
Received May 12, 2022, accepted May 29, 2022, date of publication June 10, 2022, date of current version June 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3181995

An in-Depth Analysis of the Software Features’
Impact on the Performance of Deep
Learning-Based Software Defect Predictors
DIANA-LUCIA MIHOLCA , VLAD-IOAN TOMESCU, AND GABRIELA CZIBULA
Department of Computer Science, Babes-Bolyai University, 400347 Cluj-Napoca, Romania

Corresponding author: Diana-Lucia Miholca (diana.miholca@ubbcluj.ro)

This work was supported by the Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, within PNCDI III, under
Project PN-III-P4-ID-PCE-2020-0800.

ABSTRACT Software Defects Prediction represents an essential activity during software development
that contributes to continuously improving software quality and software maintenance and evolution by
detecting defect-prone modules in new versions of a software system. In this paper, we are conducting an
in-depth analysis on the software features’ impact on the performance of deep learning-based software
defect predictors. We further extend a large-scale feature set proposed in the literature for detecting
defect-proneness, by adding conceptual software features that capture the semantics of the source code,
including comments. The conceptual features are automatically engineered using Doc2Vec, an artificial
neural network based prediction model. A broad evaluation performed on the Calcite software system
highlights a statistically significant improvement obtained by applying deep learning-based classifiers for
detecting software defects when using conceptual features extracted from the source code for characterizing
the software entities.

INDEX TERMS Deep learning, Doc2vec, latent semantic indexing, software defect prediction.

I. INTRODUCTION
Software Defects Prediction (SDP) consists in identifying
defective software components, being considered an essen-
tial activity during software development. It represents the
activity of identifying defective software modules in new
versions of a software system [1]. SDP is considered of great
importance in software engineering, as it contributes to con-
tinuously improving the software quality. Developing high
quality software systems is expensive and, in this context,
SDP is used for increasing the cost effectiveness of quality
assurance and testing [2]. By detecting fault-prone modules
in new versions of a software system, SDP helps to allocate
the effort so as to test more thoroughly those modules [1].

SDP assists measuring project evolution, supports pro-
cess management [3], predicts software reliability [4], guides
testing and code review [1]. All these activities allow to
significantly reduce the costs involved in developing and
maintaining software products [5]. Moreover, particularly in

The associate editor coordinating the review of this manuscript and

approving it for publication was Hui Liu .

the case of safety-critical systems, SDP helps in detecting
software anomalies with possible negative effects on human
lives.

As the software systems complexity increases, the number
of software defects generated during the software develop-
ment will also significantly increase. This growing complex-
ity of software projects requires an increasing attention to
their analysis and testing. Numerous researches from the SDP
literature are based onmining historical and code information
during the software development process and then building
a prediction model (statistical, machine learning-based or
other) to predict software defects [6].

Despite its importance and extensive applicability, SDP
remains a difficult problem, especially in large-scale complex
systems, and a very active research area [7]. The conditions
for a software module to have defects are hard to identify
and, therefore, the defect prediction problem is computa-
tionally difficult. From a supervised learning viewpoint, pre-
dicting defects is a difficult task as the training data used
for building the defect predictors is highly imbalanced. The
faulty modules in a software system are greatly outnumbered

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 64801

https://orcid.org/0000-0002-3832-7848
https://orcid.org/0000-0002-3267-6801


D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

by the error-free modules. Therefore, conventional learning
algorithms are often biased towards the non-defective class.
Another important issue in SDP is related to the features
used for characterizing software entities (an entity may be a
component, class, module – depending on the targeted level
of granularity). As, generally, in machine learning (ML), the
classical approach is to use manually engineered features, tra-
ditional software metrics are usually used in SDP as features
characterizing the given software entities. Literature reviews
in SDP revealed that about 87% [8] of the case studies used
procedural or object-oriented software metrics.

The two prevalent research directions in the SDP literature
are: proposing software features relevant to the discrimina-
tion between defective and non-defective software entities
and building or recommending high-performing defects pre-
diction models.

When it comes to large amounts of data, deep learning
models are some of the best at making accurate predictions,
regardless of the origin of that data. As long as there is
correlation between the input information and the output, the
models will discover it. In order to use deep learning, the input
software features are written in tabular form, a data form that
has been extensively researched and for which many models
are available [9].

In the present work, we follow both above-mentioned
directions. Our study originated from three research
questions:

RQ1 Could the performance of predicting software defects
be enhanced by enlarging the software features pro-
posed for SDP with conceptual features extracted from
the source code? Which is the most appropriate feature
set to distinguish between defective and non-defective
software entities and to what extent is the performance
improvement significant from a statistical perspective?

RQ2 Could the relevance of the conceptual-based software
features be empirically sustained by both unsupervised
and supervised analyses conducted on a large scale
software system?

RQ3 Does deep learning-based defect prediction bring a
statistically significant improvement when compared
to traditional supervised classifiers?

With these research questions in mind, we have performed
an in-depth analysis of the software features’ impact on
the performance of software defect predictors. We have
extended the large collection of SDP features proposed by
Herbond et al. [10] with Doc2Vec and LSI-based conceptual
software features that capture the semantics of the source
code (including comments). An extensive study conducted on
different versions of the Calcite data set highlight, through
both unsupervised and supervised learning-based analyses,
that the conceptual features bring a statistically significant
improvement on the performance of SDP. As a second line
of research, we have extensively examined the effect of the
feature set identified as being the most relevant on the per-
formance of various defect predictors. To the best of our

knowledge, a study similar to ours has not been proposed in
the literature, so far.

The remainder of the paper is organized as follows.
Section II states and formalises the SDP problem, high-
lighting its importance and practical relevance. An extensive
review on existing machine learning-based approaches for
predicting software defects as well as the data sets and fea-
tures used in the SDP literature are presented in Section III.
Section IV presents the experimental data and methodology
used in our work. Section V details the first stage of our
research, which consists in a machine learning-based analysis
of the software feature sets’ relevance. The performances
obtained when applying various defect prediction models are
comparatively analysed in Section VI. The threats to validity
are discussed in Section VII, while Section VIII highlights
the conclusions of our paper and draws directions to further
extend our study.

II. PROBLEM STATEMENT AND RELEVANCE
Software defects are logic or implementation errors that cause
the system to operate in unintended ways or to produce
incorrect results. SDP consists in identifying the software
components that contain defects.

Let us consider a software system Syst described by
a set of software entities (modules, classes, methods or
functions, depending on the chosen granularity), Syst =
{e1, e2, . . . , en}. The software entities are represented as
numerical vectors and are characterized by a set of software
features (usually software metrics) SF = {sf1, sf2, . . . , sf`}.
Thus, each element from the vector associatedwith a software
entity represents the value of a software feature (or metric)
computed for that entity. A software entity ei ∈ Syst is rep-
resented as an `-dimensional vector, ei = (ei1, ei2, . . . , ei`),
where eij expresses the value of the software metric sfj com-
puted for the software entity ei.

From the perspective of supervised machine learning, SDP
can be formulated as a binary classification problem. There
are two possible target classes for the software defect predic-
tor (or classifier): the positive class of the defective software
entities (labeled as ‘‘+,’’ or ‘‘1’’), and the negative class of the
defect-free software entities (labeled as ‘‘-,’’ or ‘‘0’’). A train-
ing data set including both positive and negative samples will
be used for building the software defect predictor that will
be further used for classifying unseen instances (software
entities) in order to predict their defect-proneness.

The target function to be learned in a SDP task is the
mapping t : Syst → {‘‘+,’’ ‘‘-’’} which has to assign to
each software entity e a class t(e) ∈ {‘‘+,’’ ‘‘-’’}, denoting
if the entity is defective or not. Thus, from a supervised
classification perspective, the SDP task may be formalised
as searching a hypothesis h ≈ t (i.e., an approximation of the
target function to be learned) that best fits the training data.

SDP has a broad applicability. Clark and Zubrow [3]
have analysed the importance of predicting software defects.
One important motivation for performing defect prediction
is that it helps software managers to measure how software

64802 VOLUME 10, 2022



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

projects evolve. In addition, it supports process management
by assessing the software product’s quality [3], thus being
essential for effective software quality assurance. As shown
in [5], SDP significantly reduces the cost of the processes that
aim at ensuring the quality of software.

Software quality assurance involves numerous processes,
including testing and code review, also called code inspec-
tion. SDP makes testing more efficient by allowing to focus
on the components identified as defective [1]. By increasing
the effectiveness of testing, SDP contributes to improving the
quality of the next versions of a software project. Identifying
software defects is also useful for guiding code review by
indicating the locations in the source code that are very likely
to be defective and thus require particular attention.

SDP is also useful for predicting software reliability, which
is imperative in software development, particularly for large
scale and complex software projects [4].

III. BACKGROUND
The current section starts by describing, in Section III-
A, the publicly available data sets used as case studies
for SDP. Section III-B reviews existing supervised machine
learning-based solutions for SDP. The section ends with a
description of the features used for SDP, both manually and
automatically engineered ones.

The prediction of defects in software systems is a highly
active research area. For instance, Hall et al. [7] have iden-
tified, in a systematic review of SDP, 208 studies on defect
prediction, all published between 2000 and 2010, and numer-
ous other studies have been published since then.

There is a great interest in developing new high-
performance software defect predictors. Besides the interest
in developing accurate and robust defect predictors, there
is also interest in defining new relevant software features
on the basis of which to distinguish between defective
and non-defective software modules. Therefore, the research
efforts in the field of SDP take one of the following two
directions: proposing new accurate classifiers or designing
new relevant features [11].

A. DATA SETS FOR SDP
The vast majority of existing studies [11]–[22], have con-
sidered, as experimental data, some of the SDP data sets
available in Promise Software Engineering Repository [23],
which is currently known as SeaCraft (Software Engineering
Artifacts Can Really Assist Future Tasks) [24]. They contain
static OO metrics (such as the CK metrics proposed by Chi-
damber and Kemerer [25]) or traditional metrics associated
with the quality of the procedural source code (such as the
ones proposed by McCabe [26]).

Other publicly available data sets for SDP are the fol-
lowing: Nasa [27], Eclipse [28], Softlab [29], ReLink [30],
AEEEM [31], Netgene [32], JIT [33],MJ12A [34], Audi [35],
Shippey [36], GitHub [37], Rnalytica [38], FJIT [39] and
Unified [40].

As suggested in the software engineering literature, the
publicly available and thus reused SDP data sets are subject to
two problems: the noisy labels [10] and the fact that the soft-
ware features are insufficient or insufficiently relevant [41].
The noisy labels negatively affect the SDP models, while
also predisposing the results of experimental evaluations to
be unreliable [10], while the lack of significant features con-
siderably limits the SDP performance [41].

Regarding the problem of anomalous class labels, most
publications focus on the SZZ algorithm [42], [43], which
is the most used algorithm for collecting defect labels [10].
Therefore, the majority of the public SDP data sets, includ-
ing Eclipse [28], AEEEM [31], Netgene [32], Shippey [36],
GitHub [37], JIT [33], Audi [35] and FJIT [39] are labeled
using SZZ.

More studies revealed multiple issues with SZZ, caused by
identifying insignificant changes [44], disregarding the field
mentioning the affected version from issue reports [45], using
a six-month time frame for attributing defects to releases [38]
or relying on the supposedly correct labeling of issues in the
issue tracking system.

In a very recent such study, Herbond et al. [10] performed
an empirical assessment, on 398 releases of 38 Apache
projects, focused on the defect labeling effectuated by the
SZZ algorithm. The study concluded that SZZmisses approx-
imately one fifth of the bug fixing commits, while only about
half of the commits identified as bug fixing commits were
truly bug fixes.

The authors have also assessed SZZ-RA [46], which is
the state-of-the-art variant of SZZ. The experimental results
disprove the loss of bug fixing commits, but the problem
that only about half of the commits detected as bug fixes are
indeed bug fixes persists.

In order to mitigate these problems, Herbond et al. [10]
have slightly extended SZZ-RA, by adding a filter to ignore
documentation and test files and by linking commits and
issues based on Jira issue pattern.

B. SUPERVISED LEARNING-BASED SDP APPROACHES
Predictive machine learning models have been extensively
applied in the SDP literature with the goal of predicting
software defects.

Ruchika Malhotra [47] has compared statistical and ML
methods, as solutions for SDP. In particular, Logistic Regres-
sion has been compared with six ML approaches comprising
Decision Trees, Artificial Neural Networks, Support Vector
Machines, Cascade Correlation Networks, Group Method of
Data Handling (GMDH) Polynomial Networks, and Gene
Expression Programming. These learning models have been
evaluated on two Ar data sets and the best performance has
been obtained using Decision Trees.

Panichella et al. [48] proposed a combined approach
called COmbined DEfect Predictor (CODEP), which com-
bines the classifications provided by different ML techniques
to improve the detection of defective entities. CODEP has
been evaluated on ten open source software systems in the

VOLUME 10, 2022 64803



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

context of cross-project SDP. The authors concluded that the
accuracy of the predictions has been improved by combining
different classifiers.

Xuan et al. [15] investigated the performance of within-
project defect prediction based on 10 defect data sets from the
Promise repository using six state-of-the-art ML approaches.
Ten-fold cross-validation has been performed based on each
data set and several evaluation measures were reported.

In order to better cope with noise and imprecise informa-
tion, Marian et al. [16] have investigated a fuzzy Decision
Tree method for SDP. The experimental results obtained on
JEdit and Ant demonstrated the superior performance of the
fuzzy approach when compared to a non-fuzzy approach.

A solution for SDP using a Bayesian approach has been
proposed by Okutan and Yildiz [20]. The authors have
applied the K2 algorithm [49] on nine publicly available
data sets. Two new software metrics have been added to
the software metrics from the Promise repository: number
of developers (NOD) and lack of coding quality (LOCQ).
The efficiency of different software metric pairs has been
comparatively analyzed.

Highly appealing in the SDP literature are the cross-project
defect predictors. They allow predicting defects in a target
software system based on historical data from other systems.
Therefore, they are more general and allow predicting defects
in projects with limited historical data.

The problem of cross-project SDP, which allows predicting
defects in a target software system based on historical data
from other systems, has been approached in several studies
including the ones of Yu and Mishra [50], Jaechang and
Sunghunin [51] or Canfora et al. [14].

C. FEATURES USED FOR SDP
The SDP literature comprises various approaches proposed
to engineer features relevant for SDP (usually software met-
rics that are considered to be appropriate for discriminating
between defects and non-defects) as well as methods to auto-
matically learn features using machine learning techniques,
particularly deep learning models.

Regarding the insufficiency of relevant features for
enabling the discrimination between defective and defect-free
software entities, a relatively recent but active research direc-
tion in the SDP literature aims at defining new software
features that are relevant for SDP.

Along this direction, in the last two decades, a notewor-
thy amount of research studies focused on the reliance of
coupling and cohesion for predicting software defects [52].
If until relatively recently the studies focused exclusively on
the coupling and cohesion metrics from the traditional suites
(such as the Chidamber and Kemerer [25] metrics suite), the
latest studies are concerned with updating, extending and
complementing them, by proposing new relevant coupling
and cohesion measures [53], [54].

A systematic mapping study on object-oriented (OO) cou-
pling and cohesion metrics has been performed by Tiwari
and Rathore [52]. The authors selected 137 research papers.

Of these, 17% introduced new coupling metrics, 8% intro-
duced new cohesion metrics, while 24% introduced both
coupling metrics and cohesion metrics. The rest of the studies
(51%) focused only on assessing the existing metrics suites.
The prevalent criterion by which the coupling and cohesion
metrics have been evaluated is their relevance for predicting
software defects.

In a subsequent study, Rathore and Kumar [55] have con-
ducted a survey on the existing approaches for SDP, with
emphasis on the considered software metrics, quality of data,
prediction models and performance indicators. Their review
uncovered that the majority of the studies (39%) used OO
metrics. The explanationRathore andKumar have formulated
for the high use of OO metrics for SDP is the inability
of traditional software metrics to capture OO features that
underlie the modern software development practices, includ-
ing coupling and cohesion. The authors concluded that more
studies concerned with the proposal and the assessment of
new metrics suites are necessary.

An approach for automatically learning semantic fea-
tures from token vectors extracted from Abstract Syntax
Trees (ASTs) has been proposed by Wang et al. [11]. The
authors have used Deep Belief Networks (DBNs) to auto-
matically learn features from token vectors extracted from
the programs ASTs. The features have then been used for
both within-project and cross-project SDP. Ten open source
projects from the Promise repository have been consid-
ered. The semantic features have been comparatively eval-
uated against 20 traditional features (software metrics in the
Promise repository), as well as the term frequencies of the
AST nodes (i.e., the ones used to train the DBNs). The
evaluation results have confirmed that the semantic features
are able to lead to superior predictive performance and thus
are more relevant to SDP.

Features that have been automatically learned through a
process similar to the one proposed by Wang et al. [11] are
combined with traditional features in a subsequent study
performed by Li et al. [17]. To generate semantic and syn-
tactic features, DBN has been replaced by Li et al. with
CNN, given that the Deep Learning community claims that
CNN is better than DBN, since the latter can capture local
patterns better than the former. The automatically learned
features have been fed into a Logistic Regression classifier,
which has been evaluated on 7 open source software projects
from Promise. The empirical results confirmed that the CNN
based prediction model outperforms the classifiers based
on traditional features, while combining the automatically
learned features with traditional features raises performance
even more.

Another study proposing using AST-based features for
SDP is the one performed byDam et al. [18]. After highlight-
ing that traditional software metrics are not so effective, while
code tokens carry semantic information, the authors have pro-
posed a tree-structured network of Long-Short Term Mem-
ory (LSTM) units as a SDP prediction model fed with AST
embeddings. The features generated by LSTMs have been fed

64804 VOLUME 10, 2022



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

into traditional classifiers (Logistic Regression and Random
Forest). As evaluation case studies, the authors considered
the same ten open source Java projects from the Promise
repository as in the study performed by Wang et al. [11], but
they have also considered a data set from open source projects
contributed by Samsung and developed in the C programming
language. As empirical results, Random Forest performed
better on the Samsung data set, while in the case of the
Promise data sets, the Logistic Regression proved superior
performance.

Huo et al. [19] have proposed Convolutional Neural Net-
work for Comments Augmented Programs (CAP-CNN) as a
model for SDP. Their approach is based on using pretrained
Word2vec to encode code and comments into numeric vectors
and then feeding the so-obtained vectors into two separate
CNNs. Eight Promise data sets have been employed in the
empirical evaluation, while using resampling for their balanc-
ing. The evaluation results highlighted that CAP-CNN out-
performed, for most experiments, CNN, as well as, standard
classifiers such as Logistic Regression or Naive Bayes, but
also Deep Belief Network [11].

In a previous study [56], we have also proposed a seman-
tic features based hybrid SDP model combining Artificial
Neural Networks with Gradual Relational Association Rules
(GRARs). After encoding the source code and comments
into fixed-length numeric vectors, GRARs mining has been
employed to uncover interesting GRARs that are able to
discriminate between defective and defect-free software com-
ponents. Based on the differentiating GRARs, a Multilayer
Perceptron is trained in order to learn the classification func-
tion. The empirical evaluation has been performed on 3 soft-
ware projects from the Promise repository. The experimental
results revealed that considering semantic features instead
of traditional metrics preponderantly leads to superior SDP
performance.

In 2020, Wang et al. [57] extended their prior publi-
cation [11], by doubling the within-project SDP with
cross-project SDP, proposing new techniques to process
incomplete code, updating the performance assessment sce-
narios and performing new experiments on open-source com-
mercial projects. The experimental results reconfirmed that
the proposed DBN-based semantic features outperform tra-
ditional SDP features.

Very recently, Sikic et al. [58] have proposed DP-GCNN,
a SDP model based on a Convolutional Graph Neural
Network (GCNN), which is fed with AST data. The neu-
ral network architecture employed is specifically tailored
for graph data.As experimental data, the authors have con-
sidered 7 SDP data sets from the Promise repository. The
experimental results revealed that DP-GCNN’s performance
is superior to those of the traditional SPD models and com-
parable with those of the state-of-the-art AST-based SDP
models, including [57].

There are also traditional metrics based Deep Learning
approaches in the SDP literature. Two recent studies [59],
[60] have proposed Siamese Deep Neural Networks for SDP.

Unlike the previously reviewed papers, the study was per-
formed on NASA data sets instead of Promise data sets.

IV. METHODOLOGY
This section introduces the methodology underlying our
study on how the software features used in SDP impact the
SDP performance. The Calcite data set used as case study
and the SDP software features proposed in the literature for
this data set are described in Section IV-A.

The pipeline proposed for our study consists of the follow-
ing stages:

1) Adding conceptual features. The additional set
of conceptual software features proposed for cap-
turing the semantics of the source code in order
to enlarge the original feature set for the Calcite
data set (Section IV-A) is introduced and detailed in
Section IV-B.

2) Features relevance analysis. An in-depth analysis on
various subsets (described in Section IV-C) of the orig-
inal features set extended with the conceptual features
proposed at the previous stage is then conducted in
Section V. An extensive study performed on sixteen
versions of Calcite has the goal of determining, through
a supervised learning-based analysis reinforced by an
unsupervised one, the set of features that brings a sta-
tistically significant improvement on the performance
of predicting software defects on Calcite data.

3) Predictive models performance analysis. The last
stage (Section VI) consists in a study on the perfor-
mance of various defect predictors on the Calcite data
set using the most relevant feature set previously iden-
tified.

A. CASE STUDY
As a case study, we selected Apache Calcite, an open-source
dynamic data management framework [61]. The 16 con-
sidered releases of Calcite software are: 1.0.0, 1.1.0, 1.2.9,
1.3.0, 1.4.0, 1.5.0, 1.6.0, 1.7.0, 1.8.0, 1.9.0, 1.10.0, 1.11.0,
1.12.0, 1.13.0, 1.14.0 and 1.15.0. We are making our data sets
publicly available [62].

We started from the data provided by Herbond et al. [10],
namely the values for 4189 software features for each soft-
ware instance from Calcite and the defect labels produced by
their extended version of SZZ, which is SZZ-RA [46].

The 4189 features characterizing the software entities from
the Calcite data set [10] include:

• Static code metrics collected using mecoSHARK [63].
• Clone metrics computed using mecoSHARK [63].
• Metrics based on the warnings produced by the PMD
static analysis tool [64].

• AST node counts computed using coastSHARK [63].
• The number of different types of changes [65] and refac-
torings [66] from the last six months, collected using
changeSHARK and refSHARK [63], respectively.

VOLUME 10, 2022 64805



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

TABLE 1. The feature sets used in our case study.

TABLE 2. Total number of software instances, number of defective
software instances and rate of defective instances for all calcite versions.

• Code churn metrics proposed by Moser et al. [67], Has-
san [68] and D’Ambros et al. [31].

Additionally, all the 13 schemes proposed by Zhang et al. [69]
for aggregating class, interface, enum, method, attribute and
annotation metrics have been applied to expand the feature
space.

We are focusing in our study on five features subsets: the
entire set of software metrics and four other feature subsets
with the largest dimensionality. The features sets considered
in our case study are summarized in Table 1. Each row from
the table indicates a feature (sub)set, its dimensionality and a
brief description of the contained features.

Descriptive statistics for the available versions of Calcite
are presented in Table 2. For all Calcite versions, the total
number of software instances, number of defective software
instances and defective rate are given. Table 2 reveals that
both the defective rate and the number of faulty entities have
a general decreasing tendency during the evolution of the
Calcite software system. In the latest release of the soft-
ware (version 1.15.0) there is the lowest defective rate and
the smallest number of software defects. This tendency is
expectable since as the system evolved it was improved and
defects were corrected.

For better understanding the complexity of the software
defect prediction task during the evolution of the Calcite
software, we computed for each data set (corresponding to
a software version) three difficulty measures. Following the
definition given by Zhang et al. [70], the difficulty of a given
class c (‘‘+’’ or ‘‘-,’’ in our case) is computed as the propor-

TABLE 3. Difficulty values for the versions of calcite software, computed
considering the entire set of features proposed in [10] (denoted by All).

tion of software entities labeled as c for which the nearest
neighbor (computed using the Euclidean distance) belongs to
the opposite class (i.e., ‘‘-’’ or ‘‘+,’’ respectively). The overall
difficulty of a data set is expressed as the weighted average
of the difficulties computed for the defective (positive) and
non-defective (negative) classes. Intuitively, the difficulty of a
certain class indicates how hard is to distinguish the instances
belonging to that class, considering a given vectorial repre-
sentation for the software entities.

Table 3 presents the values for the previously described
difficulty measures for each version of the Calcite system,
considering the entire feature set (labeled as All in Table 1).
The second column from the table denotes the difficulty for
the defective class (the positive one), while the third column
depicts the difficulty values for the non-defective class (the
negative one).

Figure 1 plots the variation of the defective rates and
difficulties for each version of the Calcite data set. One can
observe from the figure that there is a strong correlation
between the defective rate and the difficulty values during
the evolution of the software. The same relationship may be
observed from Table 4 that presents the Pearson correlation
coefficients [71] between the defective rates and the difficulty
values for all versions of the Calcite software. However, even
if there is a strong linear relationship between the defective
rate and the difficulty for the positive class, the correlation
is inverse (negative) and thus it indicates that the number
of defects and the difficulty for the defective class tend to
move in opposite size and direction from one another. This is

64806 VOLUME 10, 2022



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

TABLE 4. Pearson correlations between the defective rates and the
difficulty values for all versions of calcite software.

FIGURE 1. Variation of defective rates vs. difficulties during the evolution
of the Calcite system.

not unexpected since, intuitively, the smaller the number of
defects is, the harder it is to differentiate them from the entire
set of entities.

Due to the severe imbalancement of the two classes (the
number of defects are highly outnumbered by the number
of non-defective ones), the main difficulty is that of pre-
dicting the positive class. Therefore, we consider, as the
real difficulty, the one on the positive class. A difficulty of
1.0 means that every instance of the respective class has as
its nearest neighbour an entry from the other class. That level
of dissimilarity between positive entries makes it incredibly
difficult for a classification model to correctly identify that
class. It can be observed that some data sets have difficulties
that come close to 1.0, while for all of them, the positive
entries are mostly surrounded by negative ones (difficulty >
0.5).

B. PROPOSED CONCEPTUAL-BASED FEATURES
As shown in Section III, numerous ML techniques applied
for predicting software defects are based on using classic
software metrics as input features. Using these data sets, SDP
models can be built without considering the source code of
the analyzed software.

Rathore and Kumar [55] concluded their extensive review
on existing SDP approaches by emphasizing the need to
propose and validate new features that can be relevant for
discriminating between defective and non-defective software
entities.

Moreover, various studies from the literature [17], [18]
reveal that the traditional software metrics are unable to cap-
ture the semantics of the source code. Besides the structural
relationships existing in a software system and expressed
by most of the software metrics, it would be relevant to
consider the textual information contained in the source code

as well. In this regard, it is agreed that conceptual software
features extracted from the source code (identifiers, com-
ments, etc) are able to capture semantic characteristics that
structural metrics are not entirely able to express. Extracting
conceptual (semantic) information from comments and iden-
tifiers within the source code has been also investigated in
the software engineering literature for expressing conceptual
coupling between software components [72], [73].
Since 2016, SDP many researches focused on using

DL models and semantic features extracted from the
source code. Recent research papers (Yang et al. [74] and
Wang et al. [11]) introduced Deep Belief Neural Net-
works (DBN) for performing defect prediction based on code
analysis. Wang et al. [11] argued that besides the classical
software metrics, the semantics of code should also be con-
sidered for SDP. The authors proposed DBN to automatically
learn semantic features from input vectors of tokens extracted
from the AST of the source code. Dam et al. [18] first
used Long Short Term Memory (LSTM) networks to learn
semantic features from the AST which were used to train a
Logistic Regression (LR) and a Random Forest (RF) model.
Traditional metrics were combined with features learnt from
AST using a Convolutional Neural Network (CNN) by
Li et al. [17]. Šikic et al. [58] used a graph convolutional
neural network (GCNN) for processing the information of
the nodes and edges from the AST of the source code for
classifying the module as being defective or non-defective.

Doc2Vec [75] and LSI [76] models may also be used for
unsupervisedly learning conceptual-based features from the
source code. Both models are used for representing texts (in
our case, source code) as fixed-length numerical vectors.

Doc2Vec, or Paragraph Vector is a multilayer percep-
tron (MLP) based model proposed by Le and Mikolov [75].
It allows expressing variable-length textual information as a
fixed-length dense numeric vector, called paragraph vector,
thus being an alternative to common models such as bag-of-
words and bag-of-n-grams.

A first advantage of Doc2Vec over the traditional models
is that it considers the semantic distance between words [75].
Therefore, privatewill be closer to protected than to boolean.
An additional advantage over bag-of-words is that it also
takes into consideration the words order, at least in a small
context. Despite the fact that bag-of-n-grams, with a large
n, also takes into account the word order in short contexts,
it suffers from high dimensionality and data sparsity.

Doc2Vec extends Word2Vec, which learns distributed vec-
tor representations of words. Doc2Vec learns distributed
representations for variable-length pieces of text, called para-
graphs, ranging from sentences to entire documents.

The experimental results of previous studies we have con-
ducted [54], [56] revealed that combining Doc2Vec and LSI
is appropriate and increases the predictive performance.

Using Doc2Vec and LSI, the entities from a software sys-
tem are represented as conceptual vectors. The conceptual
vectors are vectors of numerical values corresponding to a
set S = {s1, s2, . . . , s`} of conceptual (or semantic) features

VOLUME 10, 2022 64807



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

unsupervisedly learned from the source code. Thus, a soft-
ware entity ei is represented as an `-dimensional vector in
Doc2Vec and LSI spaces:

(1) eDoc2Veci = (eDoc2Veci1 , · · · , eDoc2Veci` ), where eDoc2Vecij
(∀1 ≤ j ≤ `) denotes the value of the j-th semantic
feature computed for the entity ei by using Doc2Vec.

(2) eLSIi = (eLSIi1 , · · · , eLSIi` ), where eLSIij (∀1 ≤ j ≤ `)
denotes the value of the j-th semantic feature computed
for the entity ei by using LSI.

In our study, for extracting the conceptual vectors corre-
sponding to the software entities, the unsupervised learning
models Doc2Vec and LSI are used. Both Doc2Vec [75] and
LSI [76], also known as Latent Semantic Analysis (LSA),
are models aimed to represent texts of variable lengths
as fixed-length numeric vectors capturing semantic charac-
teristics, but Doc2Vec is a prediction-based model trained
using backpropagation together with the stochastic gradient
descent, while LSI is a statistical, count-based model.

We opted for ` = 30 as the length of the conceptual vectors
extracted using Doc2Vec and LSI. For building the corpora
for training, we filtered the source code (including comments)
afferent to each class so as to keep only the tokens presumably
carrying semantic meaning. So, operators, special symbols,
English stop words or Java keywords have been eliminated.
For both Doc2Vec and LSI, we have used the implementation
offered by Gensim [77].

C. FEATURE SETS USED
In this section we are describing the feature sets that will be
further used n Section V in our study performed on Calcite
data set. The proposed study is aimed to determine, through
a supervised learning-based analysis reinforced by an unsu-
pervised one, the set of features that brings a statistically
significant improvement of the SDP performance on Calcite
data.

Twelve feature sets will be further experimented:

1.-5. The first five feature sets (labeled as All, SM, PMD,
D’Ambros, AST) are the features (sub)sets described
in Table 1.

6.-8. The next three feature sets, labeled as AST+SM,
AST+PMD and AST+D’Ambros are obtained by
fusing the AST-based features and the SM, PMD and
D’Ambros features sets, respectively. We decided to
use the AST-based features in all these combinations
since the literature reveals various approaches [17],
[18], [58] in which deep learning models are used to
learn relevant features starting from the ASTs of the
source code.

9.-10. The next two feature sets, denoted by Doc2Vec and
LSI, are the conceptual features from Doc2Vec and
LSI spaces, as described in Section IV-B.

11. The feature set labeled as Doc2Vec+LSI is repre-
sented by fusing the Doc2Vec and LSI features.

12. The last feature set, denoted by All+Doc2Vec+LSI,
is obtained by fusing the feature set All with the

conceptual features within the Doc2Vec+LSI feature
set.

V. FEATURE SETS RELEVANCE ANALYSIS
As directions for further research in SDP, Herbond et al. [10]
have recommended that analyses have to be performed in
order to uncover the most relevant subsets of the extensive
metrics set they proposed.
Following this idea and the methodology introduced in

Section IV, with the goal of answering RQ2, we are exam-
ining the feature sets proposed in Section IV-C for deciding,
through supervised and unsupervised learning-based analy-
ses, their relevance in the context of SDP applied on the
Calcite data set.
In SectionV-A a supervised learning-based analysis will be

conducted to decide the best feature set (from those described
in Section IV-C), namely the set of features that provides a
statistically significant performance improvement for a deep
learning defect predictor applied on all the versions of the
Calcite software. Afterwards, the results of the supervised
learning-based analysis are strengthen in Section V-B by an
unsupervised learning-based study.

A. SUPERVISED ANALYSIS
For determining which is the most relevant feature set for
characterizing the software entities from the Calcite system
(i.e., the set of features able to discriminate best between
defective and non-defective entities) we decided to use a
highly performant deep learning classifier and to evaluate its
performance (in terms of multiple performance evaluation
metrics) on all versions of Calcite, described by using all
12 feature sets (described in Section IV-C).
The deep learning classifier we decided to use, denoted by

DL-FASTAI, is implemented in the FastAI machine learning
library [78]. It is composed of an Artificial Neural Network
combined with embeddings of the input layer. The archi-
tecture consists of 1 input, 1 output and 2-4 hidden layers,
depending on the number of features. Compared to other
deep learning models, especially Convolutional Neural Net-
works (CNNs) used in computer vision, this ANN model is
very small and fast, with training times under 2 minutes on
our data set and inference time under 1 second per instance
at runtime, making it suitable for real-time use. The model is
trained using the FastAI ’fit one cycle’ method, which uses a
learning rate that varies according to a specific pattern: first
it increases, then it decreases and the process is repeated for
each epoch.
In order to evaluate the performance of the DL-FASTAI

model, we employed the following evaluation method-
ology. The data was split into 70% train, 10% valida-
tion and 20% test sets. In order to get consistent results,
cross-validation on 10 experiments with different splits had
been done.
During the cross-validation process, the confusion matrix

for the binary classification task has been computed for each
testing subset. Based on the values from the confusion matrix

64808 VOLUME 10, 2022



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

(TP - number of true positives, FP - number of false positives,
TN - number of true negatives and FN - number of false
negatives), multiple performance metrics from the supervised
learning literature have been computed. For each metric,
the values have been averaged during the cross-validation
process and the 95% confidence interval (CI) of the mean
values has been calculated. The performance metrics used in
our evaluations are summarized below:

1) Accuracy (Acc, computed as the percentage of correct
classifications), Acc = TP+TN

TP+FP+TN+FN .
2) Precision for the positive class (Prec, also known as

positive predictive value), Prec = TP
TP+FP .

3) Precision for the negative class (NPV , the negative
predictive value), NPV = TN

TN+FN .
4) Sensitivity (Sens, the true positive rate, also known as

recall), computed as Sens = TP
TP+FN .

5) Specificity (Spec, the true negative rate), Spec =
TN

TN+FP .
6) Area under the ROC curve (AUC). The SDP lit-

erature reveals that AUC is a suitable measure for
evaluating the performance of the software defect clas-
sifiers [79]. In general, the AUC measure is employed
for approaches that yield a single value, which is then
converted into a class label using a threshold. Thus,
for each threshold value, the point (1 − Spec, Sens)
is represented on a plot and the AUC is computed as
the area under this curve. For the approaches where
the direct output of the defect classifier is the class
label, there is only one (1− Spec, Sens) point, which is
linked to the (0, 0) and (1, 1) points. The AUCmeasure
represents the area under the trapezoid and is computed
as AUC = Sens+Spec

2 .
7) Area under the Precision-Recall curve (AUPRC).

Somehow similarly to the ROC curve, the Precision-
Recall curve represents a two-dimensional plot of
(sensitivity, precision) points computed for different
values for the threshold applied for deciding the output
class. For the classifiers for which the output is the
class label (obtained without thresholding the output
value), the point (sensitivity, precision) is linked to the
points at (0,1) and (1,0), and the area under the result-
ing trapezoid is computed as AUPRC = (Prec+Sens)

2 .
AUPRC is considered a good measure for imbalanced
classification and it also has higher values for better
classifiers.

8) Matthews Correlation Coefficient (MCC) [80] is
also considered to be a good evaluation metric for
imbalanced data sets and is computed as MCC =

TP×TN−FP×FN
√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

. MCC takes values in
the [-1, 1] interval, the value 1 denoting a perfect clas-
sifier. The value -1 is returned if every prediction of the
model is incorrect (TP = TN = 0). A value of 0 means
the same performance as random guessing. Also, if any
row or column of the confusion matrix is 0, MCC is
undefined.

TABLE 5. The winning feature set(s), win(v ), and the number of
performance metrics (denoted by n(v, win(v ))) whose values are the
highest for the winning feature set(s), computed for each calcite version.

9) F-score for the ‘‘+’’ class (F-score+, computed as the
harmonic mean between the precision for the positive
class and the sensitivity/recall), F-score+ = 2

1
Prec+

1
Sens

.

10) F-score for the ‘‘-’’ class (F-score−, computed as the
harmonic mean between the precision for the negative
class - NPV and the specificity - recall of the negative
class), F-score− = 2

1
NPV +

1
Spec

.

11) Overall F-score (F1) computed as the average
between F-score+ and F-score−.

12) Weighted F-score (F1w) is computed as the weighted
average between F-score+ and F-score−, where the
weights are computed as the defective and non-
defective rates, respectively.

All the previously mentioned evaluation measures range
from 0 to 1, excepting MCC, which ranges from -1 to 1. For
better classifiers, larger values are expected.

For all 16 versions of the Calcite system and all
12 feature sets selected for analysis (as presented in
Section IV-C), the 12 evaluation metrics previously described
have been computed. For a given version v (v ∈

[1.0.0 − 1.15.0] of the Calcite framework and a given
feature set fs (fs ∈ {All, SM, PMD, D’Ambros, AST,
AST+SM, AST+PMD and AST+D’Ambros, Doc2Vec,
LSI, Doc2Vec+LSI, All+Doc2Vec+LSI}), the value n(v, fs)
is computed as the number of performance metrics p (p ∈
{Acc, Prec, NPV , Sens, Spec, AUC , AUPRC , MCC , F-
score+, F − score−, F1, F1w} whose values are the highest
for the feature set fs. Next, the ‘‘winning’’ feature set for
a version v, denoted by win(v) is considered to be the one
that maximizes n(v, fs), i.e., win(v) = argmax

fs
n(v, fs). Then,

for each feature set fs we compute the value WIN (fs) =∑
v

win(v).

Table 5 presents, for each Calcite version v, the winning
feature set(s),win(v), and the number of performancemetrics,
n(v,win(v)), whose values are the highest for the winning
feature set(s).

VOLUME 10, 2022 64809



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

TABLE 6. Number of WIN values computed for each feature set, after
evaluating the DL-FASTAI classifier on all calcite versions. The feature sets
are listed in the decreasing order of the WIN values.

Table 6 presents the feature sets fs for which a non-zero
value has been obtained for theWIN (fs) measure. The feature
sets are listed in the decreasing order of theWIN values.
From Table 6 we observe that the feature set with the

maximum number of wins is Doc2Vec+LSI, the feature set
obtained by fusing the proposed Doc2Vec and LSI semantic
features. We remark that the feature set containing only the
original features (All) [10] was not the winning feature set
for none of the Calcite versions. Still, the joint feature set
All+Doc2Vec+LSI was the second best feature set (the win-
ning feature set for 3 Calcite versions). This suggest that the
conceptual features extracted from the source code through
Doc2Vec and LSI are the best for distinguishing between the
defective and non-defective software entities.

Tables 7 and 8 present the performance metrics val-
ues obtained by evaluating the DL-FASTAI classifier on
all Calcite versions characterized by the Doc2Vec+LSI,
All+Doc2Vec+LSI and All feature sets. 95% CIs are used
for the results. For each of the Calcite versions, the feature
set that provides the best performance metrics (the maximum
number of best performance values) is highlighted.

From Tables 7 and 8 one observes that the Doc2Vec+LSI
feature set is the best for 67% of the Calcite versions
(10 out of 15), when compared to All+Doc2Vec+LSI
and All feature sets. For verifying the statistical signif-
icance of the differences observed between the evalua-
tion metrics values obtained for Doc2Vec+LSI features
and All+Doc2Vec+LSI/All features, a one tailed paired
Wilcoxon signed-rank test [81], [82] has been applied. The
sample of values representing the performance metrics values
obtained by the DL-FASTAI classifier for the Calcite ver-
sions and Doc2Vec+LSI feature set was tested against the
samples of values obtained for All+Doc2Vec+LSI and All
features, respectively. The obtained p-values of 0.0037779
(for Doc2Vec+LSI vs. All+Doc2Vec+LSI) and 0.000309
(for Doc2Vec+LSI vs. All) confirm a statistically significant
improvement achieved by the Doc2Vec+LSI feature set, at a
significance level of α = 0.01.
The superiority of the Doc2Vec+LSI feature set with

respect to All+Doc2Vec+LSI and All features is strongly
correlated with the overall difficulty values, as shown in
Figure 2. The figure plots the overall difficulty values
computed for all Calcite versions and the feature sets
Doc2Vec+LSI, All+Doc2Vec+LSI and All. A statistically
significant difference, at a significance level of α = 0.01,
was observed between the difficulties obtained for the

FIGURE 2. Overall difficulty values computed for all Calcite versions and
the feature sets Doc2Vec+LSI, All+Doc2Vec+LSI and All.

FIGURE 3. Variation of sensitivity, AUC and defective rates for the Calcite
versions.

Doc2Vec+LSI features and the difficulties for the other
feature sets (All+Doc2Vec+LSI and All) as provided by
a one-tailed paired Wilcoxon signed-rank test: p-values of
0.000876 (between Doc2Vec+LSI and All) and 0.0024120
(between Doc2Vec+LSI and All+Doc2Vec+LSI).

Using the values from Tables 7 and 8 for the
Doc2Vec+LSI feature set, we computed the Pearson cor-
relation coefficients between the sample of defective rates
for all versions of the system and the values obtained for
sensitivity (Sens) and AUC . A strong correlation (0.66) has
been observed between the sensitivity values and the defec-
tive rates and a moderate correlation (0.42) between the AUC
values and the defective rates. Figure 3 depicts the variation
of sensitivity, AUC and defective rates for the Calcite ver-
sions. A higher strength of the association between sensi-
tivity values obtained by the DL-FASTAI classifier and the
defective rates for the Calcite versions is expected. As shown
in Figure 1, if the defective rate increases there is a general
decrease of the difficulty for the ‘‘+’’ class and thus it is
easier to recognize the defects, i.e. it is very likely that the
DL-FASTAI classifier will obtain a higher true positive rate
(sensitivity).

B. UNSUPERVISED ANALYSIS
In order to strengthen the supervised learning-based anal-
ysis performed in Section V-A and to better highlight that

64810 VOLUME 10, 2022



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

TABLE 7. Performance metrics obtained by evaluating the DL-FASTAI classifier on calcite versions 1.0.0-1.7.0 and the feature sets Doc2Vec+LSI,
All+Doc2Vec+LSI and All. 95% CI are used for the results.

Doc2Vec+LSI feature set is superior to the feature set
(denoted by All in our study) proposed in the literature [10] in
terms of differentiating between defective and non-defective
software components we applied t-distributed Stochastic
Neighbor Embedding (t-SNE) [83].
t-SNE is an unsupervised non-linear technique used for

dimensionality reduction and feature extraction, as well as
for visualizing and exploring high-dimensional data. It pri-
marily focuses on retaining the local structure of the data,
but also considers preserving its global structure. It works by
finding similarities between the data points, showing similar
points to be close to each other on the visual representa-
tions. The algorithm was implemented using the scikit-learn
library [84].

Three versions of the Calcite framework have been selected
for the unsupervised analysis, more specifically the ones with
the maximum (version 1.0.0: overall difficulty 0.192), min-
imum (version 1.15.0: overall difficulty 0.061) and median
(version 1.8.0: overall difficulty 0.106) overall difficulties.
Figures 4, 5 and 6 illustrate the 2D t-SNE visualizations
for the Calcite versions 1.0.0, 1.8.0 and 1.15.0 when using

Doc2Vec+LSI and All feature sets for representing the soft-
ware entities.

The plots from Figures 4, 5 and 6 reveal what the posi-
tive difficulty already predicted: the defective instances are
very different from each other, usually similar to some non-
defective ones. This behaviour is accentuated as the data set is
more imbalanced, resulting in an almost uniform distribution
of the positive instances in Figure 6. Furthermore, for the All
feature set, small heterogeneous clusters are formed, making
it even harder for a classifier to distinguish between positive
and negative instances, due to their very high similarity. This
unsupervised analysis supports the supervised one: F-score+

is higher for version 1.0.0 than 1.15.0 and the metrics in
general are better for the Doc2Vec+LSI feature set than the
All one.

VI. PREDICTIVE MODELS PERFORMANCE ANALYSIS
Following the methodology introduced in Section IV, this
section presents the last stage of our study. More specif-
ically, we are going to comparatively analyse the perfor-
mance of various defect predictors (DL-FASTAI, XGBoost,

VOLUME 10, 2022 64811



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

TABLE 8. Performance metrics obtained by evaluating the DL-FASTAI classifier on Calcite versions 1.8.0-1.15.0 and the feature sets Doc2Vec+LSI,
All+Doc2Vec+LSI and All. 95% CI are used for the results.

FIGURE 4. 2D t-SNE visualization for Calcite 1.0.0 for (a) Doc2Vec+LSI and (b) All feature sets.

SVM, ANN) on the versions of Calcite characterized
by the most relevant feature set (Doc2Vec+LSI) iden-
tified through the study conducted in Section V. The

study further performed has three additional goals: (1)
to highlight a performance improvement obtained by a
deep-learning based defect predictor when compared to

64812 VOLUME 10, 2022



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

FIGURE 5. 2D t-SNE visualization for Calcite 1.8.0 for (a) Doc2Vec+LSI and (b) All feature sets.

FIGURE 6. 2D t-SNE visualization for Calcite 1.15.0 for (a) Doc2Vec+LSI and (b) All feature sets.

classical ML-based defect predictors and thus answering our
RQ3; (2) to test the hypothesis that DL-FASTAI brings a
statistically significant improvement of the SDP task with
respect to the other classifiers; and (3) to highlight the
improvement achieved through DL-FASTAI over two base-
line classifiers: the random guessing and the Zero rule
baseline.

Apart from theDL-FASTAImodel, whose architecture was
described in the previous sections, other classifiers have been
employed. The ANN, SVM and XGBoost classifiers were
selected as the classical ML techniques used as a basis for
our comparison as they are well known both in the classical
ML literature [85], [86] as well in the SDP literature [8], [87]
for their very good predictive performance. One of them is
XGBoost, a decision-tree based machine learning algorithm
that uses optimised gradient boosting to improve perfor-
mance [88]. This gradient boosting reduces overfitting by
employing regularization and handling of the missing values,
as well as parallel processing and tree-pruning. The XGBoost
model was also trained using the FastAI library [78]. Further-
more, we apply and denote with ANN the scikit-learn imple-
mentation of an Artificial Neural Network model. From the
same library, we also use a Support Vector Machine (SVM)
classifier, a model that constructs a high dimensional hyper-

plane, in order to find a separation boundary between the two
classes [89].

To determine the random guessing baseline, let us denote
by d the defective rate (proportion of positive instances) and
with n the total number instances in the defect data set (e.g.,
a given version of the Calcite software). The confusionmatrix
for the random guessing classifier is the following:

• TP = n · d2, i.e., the number of true positives (defects)
for a random guessing classifier is the number of defects
(n · d) multiplied with the probability of an instance of
being defective (d).

• TN = n·(1−d)2, i.e., the number of true negatives (non-
defects) for a random guessing classifier is the number
of non-defective entities n · (1 − d) multiplied with the
probability of an instance of being non-defective (1−d).

• FP = n ·d · (1−d), i.e., FP is the number of non-defects
n · (1− d) minus the number of true negatives (TN ).

• FN = n · d · (1 − d), i.e., FN is the number of defects
n · d minus the number of true positives (TP).

Based on the previous values, the performance metrics for
the random guessing classifier applied on a defect data set
with a defective rate of d and the total number of instances n
are given in Table 9.

VOLUME 10, 2022 64813



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

TABLE 9. Performance metrics for the random guessing classifier on a
defect data set with a defective rate of d and the total number of
instances n.

TABLE 10. Performance metrics for the ZeroR classifier on a defect data
set with a defective rate of d and the total number of instances n.

The second baseline method we are considering is the Zero
rule (ZeroR) classifier. The ZeroR classifier uses the simplest
rule of predicting the majority class (i.e., the non-defective
class). Considering the same notations previously introduced
(d the defective rate and n the total number instances in the
defect data set), the confusion matrix for the ZeroR classifier
is the following:
• TP = 0, since the classifier predicts only the negative
class.

• TN = n · (1 − d), i.e., all the negative instances (non-
defects) are correctly predicted.

• FP = 0, since the classifier predicts only the negative
class.

• FN = n · d , i.e., the number of defects that are misclas-
sified by ZeroR.

The performance metrics for the ZeroR classifier applied
on a defect data set with a defective rate of d and the total
number of instances n are shown in Table 10.

The performances of the supervised classifiers previously
mentioned (DL-FASTAI, XGBoost, SVM, ANN), using
the Doc2Vec+LSI feature set and the evaluation metrics
described in Section V-A, have been computed for each of
the Calcite versions,. Additionally, the evaluation metrics
have been determined for the baseline random guessing and
ZeroR classifiers, as well. We decided to present the results
obtained only for 4 Calcite versions 1.0.0, 1.5.0, 1.8.0 and
1.15.0. Versions 1.0.0, 1.8.0 and 1.15.0 were selected based
on the overall difficulty criteria (minimum/median/maximum
value), while for version 1.5.0 the best AUC has been
obtained. The obtained results are given in Table 11. The clas-
sifiers have been evaluated using 10-fold cross-validation, the
performance metrics being averaged during the 10 runs and
95% CIs being computed for the mean values. Table 11 also
includes the performance of the random guessing and ZeroR
used as baseline classifiers.

FromTable 11 one observes that the best performingmodel
is the DL-FASTAI one. This performance results from the
combination of two key factors: a performant ANN based

FIGURE 7. ROC curves for the Calcite version 1.5.0.

architecture and a state of the art training method provided by
the fastai library. The other models on our list contain at most
one of these factors. Furthermore, it is also worth noting the
large improvement in performance of ourmodel over baseline
classifiers, whose performances expressed through metrics
regarding the positive class (Precision, F-score+) betray the
difficulty of classification on very imbalanced data sets.

Table 12 presents, for each classifier c ∈ {DL-FASTAI,
XGBoost, SVM, ANN} (excepting the baselines), the number
of Calcite versions for which c provided the best performance
considering: (1) all performance metrics (the second column
from the table); (2) the sensitivity (Sens) metric (the third
column from the table); and (3) the AUC metric (the last
column). We note that for the first evaluation (considering
all performance metrics) the best performant classifier c was
considered the one that provided the maximum number of
performance metrics with the highest value. The second (2)
and the third (3) evaluations (considering only the Sens and
AUC measures) have been considered since, as revealed by
the SDP literature, a perfomant defect classifier is the one
that maximizes Sens and AUC [79].

The results from Table 12 reveal that the deep learn-
ing model DL-FASTAI is the best performing classifier
when considering the sensitivity and AUC evaluation met-
rics. Considering all performance metrics, the performance
of DL-FASTAIwas slightly outperformed by the ANN classi-
fier. Figure 7 presents the ROC curves for the Calcite version
1.5.0 for which the highest AUC value has been obtained.

The AUC values averaged over all 16 Calcite versions
obtained for the evaluated classifiers are given in Table 13.
The improvement brought by DL-FASTAI compared to the
other classifiers is highlighted in Table 14. In terms of the
average AUC values, the best performing classifier is DL-
FASTAI, which is followed by ANN. In order to answer
RQ3, the statistical significance (at a significance level of
α = 0.01) of the improvement obtained by the DL-FASTAI
classifier (in term of AUC values) has been tested against
the AUC values provided by XGBoost, SVM and ANN clas-
sifiers using a one-tailed paired Wilcoxon signed-rank test.
The obtained p-values (0.000241 - DL-FASTAI vs. XGBoost,

64814 VOLUME 10, 2022



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

TABLE 11. Performance metrics obtained by evaluating DL-FASTAI, XGBoost, SVM and ANN classifiers on calcite versions 1.0.0, 1.5.0, 1.8.0 and
1.15.0 using the Doc2Vec+LSI feature set. 95% CI are used for the results.

TABLE 12. The number of calcite versions for which the classifiers
provided the best performance considering: (1) all performance metrics;
(2) the Sens metric; and (3) the AUC metric.

0.000241 for DL-FASTAI vs. SVM, and 0.000512 for DL-
FASTAI vs. ANN) reveal a statistically significant improve-
ment acheived by DL-FASTAI, at a significance level
of α = 0.01.

VII. THREATS TO VALIDITY
In what concerns construct validity [90], the performance of
the ML models has been analyzed using specific metrics that
both stem from literature and characterise the task at hand.
However, not for all metrics the models have the same per-
formance ranking and therefore their performance is relative
to the task required of them.

When comparing the performance of different models,
an internal validity pitfall could be focusing only on the archi-
tecture and ignoring the different methods used to train those
models. Given the fact that the FastAI library contains state

TABLE 13. The average of the AUC values obtained for all 16 calcite
versions and the evaluated classifiers.

TABLE 14. The improvement in term of average AUC obtained using
DL-FASTAI classifier.

of the art training methods, this could lead to erroneous con-
clusions regarding the convolutional neural network architec-
tures. Furthermore, there is also a comparison of the training
methods, by keeping the architecture constant (artificial neu-
ral network). In future research, other factors could also be
considered when assessing the model performance.

Regarding external validity which is concerned with the
possibility to generalize the obtained findings, we have cho-
sen a public data set that is relevant for the task of software
defect prediction and made public the extracted features.
The problem of class imbalancement, present with various
degrees in our feature sets, is common in this field area.
As further research, our models could be applied to other data
sets, to achieve generalization.

VOLUME 10, 2022 64815



D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

In order to increase reliability, we employed cross valida-
tion with 10 repeats of the same experiment, so that statistics
would show the most likely result, as well as the confidence
interval. The libraries we employed are public and described
in the literature, as well as the architectures and training
methods. Further analysis could present the value of each
parameter used.

VIII. CONCLUSION
In this paper, we conducted an extensive analysis of the
impact that different software features have on the perfor-
mance of software defect predictors. We started from a large
set of software features proposed by Herbond et al. [10] for
SDP and we enlarged it with conceptual software features
that are able to capture the semantics of the source code. The
conceptual features have been automatically learned using
Doc2Vec.

Doc2Vec and LSI models are used only in the feature
engineering step, in order to extract conceptual software fea-
tures that capture the semantics of the source code. These
features have been used for enlarging the feature set proposed
by Herbold et al. [10] in the SDP literature. The enlarged
attribute set was then fed into the deep learning model DL-
FASTAI (as described in Section V-A) that extracts from
the raw input attributes characterizing the software entities
a set of features relevant for discriminating between defects
and non-defects. The experiments performed in Section VI
highlight a statistically significant superior predictive perfor-
mance of DL-FASTAI with respect to other machine learn-
ing models (XGBoost, SVM, ANN). The obtained results
empirically validate our hypothesis that the features learned
through a deep learning model are better correlated with
defect proneness than the raw input attributes and software
metrics fed into a classical machine learning model.

A detailed investigation on sixteen different versions of a
large scale software system, the Calcite framework, has been
performed using both unsupervised and supervised learning-
based analyses. The experimental results highlighted a statis-
tically significant improvement obtained on the performance
of SDP when using the conceptual features and the deep
learning-based predictor we proposed.

The research questions stated in Section I have been
answered. First, it has been shown that the performance of
software defector prediction can be enhanced by enlarging the
classical software features proposed for SDP with conceptual
features extracted from the source code. Secondly, the rele-
vance of the conceptual software features for SDP has been
highlighted through unsupervised and supervised analyses
conducted on Calcite framework. As a third conclusion of
our study, a statistically significant improvement has been
obtained using a deep-learning based defect predictor instead
of traditional supervised classifiers.

For reinforcing the conclusions of the present study we
will further investigate other open-source software systems,
such as Apache Commons libraries (Collections, Compress,
Configuration, etc) [91]. We also aim to further extend the

feature set for SDP. In this regard we intend to use static
analysis tools for source code quality, in order to extract infor-
mation about software defects, code smells or other source
code vulnerabilities. On the other hand, we envision deriving
conceptual coupling and cohesion software metrics starting
from the proposed conceptual features and investigating their
ability to increase the SDP performance even more.

ACKNOWLEDGMENT
The authors would like to thank the editor and the anonymous
reviewers for their useful suggestions and comments that
helped to improve the article and the presentation.

REFERENCES
[1] R. H. Chang, X. D. Mu, and L. Zhang, ‘‘Software defect prediction using

non-negativematrix factorization,’’ J. Softw., vol. 6, no. 11, pp. 2114–2120,
Nov. 2011.

[2] G. Czibula, Z. Marian, and I. G. Czibula, ‘‘Software defect prediction
using relational association rule mining,’’ Inf. Sci., vol. 264, pp. 260–278,
Apr. 2014.

[3] B. Clark and D. Zubrow, ‘‘How good is a software: A review on defect
prediction techniques,’’ in Proc. Softw. Eng. Symp. Pittsburgh, PA, USA:
Carneige Mellon Univ., 2001, pp. 1–35.

[4] J. Zheng, ‘‘Predicting software reliability with neural network ensembles,’’
Exp. Syst. Appl., vol. 36, no. 2, pp. 2116–2122, Mar. 2009.

[5] J. Hryszko and L. Madeyski, ‘‘Cost effectiveness of software defect pre-
diction in an industrial project,’’ Found. Comput. Decis. Sci., vol. 43,
no. 1, pp. 7–35, Mar. 2018. [Online]. Available: https://content.sciendo.
com/view/journals/fcds/43/1/article-p7.xml

[6] K. Zhu, N. Zhang, S. Ying, and X. Wang, ‘‘Within-project and cross-
project software defect prediction based on improved transfer naive Bayes
algorithm,’’ Comput. Mater. Continua, vol. 63, no. 2, pp. 891–910, 2020.

[7] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, ‘‘A systematic
review of fault prediction performance in software engineering,’’ IEEE
Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304, Oct. 2011.

[8] R. Malhotra, ‘‘A systematic review of machine learning techniques
for software fault prediction,’’ Appl. Soft Comput., vol. 27,
pp. 504–518, Feb. 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1568494614005857

[9] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and
G. Kasneci, ‘‘Deep neural networks and tabular data: A survey,’’ 2021,
arXiv:2110.01889.

[10] S. Herbold, A. Trautsch, F. Trautsch, and B. Ledel, ‘‘Problems with SZZ
and features: An empirical study of the state of practice of defect prediction
data collection,’’ Empirical Softw. Eng., vol. 27, no. 2, pp. 1–49, Jan. 2022
doi: 10.1007/s10664-021-10092-4.

[11] S. Wang, T. Liu, and L. Tan, ‘‘Automatically learning semantic features
for defect prediction,’’ in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 297–308.

[12] R. Malhotra, ‘‘A defect prediction model for open source software,’’ in
Proc. World Congr. Eng., vol. 2, Jul. 2012, pp. 1–5.

[13] W. Afzal, R. Torkar, and R. Feldt, ‘‘Resampling methods in software
quality classification,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 22, no. 2,
pp. 203–223, 2012, doi: 10.1142/S0218194012400037.

[14] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, ‘‘Multi-objective cross-project defect prediction,’’ in Proc.
IEEE 6th Int. Conf. Softw. Test., Verification Validation, Mar. 2013,
pp. 252–261.

[15] X. Xuan, D. Lo, X. Xia, and Y. Tian, ‘‘Evaluating defect predic-
tion approaches using a massive set of metrics: An empirical study,’’
in Proc. 30th Annu. ACM Symp. Appl. Comput. New York, NY,
USA: Association for Computing Machinery, 2015, pp. 1644–1647, doi:
10.1145/2695664.2695959.

[16] Z. Marian, I.-G. Mircea, I.-G. Czibula, and G. Czibula, ‘‘A novel approach
for software defect prediction using fuzzy decision trees,’’ inProc. 18th Int.
Symp. Symbolic Numeric Algorithms Sci. Comput. (SYNASC), Sep. 2016,
pp. 240–247.

[17] J. Li, P. He, J. Zhu, and M. R. Lyu, ‘‘Software defect prediction via
convolutional neural network,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. (QRS), Jul. 2017, pp. 318–328.

64816 VOLUME 10, 2022

http://dx.doi.org/10.1007/s10664-021-10092-4
http://dx.doi.org/10.1142/S0218194012400037
http://dx.doi.org/10.1145/2695664.2695959


D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

[18] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose, T. Kim,
and C.-J. Kim, ‘‘A deep tree-based model for software defect prediction,’’
2018, arXiv:1802.00921.

[19] X. Huo, Y. Yang, M. Li, and D.-C. Zhan, ‘‘Learning semantic features for
software defect prediction by code comments embedding,’’ in Proc. IEEE
Int. Conf. Data Mining (ICDM), Nov. 2018, pp. 1049–1054.

[20] K. Muthukumaran, S. Srinivas, A. Malapati, and L. B. M. Neti, ‘‘Software
defect prediction using augmented Bayesian networks,’’ Adv. Intell. Syst.
Comput., vol. 614, no. 1, pp. 279–293, 2018.

[21] D.-L. Miholca, G. Czibula, and I. G. Czibula, ‘‘A novel approach for soft-
ware defect prediction through hybridizing gradual relational association
rules with artificial neural networks,’’ Inf. Sci., vol. 441, pp. 152–170,
May 2018, doi: 10.1016/j.ins.2018.02.027.

[22] D.-L.Miholca, ‘‘An improved approach to software defect prediction using
a hybrid machine learning model,’’ in Proc. 20th Int. Symp. Symbolic
Numeric Algorithms Sci. Comput. (SYNASC), Sep. 2018, pp. 443–448.

[23] S. Sayyad and T. Menzies, ‘‘The PROMISE repository of software
engineering databases,’’ School Inf. Technol. Eng., Univ. Ottawa,
Ottawa, ON, Canada, Tech. Rep. 2015. [Online]. Available:
http://promise.site.uottawa.ca/SERepository

[24] ‘‘The seacraft repository of empirical software engineering data,’’ Tech.
Rep., 2017.

[25] S. R. Chidamber and C. F. Kemerer, ‘‘Towards a metrics suite for object
oriented design,’’ ACM SIGPLAN Notices, vol. 26, no. 11, pp. 197–211,
Nov. 1991, doi: 10.1145/118014.117970.

[26] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[27] The Metrics Data Program Data Repository.
[28] T. Zimmermann, R. Premraj, and A. Zeller, ‘‘Predicting defects for

eclipse,’’ in Proc. 3rd Int. Workshop Predictor Models Softw. Eng.
(PROMISE, ICSE Workshops), May 2007, p. 1–7.

[29] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, ‘‘On the rel-
ative value of cross-company and within-company data for defect pre-
diction,’’ Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, 2009, doi:
10.1007/s10664-008-9103-7.

[30] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, ‘‘Relink: Recovering links
between bugs and changes,’’ in Proc. 19th ACM SIGSOFT Symp. 13th Eur.
Conf. Found. Softw. Eng.NewYork, NY, USA: Association for Computing
Machinery, 2011, pp. 15–25, doi: 10.1145/2025113.2025120.

[31] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘Evaluating defect prediction
approaches: A benchmark and an extensive comparison,’’ Empirical Softw.
Engg., vol. 17, nos. 4–5, pp. 531–577, Aug. 2012, doi: 10.1007/s10664-
011-9173-9.

[32] K. Herzig, S. Just, A. Rau, and A. Zeller, ‘‘Predicting defects using change
genealogies,’’ in Proc. IEEE 24th Int. Symp. Softw. Rel. Eng. (ISSRE),
Nov. 2013, pp. 118–127.

[33] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and
N. Ubayashi, ‘‘A large-scale empirical study of just-in-time quality assur-
ance,’’ IEEE Trans. Softw. Eng., vol. 39, no. 6, pp. 757–773, Jun. 2013.

[34] L. Madeyski and M. Jureczko, ‘‘Which process metrics can significantly
improve defect prediction models? An empirical study,’’ Softw. Qual. J.,
vol. 23, no. 3, pp. 393–422, Sep. 2015, doi: 10.1007/s11219-014-9241-7.

[35] H. Altinger, S. Siegl, Y. Dajsuren, and F. Wotawa, ‘‘A novel industry grade
dataset for fault prediction based on model-driven developed automotive
embedded software,’’ in Proc. IEEE/ACM 12th Work. Conf. Mining Softw.
Repositories, May 2015, pp. 494–497.

[36] T. Shippey, T. Hall, S. Counsell, and D. Bowes, ‘‘So you need more
method level datasets for your software defect prediction? Voilá!’’ in Proc.
10th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. New York, NY,
USA: Association for Computing Machinery, Sep. 2016, pp. 1–6, doi:
10.1145/2961111.2962620.

[37] Z. Toth, P. Gyimesi, and R. Ferenc, ‘‘A public bug database of Github
projects and its application in bug prediction,’’ in Proc. Int. Conf. Comput.
Sci. Appl., 2016, vol. 9789, no. 7, pp. 625–638.

[38] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C. Tantithamthavorn,
‘‘Mining software defects: Should we consider affected releases?’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 654–665.

[39] L. Pascarella, F. Palomba, and A. Bacchelli, ‘‘Fine-grained just-in-time
defect prediction,’’ J. Syst. Softw., vol. 150, pp. 22–36, Apr. 2019.

[40] R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Tóth, and T. Gyimóthy, ‘‘An auto-
matically created novel bug dataset and its validation in bug pre-
diction,’’ J. Syst. Softw., vol. 169, Nov. 2020, Art. no. 110691, doi:
10.1016/j.jss.2020.110691.

[41] R. B. Grady, Practical Software Metrics for Project Management and
Process Improvement. Upper Saddle River, NJ, USA: Prentice-Hall, 1992.

[42] J. Sliwerski, T. Zimmermann, and A. Zeller, ‘‘When do changes induce
fixes?’’ in Proc. Int. Workshop Mining Softw. Repositories. New York,
NY, USA: Association for Computing Machinery, 2005, pp. 1–5, doi:
10.1145/1083142.1083147.

[43] T. Zimmermann, R. Premraj, and A. Zeller, ‘‘Predicting defects for
eclipse,’’ in Proc. 3rd Int. Workshop Predictor Models Softw. Eng.
(PROMISE, ICSE Workshops), May 2007, p. 1–11.

[44] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc, ‘‘Are bug
reports enough for text retrieval-based bug localization?’’ in Proc. IEEE
Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2018, pp. 381–392.

[45] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and
A. E. Hassan, ‘‘A framework for evaluating the results of the SZZ approach
for identifying bug-introducing changes,’’ IEEE Trans. Softw. Eng., vol. 43,
no. 7, pp. 641–657, Jul. 2017.

[46] E. C. Neto, D. A. da Costa, and U. Kulesza, ‘‘The impact of refactoring
changes on the SZZ algorithm: An empirical study,’’ in Proc. IEEE 25th
Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Mar. 2018, pp. 380–390.

[47] R. Malhotra, ‘‘Comparative analysis of statistical and machine learning
methods for predicting faulty modules,’’ Appl. Soft Comput., vol. 21,
pp. 286–297, Aug. 2014.

[48] A. Panichella, R. Oliveto, and A. De Lucia, ‘‘Cross-project defect predic-
tion models: L’union fait La force,’’ in Proc. Softw. Evol. Week IEEE Conf.
Softw. Maintenance, Reeng., Reverse Eng. (CSMR-WCRE), Feb. 2014,
pp. 164–173.

[49] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, ‘‘The WEKA data mining software: An update mark,’’ ACM
SIGKDD Explor. Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[50] L. Yu and A. Mishra, ‘‘Experience in predicting fault-prone software mod-
ules using complexity metrics,’’ Qual. Technol. Quant. Manage., vol. 9,
no. 4, pp. 421–433, 2012.

[51] J. Nam and S. Kim, ‘‘Heterogeneous defect prediction,’’ in Proc.
10th Joint Meeting Found. Softw. Eng., 2015, pp. 508–519, doi:
10.1145/2786805.2786814.

[52] S. Tiwari and S. S. Rathore, ‘‘Coupling and cohesion metrics for object-
oriented software: A systematic mapping study,’’ in Proc. 11th Innov.
Softw. Eng. Conf. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 1–11.

[53] D.-L. Miholca, G. Czibula, and V. Tomescu, ‘‘COMET: A conceptual cou-
pling based metrics suite for software defect prediction,’’ Proc. Comput.
Sci., vol. 176, pp. 31–40, Jan. 2020.

[54] D.-L. Miholca and Z. Onet-Marian, ‘‘An analysis of aggregated cou-
pling’s suitability for software defect prediction,’’ in Proc. 22nd Int.
Symp. Symbolic Numeric Algorithms Sci. Comput. (SYNASC), Sep. 2020,
pp. 141–148.

[55] S. S. Rathore and S. Kumar, ‘‘A study on software fault prediction tech-
niques,’’ Artif. Intell. Rev., vol. 51, no. 2, pp. 255–327, Feb. 2019.

[56] D.-L. Miholca and G. Czibula, ‘‘Software defect prediction using a hybrid
model based on semantic features learned from the source code,’’ in
Proc. Int. Conf. Knowl. Sci., Eng. Manage. Berlin, Germany: Springer,
Aug. 2019, pp. 262–274.

[57] S. Wang, T. Liu, J. Nam, and L. Tan, ‘‘Deep semantic feature learning
for software defect prediction,’’ IEEE Trans. Softw. Eng., vol. 46, no. 12,
pp. 1267–1293, Dec. 2020.

[58] L. Šikić, A. S. Kurdija, K. Vladimir, and M. Šikić, ‘‘Graph neu-
ral network for source code defect prediction,’’ IEEE Access, vol. 10,
pp. 10402–10415, 2022.

[59] L. Zhao, Z. Shang, A. Qin, and Y. Tang, ‘‘Siamese dense neural network
for software defect prediction with small data,’’ IEEE Access, vol. 7,
pp. 7663–7677, 2018.

[60] L. Zhao, Z. Shang, L. Zhao, T. Zhang, and Y. Tang, ‘‘Software defect
prediction via cost-sensitive Siamese parallel fully-connected neural net-
works,’’ Neurocomputing, vol. 352, pp. 64–74, Aug. 2019.

[61] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and D. Lemire,
‘‘Apache calcite: A foundational framework for optimized query process-
ing over heterogeneous data sources,’’ in Proc. Int. Conf. Manage. Data
(SIGMOD). New York, NY, USA: Association for Computing Machinery,
2018, pp. 221–230, doi: 10.1145/3183713.3190662.

[62] V. I. Tomescu, ‘‘Calcite data set with Boolean label,’’ Tech. Rep., 2022,
doi: 10.7910/DVN/VDBQVV.

[63] Shark. [Online]. Available: https://github.com/smartshark
[64] PMD—An Extensible Cross-Language Static Code Analyzer. [Online].

Available: https://pmd.github.io/

VOLUME 10, 2022 64817

http://dx.doi.org/10.1016/j.ins.2018.02.027
http://dx.doi.org/10.1145/118014.117970
http://dx.doi.org/10.1007/s10664-008-9103-7
http://dx.doi.org/10.1145/2025113.2025120
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1145/2961111.2962620
http://dx.doi.org/10.1016/j.jss.2020.110691
http://dx.doi.org/10.1145/1083142.1083147
http://dx.doi.org/10.1145/2786805.2786814
http://dx.doi.org/10.1145/3183713.3190662
http://dx.doi.org/10.7910/DVN/VDBQVV


D.-L. Miholca et al.: Analysis of Software Features’ Impact on Performance of Deep Learning-Based SDP

[65] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, ‘‘Change distilling: Tree
differencing for fine-grained source code change extraction,’’ IEEE Trans.
Softw. Eng., vol. 33, no. 11, pp. 725–743, Nov. 2007.

[66] D. Silva and M. T. Valente, ‘‘RefDiff: Detecting refactorings in version
histories,’’ in Proc. IEEE/ACM 14th Int. Conf. Mining Softw. Repositories
(MSR), May 2017, pp. 269–279.

[67] R. Moser, W. Pedrycz, and G. Succi, ‘‘A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,’’ in Proc. 30th Int. Conf. Softw. Eng. New York, NY,
USA: Association for Computing Machinery, 2008, pp. 181–190, doi:
10.1145/1368088.1368114.

[68] A. E. Hassan, ‘‘Predicting faults using the complexity of code changes,’’
in Proc. IEEE 31st Int. Conf. Softw. Eng., May 2009, pp. 78–88.

[69] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, ‘‘The use of summation
to aggregate software metrics hinders the performance of defect prediction
models,’’ IEEE Trans. Softw. Eng., vol. 43, no. 5, pp. 476–491, May 2017.

[70] D. Zhang, J. Tsai, and G. Boetticher, ‘‘Improving credibility of machine
learner models in software engineering,’’ in Proc. Adv. Mach. Learn. Appl.
Softw. Eng., 2007, pp. 52–72.

[71] Y. Dodge, The Concise Encyclopedia of Statistics. Cham, Switzerland:
Springer, 2008.

[72] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, ‘‘Using infor-
mation retrieval based coupling measures for impact analysis,’’ Empirical
Softw. Eng., vol. 14, no. 1, pp. 5–32, Feb. 2009.

[73] I. G. Czibula, G. Czibula, D.-L. Miholca, and Z. Onet-Marian, ‘‘An aggre-
gated coupling measure for the analysis of object-oriented software sys-
tems,’’ J. Syst. Softw., vol. 148, pp. 1–20, Feb. 2019.

[74] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, ‘‘Deep learning for just-in-
time defect prediction,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur.,
Aug. 2015, pp. 17–26.

[75] Q. V. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ 2014, arXiv:1405.4053.

[76] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, ‘‘Indexing by latent semantic analysis,’’ J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[77] R. Řehåřek and P. Sojka, ‘‘Software framework for topic modelling with
large corpora,’’ in Proc. LREC Workshop New Challenges NLP Frame-
works, 2010, pp. 45–50.

[78] J. Howard et al. (2018). Fastai. [Online]. Available:
https://github.com/fastai/fastai

[79] T. Fawcett, ‘‘An introduction to ROC analysis,’’ Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006.

[80] S. Boughorbel, F. Jarray, and M. El-Anbari, ‘‘Optimal classifier for imbal-
anced data using Matthews correlation coefficient metric,’’ PLoS ONE,
vol. 12, no. 6, 2017, Art. no. e0177678.

[81] ‘‘Inferential statistics III: Nonparametric hypothesis testing,’’ in Statistics
for Biomedical Engineers and Scientists, A. P. King and R. J. Eckersley,
Eds. New York, NY, USA: Academic, 2019, ch. 6, pp. 119–145.

[82] Social Science Statistics. [Online]. Available:
http://www.socscistatistics.com/tests/

[83] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, A. Müller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, ‘‘Scikit-learn: Machine learning in Python,’’
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[85] T. Eitrich and B. Lang, ‘‘Efficient optimization of support vector machine
learning parameters for unbalanced datasets,’’ J. Comput. Appl. Math.,
vol. 196, no. 2, pp. 425–436, 2006.

[86] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining.
New York, NY, USA: Association for Computing Machinery, Aug. 2016,
pp. 785–794.

[87] G. Santos, E. Figueiredo, A. Veloso, M. Viggiato, and N. Ziviani, ‘‘Pre-
dicting software defects with explainable machine learning,’’ in Proc.
19th Brazilian Symp. Softw. Qual. New York, NY, USA: Association for
Computing Machinery, Dec. 2020, pp. 1–10.

[88] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794, doi: 10.1145/2939672.2939785.

[89] D. A. Pisner and D. M. Schnyer, ‘‘Support vector machine,’’ in Machine
Learning, A. Mechelli and S. Vieira, Eds. NewYork, NY, USA: Academic,
2020, ch. 6, pp. 101–121.

[90] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009, doi: 10.1007/s10664-008-9102-8.

[91] Apache Commons. [Online]. Available: https://commons.apache.org/

DIANA-LUCIA MIHOLCA received the Ph.D.
degree in computer science, in 2020. She is
an Assistant with the Department of Computer
Science, Faculty of Mathematics and Computer
Science, Babes-Bolyai University, Cluj-Napoca,
Romania. She has published 17 papers in inter-
national journals and conference proceedings. Her
research interests include computational intelli-
gence, machine learning, search-based software
engineering, and data mining.

VLAD-IOAN TOMESCU is currently pursuing
the Ph.D. degree with the Faculty of Mathemat-
ics and Computer Science, Babes-Bolyai Univer-
sity, Cluj-Napoca, Romania. He has published five
papers in conference proceedings and journals.
His main research interests include machine learn-
ing, computer vision, and search-based software
engineering.

GABRIELA CZIBULA is a Professor with the
Computer Science Department, Faculty of Math-
ematics and Computer Science, Babeş-Bolyai
University, Cluj-Napoca, Romania. She has pub-
lished more than 200 papers in prestigious jour-
nals and conferences proceedings. Her research
interests include machine learning, distributed
artificial intelligence, multiagent systems, and
bioinformatics.

64818 VOLUME 10, 2022

http://dx.doi.org/10.1145/1368088.1368114
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1007/s10664-008-9102-8

