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ABSTRACT Fracture modeling plays a valuable role to understand the fluid flow in carbonate reservoirs.
For this, the fracture characterization to generate Discrete Fracture Networks (DFNs) can take advantage of
analogue outcrops through Virtual Outcrop Models (VOMs), acquired by Unmanned Aerial Vehicles (UAV)
and digital photogrammetry. The stochastic DFN generation is an important step in reservoir modeling
as it brings more representative data to the process and has long been studied. However, optimizations
concerning automatizing some of the steps necessary to its generation like data clustering are still open
to advancements. In this sense, this work aims the fracture data clustering and the definition of the number
of clusters when gathering data for the stochastic process, developing an Elbow method for spherical data
and a balanced K-means, both based on Fisher statistics. For this, we interpreted fracture planes in a VOM
that recreates a carbonate reservoir analogue from the Jandaíra Formation, in the Northeast, Brazil. As result,
we show aworkflow for immersive fracture interpretation alongside a 3D stochastic DFNmodel with fracture
intensity of 22.57m−1 for cell sizes of 1m3. Regarding the clustering balance, our method achieved a lower
standard deviation between sets while maintaining the Fisher values greater to obtain fracture sets with lower
dispersion. Additionally, the Elbow method implementation proved a beneficial step to the workflow as it
reduced the interpretation bias of family clusters. These results alongside the proposed workflow bring a
better understanding of the outcrop geometry while offering data scalability for reservoir modeling.

INDEX TERMS 3D stochastic DFN modeling, Elbow method, Fisher statistics distribution, K-means
optimization, spherical data clustering.

I. INTRODUCTION
Carbonate reservoirs (e.g., Pre-salt of the South Atlantic
Margin offshore Brazil) host important hydrocarbon reserves.
The carbonates present intrinsic characteristics of porosity
and permeability that regulate fluid storage and fluid flow in
reservoirs [1]–[3]. These characteristics are impacted by dia-
genetic processes, dissolution, and tectonic events that affect
the reservoirs, generating fractures and discontinuities [4].
Thus, the fracture attributes contribute to the estimation of
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the geomechanical behavior of carbonate rocks necessary for
hydrocarbon extraction.

Fractures can be defined as a result of a rupture or crack
in the rock body that generates a physical discontinuity [5].
They often appear as a connected network of fractures, usu-
ally represented in numeric terms as Discrete Fractures Net-
works (DFNs) [6].

Identifying this kind of features is also an impor-
tant task when analyzing impact flow on geother-
mal reservoirs [7], hydrocarbon-bearing formations [8],
groundwater aquifers [9], leakage of CO2 storage [10] and
nuclear waste [11] broadening the knowledge over these
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formations allowing proper exploration and preemptive
actions.

Specifically, deep reservoirs, like Brazil’s offshore pre-salt
reservoirs (6km below sea level), suffer from the limitations
in spatial resolution of the seismic assessment and with the
sparsity of well log data [12]. These limitations in reservoir
assessment lead us to the study of analogue outcrops, which
are exposed rock formations with characteristics of composi-
tion and geometry similar to the reservoirs studied [13].

The fracture network investigation in analogue outcrops is
carried out by direct measurements like the scanline method,
where information such as length, strike and dip, and aperture
are acquired [14], [15], usually by an analyst in situ. Due
to access restrictions and limited spatial coverage, remote
sensing techniques, to obtain the Virtual Outcrop models
(VOMs), are widely used to obtain a larger set of geometric
information about fractures on the outcrop. In this case,
the interpretation of fractures can be made directly on the
computer screen.

Either in situ or using VOMs, the fracture network infor-
mation also integrates roughness, connectivity, and spacing,
which are is modeled in deterministic and stochastic DFN
models [6]. In the deterministic DFN model, attributes such
as density and intensity are generally estimated by the Pxy
system [16]. The fracture intensity is obtained by the number
of fractures that cross a scan line (P10), by the sum of the frac-
ture lengths, divided by the area measure of the sample region
(P21), and by the sum of the areas of fractures contained in a
volume (P32) expressed in meters (m−1). A linear correlation
can be estimated observing the indexes P10, P21, and P32,
allowing the estimation of the volumetricP32 from 1D and 2D
data [12], [17]. Such correlations are supported by a constant
C , based on the parameters of fracture orientation, radius size
distribution and orientation of the sampling window or scan
line [18].

To estimate the P32 index, the dimension of the sample to
be measured must be three-dimensional, in which orientation
measurements (strike/dip) are performed. This information
can be incorporated into the stochastic DFN modeling and
scaled to the reservoir models. In these models, the qual-
ity of the simulation is directly related to the collection of
information from the fracture network [17]. The orientation
parameters, needed to create the DFN models, must consider
their mean values and dispersion values obtained with Fisher
distribution statistics [19], [20], and the quantity of sets deci-
sion will influence how the fracture are clustered and how the
Fisher statistics will be propagated to the stochastic model.

Works that have generated 3D stochastic DFNmodels from
strike/dip data relied on visual interpretation of fracture sets
in diagrams and statistics generated by 2D software like the
FracPaQ [21], [22] and FRACMAN [23] to identify the best
quantity of sets. With some works [24], [25] reducing the
number of sets arbitrarily applying metrics to identify and
agglutinate co-planar sets, also using the Fisher concentration
to highlight the possible number of clusters in the stereonet.
Additionally, some works have proposed modifications to

the clusterization method based on the K-means algorithm,
employing Particle Swarm Optimization and Fuzzy cluster-
ing [25], [26], also optimizing the clusters initial positions.
However, the quantity of cluster is still set arbitrarily.

In this regard, we propose two optimizations to the 3D
stochastic DFN generation workflow by: adapting the Elbow
method to the definition of fracture sets using the spherical
K-means and Fisher statistics; and making a balance check
to the clusters obtained from the K-means algorithm to verify
if the process should be restarted with new center positions
or not. These strategies aim to obtain better input data to
the Fisher statistics definitions necessary for the stochastic
generation modeling.

For this, we use the software Mosis XP [27], [28], to inter-
pret fracture planes in a VOM obtained of an outcrop ana-
logue located in the Jandaíra Formation, in the Brazilian
Northeast. From this data, our proposed workflow is applied
and validated by generating a 3D stochastic DFN and estimat-
ing the volumetric fracture intensity for the model cells. This
region is well studied in geological terms [29], [30], however
no study regarding outcrop geometry and generation of 3D
stochastic was carried. This work is presented as follows: the
proposed method, statistics, and computations to extract 3D
data are presented in Section 2; the interpretation scenario and
experimental setting are presented in Section 3; followed by
the results and comparisons in Section 4; accompanied by the
discussion and conclusion.

II. 3D STOCHASTIC DFN MODELING
The proposed workflow to determine the volumetric inten-
sity integrates the 3D stochastic DFN generation from VOM
interpretation of fracture planes, as illustrated in Figure 1.

The workflow starts with the fracture plane points acquisi-
tion from VOM. The rest of the workflow describes the data
clustering and statistics for each possible set, and finishes
with the 3D fracture generation and the volumetric 3D DFN.
This workflow is better described in the following sections.

A. PROCESSING FRACTURE PLANE DATA
The interpreted plane data extracted from the VOM is com-
posed of 3D point coordinates (xyz), in which the positional
and directional information will be computed. Directional
and positional information from points placed in 3D space
necessary for fracture characterization can be obtained by
basic geometry operations. As the first plane information, the
centroid is calculated to obtain the central position of a group
of points, given by

centroid =

∑i=1
N xi
N

,

∑i=1
N yi
N

,

∑i=1
N zi
N

(1)

where N is the quantity of points that compose the plane
and xi ∈ {x0, x1, . . . xN }, yi ∈ {x0, y1, . . . yN }, and zi ∈
{z0, z1, . . . zN } are the points coordinates.

The next plane information is the plane equation and its
components that are given by

Ax + By+ Cz+ D = 0 (2)
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FIGURE 1. Proposed workflow for 3D stochastic DFN generation and fracture intensity estimation P32 from fracture planes
measured in VOM.

where A, B, C, and D are the equation terms (with D rep-
resenting a positional term) [25]. These terms are computed
with the principal component analysis (PCA) technique [31]
that fits the point data to its eigenvalues and eigenvectors,
where the third eigenvector gives the plane normal vector
N (A,B,C) usually normalized in the form n(a, b, c). The
positional term D in the plane equation is given by

D = centroid · n(a, b, c). (3)

After obtaining the plane equation terms, the strike and dip
angle are calculated in terms of α and β angles given by

α = arccos
∣∣∣ c
√
a2 + b2 + c2

∣∣∣ (4)

and

β = q± arccos
( a
√
a2 + b2

)
(5)

where q é 0◦, 180◦ or 360◦ according to the quadrant that the
resultant vector of a and b points [32].

These equations give us the strike and dip in radians,
which are later converted to degrees for visualization in the
stereonet and other statistics. Depending on the quadrant,
we must correct the strike direction considering the a and b
values, where, if a and b are greater than zero the strike is
360− deg(β) and if a is greater than zero and b is lesser than
zero the strike is 180+ deg(β). Also, considering the ‘‘right-
hand rule’’ [33] we consider opposite strike directions as the
same angle, computing directions for the first and the second
quadrant only.

B. FISHER STATISTICS
The strike and dip data obtained from the 3D interpretations
are the main data for the stochastic plane generation. How-
ever, this data is reduced to spherical statistics information
computed with Von Mises and Fisher [34] statistics for each
fracture set. The Fisher statistics [35] are spherical statistics
that indicate the dispersion and distribution of point positions
in a sphere. For the Fisher statistics, the mean strike and dip
for a set are observed in terms of the normal vector of each
plane represented in polar coordinates φ and θ . Where φ
(latitude) is given by 90 − dip, and θ (longitude) is given by
the angle rotated from the prime meridian using the bearing
angle.

The mean direction of Fisher is given by the sum of the
direction cosines [35]

l =
N∑
i=1

li m =
N∑
i=1

mi n =
N∑
i=1

ni (6)

where li = cos(φi)cos(θi), mi = cos(φi)sin(θi), ni = sin(φi),
and i is an individual plane of the N observations.

After computing the mean direction cosines, they are con-
verted in unit vectors dividing by the length of the dip mean
vector R given by

R =
√
(l)2 + (m)2 + (n)2 (7)

and the unit vectors are given by

l̂ =
l
R

m̂ =
m
R

n̂ =
n
R
. (8)
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The mean directional unit vectors are converted to mean
strike and dip are then given by

δ = arcsin(n̂) (9)

for dip angle, and

strike =


[
arcos

(
l̂

cos(δ)

)]
if m̂ ≥ 0

360−
[
arcos

(
l̂

cos(δ)

)]
otherwise.

(10)

The index of dispersion of the Fisher distribution k is given
by

k = (N − 1)/(N − R) (11)

where k values close to 0 indicate not coplanar planes
and positive values to ∞ indicate strongly coplanar planes.
In terms of distribution, the Fisher statistic [36] is given by

f (φ, θ) =
k

4πsinh(k)
expk[cos(θ0)cos(θ )+sin(θ0)cos(φ−φ0)].

(12)

C. SPHERICAL DATA CLUSTERING
The basic K-means algorithm clusters objects in sets of K
defined clusters, with random centroid clusters initially set
in the first iteration. The objects are then associated with the
closest cluster center given a distance metric. After each iter-
ation, the centroid position of the cluster is recalculated. The
algorithm converges when no significant change in centroid
positions is observed.

To obtain the optimal number of clusters for the K-means
clustering the most common algorithms used are the Elbow
method and the Silhouette method [37]. For the Elbow
method algorithm, the optimal number of sets is given by
the Elbow method in which a set of different numbers of
clusters are tested evaluating the squared sum of distances of
samples and clusters centers. Using a line plot as a reference,
the desired number of clusters is identified by the inflection
point in the graph. Our implementations modify the K-means
and the Elbow method to use the Fisher k statistics to obtain
optimized cluster sets.

For the K-means algorithm, we consider the spherical
K-means which uses the angular distance between two
strike/dip positions as polar coordinates (φ/θ ) to measure the
clusters and centers’ proximity. We use an additional step
that verifies if the generated clusters have optimal Fisher k
values, considering that there is no set with Fisher k values
below the average Fisher k minus the standard deviation of all
sets. This approach guarantees that we have balanced clusters
(Figure 2b), instead of some clusters with low dispersion and
others with high dispersion (Figure 2a). If this condition is
not met, the K-means algorithm is restarted with new random
centers. These steps are detailed in Algorithm 1.

For the Elbow method algorithm, we consider the normal-
ized squared mean of Fisher k values of all sets evaluated

FIGURE 2. Balancing clusters effect on group dispersion indicated by
each group outer circle. In a) the groups’ dispersion have uneven sizes
which will in our example generate a lower value of Fisher k ; while in
b) the groups are evenly distributed and present similar dispersion.

in each K-means K value evaluated. After running all dif-
ferent K-means K values clustering and after obtaining the
established Elbow metric values, an additional step is carried
out to compute the optimal number of clusters systematically,
establishing a line between the first and last values obtained
in the Elbowmethod. This line is used a reference to compute
the most distant point from this line, as the graph inflection
point. These steps are detailed in Algorithm 2.

D. SPACING
After estimating the sets and directional statistics the spacing
estimation can be carried [38], [39]. The spacing, assuming
that two planes are parallel, e.g. have equal values for the a,
b, and c, is given by

SP12 =
|d1 − d2|

√
a2 + b2 + c2

(13)

where d1 and d2 are two parallel discontinuities (planes). For
non-parallel planes, a virtual scanline can be used to estimate
the distance between planes that cross the designated line,
where the average, minimum and maximum spacing can be
computed [40].

E. 3D FRACTURE GENERATION AND
STOCHASTIC DFN MODELING
With Fisher statistic parameters and spacing for each set,
we can generate the stochastic DFN by estimating random
planes that tend to follow the same Fisher distribution of the
original sets when applying stochastic techniques.

This process starts by establishing the number of fracture
planes to be generated for each fracture set. Our implementa-
tion considers the mean plane sizes to determine the number
of fracture layers to be generated, as the height (z-axis) of
the model is divided by the mean fracture size.

In each layer, the quantity (n) of fracture planes to be
generated in each set is given by the width (x-axis) times the
depth (y-axis) of the model divided by the set spacing.

After getting the quantity of fractures for each layer (n),
we generate two lists of random uniform values R1 and R2 of
size n. To generate the new fracture data we apply these
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Algorithm 1 Spherical K-Means With Fisher k Groups
Check
1: Convert Strike/dip data to lat/lon
2: while optimal_Fisher_k 6= True do
3: Get random K lat/lon positions as initial set centers
4: while moving_centers 6= False do
5: Compute distances between centers andmeasures
6: Associate measures to closest centers
7: Change center positions to new centers position

in each group
8: if distance(centers, new_centers) ≤ tolerance

then
9: moving_centers← False
10: else
11: centers← new_centers
12: end if
13: end while
14: Compute Fisher_k_values for each group
15: if Fisher_k_values ≤ (max(Fisher_k) ∗ 0.25) then
16: optimal_Fisher_k ← False
17: else
18: optimal_Fisher_k ← True
19: end if
20: end while
21: Output: centers

random values in the Fisher distribution sampling function
given by

θ = 2 arcsin
√
−log[R1(1− λ)+ λ]/2k (14)

and

φ = 2πR2 (15)

where k is the Fisher dispersion, and λ = exp(−2k). Which
are rotated using the rotation matrix given a initial θ0 and φ0.
The rotation matrix used to obtain the final sample values θ ′

and φ′ is given by

A(θ0, φ0, 0) =

cos θ0 cosφ0 cos θ0 sinφ0 − sin θ0
− sinφ0 cosφ0 0

sin θ0 cosφ0 sin θ0 sinφ0 cos θ0


(16)

The random generated plane directions are then converted
to their normal vector information to be placed in the stochas-
tic DFN following uniform random positions for each layer.

To estimate the volumetric fracture intensity P32 we con-
sider a sample volume with the same size and position as the
stochastic DFN model, while this volume is subdivided into
cells of equal sizes. In each cell, we compute the fracture
plane intersections with the cell faces to obtain the ver-
tices that make the fracture portion polygon inside the cell
to compute its area.

These intersections are obtained using the Möller-
Trumbore ray-triangle intersection algorithm [41] consider-
ing the cell faces and fracture planes as triangle pairs and

Algorithm 2 Elbow Method for Spherical Data Clustering
1: Input: strike_data, dip_data, max_clusters,

max_iterations
2: initialize mean_fisher_k array

F Compute mean_fisher_k for max_iterations runs
for clusters from 1 to max_clusters

3: for i_cluster = 1, i_cluster <

max_clusters, i_cluster++ do
4: sum_fisher_k = 0
5: for i = 1, i <= max_iterations, i++ do
6: Get clusters and clusters centers from spherical

kmeans;
7: Compute Fisher statistics K;
8: sum_fisher_k = sum_fisher_k + K ;
9: end for
10: mean_fisher_k[i_cluster] =

(sum_fisher_k/max_iterations)2;
11: end for

F Triangulate the squared
mean_fisher_k as positions in a graph and get the point
with longest distance to the reference line

12: x1, x2← first and last values from mean_fisher_k
13: y1, y2←first and last index positions from mean_fisher_k
14: Initiate distances array
15: for i = 1, i < max_clusters, i++ do
16: xi = i
17: yi = mean_fisher_k[i]
18: numerator ← abs((y2− y1)× xi − (x2− x1) ∗ yi +

x2× y1− y2× x1)
19: denominator ←

√
(y2− y1)2 + (x2− x1)2

20: distances[i]← numerator/denominator
21: end for
22: ideal_n_clusters ← position of the highest value on

distances
23: Output: ideal_n_clusters

the rays as triangle vertices. Fracture plane vertices inside the
cells are identified using the Delaunay triangulation using the
cell edges as reference.

The polygon areas using the extracted vertices are com-
puted by subdividing the polygon using the Delaunay triangu-
lation and estimating the area of triangles that fit the polygon.
All polygon areas inside a sample cell are summed and then
divided by the volume to compute P32 for each cell.
The generated algorithm and scripts presented are pack-

aged in an application named vizfrac3D which will generate
the following products as presented in Figure 3. This chart
illustrates what a user could expect in terms of input and
output to our script in an easier way, complementing the main
workflow presented in Figure 1.

III. METHOD VALIDATION
A. STUDY AREA AND GEOLOGICAL SETTINGS
For this study we used a ravine within the Lajedo
Soledade (Figure 4B), located in Apodi municipality,
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FIGURE 3. Application for 3D stochastic DFN generation vizfrac3D.

in the Rio Grande do Norte state, Brazil. This outcrop
presents rocks within the southeast portion of the Potiguar
Basin [42], [43], precisely within the Jandaíra formation
(Figure 4A), deposited between Turonian and Campanian
stages (ca. 93.9-83.6 Ma) [29], [44].

This formation is characterized by the presence of a
monotonous and homogeneous succession of carbonate rocks
predominantly classified as mudstones, grainstones, and
packstones, composed of grains of primary carbonate min-
erals (calcite) with the strong posterior transformation of
primary minerals for dolomite [30], [46], [47]. Grainstones
are grain-supported rocks and have a relatively small fraction
(<1%) of clay-like grain material (<20µm), while packstone
is a supported rock by grains, but with a clay fraction ratio
>1%, and mudstones are not supported by grains and are
predominantly formed by fragments of grain size <20µm
[48]. The rocks have a minority fossiliferous content of
bivalves, mollusks, and algae remain [46].

The Jandaíra Formation is locally preserved in an expan-
sion that exceeds 600m in thickness with a slight bedding dip
(< 5 degrees) to NNE at the regional level [47], [49]. This
late Cretaceous formation comprises a fracture network that
is predominantly in the N-S; E-W directions, and secondarily
NE-SW and NW-SE directions [44], [47], in both cases with
sub-vertical dips associated to the tectonic evolution of the
Potiguar Basin. This fractured system is characterized by ver-
tical or sub-vertical joints and veins. Horizontal fractures and
fracture parallel to the Jandaira formation bedding also occur.
These structures are possibly related to the lithostatic pressure
relief process in the Potiguar Basin region [44], [50].

The presence of calcite veins with N-S, NNE-SSW,
and E-W directions are reported by [50], while stylo-
lites oriented predominantly in E-W and NNW-SSE direc-
tions are found by [47]. Additionally, there is formation
of circular to sub-circular subsidence structures, such as
sinkholes and rebate rings, given by the dissolution and
patent structuring of the Jandaíra Formation, which sustains
high plateaus of regional character with main directions
NE-SW [44], [47], [50].

Given the geological characterization and the extensive
areas of naturally fractured carbonate outcrops present in
the Jandaíra Formation, this region is of great interest for
geological studies focused on hydrocarbon reservoirs, like
the pre-salt reservoirs, in the Brazilian offshore. The Lajedo

Soledade outcrop, in particular, has NE-SW faults and E-W
fractures, which control its drainage system [29]. This out-
crop presents an important process of karstification resulting
from the dissolution of carbonate rocks by meteoric waters,
as described in [29], which led to the creation of cavities such
as the ravine used for this study. The karst dissolution process
in the ravine, as well as the characterization of stylolites and
primary discontinuities are best described in [30], based on
field and laboratory analyses. However, a more comprehensi-
ble geometric analysis of these features is yet to be seen, and
this is one key motivation for this work.

B. VOM ACQUISITION
For the UAV image acquisition in the ravine, we used a
DJI Mavic 2 Pro embedded with a Hasselblad 20 Megapix-
els camera. The ravine represents 7,000m2 of the outcrop,
in which 376 photos were taken with a camera tilt of 45◦, in a
flight lasting 14minutes and height of 3m for subsequent pho-
togrammetric reconstruction and generation of the textured
3D model.

The photogrammetric reconstruction follows the flow
(Figure 5) proposed by the software Agisoft Metashape R©1 -
version 1.6.2, which employs algorithms of SfM [51], [52]
identifying key points (Scale-invariant Feature Transform -
SIFT algorithm) in image pairs, and through bundle
adjustment estimate camera location to generate the point
cloud, whereafter the Multi-View Stereo algorithm [53], [54]
is used to create the dense point cloud. The dense point cloud
is triangulated generating a 3D mesh that will be texturized
generating the VOM.

C. FRACTURE INTERPRETATION IN
IMMERSIVE ENVIRONMENT
We used the software Mosis XP designed for geological
interpretation in an immersive virtual reality (iVR) system
with a head-mounted display (HMD) to extract the fracture
planes. This software integrates the Mosis2 suite, developed
by the Vizlab | X-Reality and GeoInformatics Lab.3 With the
iVR system set, theVOM is loaded onMosisXP project ready
for immersive geological interpretation where in this work we
use 3D data from the plane measurement tool exported as xyz
data.

The HMD used is an HTC Vive with a pair of controllers
(also visible within the software) tracked by two infrared
towers. The computer specs required for the iVR system are
relatively high due to the dual visual output of the HMD (one
for each eye) at a high refresh rate (90Hz) to avoid motion
sickness. The computer setup is an Intel Core i7-6820HK
2.70GHz (3.60GHz) CPU, 64GBRAM, anNvidia GTX 1080
8GB RAM graphic card, and Windows 10, 64-bit operational
system.

1http://www.agisoft.com/downloads/user-manuals/
2mosis.vizlab.cc
3http://www.vizlab.unisinos.br/
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FIGURE 4. Study area location: A - Geological Formations belonging to the Potiguar Basin, in the Rio Grande do Norte state, Brazil, adapted from [45];
B - Lajedo Soledade outcrop, with the ravine delimited in red. Reference System: World Geodetic System 1984 (WGS84).

FIGURE 5. Common SfM/MVS workflow to generate 3D texturized models
from UAV image acquisition.

D. VALIDATION
For validation of the proposed method to generate the 3D
stochastic DFN, we evaluate the Fisher statistics of both
stochastic and deterministic models. Each generated and
interpreted set will have a mean strike and dip, that con-
sidering the polar coordinates, is possible to determine the
angular distance between the stochastic and deterministic
fracture sets. This validation is done considering 30 stochastic
generations for each fracture set where we compute the mean
and standard deviation of the angle distance.

To validate the proposed method to balance the K-means
clusters after the elbow method definition, we run the origi-
nal spherical K-means clustering and the modified proposed
method 10 times for each set considering a small subset. The
dispersion Fisher k value is used in terms of mean, standard
deviation, min and max values to show the impact of the
proposed method.

E. EXPERIMENTAL SETTINGS
The fracture plane data from Mosis XP consists of x,y, and
z coordinates which are converted to strike, dip, and centroid
data following the steps presented in the prior section, while
the algorithm to obtain the optimal number of clusters or frac-
ture families is presented in Algorithm 1. We use the average
of 50 runs as max iterations considering 1 to 10 clusters.

FIGURE 6. Point cloud generated from photo alignment in the Agisoft
Metashape software.

After computing Fisher and spacing statistics the fracture
planes for the 3D DFN model are generated. The volumetric
sampling, in this case, will give theP32 areal fracture intensity
per volume with mean and standard values.

The 3D stochastic model to be generated will have a size
of 20m3 with individual cube samples of 1m3, while fracture
planes will have 4m2.

IV. RESULTS
The UAV-SfM-MVS photogrammetric processing (Figure 6)
resulted in a textured 3D model with 899,055 triangles
faces and texture resolution of 6 times 8k pixels showed in
Figure 7a. The iVR interpretation is illustrated in Figure 7b,
where we captured 638 planes using the bedding plane tool
(Figure 7c). Lastly, the measured plane locations are shown
in Figure 7d.

Applying the Elbowmethod in the fracture plane data from
the iVR interpretation, we identified the optimal number of
clusters as shown in Figure 8, highlighted by the inflection
point with 7 clusters.
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FIGURE 7. Fracture interpretation in Mosis XP in immersive mode. The red marked area in (a) is detailed in (b) showing the measured planes
and scale. In (c) the points marked to capture fracture planes and in (d), illustration of the planes captured in the outcrop.

TABLE 1. Result validation for the proposed clustering balancing
considering Fisher k values not lower than 25% range of the max value
against the unmodified random spherical K-means considering 10 runs
(70 random groups for each method).

FIGURE 8. Elbow method with 10 different cluster sizes.

Table 1 shows the results of the clustering balancing
method in comparison to the original spherical clustering,
where in 10 runs for each of the selected number of clusters
considering a subset of 10% of the data, the proposed method
showed a lower standard deviation (σ ). Also, the unmodified

FIGURE 9. Stereonet with fracture poles clustered using the proposed
method considering 7 clusters identified by the Elbow method.

method achieved Fisher k values closer to 1 indicating groups
with no directional trend.

Within each of the seven clusters shown in Figure 9 we
computed the Fisher statistics as shown in Table 2, while
a visual representation of the Fisher dispersion is shown
in Figure 10.
The mean (µ) and standard deviation (σ ) of the spacing

in each set were also calculated as shown in Table 3. Set
families with high mean and standard deviation spacing are
guaranteed to have at least one fracture represented in the
final model.

In Figure 11 the stochastic model is shownwith the fracture
generated for each set, alongside the volumetric model with
8,000 sample blocks colored according to the volumetric
fracture intensity P32, which presented a mean intensity of
22.57m−1, and standard deviation of 7.92.
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FIGURE 10. Visual representation of the Fisher dispersion for each set is shown as the red circle radius.

FIGURE 11. Stochastic generated fracture model considering the Fisher statistics and spacing for each set in (a), and
volumetric fracture intensity model (b) with individual sampling volume of 1m3, with 20m3 total in both models.

TABLE 2. Directional statistics for each set showing mean
direction/mean dip and computed dispersion values and Fisher angles.

TABLE 3. Spacing information regarding fracture planes for each set. n
indicates the number of planes contained in each set.

The Figure 12 shows the stereonets with fracture planes
generated for each clusters, matching the Figure 10, while the
number of fracture planes generated are shown in Table 4.

TABLE 4. Quantity of fracture planes generates for each set.

For the stochastic process validation considering 30
stochastic runs, we achieve low deviation on the distance
angle values indicating the statistical stability, while the mean
angle distances are minimal indicating that the stochastic
generations replicated the same behavior found in the deter-
ministic model as shown in Table 5.

V. DISCUSSION
The first of the proposed improvements, namely the modified
Elbow method to identify the optimal number of clusters
(Figure 8), proved an important step in the stochastic DFN
generation workflow as it reduces the bias when selecting
the number of fracture sets from the gathered data. It also
contributed to generating fracture data respecting a lower
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FIGURE 12. Visual representation of the Fisher dispersion for each stochastic set is shown as the red circle radius.

TABLE 5. Deterministic and stochastic mean strike/dip from each set and
mean angular distance computed for method validation considering
30 stochastic generations.

direction dispersion used for the Fisher generation. This is
a crucial factor as a reduced number of sets can generate
sets that do not follow a visible trend, and prior works
like [21]–[25] have generally ignored these characteristics of
groups’ dispersion.

Additionally, the proposed clustering balancing using the
Fisher k values of dispersion guarantees that the selected
clusters will follow amore defined trend. This is shown in our
validation step as without our method, the K-means spherical
clustering generated groups with values as low as 1.02 for
the Fisher k value of dispersion, while the balanced results
presented a minimum value of 30.43 and a lower standard
deviation between groups (Table 1). Our approach tackle a
concern also find by [25], [26], however, they only adjust the
ideal position of clusters centers and not the final clusters.

With cluster balancing, the data distributed in the sphere
in their respective sets shown in Figure 9 and the results pre-
sented in Table 2, prove the validity of the proposed method.
Additionally, from the proposed optimizations, our stochastic
model is able to reproduce the input data (10 and 11) with
average strike/dip differences equal to 0.03◦, having a set
with a difference of 0.19◦ and all others with values less
0.006◦ (Table 5).

Regarding the DFNmodeling, an important aspect to be set
is the plane form and dimensions that represent the fracture,
while the most common forms are ellipsoidal, rectangular,
or with the planes extending to infinity. This will impact
how the area of the plane will be measured to estimate the

fracture intensity in the volume P32 or how the topology will
be constructed as suggested by [55]. However, the squared
shape represented was the most appropriate to our fracture
model. Besides that, the sample volume size needs to be
further explored, as prior works have employed sizes varying
from centimeters to tens of meters [21], [56]–[58].

As for the VOM interpretation, the constant evolution and
improvement of UAV-SfM-MVS techniques for generating
VOMs have resulted in increasingly lighter meshes [59],
which can increase the accessibility for such immersive inter-
pretations, as performance capabilities of today’s computers,
graphic cards, and HMDs enable more people to experience
virtual reality.

The studied area presents steep and narrow sinkholes and
canyons from karstification and subsequent erosion of these
faults [29], [30], which makes access to these places difficult
and dangerous. The adequate collection of fracture planes
was possible due to the particularity of the immersive virtual
environment that allows navigating the outcrop safely and
reaching places that would not be possible in a real environ-
ment. Thus, the proposed framework showed a viable alter-
native as a mean to safely provide three-dimensional fracture
data in adequate quantity and quality for the generation of
numerical models from realistic fracture networks, which
reinforces previous work on these themes [60], [61].

VI. CONCLUSION
In this work, we presented a workflow to generate
3D stochastic DFN models, with algorithm optimiza-
tion for fracture plane clusterization. To obtain three-
dimensional data, we interpreted a virtual outcropmodel in an
immersive environment. The main conclusions are listed as
follows:
• The decision regarding the number of fracture sets, often
disregarded, can be automatized by adapting the Elbow
method to work with spherical data, reducing the user
bias in the process;

• Clusterization data can be improved by the analysis of
spherical statistics;
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• The automatic cluster balancing bringsmore data quality
for the stochastic processes generating fractures with
similar behavior to the input data.

Additional future works aim to integrate the DFN model
with multi-scale data from regional observations and porosity
data to generate a representative geo-cellular model of the
region. Also, further validation of the statistical models is to
be carried out by incorporating machine learning techniques.
Further analysis needs to be made concerning the number
of interpretations to verify how representative to the DFN
the acquired interpretations are. Concerning the proposed
clustering method and definition of the number of clusters,
future works will validate the proposed methods against other
state-of-the-art clusterization methods.
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