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ABSTRACT Mesh models resulting from scanners are inevitably noisy; hence, removing the noise in
scanned meshes becomes an essential task in the services using three-dimensional mesh models. Filtering-
based methods are simple but have some constraints in eliminating noise because they degrade the features
in the mesh models while removing the noise. In this study, we design a feature enhancement filter that
is combined with a conventional denoising filter to remove the noise while enhancing the features. The
designed enhancement filter is applied only to the feature areas in the mesh model. Results from experiments
on synthetic and natural scanned models validate that the proposed method can restore false features by
integrating conventional filtering-based methods, and outperforms other state-of-the-art methods.

INDEX TERMS Bilateral filter, feature enhancement, mesh denoising, mesh normal filtering.

I. INTRODUCTION
As the demand for services based on three-dimensional (3D)
mesh models increases, high-fidelity scanners have recently
been developed. The mesh models resulting from scanners
are inevitably noisy, even when high-fidelity scanners are
used [1]. Therefore, removing the noise from the scanned
meshes becomes an essential task in the services using 3D
mesh models. The most challenging task in mesh denoising is
to preserve features while noise is removed. In the literature,
many algorithms have been introduced to remove undesired
noise while preserving mesh features, such as sharp edges
and corners. The algorithms are classified into isotropic and
anisotropic methods, filtering-based and optimization-based
algorithms, and data-driven methods, according to their core
techniques [2], [8], [17], [24], [28].

In isotropic methods, surface geometry is not considered
when noisy data is removed. Vollmer et al. [2] used Laplacian
smoothing to remove noise without considering the preserva-
tion of sharp features. Taubin [3] proposed a non-shrinking
and two-step smoothingmethod. Desbrun et al. [4] usedmean
curvature flow for surface fairing based on a simplified mass
matrix. Liu et al. [5] introduced a smoothing approach that
preserves the volume on triangular meshes. Nealen et al. [6]
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and Su et al. [7] proposed global systems of equations for the
isotropic smoothing method.

The isotropic approaches do not consider features in 3D
mesh models; whereas, recent researches have focused on
anisotropic techniques, which remove the noise while pre-
serving the feature data. Perona and Malik [8] presented
an anisotropic diffusion algorithm, which is a partial differ-
ential equation (PDE)-based denoising method. Similarly,
Clarenz et al. [9] proposed a diffusion tensor for the
anisotropic diffusion method. Ohtake et al. [10], and Ohtake
and E. Belyaev [11] introduced the anisotropic diffusion
method using the denoised face normal, which is derived
from a weighted sum of neighboring face normals. The level
set surface model, based on the anisotropic diffusion of
surface normal was proposed by Tasdizen et al. [12] to derive
denoised mesh models. Hildebrandt et al. [13] presented the
prescribed mean curvature-based surface evolution method
to avoid volume shrinkage and preserve features. Anisotropic
diffusion-based methods preserve features in 3D mesh mod-
els more efficiently than isotropic methods. However, when
the 3Dmeshmodels are contaminated with heavy noise, there
is a limit to the noise the anisotropic methods can eliminate.

The filtering-based method to remove noise is one of
the most studied techniques because it can eliminate noise
effectivelywith low computational complexity. Because early
methods directly filter the positions of vertices to remove
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noise [14]–[16], these methods do not preserve features when
the noise intensity is heavy. To overcome this problem, recent
methods include steps for normal filtering and vertex updat-
ing. Zheng et al. [17] used bilateral filters to update normal
filtering. Zhang et al. [18] proposed a joint bilateral filter,
which is based on a well-designed guidance normal field.
Later, Zhang et al. [19] introduced a scale-aware normal filter,
which uses static and dynamic guidance. Yadav et al. [20]
presented a normal filter in a statistics framework with the
isotropic regularization factor. Arvanitis et al. [21] developed
a coarse-to-fine framework based on graph spectral process-
ing, and subsequently refined the initial output by iteratively
smoothening face normals and vertices. Zhao et al. [22]
proposed a normal filter with guidance normals computed by
graph-cut method. Wang et al. [23] introduced an implicit
global optimization function with a feature-aware trilateral
filter for guidance.

Optimization-based methods introduce a hypothesis for
an ideal denoised mesh, and formulate mesh optimization
as a global energy function whose minimization satisfies
this hypothesis. The optimization-based techniques assume
features are sparse on a clean mesh. He and Schaefer [24]
introduced L0 optimization-based algorithm, which involves
the design of an edge operator for arbitrary triangular meshes,
and the algorithmmaximizes flat regions piecewise to remove
noise. The algorithm shows robust performance even in the
presence of heavy noise. However, the highly non-convex
nature of L0 optimization makes the calculation more com-
plex; moreover, a piece-wise flat effect is seen to occur
in this method. Wang et al. [25] constructed a weight L1
optimization method to solve these problems. Zhang et al.
[26] proposed filtered face normals, which use the total
variation of face normals to measure sharp feature sparsity.
These optimization-based methods are suitable only for sim-
ple models because they are based on the hypothesis that the
mesh consists of plain regions.

Recently, various studies based on data-driven methods
have also been conducted. A data-driven method was pro-
posed by Diebel et al. [27]. They formulated a pairwise
normal potential function for learning, which consid-
ers application-specific geometry shapes. More recently,
Wang et al. [28] used local geometry descriptors as inputs
for training neural networks. The network consists of
single-hidden layer feed forward networks in a cascaded
way. Wang et al. [29] proposed a similar design that uses
local geometry descriptors, where a second normal estima-
tion is utilized to recover features lost during the first step.
Li et al. [30] constructed a convolution neural network based
on a non-local similarity approach. Zha et al. [31] also
proposed a CNN-based method, including a cascaded struc-
ture. The performance of the data-driven methods depends
on the quality of the training dataset. Furthermore, the com-
putation cost of the training process for these methods is
high.

In addition to the aforementioned classified meth-
ods, there are other methods that use a normal voting

tensor [32], [34], classify feature areas [32], [33], and use
non-local similarity [35], [36]. Fan et al. [32] used the
eigenanalysis of a normal voting tensor (NVT) to separate
meshes into feature and non-feature regions, where denoising
algorithms are applied to each region differentially. Bian
and Tong [33] separated meshes using the k-means cluster-
ing algorithm. Yadav et al. [34] used element-based NVT
(ENVT), which is a method similar to [32] and [33], but
does not include a process of dividing the mesh area into
smaller regions. In this algorithm, mesh denoising is per-
formed using binary optimization on the eigenvalues of the
ENVT. In the non-local similarity method, Wei et al. [35]
and Li et al. [36] proposed low-rank matrix recovery by
co-filtering similar patches. Rudin et al. [37] first introduced
total variation (TV) regularization for 2D image denoising.
Owing to its good edge-preserving property, it has many
extensions for 2D image restoration and denoising [38], [39]
as well as for mesh denoising [40]. Zhang et al. [40] com-
bined TV and anisotropic Laplacian regularization. Duchamp
and Stuetzle [41] proposed an extension of spline smooth-
ing using a finite element method where sharp features
are not preserved. By contrast, the surface reconstruc-
tion technique [42] based on splines shows impressive
performance.

Among the aforementioned conventional algorithms,
filtering-based method is one of the simplest algorithms
to eliminate noise. However, the method may fail to
preserve features during noise removal, because it applies
the denoising filter several times to mesh data. To over-
come this problem, we design an efficient enhancement
filter, which can be jointly used with filtering-based meth-
ods. The combined method removes the noise corruption
in mesh data, while enhancing the features in the mesh
structure.

This paper is organized as follows. We review the related
works in Section II. In Section III, we explain the motivation
for our algorithm. In Section IV, we propose an efficient
algorithm to remove the noise corruption in mesh data while
enhancing the mesh features. The performance of the pro-
posed algorithm is evaluated and compared with those of var-
ious conventional methods in Section V. Finally, we present
our conclusions in Section VI.

II. RELATED WORKS
This section describes filtering-based methods, which are
simple although they may degrade feature information during
removal of noise in the mesh structure.

Most recent filtering-based methods, [17], [18], [20], and
[43], consist of two-step processes, which modify face nor-
mals in the first step and then update vertices according to
the modified face normals. Sun et al. [43] classified two-
step filtering-based methods into one-stage and two-stage
techniques. In one-stage techniques, the two steps are coupled
as a pair to give a single overall iteration procedure, whereas
two separate iteration phases are performed in two-stage
techniques.
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FIGURE 1. Example of fi ,8i , and �i .

A. NOTATION
In this section, we define some notations that are used in
filtering-based methods. F = {f1, f2, . . . ,fN } is a set of faces,
where fi is the ith face of the mesh. V = {v1,v2, . . . ,vM }
is the set of coordinates of vertices. N = {n1,n2, . . . ,nN }
is the set of normal vectors, where ni is the normal vector
of fi. The center coordinate and area of fi are denoted by
c (fi) and Ai, respectively. ∂f i denotes the set of edges that
constitute the boundary of fi. We denote Nv(i) as the 1-ring
vertex neighborhood of a vertex vi. Similary, the set of faces
that share a vertex vi is denoted by Fv(i).
For a fi, the set of 1-ring neighbor faces is defined as

follows:

8i = {fk | 1− ring neighbor with fi} . (1)

The set of neighbor faces for fi is defined as follows:

�i =
{
fj |
∥∥c (fi)− c(fj)∥∥ < r

}
. (2)

where r is the radius determined by a user or is a fixed value.
Fig. 1 shows an example of fi,8i, and�i, where red face is fi,
green faces are included in 8i. �i consists of blue and green
faces.

B. BILATERAL NORMAL FILTER
The bilateral normal filter (BNF) method is a two-stage tech-
nique, which updates normals Niter times and then updates
vertices Viter times. The process of the denoising algorithm
using the BNF can be represented as (update normals)Niter +
(update vertices)Viter . The BNF updates the normal vector
using the weighted average of noisy neighbor normal vectors
as follows:

ñi =
1
Ki
×

∑
fj∈8i

AjWC (‖c (fi)

−c
(
fj
)∥∥ , σc)WS

(∥∥ni − nj∥∥ , σs)nj (3)

where Ki is the normalization factor. σc and σs control the
kernel widths of Gaussian functionsWC andWS , respectively,
as follows.

WC
(∥∥c (fi)− c (fj)∥∥ , σc) = exp

(
−

∥∥c (fi)− c (fj)∥∥2
2σ 2

c

)
,

(4)

WS
(∥∥ni − nj∥∥ , σs) = exp

(
−

∥∥ni − nj∥∥2
2σ 2

s

)
. (5)

Function WC gives small weight when the distance between
the centroids (i.e. the geometric centers) of fi and neighboring
faces is large. FunctionWS gives more weight as the similar-
ity between ni and neighboring normals increases.

C. GUIDED NORMAL FILTER
The guided normal filter (GNF) method is a modified one-
stage technique. The process by which the noise removal
algorithm uses the GNF method can be represented as(
update normals+ (update vertices)Viter

)iter
. The updated

normal vector is derived as follows:

ñi =
1
Ki
×

∑
fj∈�i

AjWC (‖c (fi)

−c
(
fj
)∥∥ , σc)WS

(∥∥gi − gj∥∥ , σs)nj (6)

where gi is a guided normal vector of fi and is designed to be
robust to noise. For a given face fi, a patch is selected among
a set of candidate patches that contain the face. The selected
patch has the most consistent normal directions. The average
normal of the chosen patch is used as the guidance normal gi
for the face fi. The GNF preserves features better than BNF
because gi is more robust to noise than ni [18]. Notably,�i is
used in GNF whereas faces in 8i are considered in BNF.

D. ROBUST AND HIGH-FIDELITY FILTER
The robust and high-fidelity filter (RHF) method is a
one-stage technique that has one iteration parameter.
The process of the RHF method can be represented as
(update normals+ update vertices)iter . The RHF updates
normal vectors in a similar manner as BNF:

ñi =
1
Ki
×

∑
fj∈�i

AjWC (‖c (fi)

−c
(
fj
)∥∥ , σc)WT

(∥∥ni − nj∥∥ , σs)nj (7)

where Tukey’s bi-weight function is used instead of Gaussian
functionWS as follows.

WT
(∥∥ni − nj∥∥ , σs)
=


1−

(∥∥ni − nj∥∥
σs

)2
2

if
∥∥ni − nj∥∥ ≤ σs

0 otherwise

(8)

Tukey’s bi-weight function preserves the features better than
Gaussian function because it does not allow diffusion across
sharp features. The RHF method removes noise components
along sharp features using Tukey’s bi-weight function.

E. VERTEX POSITION UPDATING
The two-step techniques, including BNF and GNF, update
the coordinates of the vertices using the method proposed
by Sun et al. [43]. They constructed an error function
using the fact that ∂f i must be perpendicular to the updated
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FIGURE 2. Example of areas where features have not been preserved.
(a) is the ground-truth mesh, (b) is noisy mesh. (c)-(e) are results in 5, 10,
and 20 iterations of RHF. (f) is colored version of (e).

normal ñi. Therefore, to minimize the error function, the
gradient descent method is used as follows.

ṽi = vi +
1

3 |Fv (i)|

×

∑
j∈Nv(i)

∑
(i,j)∈∂fk

ñk
(
ñk ·

(
vj − vi

))
. (9)

RHF also updates the coordinate of vertices using this
concept; however, this involves an additional term, λRi. The
term Ri is a combination of the differential coordinate and
tangential component. It makes the algorithm robust against
high-intensity noise. Because term Ri has a similar effect to
isotropic smoothing, using the same λ value in all iterations
causes a shrinkage problem. To overcome this problem, the
value of λ decreases as the iterations increase.

III. MOTIVATION
Fig. 2 shows the results of using the RHF method on
the Twelve model over several iterations. Figs. 2a and 2b
represent the original and the noisy models, respectively.
Figs. 2c, 2d, and 2e are enlarged views of the red border
region of Fig. 2b. They show results after 5, 10, and 20

FIGURE 3. Example of dk .

iterations respectively. From Figs. 2c, 2d, and 2e, we observe
that features are not preserved during all iterations. This is
because some false features are regarded as features. Fig. 2f
is the colored version of Fig. 2e, where the faces, including
the false features and correct normals, are painted red and
blue, respectively.

BNF, GNF, and RHF methods give high weights to neigh-
boring normal, which are similar to the current normal in (3),
(6), and (7), respectively. Thus, when algorithms are applied
to one of the normals in the red area of Fig. 2f, high weights
are assigned to only the neighboring normals in the red area.
As a result, even if filtering is performed several times, the
noisy normals cannot be corrected. This problem is due to
using the distance between ni and nj in the weighting func-
tions of (3), (6), and (7).

In this paper, we propose an efficient filtering process for
normal vectors to solve the aforementioned problem. The
basic idea of the proposed algorithm is to recover features
using the normals in the blue areas when filtering the nor-
mals in the red areas in Fig. 2f. The proposed algorithm
consists of denoising and feature enhancement modules,
where the denoising part is implemented by a conventional
algorithm, such as BNF, GNF, and RHF, based on (3), (6),
and (7), respectively. The enhancement module is a form
of the filter-based technique that can be used to fix noisy
features. When the proposed enhancement filter is applied
to the normal vector ni of the current face fi, we assign the
high-weighted values to the normal vectors of the neighbor
faces, which have the feature property. Details of the pro-
posed algorithm and the enhancement module are described
in Section IV.

IV. PROPOSED ALGORITNM
A. DEFINITION OF SET 3
We define a direction vector from current face fi to one of the
neighboring faces fk as follows:

dk = c (fk)− c (fi) . (10)

As shown in Fig. 3, dk is a vector from the center of face fi
to that of face fk . According to the colors used in Fig. 1, fi is
marked in red, faces in the set8i are green, and faces of blue
and green regions are in the set �i. Based on these notations,
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FIGURE 4. Example of a set 3100 marked with pink.

we define the set 3k for each fk in 8i as follows:

3k=

{
fl |
(
d l ·

dk
‖dk‖

)
≥

(
d l ·

dm
‖dm‖

)
, fl ∈ �i,∀fm ∈ 8i

}
.

(11)

Fig. 4 shows an example of set3100 which includes f100,f105,
and f171 where directions of d105 and d171 are closer to the
direction d100 than other dm(∀f m ∈ 8i,m6= 100). We con-
struct the sets 3ks for all one-ring neighbor faces fks. For
example, we can construct 312, 315, 328, 341, 343, 355,
3103, 3100, 370, 388, 383, and 381 in Fig. 4.

B. DEFINITION OF SET 9
For each face fk in the one-ring neighbor 8i, we construct
the set 0k ,which consists of indices of neighboring faces
satisfying the following condition.

0k =

{
n | cos−1

(
dk · dn
‖dk‖ ‖dn‖

)
< θ,∀fn ∈ 8i

}
. (12)

0k is a set of indices of faces fns, which are in one-ring
neighborhood and whose dns are within an angle θ from dk .
If θ is set to a small value, the subsequent processes are noise-
sensitive. By contrast, if θ is set to a large value, the compu-
tational complexity of the algorithm increases substantially.
It means that the selection of θ has a trade-off relationship
between noise sensitivity and computational complexity. θ is
set to 60◦ in our algorithm after experimental tests. We con-
struct the sets 0ks for all one-ring neighbor faces fks. Based
on the sets 0ks, we construct the sets 9ks for all one-ring
neighbor faces fks as follows.

9k =
⋃

n∈0k
3n. (13)

Fig. 5 shows examples of 0k and 9k , where 055 is
{41, 55, 103} and 088 is {70, 83, 88}. The elements of 988
and 955 are marked with pink and orange, respectively.

C. FEATURE AND NON-FEATURE REGIONS
To determine whether the current face fi is in a feature region
or not,MinMaxRatio is calculated as follows.

MinMaxRatio =

min
k

1
|9k |

∑
fl∈9k

(ni · nl)

max
k

1
|9k |

∑
fl∈9k

(ni · nl)+ ε
, (14)

FIGURE 5. Examples of ψ88 and ψ55 marked in pink and orange,
respectively.

where |9k | is the total number of faces in 9k . In the feature
region, the averaged dot product value of the current normal
vector ni and the normal vectors nls belonging to9k depends
on the geometric characteristic of 9k . If set 9k contains
normal vectors that are similar to the normal vector of the
current face such as 988 in Fig. 5, the averaged dot product
value is approximated to 1. By contrast, if 9k contains nor-
mal vectors whose directions are different from the normal
vector of the current face such as 955 or 943 in Fig. 5, the
averaged dot product value decreases to−1. As the averaged
angle between ni and nls increases, the averaged dot product
decreases to −1 through 0 from 1.
In the feature region, as the normal vectors included in

9k have a larger angle with the normal vector of the current
face, the averaged dot product value decreases to−1 through
0 from 1. By contrast, in a non-feature region, regardless
of the location of 9k , the normal vector of the current face
and the normal vectors of the neighboring faces have similar
directions, so the averaged dot product values for all 9ks are
similar and close to 1.

In the numerator of (14), we calculate the averaged dot
product value between the normal vector ni of the current
face fi and normal vectors nl of faces fl in set 9k . Among
them, we select the minimum value that occurred when the
averaged angle betweenni andnls is largest. If fi is in a feature
region, the minimum of the numerator in (14) is a small value
(down to −1), because there is at least one 9k whose normal
vectors are considerably misaligned to ni of the current face
fi. By contrast, in the non-feature region, because the normal
vectors ni and nls are mostly aligned, the minimum value is
approximately 1.

When the mesh model consists of sphere-shaped parts,
although the faces are in the non-feature region where edges
are not included, ni and nls are not aligned, and the minimum
value of the numerator of (14) is not approximated to 1. This
tendency differs from that of the non-feature regions that do
not include sphere-shaped parts. Therefore, in order to clas-
sify a sphere-shaped part as a non-feature region, the averaged
dot product is normalized by the denominator of (14).

In the denominator of (14), the maximum value is selected
among the averaged dot products. In the homogeneous region
(i.e., non-feature region) that does not include the sphere-
shaped part, most normal vectors nl of faces in the set 9k
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FIGURE 6. Example of feature area determined by the proposed
algorithm. (a) Visualizes the feature regions by using MinMaxRatio in
(14), (b) shows the feature regions with yellow color after thresholding.

are aligned with ni. Thus, the maximum value is approxi-
mately 1. By contrast, in the feature region, although many
faces are misaligned with the current face, there is at least
one normal vector of faces in set 9k that is approximately
aligned to the normal vector of the current face, because
the extremely sharp mesh-like needle-shape rarely occurs.
Therefore, in the feature region, the maximum value of the
denominator is approximately 1. Note that the denominator
of (14) is approximately 1 for the feature as well as non-
feature regions (without including the sphere-shaped part).
When the non-feature region consists of the sphere-shaped
parts, the value of the denominator of (14) is approximately
equal to that of the numerator. Therefore, the MinMaxRatio
of (14) is approximately 1 for the non-feature region (regard-
less of whether sphere-shaped parts are included), whereas it
has a much smaller value than 1 for the feature region.

However, we can consider a special case of the feature
region where all the neighboring faces of the current face are
perpendicular to the current face, although this scenario rarely
occurs. In this case, the numerator and the denominator are
both 0. In order to avoid the denominator being 0, a very small
value of ε is added to the denominator in (14). In this special
case, theMinMaxRatio in (14) is 0. Therefore, by comparing
the MinMaxRatio with a threshold value between 0 and 1,
the considered regions can be classified into feature or non-
feature regions. In our algorithm, ε and the threshold τMMR
are set to 10−6 and values in the range [0.7, 0.9], respectively.
Fig. 6a visualizes the feature regions by usingMinMaxRatio

in (14), where the red and blue colors are set to the faces as
much as (1−MinMaxRatio) and MinMaxRatio of the faces,
respectively. In Fig. 6a, to represent it clearly, the assigned
color values are clipped in the range of [0, 255]. In this
study, when MinMaxRatio of fi is less than a threshold
τMMR, we consider that fi is in a feature region. Using the
thresholding, Fig. 6b shows the feature regions with yellow
color.

D. TARGET NORMAL VECTOR
In this section, we define the target normal vector n̂i, which
is derived from the neighbor faces whose normal vectors are
aligned to ni of the current face fi. In order to select those

neighbor faces, among all9ks, we choose one whose normal
vectors are most aligned to ni of the current face fi according
to the following equation.

k∗ = argmax
k

 1
|9k |

∑
fl∈9k

(ni · nl)

 . (15)

We can explain themeaning of (15) with an example of Fig. 5,
where because faces in the orange area are over a feature,
the value of (15) corresponding to the orange area is small.
On other hand, the pink area has a large value of (15) because
all normals of the pink region are similar to ni. In the example
of Fig. 5, the value of k∗ is set to 88. From k∗, the target
normal vector n̂i of a fi in a feature region is derived as
follows:

n̂i = G
(∑

fl∈3k∗
WC

(∥∥c (fi)− c (fj)∥∥ , σc)nl) , (16)

where G(x) is a normalization function of x. WC is a Gaus-
sian function and σc controls the kernel widths of Gaussian
functionWC .

E. FEATURE ENHANCEMENT FOR NORMAL VECTOR
In our algorithm, the feature-enhanced normal ñi of the cur-
rent face fi is calculated using the following filter:

ñi=G

∑fk∈8i

∑
fl∈3k

{
WC

(∥∥∥∥ dk∗
‖dk∗‖

−
dk
‖dk‖

∥∥∥∥ , σ ′c)
×WT

(∥∥n̂i − nl∥∥ , σ ′s)nl}

(17)

where WC is a Gaussian function and WT is a Tukey’s
bi-weight function. σc′ and σs′ control the kernel widths of
Gaussian functions WC and WS , respectively. The function
WC gives high-weighted values to normals that are near the
set3k∗ . For example, if k∗ is 88 in Fig. 5, high-weighted val-
ues are assigned to the normals of faces belonging to370 and
383 because they are close to 3k∗ . By contrast, low weights
are given to the normals of the sets far from 3k∗ , such as
343,328, and381. In (17), the center position of the Tukey’s
bi-weight function is shifted from the current normal vector
to the target normal vector, where the target normal vector is
computed using (16). The function WT enhances features by
giving high weights to neighboring normals, which are simi-
lar to the target normal vector n̂i of the current face, fi. Tukey’s
bi-weight function produces more robust results than the least
square and Gaussian-based estimators because it completely
cuts off the diffusion at sharp features [20]. As (17) is a filter
to enhance the feature, it is more desirable to avoid assigning
weights to outliers whose direction is very different from
the target normal vector n̂i, so we used Tukey’s bi-weight
function. Notably, (17) enhances the features; it does not
remove the noise. Consequently, the enhancement module
based on (17) is combined with a conventional denoising
algorithm, such as BNF, GNF, and RHF, to remove the noise
while enhancing the features.
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FIGURE 7. Flowchart of the proposed algorithm to remove noise and enhance the features of a mesh model.

F. CRITERION FOR IMPROVEMENT
The proposed technique applies filters to the noisy data iter-
atively, as many conventional algorithms do, to remove the
noise. However, the proposed algorithm performs the filtering
for denoising and that for feature enhancement alternatively.
When the denoising filter is applied, one of the conven-
tional denoising methods, such as BNF, GNF, and RHF,
is used to remove the noise iteratively. In the denoising step,
if the improvement effect of the denoising filter is saturated,
we apply the feature-enhancing filter of (17). After the fea-
tures have been enhanced, the denoising process is applied
alternatively.

In the end of each iteration, we calculate the improvement
factor (IF) to check whether the improvement resulting from
the applied filters has been saturated. To calculate the IF
in the iter th iteration, alteration B of the normal vectors is
evaluated as follows.

Biter =
1
NT

∑
∀k
| 6 (nk , n̄k)| , (18)

where n̄ks are normal vectors obtained after the vertices have
been updated by (9) according to the filtered normal vectors
ñi in (3), (6), (7), and (17). NT is the total number of total
normal vectors. (18) implies the averaged absolute difference

between angles of nks and n̄ks. To check the IF of the iter th

iteration effectively, we calculate the moving average of the
first derivative of Biter as follows.

IF iter =
1
4

∑3

k=0
αiter−k , (19)

where

αiter =

∣∣∣Biter − Biter−1∣∣∣ . (20)

Fig. 7 illustrates the flowchart of the proposed algorithm,
which consists of a (a) denoising process, (b) feature enhance-
ment, and (c) denoising process without considering feature
enhancement. In the denoising part, one of the conventional
denoising filters in (3), (6), and (7) is used to remove the
noise in the mesh model. Then, the vertices are updated
by (9). At the end of each iteration of the denoising part,
we evaluate the IF of (19) to check whether the noise is
removed sufficiently. If IF iterDN is less than a threshold τDN ,
the flag of FE is set to 1 and the process is switched to the
feature enhancement part (b) in the next iteration. IF iterDN is the
value of IF iter calculated with data resulting from part (a).
In part (b), we apply the feature enhancement filter of (17)
to enhance the degraded features. The feature enhancement
is not applied consecutively, because consecutive feature
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enhancements may amplify the noise. Thus, FE is set to
0 after each application of the feature enhancement. At the
end of each iteration of the (b) feature enhancement part,
if IF iterEnh is less than a threshold τEnh, we decide that the
feature enhancement is saturated sufficiently and no more
enhancement is needed by setting NME = 1. Notably, IF iterEnh
is the value of IF iter calculated with the data resulting from
part (b). After NME is set to 1, only the (c) part is performed
until the end of the iteration.

G. CONTRIBUTIONS
Conventional bilateral filter-based methods [17], [18], [20]
used Gaussian functions to assign higher weights to the nor-
mal vectors whose corresponding faces’ centroids are near
that of the current face. In addition, a Gaussian function or
Tukey’s bi-weight function was used to assign higher weights
for the neighbor normal vectors, which are similar to the
normal vector of the current face. While the conventional
methods consider distance as one of the most important
parameters, the proposedmethod considers the direction from
the location of the current face to those of the neighboring
faces. The proposed method gives higher weights to normal
vectors because the locations of neighboring faces are nearer
on the line of direction set in (15). This is done so as to
give lowweights to the neighboring normal vectors across the
edge, even though the distance from the current face is low.
We proposed the set 3k of (11) to define the direction from
the location of the current face to those of the neighboring
faces. We also defined sets 0k , 9k of Eqns. (12), (13) to
determine the direction in which to assign high weights.

Some conventional mesh denoising methods [25], [34]
used covariation matrices and principal component analy-
sis (PCA) to classify meshes into feature and non-feature
regions. These classification processes have high compu-
tational complexities. By contrast, we proposed a simple
method to distinguish between feature regions and non-
feature regions, where the parameterMinMaxRatio of (14) is
used. According to the value of (14), the feature enhancement
filter can be selectively applied to feature regions.

We also modify Tukey’s bi-weight function to assign
higher weights for the neighbor normal vectors that are sim-
ilar to the target normal vector. In (17), the center position
of the Tukey’s bi-weight function is shifted from the current
normal vector to the target normal vector, where the target
normal vector is computed using (16). As the target normal
vector in the feature region is more robust to noise than the
current normal vector, the proposed filter better preserves the
feature.

V. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed
algorithm and compare it with those of various conventional
methods. As we can see in Fig. 7, the proposed algorithm
imports one of the conventional denoising methods, such
as the bilateral normal filter (BNF) [17], the guided nor-
mal filter (GNF) [18], and the robust and high-fidelity filter

(RHF) [20] to remove noise from mesh models. The perfor-
mance of our proposed algorithm is compared with those of
other methods such as l0 minimization (L0M) [24], the non-
local low-rank filter (NLLR) [36], and the cascaded normal
regression (CNR) filter [28] as well as BNF, GNF, and RHF.
The source codes of GNF, RHF, and NLLR have been kindly
provided by their authors, whereas BNF and L0M are imple-
mented by a third party. The trained neural networks of CNR
have been kindly provided by their authors [28].

When the conventional methods are integrated with the
proposed algorithm, the parameters of the methods are set to
harmonize with those of the proposed algorithm. When BNF
is used as in [17], it requires two iteration parameters to be
set because it is a two-stage method. However, when BNF is
integrated with the proposed method, one iteration parameter
is required. As RHF is a one-stage method like the proposed
method, it can be used in the proposed algorithm without any
alteration.

A. PARAMETERS SETTING
The proposed algorithm has some parameters, such as radius
r in (2), a threshold τMMR to be compared withMinMaxRatio
of (14), σc′ and σs′ in (17), a threshold τDN to check the effect
of the denoising, a threshold τEnh for the enhancement.

The radius r parameter represents the range of neighbor-
hood of the current face. BNF constitutes neighboring faces
with 1-ring neighbor. GNF calculates r = ca × µ for a
radius to constitute neighboring faces, where ca is the average
distance among the centroids of all faces, andµ is a parameter
set by the user. In RHF, r is set to ca×2. When BNF and
RHF are respectively integrated with the proposed algorithm,
neighboring faces are constructed in their ways, and when
GNF is used, µ is set to 2. In (11)-(17), r is set to ca × 3.5.
τMMR depends on the noise level and is set to values in

the range [0.7, 0.9]. From empirical test data, we found that
the performance of the proposed algorithm is not sensitive
to τMMR.

The parameters σc and σs in (3), (6), and (7) are set to
values used in BNF, GNF, and RHF. The σc′ in (17) is set to
the average distance ca among the centroids of faces as was
done by Yadav et al. [20]. σs′ is set by the user as in [18], [20].

From empirical test data, we found that τDN and τEnh are
independent of noise levels and characteristics of the mesh
models. In the simulations of this section, we set τDN and
τEnh as 1.0 and 0.15, respectively.

B. TEST MODELS
To evaluate the performances of conventional and proposed
methods, we used various mesh models, such as Fandisk,
Block, Sharpsphere, Twelve, Nicolo, Julius, Bunny, Cone,
and Pyramid, which are commonly used in the literature.
Fandisk, Block, Sharpsphere, Twelve, Nicolo, Julius, and
Bunny are CAD-generated models and they contain differing
noise levels. Cone and Pyramid are scanned by Microsoft
Kinect v1 (Microsoft’s motion sensor add-on) via the Kinect-
Fusion technique [28]. Fandisk, Block, Sharpsphere and

56852 VOLUME 10, 2022



H.-D. Han, J.-K. Han: Modified Bilateral Filter for Feature Enhancement in Mesh Denoising

TABLE 1. Performance comparison with BNF [17].

Twelve contain distinct feature areas, whereas Nicolo, Julius
and Bunny consist of smooth surfaces. For CAD-generated
models, we add impulse noise to Twelve model, and we
corrupted other CAD-generated models with Gaussian noise.

C. OBJECTIVE EVALUATIONS
The two most widely used error metrics, mean square angu-
lar error (MSAE) and L2 vertex-based surface-to-surface
error [44], were used for objective evaluations of the models
used in our study. MSAE represents the mean angular
difference between the matching normal vectors of the
ground-truth and denoised models as follows,

MSAE =
1
|N|

∑|N|

i=1
6
(
ni,n′i

)
, (21)

where ni is the normal vector of ground-truth, ni′ is the
normal vector of denoised mesh, and |N| is the number of
normal vectors. The L2 vertex-based error is a metric that
calculates how close the positions of vertices in the denoised
model are to those in the ground-truth model. The L2 vertex-
based error is defined as follows,

Ev =

√
1

3
∑

j∈F Aj

∑
i∈V

∑
j∈Fv(i)

Ajdist
(
v′i,T

)2
, (22)

where T is the nearest face in the ground-truth mesh to the
vertex vi′ of the denoised mesh. The L2 vertex-based error

TABLE 2. Performance comparison with GNF [18].

is calculated based on the weighted average of the distance
between vertices, where the weighting factors are areas of the
surrounding faces of the corresponding vertex. As discussed
in [23] and [45], MSAE metric is more correlated to visual
quality than L2 vertex-based metric.
In Table 1, the performance of the proposed algorithm

incorporating BNF is compared with that of BNF. In simula-
tions with the CAD models, the parameters of BNF were set
to the optimal values provided in [18]. The parameters (σs,
Niter , Viter) of BNF for Cone and Pyramid models and the
parameters (σs′, τMMR, iter) of the proposed algorithm for all
models were set to the optimal values, which provide the best
performances in the empirical tests.

From Table 1, we can observe that the proposed method
outperforms BNF for all models in respect to MSAE; the pro-
posed algorithm reduces MSAE significantly in the models
Fandisk, Block, Sharpsphere, Twelve, and Pyramid, which
contain many distinct features. As for Nicolo, Julius, and
Bunny models, which have few features and consists of
smoothed edges, the proposed algorithm slightly improve the
performance in respect to MSAE compared to BNF.

In the Ev column, the proposed algorithm outperforms
BNF in all models except for Nicolo and Cone models.
The performance of the proposed algorithm is approxi-
mately equal to that of BNF for Nicolo and Cone models.
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TABLE 3. Performance comparison with RHF [20].

In the models Fandisk, Block, Sharpsphere, Twelve, and
Pyramid, which contain many distinct features, Ev is signifi-
cantly improved.

As we observe in Table 1, the proposed algorithm pro-
vides large improvement for models having distinct features,
because themain idea of the proposed algorithm is to enhance
the featureswhile the defects in the plain regions are removed.

Table 2 represents the performances of GNF and the
proposed algorithm incorporating GNF for various models.
When GNF is implemented, the parameters (µ, σs, Niter ,
Viter) for the CAD models are set to the optimal values
provided by [18]. The parameters of GNF for Cone and
Pyramid models and the parameters (σs′, τMMR, Niter , Viter)
of the proposed algorithm for all models are set to the optimal
values, which provide the best performances in the empirical
tests.

From MSAEs of BNF and GNF in Table 1 and 2,
we observe that MSAEs of GNF are much lower than those
of BNF for the distinct feature models Fandisk, Block,
and Twelve. It means that GNF preserves features better
than BNF.

In Table 2, in the MSAE column, the proposed algorithm
outperforms the GNF method for all models. We observe
that the tendencies of MSAE improvement of the proposed
algorithm are similar in Tables 1 and 2. From the results for

TABLE 4. Performance comparison with other methods.

Sharpsphere including the curved sharp edges in Table 2,
we observe that MSAE and Ev of the proposed algorithm
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are much smaller than those of GNF. This implies that the
proposedmethod preserves the curved sharp edges better than
the GNFmethod. In the column of Ev in Table 2, the proposed
algorithm is slightly inferior to GNF in some models, such as
Fandisk, Nicolo, Julius, Bunny, and Cone.

The comparison between performances of RHF and the
proposed algorithm incorporating RHF is summarized in
Table 3. The parameters (σs, λ, iter) of the RHF method for
Fandisk and Nicolo models are set to the optimal values pro-
vided by [20]. The parameters of RHF for other models and
the parameters (σs′, λ, τMMR, iter) of the proposed algorithm
for all models are set to the optimal values, which provide
the best performances in the empirical tests. The tendency of
the results shown in Table 3 is very similar to that of Table 2,
except for results of the Sharpsphere model.

In Table 4, the performances of the proposed algorithms
respectively integrated with BNF, GNF, and RHF methods
are compared with those of L0M, NLLR, and CNR, where
the best and second-best performances are shown in red and
blue colors, respectively. As we observe from Table 4, one
of the proposed algorithms shows the best performances of
MSAE and Ev for all CAD models, such as Fandisk, Block,
Sharpsphere, Twelve, Nicolo, Julius, and Bunny. As for Cone
and Pyramid models, the proposed algorithm has the second
best MSAE and the best Ev. Notably, Cone and Pyramid
models consist of overall flat regions, except for few feature
regions over small areas. This property of those models is
matched to the hypothesis of the L0M method. It is the
reason why L0M has the best MSAE values for the Cone and
Pyramid models.

In Table 5, the time required to complete the processes of
various algorithms is compared. BNF is the fastest method
because it only considers the distance between the current
face and neighboring faces and the difference between the
current normal vector and neighboring normal vectors. How-
ever, it results in degraded meshes when the models include
distinct features, as shown in Figs. 8b and 9b. In the case of
OURS+BNF, although the time consumed increases slightly,
enhanced results are obtained, as shown in Figs. 8c and 9c.
The GNF method needs the longest computation times
because it requires many iterations for updating vertices,
where the total number of iterations of updating vertices
is Viter × Niter . In OURS+GNF, the number of iterations
of updating vertices is substantially decreased because the
proposed filter effectively removes noise with a small Viter
while preserving features satisfactorily. For example, in the
Block model, the GNF method has a Niter value of 40 and
a Viter value of 30, resulting in 1200 iterations of updating
vertices. By contrast, because the OURS+GNF method has
a Niter value of 70 and a Viter value of 2, only 140 iterations
are performed. Thus, the consumed times of OURS+GNF are
smaller than those of GNF. When RHF and OURS+RHF
are compared, OURS+RHF requires slightly higher compu-
tational times than RHF, because the sets3k , 0k ,9k of (11),
(12), (13) and the target normal vector should be calculated.
However, OURS+RHF produces better results than RHF,

TABLE 5. Consumed times (sec) of the techniques.

as shown in Figs. 8g and 9g, in a reasonable time, because
the feature enhancement filter of the proposed algorithm is
no longer applied when the feature enhancement is saturated
according to (19).

D. SUBJECTIVE EVALUATIONS
In this section, the subjective performances of various
algorithms are evaluated for a variety of mesh models.
In Figs. 8, 9, 10, and 11, we can visually compare the meshes
denoised by BNF, OURS+BNF, GNF, OURS+GNF, RHF,
and OURS+RHF.

Figs. 8 and 9 show the results for Fandisk, Block, Sharp-
sphere, and Twelve models, which have distinct feature areas.
In the Fandisk model, challenging regions, including corners,
are indicated by two red windows. As shown in the win-
dows, the proposed method ensures that the features are well
reconstructed. The region in the red window of the Block
model consists of triangular faces whose density is very high.
Whereas most conventional methods do not recover features
in this region, the proposed method efficiently reconstructs
the features in the challenging areas. In the enlarged window
of the Sharpsphere model, we observe that the BNF method
fails to recover the features. Conversely, the GNF method
reconstructs its features to some extent, but does not recover
its curved edge. The proposed algorithm, integrated with the
BNF or GNF method can perfectly reconstruct the features
and effectively enhance the curved edges. In columns (f) and
(g) of Fig. 9, both the RHF method and the proposed algo-
rithm incorporating RHF show excellent reconstruction and
enhancement of features of the Sharpsphere model. In the
Twelve model, one of the edges is enlarged in the red window.
Among the results (b), (d), and (f) obtained from the BNF,
GNF, and RHF methods for the Twelve model, respectively,
the GNF method results in the best visual quality, but the
left end of the edge is distorted in the result. Conversely, all
denoised results by the proposed algorithm show perfectly
reconstructed edges. Note that the BNF method is not effec-
tive for impulse noise, but the proposed algorithm preserves
the features corrupted from impulse noise.

Fig. 10 shows the denoised meshes of the Nicolo, Julius,
and Bunny models, which have sparse features. In the Nicolo
model, there is no significant difference between visual qual-
ities of meshes resulting from BNF and the proposed algo-
rithm incorporating BNF. When GNF method is applied on
the noisy Nicolo model, some wrong features are generated
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FIGURE 8. Illustration of the denoised results on Fandisk and Block. (a) noisy meshes, (b) - (g) the meshes denoised by BNF, OURS+BNF, GNF,
OURS+GNF, RHF, and OURS+RHF.

FIGURE 9. Illustration of the denoised results on Sharpsphere and Twelve. (a) noisy meshes, (b) - (g) the meshes denoised by BNF, OURS+BNF, GNF,
OURS+GNF, RHF, and OURS+RHF.

in the nose area of the resulting mesh. Conversely, the pro-
posed algorithm using GNF provides the enhanced features
in the nose area. In the test of RHF for Nicolo model, it
blurs the model excessively, whereas the proposed algorithm
incorporatingRHF reconstructs the features efficiently.When

the Julius model is used for various algorithms, the results
obtained from GNF, OURS+GNF, RHF, and OURS+RHF
shows good visual quality. Conversely, BNFmethod degrades
the features in the areas of the hair and mouth of the Julius
model, whereas the OURS+BNF enhances those features
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FIGURE 10. Illustration of the denoised results on Nicolo, Julius, and Bunny. (a) noisy meshes, (b) - (g) the meshes denoised by BNF, OURS+BNF, GNF,
OURS+GNF, RHF, and OURS+RHF.

FIGURE 11. Illustration of the denoised results on Cone and Pyramid. (a) noisy mesh, (b) - (g) the meshes denoised by BNF, OURS+BNF, GNF,
OURS+GNF, RHF, and OURS+RHF.

efficiently. As for the Bunny model, because it has no fea-
ture to be enhanced, similar results are generated from all
algorithms.

Fig. 11 shows the simulation results for the Cone and
Pyramid models. In the tests with the Cone model, GNF
generated false features in the lower part of the left arm,

whereas OURS+GNF reconstructed the features correctly.
The Cone models denoised by BNF, OURS+BNF, RHF, and
OURS+RHF methods have blurred features. Because the
triangular faces of the Cone model are very small and the area
of a set of neighboring faces is also very small, the pro-
posed algorithms (OURS+BNF and OURS+RHF) do not
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FIGURE 12. Illustration of the denoised results on Fandisk and Block. (a) noisy mesh, (b) - (g) the meshes denoised by L0M, NLLR, CNR, OURS+BNF,
OURS+GNF, and OURS+RHF.

FIGURE 13. Illustration of the denoised results on Sharpsphere and Twelve. (a) noisy mesh, (b) - (g) the meshes denoised by L0M, NLLR, CNR,
OURS+BNF, OURS+GNF, and OURS+RHF.

recover the noisy features, which are located actually in
the near neighbor but out of the set �i. When the Pyramid
model is used as a test data, we observe from results of
the enlarged red windows that the conventional methods of
BNF, GNF, and RHF blur out corners and edges, whereas

the proposed algorithm, integrated with those conventional
methods, reconstructs the features efficiently.

In Figs. 12, 13, 14, and 15, the subjective perfor-
mance of proposed algorithm is compared with those of
L0M, NLLR, and CNR methods. The test models used in
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FIGURE 14. Illustration of the denoised results on Nicolo, Julius, and Bunny. (a) noisy mesh, (b) - (g) the meshes denoised by L0M, NLLR, CNR,
OURS+BNF, OURS+GNF, and OURS+RHF.

FIGURE 15. Illustration of the denoised results on Cone and Pyramid. (a) noisy mesh, (b) - (g) the meshes denoised by L0M, NLLR, CNR, OURS+BNF,
OURS+GNF, and OURS+RHF.

Figs. 12, 13, 14, and 15 are same as those in Figs. 8, 9, 10,
and 11, respectively.

In Fig. 12, the Fandisk models denoised by L0M, NLLR,
and CNR methods have much more degraded features in the
corner regions than those by the proposed algorithms. When
the Block model is used, the L0M method reconstructs the

features in the corner regions better than the NLLR and CNR
methods. However, L0M does not reconstruct the curved area
of the model. Conversely, the proposed method respectively
incorporating the BNF and RHF methods, enhances the fea-
tures in the corner areas efficiently. In the test on the Block
model, OURS+GNF show the best performance in the corner
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FIGURE 16. IF iter
DN of (19) converges as the iteration number increases. (a) OURS+BNF, (b) OURS+GNF, (c) OURS+RHF.

FIGURE 17. IF iter
Enh of (19) converges as the iteration number increases. (a) OURS+BNF, (b) OURS+GNF, (c) OURS+RHF.

FIGURE 18. Variations of MSAE of meshes denoised by the proposed algorithm for various τMMR. (a) OURS+BNF, (b) OURS+GNF, (c) OURS+RHF.

areas. In the simulations with the Sharpsphere model, which
consists of curved surfaces and edges, the proposed method
outperforms the other methods. The results for the Twelve
model have a similar trend as those of the Sharpsphere model.

In Figs. 12 and 13, we observe that the L0M method has
difficulty in making the curved surface into a set of small flat
areas, the NLLRmethod blurs the edge, and the CNRmethod
does not recover the details of the features. Overall, the results
using the proposed method have better performances than
each of the L0M, NLLR, and CNR methods.

In Fig. 14, all results denoised by the L0M method have
a set of small flat areas, which degrade the visual quality
significantly. Regarding removing the noise, NLLR shows
the worst performance among the compared algorithms.
OURS+BNF and CNR show the best performances. How-
ever, CNR does not recover the details of hair above the ear
in the Julius model. OURS+GNF and OURS+RHF enhance
the features efficiently.

For the Cone and Pyramid models of Fig. 15, L0M
method shows good performance. In the results from NLLR,
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the edges are slightly blurred and the noise in the flat area
is not completely removed. The CNR method removes the
noise in the flat area effectively, but the edge feature is con-
siderably blurred. OURS+GNF and OURS+RHF efficiently
removes the noise in the smooth surfaces while simultane-
ously enhancing the edge.

E. CONVERGENCE OF THE PROPOSED ALGORITHM
Figs. 16 and 17 show the convergence patterns of IF iter

of (19) for various mesh models, such as Fandisk, Block,
Nicolo, and Julius, when the proposed algorithm, respectively
incorporating the BNF, GNF, and RHF methods, is applied
to remove the noise. In these simulations, we corrupted the
test models with low- to high-levels of noise. The x-axis and
y-axis in these figures represent the iteration number and
IF iter , respectively. The graphs in the figures show that IF iter

converges as the iteration number increases. It implies that
the change of the normal vectors decreases and IF converges
to zero regardless of the characteristics and noise level of the
models, as the iteration number increases.

F. ROBUSTNESS OF THE PROPOSED ALGORITHM
This section explains the variations in the performance of the
proposed algorithm with changes in the value of τMMR, which
is set by the user.

Fig. 18 shows theMSAEs of the denoised models when the
proposed algorithm is applied to the noisy Fandisk, Block,
Sharpsphere, Twelve, Nicolo, Julius, and Bunny models with
various values of τMMR. Fig. 18 shows that the performance of
the proposed algorithm, respectively integrating BNF, GNF,
and RHF method, is not affected by changes in the values
of τMMR.

VI. CONCLUSION
This paper proposes a method to enhance the features in
noisy mesh models. We found that the conventional filtering-
based methods update the current normal by giving high
weights to neighboring normals, which are most similar to
the current normal. Due to this procedure, the normals of the
neighboring faces having the wrong dominant features affect
the update the normal of the current face. This constrains the
performances of the filtering-based methods. Conversely,
the proposed algorithm drives the target normal vectors and
enhances the degraded features based on the target normal
vector, while the noise is removed by integrating one of the
conventional filtering-based methods. From various simula-
tions, we showed that the proposed algorithm is efficient at
both removing the noises and enhancing the features.
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