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ABSTRACT By virtue of the stability of signatures and the high difficulty of imitation, handwriting
signatures, as an important behavioral biometric trait, have been broadly adopted for authorization and
identity verification. The emergence of consumer-level wrist-worn devices incorporating rich sensors has
profoundly changed human-machine interactions, enabling new signature observation method. In this study,
we investigate the feasibility of authenticating users by sensing hand motions of signing in air using fingers.
Each signature is represented by the readings of the gyroscope and accelerometer which are compensated
by the device attitude readings. A recurrent neural network-based algorithm is proposed to characterize
signatures and accurately determine whether a signature is from the claimed genuine user or an imposter.
We empirically investigate 22 participants by recording their in-air signing gestures using smartwatch motion
sensors. The verification shows that despite the inevitable variability of repeating genuine signature drawing,
forged signatures tend to show more dissimilarity than variability. The high-precision experimental result
(i.e., equal error rate of 0.83%) against insider adversaries not only demonstrates the effectiveness of our
proposed approach but also indicates the feasibility of a more user-friendly signature authentication method
by signing their names in the air. Moreover, we investigate the impact of the properties of motion sensory
data on signature authentication. In addition, we include more details of the experiments, validation of the
proposed pre-processing method, and analysis of the circumvention as one of the desirable properties of

biometrics of signing motions by measuring the skill of forgery.

INDEX TERMS Behavioral authentication, in-air signature, smartwatch, motion sensors.

I. INTRODUCTION

Nowadays with advancements in the information technology
and frequent human-computer interactions (HCIs), a huge
amount of data is continuously generated and consumed
every day. The growing number of security incidents [2]
has increased the requirements for reliable user authentica-
tion [3]. Knowledge-based authentication schemes like pass-
codes or lock patterns, as the current major approaches,
are theoretically secure enough guaranteed by large enough
password space. However, security is often compromised
because of the practical bias of selecting secrets in which
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users tend to select easy-to-remember passcodes and easy-
to-draw lock patterns [4]. Alternatively, biometrics provide a
trade-off between strong security and high usability and have
been gaining popularity in both academia and industry [5],
[6]. Biometrics are often categorized into biological and
behavioral ones, which rely on innate properties of human
bodies (e.g., face, fingerprint, or iris) or personal manners of
performing specific tasks (e.g., gait, keystroke) respectively.

Handwritten signatures are one of the most studied and
developed behavioral biometrics [7]. From the cultural
aspect, handwritten signatures have long been established,
broadly accepted as the symbol of consent and authorization
on many occasions such as issuing documents and finan-
cial transactions [8]-[11]. Besides, a signature is heavily
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practiced, unintentionally consolidating muscle memory.
It not only enables the stable personal signing manners over
time but also preserves the unique characteristics that are
resistant to forgeries [12]-[15]. From the aspect of data
acquisition ways, signature authentication has been extended
from offline, in which signatures are mainly produced with
conventional pen and paper-based tools, to online where sig-
natures start to be acquired by electronic signature pads and
pens. Because online acquisition can record not only com-
pleted signature images, but also more dynamic information
(e.g., x,y coordinates, pressure, and pen-up/down) during
signing processes [16], it tends to facilitate the system’s accu-
racy and robustness [10], [11], [16]-[18] and consequently
has been increasingly adopted by organizations [19], [20].
However, the traditional online signature acquisition systems
are often based on dedicated digitizing devices (i.e., elec-
tronic signature pads and pens) and lacks portability. This
results in the performance loss in usability and limits the
signing scenarios. With the development of digitizing devices
and sensing technologies, further studies have focused on
emerging ways to record signing processes for authentication
using smartphones [21], [22], attachable motion sensors [23],
and cameras [24]-[26].

Recent years have witnessed a rapid growth in the
wrist-worn devices (e.g., smartwatch) market which is fore-
cast to further increase from 66.5 million units in 2019 to
105.3 million units by the end of 2022 [27]. Modern
smartwatches, as general devices, are often equipped with a
variety of embedded sensors, such as motion sensors (e.g.,
gravity, accelerometer, gyroscope, and magnetometer), envi-
ronmental sensors (e.g., light, temperature, barometer, and
proximity), and position sensors (e.g., GPS and compass),
to fulfill the needs of various applications [28]-[30]. Further-
more, the longitudinal activity analysis [31] has shown fairly
high and consistent smartwatch usage throughout the days
with only a few short breaks, enabling high availability for
HCIs. As a result, modern wrist-worn devices, such as smart-
watches and fit bands, have been increasingly used to analyze
users’ activities, which also enables efficient and ubiquitous
body motion observation as behavioral biometrics [32].

Numerous studies have explored methods for biometric
authentication using modern mobile technologies and embed-
ded sensors to model user behavior, which shows the high
effectiveness of motion sensors in capturing discriminative
behavioral characteristics that can be used to accurately
authenticate users. There are two main types of biomet-
rics, gait and gesture, which have been extensively stud-
ied. In gesture-based authentication, motion sensors are
used to capture the user’s hand movement while perform-
ing certain gestures, such as hand circle and rotation [33],
flick wrist [34], grasp [35], handshaking [36], free handwrit-
ing [37], finger-snapping [38], arm-raising [39], and thumb
up [40]. In gait-based authentication, motion sensors record
walking in a personal manners [41]-[44].

Research on handwritten signature authentication using
wrist-worn devices is still underdeveloped, focusing more
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on Table Signature that users sign their names on a plane
using pens or touchscreens [45], [46]. In contrast, In-air
Signature refers to a more flexible way of signing that allows
users to perform signing processes with their fingers in the
air. Although studies on in-air signature authentication have
emerged in recent years, most of them either construct strokes
from videos recorded by depth cameras [24]-[26] or require
dedicated devices (e.g., Leap Motion [47]). As modern wrist-
worn devices with rich sensors can capture user activities, the
potential of recording in-air signatures using such devices can
be explored. However, this research currently still remains at
an early stage, with few studies [48].

To address this gap, we explored the feasibility of in-air
signature authentication using modern wrist-worn devices
during an empirical investigation with invited 22 participants.
Our study reveals that sensing in-air signature motions well
satisfies the desirable properties to serve as a high-precision
behavioral authentication approach with improved usability.
Users can be authenticated by freely signing their names in
air. We use readings from motion sensors, a combination
of an acceleration sensor that measures changes in velocity,
and a gyroscope that measures angular velocity to depict the
corresponding hand movement during signing. A recurrent
neural network (RNN)-based algorithm is proposed to pro-
cess sequential sensory data and verify if an unknown signa-
ture originates from the claimed genuine user. In Particular,
we adopt an active attack model, assuming the existence of
insider adversaries who possesses basic knowledge about
their victims. In addition, we leverage dynamic time wrap-
ping(DTW) to assess the similarity distribution, the resistance
to circumvention of in-air signatures, and the effectiveness of
calibration pre-processing of rotation.

To sum up, the main contributions of this work are listed
as follows:

1) We conduct a preliminary experiment analyzing the
differences in signing behavior between the traditional
method (i.e., table signing) and in-air writing.

2) We provide insights into an emerging behavioral
authentication approach for in-air signatures using
smart wrist-worn devices that has the potential to serve
as a more user-friendly alternative to conventional
signature authentication. Specifically, we empirically
investigate the in-air signature motions of 22 partic-
ipants from the perspective of behavioral biometric
authentication. !

3) We propose an in-air signature authentication scheme
using smartwatch motion sensors. It can characterize
signatures and accurately distinguish genuine signa-
tures from skilled forgeries; We avoid sophisticated
feature design; instead, a Siamese RNN is used to
learn signature representations. Furthermore, the sys-
tem has to only store signature representations rather

IThe dataset presented in this study is available on an agree-
ment of use, following the Japanese privacy regulations. Please contact
schuko @satolab.itc.u-tokyo.ac.jp with Subject: SIGNATURE DATASET.
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than original data, which hides original sensitive user
data and saves space;

4) We evaluate the proposed authentication method, suc-
cessfully demonstrate its effectiveness, and compre-
hensively analyze the properties of signature motion
sensory data, including input patterns, the impact of
length, circumvention, and performance comparison
with related work.

The remainder of this paper is organized as follows.
Section II clarifies the problems that need to be solved.
Section IV provides an overview of related work. Section V
demonstrates the methodology. Section V shows the
experimental results. Section VI discusses the properties and
limitations of the study. Finally, Section VII concludes this

paper.

Il. PROBLEM STATEMENT

The main goal of this study is to investigate the feasibility
of in-air signature authentication using smartwatch motion
sensors including 1) proposing an appropriate scheme for
authentication and 2) revealing the characteristics of signa-
tures’ sensory representations.

As for the authentication scheme, it is to correctly dis-
tinguish between signatures from imposters and genuine
users. A typical signature authentication process comprises
two main phases: an enrollment phase and a verification
phase consisting of the following processing steps [10], [16],
[49]-[52] as shown in the Figure 1.

1) Data acquisition and preprocessing: Regardless of the
phases, signing processes should be initially collected
by acquisition devices (i.e., touchscreen, sensor, cam-
era, and scanner), generating images or electronic sig-
nals representative of the signatures. The signatures
are then preprocessed using appropriate techniques to
reduce noise and improve data quality.

2) Knowledge extraction: This step extracts knowledge
that can reflect the discriminative characteristics of
signatures. Extracted knowledge can be divided into
two main types: functions and features. The former
refers to time functions that can be calculated from
given raw signals (e.g., velocity, derivative, and consec-
utive distances), while the latter often refers to discrete
parameters (e.g., mean, variation, length, and entropy).
Knowledge extraction way often depends on the data
formats of signatures and applied methods.

3) Templates generation: The enrollment phase refers to
sample collection and subsequent template generation,
during which a user has to provide a set of signatures
to the authentication system. After the previous steps,
properly extracted knowledge is used to generate ref-
erence templates, which are then stored in the database
(may together with the original signature data).

4) Matching: The verification phase refers to the acqui-
sition of unknown signatures and matching with the
templates. In this step, the authentication system
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FIGURE 1. Overview of signature authentication task.

acquires a new signature sample with a claimed user
identity id that has already been enrolled and then pro-
cesses the sample in the same way to match it with the
template. The system retrieves the corresponding tem-
plate t;y = {¢t|ID = id, t € T} according to the claimed
identity in the knowledge base. Proper algorithms (e.g.,
Euclidean distance and DTW) are then used to measure
the similarity s(q, t;7) between the questioned signature
q and its template #;;. Depending on the comparison
between the similarity score and its threshold value A,
the authentication system decides whether the given
signature originates from an imposter Sigfygeq OF the
genuine user SigGenuine-

Therefore, in this study, the authentication scheme
should address the problem of acquiring in-air signing
activities using smart wrist-worn devices, processing raw
signals, extracting discriminative information, and matching
questioned signatures with corresponding templates to deter-
mine whether they belong to the claimed genuine signer or
adversary.

As for the characteristic revealing, we seek to answer the
following three questions corresponding to the three critical
desirable properties of biometrics:

1) Collectability: How easy can we observe and record
in-air signature motions/gestures using modern wrist-
worn devices?
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2) Performance: How much capacity do the motion sen-
sory readings have to discriminate users?

3) Circumvention: How difficult it is for imposters to
generate forgery for mimicry attack?

lIl. RELATED WORK

Signature verification is one of the most frequently used
biometric techniques for personal authentication [53] owing
to its high usability, acceptability, and efficiency. As the
result, the studies about it show remarkable progress from the
traditional stage (i.e., offline) when a signature is acquired
by scanning the signature written on papers to the form of
images, to advanced stage (i.e., online), at which a signature
is acquired using a tablet or touch screen to include more
dynamic information of the signing process. Furthermore,
in recent years, the development of mobile and sensing tech-
nologies has encouraged many studies to explore emerging
methods of signature acquisition.

A. OFFLINE SIGNATURE AUTHENTICATION

Offline signature authentication deals with data in the form
of static grayscale images, the pixels of which reflect the
signature shape. The verification process relies mainly on
feature-based methods that extract feature vectors from sig-
natures and match them to distinguish between genuine and
forged signatures.

Some studies have focused on specific parts of sig-
natures. For example, based on the characteristics that
pixels of signature with high pressure appear as dark zones
and therefore corresponds with gray levels conforming
histogram, Vargas et al. [54] computed pseudo-cepstral coef-
ficients from the histogram of the static signature images
as feature vectors for verification. Using signatures from
100 individuals, the author trained a least squares support
vector machine(LS-SVM) for classification and achieved
a 6.20% EER. In addition, Shekar ef al. [55] investigated
the characteristics of bound regions starting by identifying
and filling them with intensity values. After processing the
bounded regions into a matrix, they calculated the eigenvec-
tors corresponding to g largest eigenvalues to determine the
most dominant characteristics while reducing the size of the
feature vector, which was finally evaluated with 30 subjects
to obtain an EER of 8.78%. In addition to the local fea-
tures characterizing specific parts, global features concern-
ing the entire signature images have also been investigated
for authentication. RamachandraA et al. [56] extracted five
global features including a)maximum horizontal and vertical
histograms, b)horizontal and vertical center points, c)edge
points, d)signature area, e)aspect ratio. By measuring the
Euclidean distance between feature vectors, their method
achieved a 5.4% FRR and 4.6% FAR in their experiment,
including 21 participants. Regarding the feature extraction
method, as neural networks have become more prevalent in
pattern recognition, they have been adopted to avoid the diffi-
culty of feature crafting while efficiently preserving intrinsic
characteristics. Hafemann et al. [57] leveraged convolutional
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neural networks (CNN5) to learn user-dependent and feature
spaces. The best results that their methods achieved were
1.72% EER with 160 subjects.

B. ONLINE SIGNATURE AUTHENTICATION

Online signature authentication deals with the dynamic infor-
mation of user signatures. With the signatures acquired by
electronic signature pads and pens, online verification can
not only consider the signature as a static image, but also
take more dynamic writing process details into consideration,
such as x, y coordinates representing the dynamic handwrit-
ten strokes, and possibly pen pressure, angle, and velocity
at each timestamp [58]. This provides a greater quantity of
information, thereby improving the system’s accuracy and
robustness of systems [17].

On one hand, additional dynamic information enables
many new feature extraction approaches that are specifi-
cally devoted to online signatures [10]. For example, Guru
and Prakash [59] focused on the specific characteristics of
online signature representation by selecting features such
as signing duration, number of pen ups, and derivative of
velocity, and finally obtained 3.8% EER on a dataset includ-
ing 100 subjects. On the other hand, online signature repre-
sentations also enable function-based methods that directly
compute using the functions of time. Dynamic time warp-
ing (DTW) is one of the most widely used elastic matching
algorithms to measure similarity. Many studies [19], [49],
[52] have explored the utilization of DTW in online signa-
ture authentication problems. Combined with different extra
function generation and matching schemes, DTW shown its
effectiveness by achieving 1.6% FAR and 2.8% FRR (102
subjects) [52], 1.4% EER (94 subjects) [19], and 1.28% EER
(100 subjects) [49]. Meanwhile, neural networks have also
been used to process temporal functions of online signa-
tures. Bromley et al. [60] implemented a Siamese time-delay
neural network to address the function-based online sig-
nature verification problem. The study fixed the signature
lengths and calculated ten functions of time describing the
signing movement, signature shape, position, direction, and
curvature. The dual branch of the networks was arranged
to measure the dissimilarity between temporal functions.
The approach correctly recognized 95.5% of genuine sig-
natures and 80% of forged signatures from 219 individuals.
Furthermore, by virtue of the strong capacity of recurrent
neural networks (RNNs) in processing sequential data and
pattern recognition, Tolosana et al. [61] implemented RNN
variations to deal with 23 expanded time functions of sig-
natures and achieved 4.75% EER on a dataset including
400 subjects.

C. EMERGING SIGNATURE AUTHENTICATION

With the development of mobile and sensing technologies,
many emerging studies have attempted to explore novel meth-
ods for signature data acquisition and appropriate process-
ing methods for authentication. For example, Sae-Bae and
Memon [62] collected signatures from 180 users who on
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smartphones touchscreen with fingers. By calculating the
histograms of both Cartesian and polar signature representa-
tions as features, they achieved 2.67% EER. Cheng et al. [23]
showed that an attachable motion sensor can be used to
acquire signing activities by installing it at the top of a
pen. They digitized the handwritten signatures of the 63 par-
ticipants into sensory traces. Their DTW-based approach
could distinguish between genuine and forged signatures
according to the sensor readings, achieving 5.04% FRR and
7.92% FAR. Instead of attachable sensors, Nassi et al. [45]
and Taimoor et al. [46] attempted a more user-friendly way to
acquire signatures by using wrist-worn devices incorporating
motion sensors. By using function-based and feature-based
methods respectively, they obtained 5.4% EER with 66 par-
ticipants [45] and 4% EER with 10 participants [46].

Despite the common online signature verification
systems adopting the contacted model of signing on a
tablet or touch screen, the in-air signature, as a more
user-friendly technique to conduct contactless authentica-
tion, has been attracting attention. In-air signature authen-
tication studies have started from using cameras, such
as Fang et al. [24] and Malik et al. [25], [26]. Signature data
were collected from 14, 15, and 40 subjects respectively.
In their studies, in-air signing activities were recorded
into videos, which were then used to track fingertips and
recover in-air signature trajectories in a series of coordinates.
Their function-based methods achieved 2.86% FRR and
1.90% FAR [24], 0.46% EER [25], and 0.055% EER [26].
Guerra-Segura et al. [47] found that dedicated motion track-
ing devices of Leap Motion show advantages in 3D spatial
measurements of hands compared with cameras. After
extracting feature vectors from 21 temporal functions, their
method achieved an EER of 1.20% with 100 users. Instead
of signature trajectory recovery using the dedicated devices,
Bailador et al. [21] attempted to acquire in-air signing activ-
ities using a smartphone accelerometer and directly authen-
ticate users based on acceleration signals. Their DTW-based
matching method obtained 4.58% EER with 96 participants.
Buriro et al. [48] are presented the only study that attempted
to demonstrate the feasibility of in-air signature authenti-
cation using smartwatches. However, their study focused
more on different scenarios including signing during sitting,
standing, walking in the corridor, upstairs, and downstairs,
obtaining a 19.48% FRR 21.65% FAR using a feature-based
method using the signature data collected from 11 individu-
als. Therefore, this study currently still remains at an early
stage.

IV. PROPOSED METHOD

Our research provides a Siamese RNN-based in-air signature
authentication method in which signatures are represented by
motion sensor signals. It can not only deal with sequential
data with different lengths while avoiding the use of manually
designed sophisticated features but also encode reference
signatures to compressed representations to improve storage
efficiency and privacy.
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FIGURE 2. Comparison of attitude distribution between table signing and
in-air signing.

A. DATA ACQUISITION

This is the first step as shown in Figl, the singing actions
are recorded and digitized into electronic signals. This study
focuses on the signing activity of In-air Signature, which
is a more flexible and user-friendly signing method per-
formed by fingers. Smartwatches with motion sensors are
used to acquire data of hand movements during the in-air
signing. An in-air signature is represented by a combination
of three-axis gyroscope and three-axis acceleration readings
of a time-dependent variable length.

Because table signing actions are often restricted by hard
plane (e.g., tables) and writing borders (e.g., size of paper
or touch screen), they often can be repeated in a more stable
way; however, less restriction makes in-air signatures tend to
be performed in different positions and orientations, which
can bring extra variety between genuine signatures of the
same individual, undermining the stability and accuracy of
authentication. Therefore, we conducted a prior survey to
investigate the differences by recruiting 15 subjects, each of
whom provided 10 table signatures and 10 in-air signatures,
while the device attitude readings were recorded. Device
attitude represents the orientation of the smartwatch relative
to a reference [63]. Specifically, pitch, roll and yaw show the
amount of rotation angle in radians around x, y and z axis.
Therefore, the changes in the hand positions and orientations
can be captured and reflected by the device attitude readings.

As a result of the prior survey, we observed a high variety
of in-air signing gestures by analyzing 300 signatures with
different signing ways (i.e., table or in air). Fig. 2 shows
the density plot comparing the averaged device attitude (i.e.,
pitch, roll, and yaw) distribution between in-air signatures
and table signatures from 15 participants. It is noticeable that
table signing is often conducted in similar gestures, whereas
in-air signing is freer in hand attitude. Therefore, to deal
with the high variability of in-air signing, we additionally
recorded device attitude data while performing in-air sign-
ing to calibrate the accelerometer and gyroscope measure-
ments. Table 1 shows 9-tuple data representation of the in-air
signatures.

B. PREPROCESSING
1) Rotation: The high variability of in-air signatures
can undermine the stability and accuracy of the
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FIGURE 3. Architecture of the proposed authentication method used to classify in-air signature pairs.

TABLE 1. Data representation of in-air signatures.

Dimension  Signal

—

X-axis gyroscope: g

y-axis gyroscope: gy

Z-axis gyroscope: g-

X-axis accelerometer: a

y-axis accelerometer: ay

z-axis accelerometer: a»

pitch-axis attitude: at,

roll-axis attitude: at,

O | | Q| | | | W[

yaw-axis attitude: aty

authentication system. For this reason, we conduct the
calibration by rotating the three-axis gyroscope and
three-axis accelerometer signals to the reference ori-
entation using the three-axis device attitude readings.
After the rotation, the rotated three-axis gyroscope
and accelerometer signals are maintained, while the
three-axis attitude data are discarded.

2) Differentiation: Because the changing rate of motion
sensor readings can also contain discriminative infor-
mation [59], [61], we apply first-order differentiation
on the rotated gyroscope and accelerometer data. The
calculated derivative signals are then concatenated with
the rotated motion sensory readings to compose a
12-dimensional function of time.

3) Normalization: The high flexibility of in-air signatures
not only results in a high diversity of positions and ori-
entations but also increases the variety of hand move-
ment scales as there are no writing borders compared
with signing on papers or tablets. Therefore, it is nec-
essary to normalize the extended data obtained from the
previous stage before using them in the authentication
system.
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4) Pairing: Because the authentication system deals with
pairs of signatures (i.e., [Sigunknow, Sigreferencel), the
signatures of the same individual, including genuine
signatures performed by themselves and forged sig-
natures produced by imposters/adversaries, need to be
pairwise aligned.

C. KNOWLEDGE EXTRACTION AND MATCHING

We design our authentication scheme to consist of three
steps (i.e., Encoder, Classifier, and Decision) after signature
preprocessing, as depicted in Fig.3. The encoder is composed
of a dual-branch bidirectional LSTM network, named the
Siamese architecture, in which two subnetworks are identi-
cal in structure and share the same weights. The Siamese
recurrent architecture is a variation of the vanilla recurrent
neural networks that is suitable for pairs of variable-length
sequences. Inspired by the utilization of the Siamese recurrent
architecture by [64] in the field of natural language process-
ing to measure the semantic similarity between sentences,
we introduced it to deal with paired sequential motion sensory
data for authentication. Within the encoder, LSTM, a vari-
ant of the RNN unit, provides long-term connections while
processing temporal signals of motion sensors with variable
lengths. The following equations show the calculations per-
formed in an LSTM unit, where the unit accepts a segment
of sequential data [x<!> x<2> .. . x<¥>]with length k and
can update the hidden state a="> at each time step ¢.

fr = o(Wla™" =17, x=7 ] + by) e
ii = o(Wila~""">, x> 1+ b)) 2
0 = o(Wola="""> x<"> 1+ b,) 3)
¢ = tanh(We[a=""", x<"> 1+ b,) “4)
" =foc > 408 (5)
a~"> = o; o tanh(c=") (6)

Additionally, we arrange the network bidirectionally to cap-
ture forward and backward information. The outputs of the
BiLSTM are connected to temporal average pooling, which
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can convert temporal sequential data into vectors with a fixed
length used to measure their dissimilarity. During classifi-
cation, the fully connected layer processes the concatenated
feature vectors of signature pairs generated by the encoder,
while the SoftMax layer calculates the score of whether the
incoming Pair isa (Sgenuinelsgenuine) or (Sgenuinelsforged) Pair-
Finally, the authentication result is obtained by comparing the
score with a predefined threshold X to determine whether the
unknown signature should be accepted or rejected. In par-
ticular, the RNN-based method enables the representation
learning from sequential data, thereby reducing the burden
of feature engineering.

D. LENGTH UNIFORMITY
Temporal function representations of signatures often have
different lengths depending on the time consumption and
sampling frequency. A variety of lengths has already been
utilized as a critical feature in many studies [59], [65]-[67] to
distinguish between genuine and forged signatures, as signa-
ture forgery tends to consume more time than genuine signing
processes [62]. In this research, we also attempt to quantify
the effect of length variety by equaling the lengths of all
samples and analyze the performance. We apply the discrete
cosine transform (DCT) [68], a widely used transformation
technique in signal processing and compression, to obtain
fixed-length full signals. The DCT can be used to uniform
lengths of sequential signals by fixing the number of coeffi-
cients in the frequency domain while maintaining the signal
shapes, which provides an effective way to determine the
influence of lengths [69]. To obtain fixed-length full signals,
we scale all signals to the maximum length of the signal using
the following steps:
1) Domain transformation: The DCT as shown in
Equation 7 is applied to all full motion sensor signals
to obtain their representations in the frequency domain.

k_zzxn

nk(2n +1)

T N k=0,...,N—1

N

2) Padding: The coefficients of the frequency-domain rep-

resentations are padded with O to the maximum length.

3) Inverse transformation: We apply the inverse DCT,

as shown in Equation 8, to shift the padded

frequency-domain representations back to the time
domain.

72k + D)n

N
ye= X0 + ZZx,, cos(————") k=0, ...

,N—1
2N

n=1

®)

4) Normalization: We normalize the fixed-length time
domain signals.

V. EVALUATION
This section presents a comprehensive evaluation of the pro-
posed in-air signature authentication approach. We conduct
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an empirical investigation with our participants to determine
the performance of distinguishing whether a signature comes
from imposters and genuine users and analyze related secu-
rity properties.

A. EXPERIMENTAL APPARATUS

Our experiment is device-dependent using Apple Watch
Series 6 to acquire in-air signatures. We implemented an
application using Swift and installed it on our experimental
smartwatches. Through the Apple Core Motion framework,
the application records the accelerometer, gyroscope sensory
readings, and device attitude during the interval between the
two ‘“‘button pressed” events indicating the beginning and
ending of collection. These two timestamps are used to ease
the extraction of valid segments from the signing processes.
Sensory data are recorded at a rate of 100Hz and then written
into files.

B. THREAT MODEL

As signature forgery can be highly uncertain depending on
prior information about the victim possessed by an adversary,
it is important to consider the type of adversary presence for
empirical evaluation. The main goal of adversaries is to spoof
authentication systems to be authenticated as the victims,
so that they can access their valuable assets and private infor-
mation. The studies in the field of biometric authentication
generally consider two major types of adversaries [51], [70],
[71]: insider and stranger adversaries.

1) Insider Adversary: who is familiar with the victim.
The adversary can possess some knowledge of the vic-
tim’s behavior and has the opportunity to observe and
capture biometric information in proximity. Therefore,
an insider adversary is able to launch effective attacks,
namely active attacks, towards the victims, depending
on their prior knowledge.

2) Stranger Adversary: who is not familiar with the vic-
tim. The adversary usually has no prior knowledge of
the victim and is not able to access biometric infor-
mation. A stranger adversary can only launch attacks
based on general knowledge about used biometrics,
namely random attacks.

Specifically, in this study, we adopt the insider adversary
threat model and set an experiment scenario consisting of two
roles.

1) Victim Genuine User: who wears the smartwatch and
signs his name in the air for authentication. The
genuine user is not aware of the presence of imposters,
so that they do not deliberately hide their in-air signing
gestures.

2) Insider Imposter: who can have 1) a visual obser-
vation of the victim’s hand gesture of in-air signing
activity and 2) the chance of practice before forging
signatures to generate skilled forgeries. In addition, the
insider imposter is considered to have knowledge of the
authentication protocol and the user ID of the victim.
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FIGURE 4. The in-air signing process (left) and corresponding motion sensor readings of the smartwatch (right).

C. SUBJECT AND INSTRUCTION

We empirically investigate the in-air signatures of 22 partic-
ipants, who are generally students or staff at our university
located in Tokyo, Japan, and evaluate our proposed method.
Our experiment attempts to focus on the in-air signing behav-
ior. Therefore, to control for the effects on other variables, the
participants are asked to sit in a similar position to provide
in-air signature samples while avoiding hand movement
before and after signing. Each of them provides 10 genuine
signatures and forges 10 chosen signatures; therefore, we col-
lect a total of 440 signatures, most of which are written in
Japanese or Chinese characters. As the same session data
collection in which genuine samples are all acquired within
a short period may result in an unrealistic level of consis-
tency in the genuine comparisons, we arrange two signature
collection sessions for each person about one week apart.
Each session contains two steps to obtain 5 genuine signatures
by repeating for a given person and then letting him forge
5 chosen victim signatures.

Following the insider adversary threat model, each partici-
pant is trained to act as an insider imposter for skilled forgery.
Regarding the ““visual observation of the victim’s signing
activity”’, we alternatively record the genuine signing video
of each person instead of direct observation because of the
difficulty of gathering all participants in the same room. Thus,
the signature collection procedures for a session are designed
as follows.

1) Genuine in-air signature acquisition: In this step,
we collect motion sensory data when our participants
sign in the air while wearing the smartwatch. In addi-
tion, we record the signing processes as videos and ask
the participants to provide their signature images.

2) Forged in-air signature acquisition: In this step,
we let our participants forge the signatures of others to
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generate skilled forgeries by imitating the hand move-
ments of the victims. The mimicry attack is conducted
after having a visual observation of the victim’s signing
video and multiple practices, while the victim’s signa-
ture image is available for reference.

Our experimenters also record the timestamps of begin-
ning and end. Additionally, to minimize the extra variability
that might be introduced by repositioning the smartwatch,
we require every participant to wear the smartwatch follow-
ing the habit in the first session and keep the position in
the second session. The reasonableness of this experimental
condition is also supported by the study [72] that suggests
that switching the locations of wrist-worn devices is not very
frequent. It is noticeable that the experiment contents and
how their data will be used were clearly explained to all
participants, while the data were collected after obtaining
signed informed consent forms from subjects without any
force. Moreover, we also fairly compensate for the time and
troubles of participants with about 1000 JPY (about 10 USD)
Amazon Gift Card and provide the right to withdraw at any
time if they have any discomfort. In addition, the acquired
signature data are securely stored without personal identifiers
(using generic identifiers such as UO1).

D. DATA REPRESENTATION
Fig.4 depicts an example of in-air signing at the left part that
a user signs their name in the air using fingers while wearing
a smartwatch, while the right part shows the corresponding
valid segment of the three-axis gyroscope, accelerometer, and
device attitude readings, where the valid signature segment
is extracted from the raw sensory readings between the two
timestamps indicating the beginning and end.

As in-air signing activities often cost different amounts of
time, the corresponding lengths of the valid motion sensor
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FIGURE 5. Comparison of length density between genuine and forged
signatures.

signals vary from 166 to 1637. Furthermore, the density plot
in Fig.5 compares the length distribution of sensory readings
between genuine and forged signatures, revealing that forged
signatures have a slightly higher variety than genuine signa-
tures in terms of length.

E. PROCEDURE

We start with the preprocessing of acquired in-air signatures
as depicted in the previous section by inversely rotating
accelerometer ({ay(t), ay(), a;(¢)}) and gyroscope signals
({gx(1), gy(1), g,(t)}) according to the attitude data (i.e.,
{aty(1), at, (1), aty(1)}). After the differentiation and normal-
ization steps, the rotated signatures are then paired into
(Siggenuine — Siggenuine) and (Siggenuine — Sigforged) Pairs, and
labeled them with corresponding binary numbers. Conse-
quently, the pairwise aligned signature dataset consisted of
3190 pairs of signatures from 22 participants. We adopt an
open-set protocol to divide the dataset by users. Specifically,
a total of 2465 pairs from 17 participants are selected to train
our RNN-based method, whereas the remaining signatures
are used for testing.

For details of the network architecture, the encoder part
contains two identical branches, each of which contains two
hidden layers of BiLSTM with 24 memory blocks. It is used
to process 12-dimensional pre-processed in-air signatures.
Temporal average pooling is then applied to the output of
BiLSTM with the dimension doubled twice to generate the
signature feature vectors with the length of 48. In the next
step, scores are obtained from the dense layer classifier acti-
vated by SoftMax with the input of the Euclidean distance
between the feature vectors of the two branches. An imple-
mented authentication method can be empirically evaluated
by estimating the probability of the error case occurrence as
follows:

I{slg € SigForged, s> A}

FAR = -
|SlgF0rged|

FRR — |{slq € Si?Genuine, s < A}
|SigGenuine|

where the false acceptance rate (FAR) is caused by accepting
imposters, whereas the false rejection rate (FRR) is concerned
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FIGURE 6. ROC curve compares performance with or without rotation.

about rejecting genuine users. The authentication scheme
makes a decision regarding acceptance or rejection, depend-
ing on whether the similarity exceeds the threshold value
A [73]. Particularly, with the increase in threshold value
A meaning high conditions to be matched as the genuine
user, the FAR and FRR witness a decrease and increase
respectively, and vice versa. Therefore, from the viewpoint of
performance evaluation, there is a commonly used quantity,
namely Equal Error Rate (EER). The EER refers to the error
rate when the matching threshold is determined to make FAR
and FRR the same value.

VI. RESULT

A. PERFORMANCE

Initially, we assess the accuracy of the proposed method
in distinguishing genuine signatures from forged signatures.
The evaluation result reveals that our proposed in-air sig-
nature authentication method achieves a high-precision of
EER value of 0.83% when distinguishing genuine in-air
signatures from their skilled forgeries generated by insider
adversaries. For in-air signature authentication, to evaluate
the contribution of rotation, we use the raw accelerome-
ter and gyroscope measurements without rotation based on
the attitude. Figure 7 and Figure 6 compare both the FAR
and FRR changes over the threshold and the ROC curves,
indicating performance improvement by introducing rota-
tion, while the EER of the system is reduced from 3.03%
to 0.83%. It is noticeable that our approach outperforms
comparable related works using smartphones [21] and smart-
watches [48], while achieving a relatively similar level to
studies using depth cameras [24]-[26] and the dedicated
device of Leap Motion [47].

B. INPUT ANALYSIS

Then, we are motivated to figure out the extent to which
different kinds of input data contribute to the discrimination
task between genuine and forged signatures using ablation.
Therefore, we compare the performance differences using
different sensory readings as inputs. In addition, the influence
of the variety of lengths is also assessed by fixing the input
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FIGURE 8. An example of four kinds of input signals of a signature.

signals to an identical length using the DCT-based length uni-
formity method described in Section IV. Specifically, we use
1) only accelerometer signals, 2) only gyroscope signals,
3) full signals, and 4) fixed-length full signals as inputs
respectively. Figure 8 shows an example of the correspond-
ing input signals of a signature. We evaluate our proposed
method using different types of signals as the input described
above. Figure 9 demonstrates the changes in both the FRR
and FAR over the threshold. Table 2 numerically depicts the
EER differences when different input patterns are used. The
system using only gyroscope data achieved a better result
(i-e., 2.44%) than the system using only accelerometer data
(i.e., 3.05%). The best result of 0.83% EER can be achieved
by combining both the sensory readings. However, when we
fix the lengths of the signatures, the performance decreased
slightly to 1.22% EER.

C. METHOD COMPARISON

In addition, we compare our proposed method with the algo-
rithms used in related work (i.e., GRU RNN [61], DTW [19],
[45], [49], [52]) that can deal with data with variable lengths.
Due to the limitations of our laboratory-scale experiment.
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TABLE 2. Performance comparison when different input signals are used.
Input  Accelerometer Gyroscope  Fixed-length
EER  3.05% 2.44% 1.22%

We implement and apply the algorithms to our acquired
in-air signatures under the same conditions to quantify the
performance difference.

GRU is another type of RNN unit with fewer gates (an
update gate z; and a reset gate ;) compared with the LSTM
used in our proposed method. The following equations show
the calculation of the GRU. We arrange the GRU in a bidi-
rectional structure with the Siamese architecture to evaluate
it on the pairwise aligned signatures.

2t = o(Wle™ "> x="" 1+ b)) )
re = o(Wele=" 1>, x> 1+ b,) (10
& = tanh(r; o We[c='™1> x<""14+b,)  (11)
" =zo08+(1—z)oc~1> (12)
a<t> = == (13)
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gyroscope X axis.

DTW is a widely used algorithm for measuring the distance
between two temporal sequences of different lengths. For
two signature series X(x1,x2, ..., xp) and Y(y1, Y2, .-, Ym)
with lengths of n and m, respectively, DTW is to find a time
warping path W =< wy, wp, ..., w; > reaching a minimum:

K
DITW(X,Y) = mv‘i/n{];dk, W =<wi,wy,...,w >}
(14)

where dj indicates the distance between x; and y; repre-
sented as wy (i,j) on the path. Therefore, in the first
step of evaluating DTW-based methods, the corresponding
time warping distance dataset is generated from pairwise
aligned signatures by applying DTW to each pairs. Figure 10
shows the point-to-point alignment and matching relationship
between signatures X and Y in the dimensions of the gyro-
scope x-axis measurement [74]. The distances are represented
by 12-dimensional vectors, which are then used to trained an
MLP classifier.

Table 3 compares the performance of different algorithm-
based systems in terms of EER, and Figure 11 shows their
ROC curves. The changes in FRR and FAR over the threshold
are depicted in Figure 12. Under the same conditions, the
GRU-based method achieved an EER of 0.97%, which is
almost equal to that of our approach, whereas the DTW-based
method shows a relatively high EER of 8.97% when it is
applied to distinguish our acquired in-air signatures.

VII. DISCUSSION
In this section, we present the verification from the aspect of

similarity and discuss the properties of in-air signing activi-
ties and the effectiveness of the pre-preprocessing of rotation.
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TABLE 3. Performance comparison for three algorithms.

Algorithm  this paper GRURNN DTW
EER 0.83% 0.97% 8.97%
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FIGURE 11. Receiver Operating Characteristic (ROC) curve.

A. SIGNATURE SIMILARITY

We utilize DTW as a non-machine-learning algorithm to
stably measure the similarities (distances) between signature
samples by calculating six-dimensional (i.e., three-axis gyro-
scope and accelerometer) wrapping. Two kinds of distances
are calculated for a given person: 1) the distance between a
genuine signature pair (Sgenuine|Sgenuine) and 2) the distances
between a genuine and a forged signature (SgenuinelSforgery)-
Fig.13 shows the best (left) and worst (right) cases that we
observed from two participants respectively, comparing the
distribution of the two kinds of distances in the dimension of
gx. It can be seen that repeating genuine signatures preserve
a certain extent of consistency (with inevitable variability)
and the forged signatures tend to be more different and
consequently show greater distances, whereas the extent of
consistency of genuine signatures and the “reality” of forged
signatures can change the separability.

B. COLLECTABILITY, PERFORMANCE,

AND CIRCUMVENTION

As for the performance, according to the empirical evaluation
results in the previous section, the achieved high level of
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accuracy (i.e., 0.83%) EER of in-air signature authentication
indicates observing in-air signature motions using smart-
watches as a high-precision alternative to traditional meth-
ods. Regarding the collectability, our experiment shows that
in-air signature motions can be easily acquired into motion
sensory readings, with the users wearing the smartwatch.
In contrast to the example of footprints that need to remove
shoes and socks in order to enroll [75], in-air signature acqui-
sition requires no more difficulties than enabling sensors and
signing.

DTW is also utilized to evaluate the circumvention prop-
erty of in-air signatures by quantifying the advantages that
the insider adversaries can have compared to stranger adver-
saries to determine their resistance against circumvention.
Particularly, we compare the similarity between genuine
signatures and their active forgery samples, on the one
hand, and between genuine signatures and random forgeries,
on the other. For random forgeries S,undomforgery, We randomly
choose 10 genuine signature samples from other subjects,
instead of carefully forged signatures in the active attack
model, to be paired with each targeted signature. Fig. 14
demonstrates the distance distributions of one dimension
(g2) between (Sgenuine |Sgenuine)> (SgenuinelSforgery) (active) and
(Sgenuine|Srandomforgery) Pairs. Even though by virtue of per-
sonal knowledge, active forgery samples can be more closer
to genuine targets than random ones, it is still difficult to
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generate forgeries with genuine level similarity (real fakes),
revealing the high circumvention of the in-air signature cap-
tured by smartwatch motion sensors. It is reasonable to
believe that the high accuracy of in-air authentication is
ensured by not only the consistency in repeating genuine sig-
natures but also the difficulty of launching mimicry attacks.
Furthermore, we emphasize an important in-air signature
property of “traceless”. Specifically, traditional table signing
usually leaves concrete traces (i.e., signature image) that
can be potentially used as knowledge for forgery, whereas
signing in the air using fingers is often “traceless” leaving
little knowledge and hard to be observed. This would also
contribute to the property of circumvention.

C. ROTATION VERIFICATION

In addition, we utilized DTW to verify the pre-processing
step of rotation using device attitude readings, which are
introduced to deal with the possible variability between gen-
uine signatures caused by the high variety of signing gestures
that we observed in the preliminary experiment. Therefore,
to verify the effectiveness of rotation processing to deal
with the variability between genuine signatures, we similarly
calculate the six-dimensional (i.e., three-axis gyroscope and
accelerometer) DTW distances between genuine signature
pairs before and after rotation. Figure 15 compares the DTW
distance distributions of the one dimension a, before and
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after rotation. It is clear to observe the distance decrease
after applying rotation, which indicates the effectiveness of
introducing this pre-processing step to calibrate unexpected
variability.

D. LIMITATION

We acknowledge some limitations of this study. As with many
emerging studies [25], [46], [48], [55], our study is based on
a laboratory-scale experiment with a relatively small num-
ber of participants. The participants are generally students
or staff at our institution, most of whom sign their names
in Japanese or Chinese characters. They may not be fully
representative of the population using other writing systems.
Also, the collected signatures show variety not only in length
but also in complexity from person to person. Combined
with the forgery ability of imposters, the variety may vary
the quality of signature forgery, leading to the difference
we observed between the best and worst cases discussed in
the previous section. Determining the general variety may
need statistical analysis. Therefore, the feasibility revealed by
this study of sensing in-air signature motions using smart-
watches for authentication suggests the future direction of
more extensive investigation on an industrial scale to include
a larger size of both participants with wide distribution and
signature samples from each of them. This would also enable
the method performance comparison under different condi-
tions. Furthermore, this study focuses more on the in-air
signature gesture. Quantifying the effects of the environment
(e.g., indoor and outdoor) and user activities (e.g., sitting,
walking, and running) may prove important. As our in-air
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signature authentication method using smartwatches only
records motion sensor readings and lacks recorded images of
the signatures, it is valuable in the future work to determine
the effect of recording images of the signatures and fur-
ther explore the potential of combining different observation
sources (e.g., camera and smartwatch) of in-air signatures as
multimodal signature authentication to improve performance.
In addition, the signature sample acquisition is only per-
formed under device-dependent conditions using the Apple
Watch Series 6. Considering a real scenario in which a user
may enroll her motion sensory traces from one device and
try to be authenticated using another device with different
manufacturers and operating systems, it is desirable for future
work to investigate cross-device authentication using multi-
ple popular smartwatches (e.g., Apple Watch, Honor band,
Microsoft band, and Mi band).

VIIl. CONCLUSION

In this paper, we have studied an emerging biometrics
authentication of signing in the air using smartwatches.
Towards this goal, we empirically investigated in-air signing
activities acquired using smartwatch motion sensors from
22 participants. We proposed an RNN-based authentica-
tion scheme to deal with smartwatch motion sensors read-
ings, which showed advantages over comparable methods
by achieving outperformed results of 0.83% EER. Particu-
larly, our method avoided sophisticated feature design and
can guarantee that only signature representations instead of
original data are stored, which saved space and is more
secure. Our property analysis has shown that the in-air signa-
ture activities can be effectively acquired for authentication,
while the naturally preserved consistency of repeating gen-
uine signatures makes them separable from forgeries. These
indicate the high feasibility of sensing in-air signing gestures
using smartwatches as an easily collectible, high-precision,
and strongly forgery-resistant behavioral biometric traits for
authentication.
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