table II,
the SCC methods required many more current samples to
achieve the same decoding accuracy as the SUTL method in

all the data sessions for both monkeys. Especially in some
cases (11/18), the SCC method could not achieve the same
decoding accuracy as the SUTL method, even with up to
140 current samples per category for both monkeys. In all
the cases, the SCC scheme had to use more than 93 current
samples per category to achieve the same decoding accuracy
as the SUTL method, which only used ten current samples per
category. Therefore, the SUTL method required approximately
89.2% (83/93) less current samples, compared with the SCC
method.

The time complexity and running time were also compared
between the SUTL and the SCC schemes. In the SUTL,
the time complexity analysis mainly contained two parts,
the time complexity of the feature selection algorithm and
that of the SVM. For the feature selection algorithm, the time
complexity was O(n2); for the SVM, the time complexity was
O(n3), where n was the number of training samples [59].
Therefore, the time complexity of the SUTL was O(n3). There
was no feature selection algorithm in the SCC, so the time
complexity of the SCC method also was O(n3).

The running time of the SUTL and the SCC was compared
under the condition that they achieved the same decoding accu-
racy(running on the same computer). The results of the running
time are summarized in Fig. 7. The SUTL took less time than
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Fig. 6. The mean classification accuracy of the decoder calibrated using the SUTL method when the proportions of the selected features for
stationarity and importance were increased gradually. The horizontal coordinate is the proportion of the selected features for stationarity, and
the ordinate is the proportion of the selected features for importance. Each cell is the mean decoding accuracy across all data sessions for the
corresponding selected proportion. Moreover, the mean decoding accuracy of the row and the column of the heat map are presented to find the
optimal proportion for considering the importance and the stationarity of the feature separately. The optimal proportion was 1/2 for both the importance
and the stationarity of the feature and was marked in red colour in the tale of the mean accuracy of the row or the column.

TABLE II
THE NUMBER OF CURRENT SAMPLES FOR SCC

the SCC and the feature selection time in SUTL was only
about 1s. The SCC took more time because it needed more
samples and more features to train the SVM. The datasets in
Monkey B took less time because they contained less historical
samples than the datasets in Monkey M. Generally, collection
of new current samples would always take more time (minutes
to tens of minutes) than the running time of the algorithm.
We have effectively reduced the demand for the number of
current new samples in the SUTL and the total running time
of less than 30s was acceptable.

D. Quantitative Assessment of Computational Burden
Reduction in SUTL

The computational burden was mainly evaluated based on
the number of features and corresponding number of chan-
nels recording neural signals during the decoding. In the
SUTL method, the features were finally selected after three
processing steps: stationarity selection, importance selection,
and redundancy selection. In each step, some features were
eliminated and only a small fraction of the full original features
were selected. The finally selected features and corresponding
channels in the SUTL method are shown in Table III. The

Fig. 7. The running time of the SUTL method across all sessions in two
monkeys. The blue and orange bars represent the mean running time
for training the SVM classifier and selecting features respectively in the
SUTL method. The pink bar represent the mean running time for training
the SVM classifier in the SCC. Error bars represent standard deviations
of the 100 repeated running time.

mean value of the final number of selected features for all the
sessions are 52 (Monkey M) and 42 (Monkey B), out of a total
number of 480 and 396 original features in the data collected
from the two monkeys. To include these selected features,
the mean value of the final number of selected channels are
26 (Monkey M) and 19 (Monkey B), out of a total number
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of 80 and 66 original working channels. For considering the
number of selected features, the computational burden was
respectively reduced by 89.2% and 89.4% for Monkey M and
Monkey B. Fewer features can accelerate the decoder training
speed. In considering the number of channels that need to
record neural signals during the decoding, the computational
burden was respectively reduced by 67.5% and 71.2% for
Monkey M and Monkey B.

E. Assessment of Disparity Between Historical Data and
Current Data After Applying SUTL

The SUTL method could achieve better decoding per-
formance than the other five schemes; we attributed this
to the fact that it could effectively diminish the disparities
between the historical data and current data. To explore
whether these disparities could be effectively diminished by
the SUTL method, the disparities before and after applying the
SUTL method were visualized and quantitatively measured.
The current data and historical data from one day before
were combined to construct datasets and were reduced to
two dimensions using the principal component analysis for
visualization. Taking Dataset 1 of Session 1 for Monkey M
as an example, the results of dimensionality reduction are
shown in Fig. 8a. Based on the results, the distribution of
the historical data is clearly separated from the current data
for the full ensemble data; however, the historical data and
current data were well clustered after the SUTL method was
applied. For quantitatively measuring the disparities, the DBI
values of the datasets before and after applying the SUTL were
measured and compared. The DBI value can quantitatively
evaluate the clustering result of the data, which can indicate the
sample distribution of the datasets (a lower DBI score denotes
more distinct clusters) [60]. As shown in Fig. 8b, the data
processed using the SUTL method achieved significantly lower
DBI values than those that were processed without applying it
for both monkeys. These results indicated that the disparities
between historical data and current data have been effectively
diminished, which is the key that the SUTL method could be
effective. Moreover, the data from the same day were clustered
together and this indicated that the above assumption was
tenable, and that the data obtained on the same day were
subject to the same distribution.

F. The Generalization Ability of the Selected Features in
SUTL

The generalization ability of the selected features is impor-
tant in the feature selection. However, it is hard to evaluate,
especially in our SUTL algorithm. Because of the nonstation-
arity of the neural recordings, there are disparities between
different datasets. When one wants to decode a new dataset,
the SUTL has to be implemented again to select new features
for constructing new classifier and the selected features for
different dataset may be different. We tried to evaluate the
generalization ability by two methods.

The first method evaluated the generalization ability by
comparing the decoding accuracy of training data with that of
testing data after finishing the feature selection. If the testing

Fig. 8. The visualization and quantitative measurement of sample distri-
bution before and after applying the SUTL method. (a) The visualization
of the sample distribution for the Dataset 1 in Session 1 of monkey M
before and after applying the SUTL method. (b) Each current data and the
historical data from one day before were combined to construct datasets.
The DBI values of each dataset with the full features (blue line) and the
selected features by the SUTL method (red line) were presented. A lower
DBI value indicated better cluster separation.

data could achieve similar decoding accuracy as the training
data, the generalization ability could be considered good. The
decoding accuracy of the training data was obtained by 5-fold
cross validation. The results of the comparison are shown
in Fig. 9a. There were about 2.9% and 5.1% difference in
mean decoding accuracy between the two methods for Monkey
M and B respectively. We thought that the difference in the
decoding accuracy was small and the generalization ability
was good.

The second method used the Dice-Sorensens index (DSI)
to measure the overlap of the selected features between two
different datasets, which could evaluate the generalization
ability or the stability of the selected features [61]. The results
of the DSI for both monkeys are shown in Fig. 9b. It can be
seen that the DSI is approximately 0.6 between datasets from
two consecutive days, which indicated that about 60 percent
of the selected features were the same for the two datasets.
Considering the disparities between two datasets, we thought
that the generalization ability of the selected features was
good.

G. Properties of Features Selected by SUTL

The above analyses have proven that the SUTL method
could be effective. Analysing the properties of the features
selected by the SUTL may provide some insights for future
endeavours to improve decoding performance. We counted the
number of selected features belonging to each brain region
and to each bin of the decoding time period. In this study,
the neuron signals were effectively recorded from the M1
(192 features), S1 (192 features), and PPC (96 features) of
Monkey M and the S1_a (186 features), S1_b (42 features),
and PPC (168 features) of Monkey B. For each of these
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TABLE III
THE FINAL NUMBER OF FEATURES AND CORRESPONDING CHANNELS

Fig. 9. The evaluation of the generalization ability of the selected
features in SUTL. (a) The comparison of decoding accuracy between
the training and testing data. The pink and blue bar represent the mean
classification accuracy in the training and testing data, respectively.
Error bars represent standard deviations of the 100 repeated decoding
accuracies. (b) The Dice-Sorensens index(DSI) of selected features
between datasets from two consecutive days in two monkeys.

brain regions, the proportion of the final selected features was
computed as (the number of final selected features) / (the
number of all features), which was then normalized among
these brain regions. A similar approach was used to count
the number of selected features belonging to each bin of the
decoding time period. The results are shown in Fig. 10.

For Monkey M, the proportion of the final selected features
was the smallest in the S1, whereas those in the M1 and
the PPC were comparable. For Monkey B, the proportions
of the final selected features from the three brain regions
were similar. This indicated that the M1 and PPC might
play more important role than the S1 during the reaching
movement, whereas both the S1 and PPC played important
roles during the grasping gesture decoding. Fig. 10(c) and (d)
show the distribution of the final selected features in each bin

Fig. 10. The distribution of the selected features in three brain regions
for (a) monkey M and (b) monkey B, and the distribution of the selected
features in different bins of the decoding time period for (c) monkey M
and (d) monkey B.

of the decoding time period. In Monkey M, the proportion
of the final selected features increased over time in all the
three brain regions. This indicated that more effective features
were activated after the reaching movement was executed,
and that these brain regions might be related more to the
reaching movement execution than they were to the planning.
In Monkey B, the proportion of the final selected features
first increased, and then decreased in the S1. On the contrary,
the proportion of the final selected features decreased first, and
then increased in the PPC.

IV. DISCUSSION

This study incorporated TL into the iBMIs to diminish
the disparities between the historical data and current data.
Subsequently, the historical data could be effectively used for
decoder calibration, and the demand for new current training
data could be reduced while better decoding performance
could be achieved. Moreover, by selecting the features that
are most relevant to classification, and removing redundant
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features, the number of features for decoding and the number
of channels that had to work were reduced, as a result of which
the computational burden and energy consumption reduced.

The nonstationarity of the neural recordings is common
in iBMIs and leads to daily retraining of the decoder [19],
[20]. TL is particularly suitable for solving this problem,
because the essence of the nonstationarity in iBMIs is to make
the sample distribution of source domain and target domain
distinct from each other. TL can eliminate this difference
in sample distribution. Moreover, besides the disparity, there
are also many similarities between the source domain and
the target domain. Currently, electrode arrays (such as the
Utah array and the FMA array) are widely used as cortex
implants in iBMIs. These arrays are floated on the cortex
and can record neural signals relatively stably [14]. Although
there will be some nonstationarities for various reasons [19],
the data from two adjacent days are similar, and the properties
of many features between these two days are stationary. The
SUTL works by diminishing the disparities and preserving
similarities.

In most of the previous studies on iBMIs [15], [16],
neuron selection was implemented to reduce computational
burden while maintaining the decoding performance. In neuron
selection, each neuron contained several features and these
features were selected as a whole [24], [25]. Advances in
iBMIs have made it possible to implant more electrodes into
different brain regions [62], such as the M1, S1 and PPC,
as was done in this study. Neural signals from different
brain regions were recorded synchronously, and the same time
window was used for all neurons to extract features for the
decoding. However, the neurons from different brain regions
might have different functions [63]; hence, using the same
time window in the feature extraction might not be optimal
for all the neurons. For neuron selection, one neuron could
be selected, however, not all the features in this neuron were
suitable for decoding,which could be verified by the results
in Fig. 10, and the unrelated features could not be eliminated.
Feature selection could avoid such problems. In this study,
both neuron selection and feature selection have been tested in
the SUTL method. The results indicated that feature selection
exhibited better decoding performance than neuron selection
in the SUTL method. Hence, feature selection might be a more
suitable choice than neuron selection for TL in iBMIs.

In the stationarity and importance evaluation, a threshold
was needed to select the top J ranked features. The threshold
was empirically chosen as the top half ranked features in
this study and the reason for choosing this threshold was
described below. The electrode array used in this study could
relatively stably record neural signals. Even though the dis-
parities between datasets were unavoidable, there were more
similarities than the disparities, which could be verified by
the results in Fig.9b. Therefore, selecting the top half ranked
features in the stationarity evaluation was reasonable. In the
iBMIs, dozens or even hundreds of neurons were recorded to
decode only three or more types of movements. Therefore, it is
common that more than 50% of the neurons were redundant,
which could also be seen from other related publications
[15], [16], [33]. Therefore, selecting the top half ranked

features in the importance evaluation also was reasonable.
Moreover, in addition to selecting the fixed threshold to 50%
in stationarity and importance evaluation, the redundancy of
these selected features was further considered to ensure that
the redundant features could be effectively removed in the
SUTL. Finally, in the online application of the iBMIs, real-
time performance is important. Using the fixed percentage
threshold is very efficient and can be implemented in real time.

By taking advantage of the historical data, the efficiency
of the decoder calibration has been improved by the SUTL
method. The reduction in the computational burden is mainly
reflected in the reduction of the feature number and the
number of channels that are required to work. In the online
decoding, the reduction of the feature number will not have
much impact on the overall computational burden; its main
purpose is to accelerate the training of the decoder in the
decoder calibration phase. The computational burden is mainly
affected by the number of channels that need to record neural
signals. For example, without the SUTL method, 80 channels
are required to record signals; however, only 20 channels are
required after applying the SUTL method. Then, in terms of
the hardware, we can temporarily turn off the data collection
function of these 60 channels, which will greatly reduce the
overall computational burden and energy consumption, which
is of great significance for the future wearable iBMIs.

At present, electrode arrays are mainly implemented in the
M1 cortex for many motor iBMIs [1]. This can achieve good
decoding performance, and will reduce the difficulty and risk
associated with implantation into multiple brain regions. In this
study, electrode arrays were implanted into multiple cortices.
Through the analysis of the selected features, it was found that
both the M1 and the PPC cortices were important in decod-
ing the reaching position, which is also consistent with the
conclusions of other related studies [6], [64]. Electrode arrays
implanted into multiple cortices, rather than one cortex, might
achieve better and more robust performance. The electrode
array was also implanted into the S1 cortex in this study,
and we found that the S1 played a much smaller role than
the M1 and PPC during the reaching position decoding. This
might be related to the decoding time period we chose and the
physiological properties of the S1 cortex. However, in motor
iBMIs, S1 is not a preferred cortex. Because the iBMIs
are mainly used by the paralyzed patients, who control the
prosthesis instead of their real arms, the implication of which
is that S1 cortex cannot be directly activated in paralyzed
patients.

The SUTL method evaluates the stationarity of the features
by measuring the correlation between the same feature in the
source domain and target domain. There is a shortage in this
method. Normally, the samples from the target domain used
to measure the stationarity are relatively few (such as ten
trials for each category in this study), as a result of which
the stationarity measurement might be significantly affected by
these small samples. In other words, if there is a big difference
between these small samples and the subsequent new data,
it is likely that the decoding performance will be reduced.
Therefore, the premise of our study is that data obtained on
the same day are subject to the same distribution, and the
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small number of current samples used for calibration needs
to be able to represent the distribution of the subsequent
new samples. Because of the stability of the electrode array
in neural recording, this assumption is still feasible and our
decoding results are also consistent with this assumption.

V. CONCLUSION

In this study, we proposed a novel TL method, SUTL,
to improve the decoder calibration and decoding performance
of iBMIs. The method could effectively use the historical data
and only required a small current sample set to achieve good
decoding accuracy within a shorter decoder calibration time
and with less computational burden. Moreover, we demon-
strated that the feature selection can achieve better perfor-
mance than the neuron selection in our SUTL method. With
the reduction in the decoder calibration time and computa-
tional burden while maintaining the decoder performance, our
proposed method has the potential to promote the development
of iBMIs in clinical research.
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