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ABSTRACT Edge Computing and Network Function Virtualization (NFV) concepts can improve network
processing and multi-resources allocation when intelligent optimization algorithms are deployed. Multiser-
vice offloading and allocation approaches pose interesting challenges in the current and next-generation
vehicle networks. The state-of-the-art optimization approaches still formulate exact algorithms, and tune
approximation methods to get sufficient solutions. These approaches are data-centric that aim to use
heterogeneous data inputs to find the near optimal solutions. In the context of connected and autonomous
vehicles (CAVs), these techniques show an exponential computational time and deal only with small and
medium scale networks. Therefore, we are motivated by using recent Deep Reinforcement Learning (DRL)
techniques to learn the behavior of exact optimization algorithms while enhancing the Quality of Ser-
vice (QoS) of network operators and satisfying the requirements of the next-generationAutonomousVehicles
(AVs). DRL algorithms can improve AVs service offloading and optimize edge resources. An Optimal
Virtual Edge Autopilot Placement (OVEAP) algorithm is proposed using Integer Linear Programming
(ILP). Moreover, an autopilot placement protocol is presented to support the algorithm. Optimal allocation
and Virtual Network Function (VNF) placement and chaining of the autopilot, based on several new
constraints such as computing and networking loads, network edge infrastructure, and placement cost, are
designed. Further, a DRL approach is formulated to deal with dense Internet of Autonomous Vehicle (IoAV)
networks. Extensive simulations and evaluations are carried out. Results show that the proposed allocation
strategies outperform the state-of-the-art solutions and give better performance in terms of Total Edge Servers
Utilization, Total Edge Servers Allocation Time, and Successfully Allocated autopilots.

INDEX TERMS Edge computing, artificial intelligence, autonomous driving, optimization algorithms.

I. INTRODUCTION
Autonomous Vehicles (AV) [1]–[3] target the deployment
of service chains including sensors sensing, computer
vision, localization, High Definition (HD) Map building,
path planning, and control. AV sensors include ultrasonic,
cameras, radar, LiDAR, and Dedicated Short-Range Com-
munications (DSRC) devices. Moreover, AV sensors gen-
erate heterogeneous data and need intelligent data fusion
methods and machine learning techniques such as object
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classification, inference, and artificial intelligence models
that ease the autonomous driving process. In recent AV
sensors deployments, vehicles use a wide variety of sens-
ing competences. Moderately, a vehicle has seventy sensors
including ambient light sensors, accelerometers, gyroscopes,
and moisture sensors. The combination of the Internet of
Autonomous Vehicle (IoAV) sensors with different situa-
tional awareness, failures, and real-time response determines
the AV complexities that they need to have a comprehen-
sive software. Vehicles already had a number of function-
alities for combining real-time sensing with perception and
decision-making.
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A self-driving process needs to solve complex AV issues
through sensing, real-time object detection, classification,
and segmentation [4]. The most important key issues in
autonomous driving include safety, low latency [5], [6], high
data rate, software accuracy, map completeness and correct-
ness, augmented sensor fusion, etc.

Generally speaking, AVs gather a huge amount of raw
data to figure out the world and incorporate data from other
sensors, lasers, and radar to get a richer understanding of
the environment. Then, it performs localization to figure out
precisely its location in the world. Path planning and control
modules are then enabled to chart a course through the world
to reach the destination and makes appropriate decisions
while driving such as steering wheel, hitting the throttle,
hitting the brake, etc.

Current Internet of Things (IoT) platforms for AVs do
not enable low-latency and real-time data processing, and
require offloading data processing to near edge computing
servers. In general, AVs connect to the edge platforms using
5G cellular networks to access real-time data analytics for
required applications [7]. Edge servers can collaborate with
other edge nodes in the vicinity, thereby creating a local
distributed peer-to-peer (P2P) network beneath the cloud.
Recently, the edge/cloud computing servers host AV service
chains and provide feedbacks and decisions to the physical
infrastructure.

In this paper, we contribute by virtualizing themain autopi-
lot functions usingNetwork FunctionVirtualization/Software
Defined Networking (NFV/SDN) techniques. This step gen-
erates virtualized instances that can be deployed as a service
in the network operator edges.

Moreover, despite the importance of the optimization task
in virtualized architectures, such functions are missing in the
global network architecture. Therefore, we try, in this paper,
to contribute with an exact Optimal Virtual Edge Autopilot
Placement (OVEAP) algorithm to decide about the optimal
point of operations where the autopilot function should be
hosted. Then, we proposed a Deep Reinforcement Learn-
ing (DRL) basedVirtual EdgeAutopilot Placement (DVEAP)
algorithm to deal with large scale networks. These tools help
network operators to manage their resources and collabo-
rate efficiently with the Original Equipment Manufacturer
(OEM).

A. PROBLEM STATEMENT
The main problem considered in this paper is the offload-
ing approaches for AVs. It considers offloading autopilot
functions, such as computer vision, perception, localization,
planning, etc. to the near edge computing served by a 5G net-
work operator. Moreover, the problem supports partial and/or
full offloading, where the AV can offload one or multiple
autopilot functions. The statement is described as follows:
maximize the succeeded placement of the autopilot VNFs
while minimizing the number of edge servers, where to place
the offloaded autopilot functions at the distributed network
edge, and how to guarantee an optimal quality of driving in

terms of edge servers utilization and allocation, successfully
allocated autopilots, average network delay, service time, and
processing time.

We consider different types of constraints in our virtu-
alization and offloading process. We introduce CPU, GPU,
storage, RAM, Bandwidth, VNF chaining (without decompo-
sition), minimum edge servers, and 5G link constraints. The
proposed constraints are divided into different types: system
type constraints, network type constraints, 5G link capacity,
and Quality of Service/Quality of Experience (QoS/QoE)
constraints. Moreover, edge type constraints include maxi-
mum number of simultaneous connections per server.

Recall that none of the previously described contributions
considered the virtualization of a vehicle autopilot, neither
the QoS/QoE. OVEAP optimization will maximize the total
number of offloaded autopilots for AVs connected over 5G
New Radio (NR) protocol. The objective is to minimize the
cost of computing resources (i.e. active Mobile Edge Com-
puting (MEC) servers). The main goal of our study is to pro-
pose optimization algorithms for edge-assisted autonomous
vehicles and the underlying Artificial Intelligence (AI) mech-
anisms to optimize edge computing resources and vehicle
networks.

B. MAIN CONTRIBUTIONS
The main contributions in this paper are as follows:

1) Design and propose an end-to-end, reliable and
low-latency communication architecture that allows the
allocation of compute-intensive autonomous driving
services, in particular autopilot, to shared resources on
edge servers and improve the level of performance for
autonomous vehicles.

2) Propose an Advanced Autonomous Driving (A2D)
communication protocol that supports dense moving
vehicles.

3) Use of edge assisted Integer Linear Programming (ILP)
techniques to allocate autopilot resources on the opti-
mal edge computing servers.

4) Introduce an edge based Deep Reinforcement Learn-
ing (DRL) as a new approach to automate and optimize
the allocation of heterogeneous autopilot computing
and networking resources, extract knowledge from dis-
seminated data, and recommend autopilot allocation
strategies according to different metrics. The autopi-
lot’s Virtual Network Functions (VNFs) allocation is
compared to standard optimization techniques in order
to show how deep learning techniques will be used to
solve generalized compute-intensive autonomous driv-
ing services optimization problems.

The rest of the paper is as follows. Section II highlights
the related work background to ease the understanding of the
paper contribution and give a detailed related work in the field
of edge-assisted autonomous driving architectures, commu-
nication protocols, and optimization algorithms. Section III
describes our proposed Advanced Autonomous Driving
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(A2D) communication protocol. Section VI introduces the
proposed mathematical programming approach for A2D.
Section V enhances the optimization module with an Edge
based Deep Reinforcement Learning (EDRL) approach.
Section VI evaluates the proposed approaches and the work is
concluded with some research directions in the final section
(i.e. Section VII).

II. RELATED WORK BACKGROUND
Different techniques, standards, and norms adopted by AI,
5G, V2X, IoV, and Edge/Cloud computing in the area of edge
assisted autonomous driving. Recent applications include the
use of Artificial Intelligence (AI) techniques andDeep Learn-
ing (DL) models in self-driving cars, autonomous driving
services management, edge computing assistance, and online
optimization (e.g., Tesla AI [8], DeepRM, DeepMind, Deep
Traffic). The popular Reinforcement Learning (RL) meth-
ods are Trust Region Policy Optimization (TRPO), Policy
Gradient (PG), and Q-Learning (QL). More importantly, the
rapid development of Internet of Vehicle (IoV) is also making
autonomous driving a reality [9]. This section categorizes the
AVs domain work into two sides as follows:

A. AUTONOMOUS VEHICLES AND EDGE COMPUTING
CONVERGENCE
In [10], the authors present the state-of-the-art approaches
that leverage the edge-computing paradigm in the autonomous
driving field. However, it missed the discussion about current
edge AI work and optimal resources allocation design.

Datta et al. [11] formulate some research and engineering
challenges for developing cloud-based environment for con-
nected car services. The test-bed services are running in a vir-
tualized environment and are deployed using Micro-services.
It leverages edge servers for vehicular data annotation and
local processing with actuation. The work missed the use
case of autonomous vehicles. Further, the authors do not take
into account recent communication technologies that might
enhance the overall performance metrics such as end-to-end
delay, latency, and safety.

Liu et al. [12] set up an end-to-end prototype, which sup-
ports Wi-Fi, LTE, and DSRC communication technologies.
The authors evaluate the performance in terms of network
latency, power dissipation, and system utilization. They pro-
pose different communication and networking schemes that
connect On Board Units (OBU) nodes to network gateways.
Moreover, they implement communication prototypes using
ROS messages. However, the prototype does not include the
communication between OBUs, gateways (RSUs), and edge
servers.

In [13], the authors design and propose a low power
edge computing system for real-time autonomous robots and
vehicles services. They propose an offloading strategy that
decides when and where to offload autonomous driving tasks.
Their work is only focusing on minimizing the power con-
sumption of the edge platform. However, we are considering

relevant metrics such as servers utilization, multi resources’
utilization, QoS, and safety.

In [14], the authors addresses the issue of how to pro-
cess large data volumes and still meet the objectives of the
connected and autonomous vehicle driving. Therefore, they
propose the introduction of edge and fog computing nodes
as an assistance layer of processing. Further, they rise the
problem of how to process large data volumes as quickly
as possible. For this purpose, they propose moving machine
learning models and functions to where data is generated
and not collected such camera devices. Still, the authors
do not take into consideration virtualized architectures at
the network edge that can add flexibility, programmability,
and control of the compute-intensive embedded-autopilot
modules.

In [15], the authors propose an end-to-end machine learn-
ing algorithm for the entire autonomous driving procedures.
The approach uses deep neural networks models to map
directly collected IoAV sensory inputs, such as front-facing
camera images, to driving actions such as steering angle. The
work is of practical interest, however, it missed virtualized
edge computing facility that helps in machine learning train-
ing and IoAV resources allocation.

In [16], the authors propose an autonomous vehicle world
model that represents the vehicle’s view of its road environ-
ment. The model takes as an input the heterogeneous infor-
mation gathered from in-vehicle sensors, V2X communica-
tion, and a priori information (e.g., roads and intersections
information) and outputs real time events that trigger and feed
the decision-making module. They have used Cyclab [17],
an open-source 3D simulator, to simulate the proposed frame-
work. The work does not take benefit neither from edge
computing nor from AI techniques. Moreover, the authors
used a static worldmodel that does not take into consideration
navigation safety, communication latency, and performance
indicators to evaluate the world model.

In [18] the authors propose a three-tier architecture for
Vehicular Edge Computing (VEC) domain. It supports a high
level of scalability, real-time data delivery, and mobility. The
authors leverage SDN and NFV virtualization techniques
to add more flexibility, control and a global view of the
moving vehicles. This latter uses V2X communication tech-
nologies such as DSRC, LTE, and 5G to reach either the
edge servers or the centralized cloud. They rise serious VEC
technical issues and challenges such as latency, scheduling,
load balancing, offloading, resource management, and secu-
rity/privacy. The authors survey the main challenges and
opportunities when vehicle network meets edge computing.
However, the work missed an overall architecture that defines
the most appropriate network modules and edge techniques.
Moreover, the authors should take into consideration the
V2X communication protocols in presence of the NFV/SDN
paradigms. They also missed optimization techniques related
to the network/edge convergence according to safety indi-
cators when designing the allocation loop of autonomous
vehicles.
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In [19], the authors present an edge-cloud computing
model for autonomous vehicles using the open-source soft-
ware platform Autoware [20]. They believe that their pro-
posed edge-cloud computing model for Autoware-based
autonomous vehicles reduces the execution time and the total
deadline miss. Among the main missing modules in their
platform, the work consider neither the in-vehicle comput-
ing resources management, nor the Vehicle to Edge (V2E)
communications.

In [21], the authors propose surrogate: an edge architec-
ture for self-driving cars with OpenStack and ETSI open-
source MANO. It aims at virtualizing the in-vehicle OBUs
at the distributed edge platform and managing Multi-Access
Edge Computing (MEC) layers that process real-time vehicle
requests. Thework suffers from optimal virtual OBU (vOBU)
management and orchestration algorithms at the virtualized
edge surrogates. Moreover, vOBU manager module needs to
take into account solver instances related to the IoAV network
scale and driving conditions.

In [22], the authors describe how to build a self-driving
car, applying AI and ML techniques to train and test until
the car drives safely. They are collaborating with Waymo
Company, which offers cars having 4 million miles of driving
and 2.5 billion simulated miles. Then, AI/ML models are
feeded with the gathered data for training and knowledge
extraction. The work missed the edge computing assistance
for efficient computing and scalable processing. We believe
that the work is interesting and autopilots can take benefit
from these results.

In [23], the authors studied the problem of V2X service
placement. They proposed an ILP technique to decide where
to offload services, taking into consideration the limited
computing resources, available at the network edges. They
introduce decision variables to indicate the optimal service
placement. Then, they proposed a greedy approach to deal
with large network scales. Themain objective of the proposed
approaches is to minimize the overall delay experienced by
vehicles. The authors do not take into consideration the AV
requirement in terms of reliability, latency, and data rate.
Moreover, ILP formulations need heuristics to deal with
large autonomous vehicle network scales. In our contribution,
we virtualize the entire autopilot function while ensuring
V2X services constraints.

In [24], the authors implement a unified autonomous driv-
ing cloud infrastructure that supports heterogeneous applica-
tions. It can efficiently gather huge amount of raw data and
perform distributed simulation in order to stress offloading
algorithms. It can also perform offline DLmodel training and
augmented HD Map generation. The authors rise the issue
of heterogeneous applications deployment (i.e., simulations,
offline DL model training, HD map generation) that need
different infrastructure and orthogonal requirements. Indeed,
deployed applications share all gathered data as inputs while
assuring the required storage cost. Therefore, they propose
a unified cloud infrastructure that supports heterogeneous
AV applications. They introduce some design considerations

in implementing the unified infrastructures including Spark
RDD, Alluxio, and heterogeneous computing substrates.
Despite the relevant work, the authors do not take into consid-
eration the AV services placement, orchestration, and man-
agement which represent key modules in edge intelligence
over virtualized AI-IoT architectures.

In [25] the authors propose a cloud based self-driving car
which can optimize the in-vehicle data storage issues. They
propose to free autonomous vehicles from all data and down-
load everything from the cloud as per the need of the travel.
Their solution allows to free vehicles from raw data and rely
on a centralized cloud infrastructure for the drive. The authors
assume a persistent network connectivity to the cloud and
a sufficient in-vehicle storage to back the data in the case
of limited network availability. The proposed cloud infras-
tructure is not clear and need to integrate scheduling algo-
rithms that allocate gathered data to CPU cores and servers.
Moreover, it missed distributed edge computing servers that
efficient process sensitive application data.

In [26] the authors proposed Carcel, a cloud-assisted sys-
tem for autonomous driving. The cloud platform has access
to data from AV sensors and the roadside infrastructure
environment. It assists autonomous vehicles to detect/avoid
obstacles such as pedestrians and other vehicles that may not
be directly detected by the AV sensors. It helps autonomous
vehicles to plan efficient paths. Then, the authors introduce
a cloud-based planner module along with request, sender,
and receiver modules. They implement the planner module
within the cloud using the Robot Operating System (ROS).
The cloud-assisted system tracks request messages from the
cloud, and accordingly transmits the sensor information in the
form of UDP packets to the cloud. Their proposed metrics are
the response time and the distance to pedestrian. We believe
that the work is of practical interest, however, it missed
virtualization techniques and VNF manager module that ease
the allocation procedure of the autopilot chain on the cloud.
Moreover, the edge/fog facility is missed from the overall
architecture.

In [27] the authors explore a distributed computing archi-
tecture that addresses on-vehicle and off-vehicle computation
as will be needed to support connected and autonomous
driving. They suggest local/edge computation rather than
offloaded to cloud servers in order to reduce the end-to-
end latency. We believe that AI approaches may ease edge
resources’ management to satisfy Connected Autonomous
Vehicles (CAV) requirements in terms of safety, latency, and
bandwidth.

Different efforts have been proposed for Vehicular Edge
Computing, where the edge servers provide different services
according to the application. For instance, Ye et al. [28]
proposed a service offloading framework in a fog comput-
ing environment, where the vehicles are used as mobile fog
servers to provide services to connected end-users and also
execute offloaded tasks from roadside cloudlets. The Genetic
Algorithm (GA) is used as an allocation strategy to achieve
tasks offloading with the least cost. The proposed strategy
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TABLE 1. State-of-the-art approaches in edge computing assisted autonomous driving field.

achieve good results in terms ofminimizing data transmission
cost. However, the impact of obstacles and congestion in
communication is not studied in this work. Moreover, we are
motivating to use fog and edge computing capabilities to
ensure the vehicle self-driving itself.

B. ARTIFICIAL INTELLIGENCE AND EDGE COMPUTING
CONVERGENCE
In [29], the authors introduce the paradigm of edge intel-
ligence that introduces the convergence of Edge Comput-
ing (EC) and Artificial Intelligence (AI). They categorize
the utilization of Machine Learning (ML) on the wireless
edge into three parts: resource management, networking,
and localization. In [30], the authors study the converge of
edge computing and deep learning techniques. In [31], the
authors propose the use of deep learning for the Internet of
Things (IoT) with Edge Computing. In [32] the authors use
artificial intelligence methods in recent 5G wireless network-
ing scenarios. In [33], the authors explore the role of Artificial
Intelligence (AI), Machine Learning (ML), and Deep Rein-
forcement Learning (DRL) in the evolution of smart cities.
In [34], the authors introduce AI as a Service (AIaaS) on
Software-Defined Infrastructure (SDI). In [35], the authors
propose an intelligent robust routing using artificial intelli-
gence approaches. In [36] the authors integrates AI modules
in the Network Simulator (NS) to simulate real environments

and agents spaces. Recent studies [37], [38] focus on better
clarification of the convergence of AI, edge computing, DL,
and network telecommunication with respect to 5G standards
and 6G vision. Besides, a huge effort is devoted to ensure the
edge intelligence convergence through universal virtualized
architectures and AI techniques [39], [40].

Literature lacks intelligent AI/DRL techniques that may
improve the edge computing resources management in the
autonomous driving context.

Table 1 summarizes the state-of-the-art approaches in the
autonomous vehicle field using edge-computing facility.

Hereafter, we propose our autopilot protocol along with
a reference architecture. Then, exact and artificial intelli-
gence based optimization algorithms for compute intensive
autonomous driving services allocations are proposed accord-
ing to a reference architecture.

III. PROPOSED AUTOPILOT PROTOCOL
A. SYSTEM DESIGN
Distributed edge computing enables the multiplexing of het-
erogeneous and virtualized networks over different AI-IoT
architectures corresponding to the isolated tenants and
domains to satisfy different application requirements.

The physical infrastructure in next generation networking
architectures consists of isolated logical networks, including
IoT, IoV, and IoAV which is the topic of this paper. It is worth
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mentioning that Unmanned Aerial Vehicles (UAV), Cloud-
Radio Access Network (C-RAN), 5G New Radio (NR) [46],
and SDN/NFV customers such as vCDN operators [47],
Mobile Virtual Network Operator (MVNO) [48] represent
also potential end-users in our proposed AI-driven network-
ing architecture.

B. PROPOSED ADVANCED AUTONOMOUS DRIVING
ARCHITECTURE USING EDGE ARTIFICIAL INTELLIGENCE
We propose an end-to-end, reliable and low latency
communication architecture that allows the allocation of
compute-intensive autonomous driving services, in partic-
ular autopilot, to share the resources on edge servers and
improve the level of performance for autonomous vehi-
cles. In Figure 1, we highlight the proposed Advanced
Autonomous Driving (A2D) architecture for the proposed
autopilot use case.

FIGURE 1. Autopilot use case in the artificial intelligence defined
optimization framework.

The A2D architecture consists of three main layers/entities
as follows:
• The Centralized Cloud Computing Layer: It acts as
the cloud autopilot and is responsible for processing
Non-Real-Time (NRT) autopilot VNFs.

• The Distributed Network Edges Layer: It is an inter-
mediate layer that connects OBU vehicles to the cloud.
This layer consists of distributed edge servers that assure
the cooperation between the virtualized OBUs or vehi-
cles. Moreover, it is responsible for processing and ana-
lyzing the offloaded VNFs according to vehicle requests
requirements and available resources in the edge servers.
It is worth mentioning that resources include comput-
ing (CPU, GPU, FPGA), radio (Resource Block, SNR,
MCS, CQI), RAM, and storage. The network edge coop-
erates with the distributed edges and the cloud. It can
execute the VNF migration and outsourcing in case of
local resources miss.

• The Autonomous Vehicle Layer: It is the layer of
autonomous vehicles that requests autopilot services
chains offloading due to the local resources scarcity.

C. INTEGRATED AUTOPILOT ARCHITECTURE
The main autopilot service chain includes mapping engine
(HD Map), localization, perception, decision-making, path-
planning, control commands, and Human-Machine Interface
(HMI). Each of them has an augmented version responsible
for AI insertion. The autopilot layer is running on the top
of a Real-Time Operating System (RTOS) such as ROS and
ROS2 that schedules incoming tasks on GPU cores. It must
ensure low latency by minimizing the makespan of all the
jobs and data parallelism techniques to minimize the total
missed deadlines. The computing platform of the integrated
autopilot includes different Telecommunication Units (TCU)
as follows:

• V2X Modem: it represents the V2X communication
module that uses Dedicated Short Range (DSRC) imple-
menting VANET modules with respect to the IEEE
802.11p standard.

• Long Term Evolution (LTE) Modem: it consists of
the LTE cellular network modules implemented. One
could use OpenAirInterface (OAI) to simulate the
LTE-Advanced communication protocols.

• 5G Modem: Is implements the 5G New Radio (NR)
standardized protocols. One could use the open source
OpenAirInterface5G [46] software which implements
the Baseband Unit (BBU) functions and integrates dif-
ferent Remote Radio Heads (RRH) considered as Soft-
ware Defined Radio (SDR) modules.

• WI-FI Modem: It implements a set of wireless network
protocols based on the IEEE 802.11 family of standards.

• Controlled Area Network (CAN) Modem: It consists
of an in-vehicle robust bus standard designed to allow
microcontrollers and devices to communicate with each
other’s applications without a host computer. It is stan-
dardized with ISO 11898. It connects all the vehicle
devices in order to facilitate the vehicle control and
management.

• Computing Platform: It consists of a heterogeneous set
of CPU, GPU, TPU and FPGA substrate.

We propose to leverage an edge computing infrastructure
to virtualize the above integrated autopilot. The virtualized
autopilot includes mainly OpenStack layers for VNFs man-
agement [49] and Kubernetes cluster for containers orches-
tration [50]. It is easily deployed using automation services
according to the resources’ availability at the network edge.
In case of resources miss, the cloud computing servers are
used. It is a centralized entity that assures autopilots applica-
tions orchestration, and multi-edge management.

D. PROPOSED ADVANCED AUTONOMOUS DRIVING
COMMUNICATION PROTOCOL
Themain steps of the proposed protocol are detailed hereafter
(see Figure 1):

1) Autopilot Slicing: each autonomous vehicle can
request for offloading some autopilot functions.
It requests the near edge node, representing by gNB or
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RSU (i.e., a 4G/5G base station) to enable local edge
resource discovery and VNFs allocation.

2) Resources Discovery in Connected Edge Nodes:
when the access point receives autopilot functions
offloading request, it generates VNF components or
slices. Then, it selects a set of connected edge nodes
that can satisfy each VNF requirements in terms of
CPU, GPU, RAM, storage. The selected set of con-
nected edge nodes, called Virtual Edge Servers (VES).
Resource discovery procedure is based on the comput-
ing and networking capabilities of the servers.

3) Autopilot VNFs Offloading/Allocation: when the
VES is selected, the access point starts the process of
VNF offloading by allocating each slice a free device
resources (from the selected VES that can satisfy the
slice request requirements). It is worth mentioning that
an optimization algorithm is used to select the optimal
points of operations where VNFs can be offloaded
according to the aforementioned system and network
requirements. Still, the cloud computing may represent
a solution in the case of edge resources miss. This case
may occur when the access point cannot select a VES
that can meet the demands of the autonomous vehicles
set.

4) VNF Components Graph: this is the optimization
results of the allocation procedures that indicate the
placement of each VNF component. After launching
the VNFs in the VES/cloud servers, optimal control
commands are sent directly to the access point.

5) Results Forwarding: in the last step, the access point
forwards optimal control commands to the autonomous
vehicle while satisfying its requirements.

For the sake of clarity, we show in Figure 2 the main
communication steps between the edge computing and the
connected autonomous vehicle as follows:

• Connected autonomous vehicles send instantaneous
states such as position, speed, and next decision of the
autopilot to the Edge/Cloud.

FIGURE 2. The communication steps between the centralized Edge and
the distributed connected AD vehicles.

• The Edge/Cloud Autonomous Driving (AD) service col-
lects the raw data, creates the world model for each
section of the road, and communicates with Cloud AD
Autopilot.

• The Edge/Cloud AD Autopilot sends the global model,
generates a high level request for each autonomous
vehicle node such as speed request and lane request
positioning.

• The Integrated Autopilot merges the Edge/Cloud autopi-
lot inputs and embedded/local inputs to decide to antic-
ipate and act locally.

As explained above, the A2D protocol needs some intelli-
gent optimization algorithms that allocate autopilot VNFs to
the optimal/near-optimal edge servers.

IV. OVEAP OPTIMIZATION MODEL
The optimization of autopilot’s VNFs placement in edge
computing architectures has achieved more attentiveness.
It is similar to the placement of Virtual Machines (VMs),
where the VNFs are composed of containers or VMs that
can execute the needed network functions. We propose a
mathematical programming model based on Integer Linear
Programming (ILP) in order to model the autopilot VNFs
(i.e., a service chain: traffic flow automation between the
instantiated functions) offloading in the virtualized edge
architecture. The algorithm takes as inputs the system capac-
ity in terms of storage, networks and computing. It aims then
to optimally place autopilot VNFs upon the virtual edges.
Autopilot VNFs are offloaded in order to increase the safety
and decrease the end-users and network devices loads. The
optimization algorithm for service offloading in VMEC is
modeled, implemented, and evaluated in the next subsections.

A. OVEAP MULTI-RESOURCES AWARE
MATHEMATICAL FORMULATION
For the sake of better clarifying the mathematical formula-
tion, we propose the notation of the main parameters. Let
MEC be the set of homogeneous edge servers in terms of
vCPU, vGPU and vStorage resources. We use EA as a set of
autopilots, where each one of them, has a chain of VNFs to
be processed at the edge periodically.

In this section, we specify the parameters and the con-
straints that are defined and proposed in formulating the opti-
mization/analytic model. This formulation takes as input the
multi-resources requirements of the autonomous vehicles and
determines the placement of autopilot VNFs to the optimal
location. OVEAP will speed up the processing of virtual
functions by allocating the available resources while ensuring
that it does not exceed the edge server capacity. We quote in
Table 2 the main system parameters and decision variables of
the proposed mathematical programming approach.

The binary variable x indicates the placement of the autopi-
lot VNF on theMEC Servermec ∈MEC. It represents a Ser-
vice Instantiate Graph (SIG) that defines the optimal points
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TABLE 2. A2D mathematical notation.

of operations where Autopilot VNFs should be allocated.

xmecea,vnf

=


11 if the VNF vnf of the Autopilot

ea ∈ EA is allocated on the MEC server mec
0 Otherwise

(1)

Further, a binary variable y is needed to track the MEC
server’s computing and networking utilization. It is formu-
lated as follows:

ymec =

{
11 if the MEC server mec ∈MEC is used
0 Otherwise

(2)

The general ILP algorithm tries to maximize the succeeded
placement of the autopilot VNFs while minimizing the num-
ber of active MEC servers. Then, the objective function can
be formulated as follows:

max

(
OBJ =

∑
ea∈EA

∑
mec∈MEC

xmecea,Lea
−

∑
mec∈MEC

ymec
)

(3)

According to the proposed OVEAP protocol, the autopilot
VNFs placement procedure is constrained by system infras-
tructure, resources (CPU, GPU, RAM, Storage), and network
constraints. Hereafter, we formulate the algorithm constraints
related to the autonomous driving service offloading in virtual
edge computing.

• CPU constraint: The allocation of autopilot VNFs
should not exceed the maximum vCPU computing
capacity of each MEC servers∑
ea∈EA

∑
vnf ∈VNF

cea,vnf xmecea,vnf ≤ Cmecymec,

∀mec ∈MEC (4)

• GPU constraint: The allocation of autopilot VNFs
should not exceed the maximum vGPU computing
capacity of each MEC servers∑

ea∈EA

∑
vnf ∈VNF

gea,vnf xmecea,vnf ≤ Gmecymec,

∀mec ∈MEC (5)

• Storage constraint: The allocation of autopilot VNFs
should not exceed the maximum vStorage computing
capacity of each MEC servers∑

ea∈EA

∑
vnf ∈VNF

sea,vnf xmecea,vnf ≤ Smecymec,

∀mec ∈MEC (6)

• RAM constraint: The allocation of autopilot VNFs
should not exceed the maximum vRAM computing
capacity of each MEC server∑

ea∈EA

∑
vnf ∈VNF

rea,vnf xmecea,vnf ≤ Rmecymec,

∀mec ∈MEC (7)

• Bandwidth constraint: Constraint (8) assures that the
cost of sending ea commands after the processing of
all the chain, by a MEC server mec should be less than
or equal to the maximum MEC server N2V (or V2N )
bandwidth capacity.∑
av∈AV

∑
ea∈EA

bLea
av x

mec
ea,Lea

≤ Bmecymec, ∀mec ∈MEC

(8)

• No parallelism per VNF constraint: Constraint (9)
guarantees that only one optimal MEC server should
process each autopilot VNF∑
mec∈MEC

xmecea,vnf ≤ 1, ∀ea ∈ EA, vnf ∈ VNF (9)

• Chaining constraint:Constraint (10) assures the chain-
ing between autopilot VNFs allocation∑
mec∈MEC

xmecea,vnf =
∑

mec∈MEC
xmecea,vnf+1, ∀ea ∈ EA,

vnf ∈ VNF \ {Lea} (10)

• Minimum server’s constraint: Constraint (11) assures
a minimum selection of MEC servers available to pro-
cess autopilot VNFs.

ymec ≤
∑
ea,vnf

xmecea,vnf , ∀mec ∈MEC (11)
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• AV-RSU/gNB link constraint: Constraint (12) guaran-
tees the 5G quality on link capacities between MEC
servers sources mec and autonomous vehicles sinks av.
Indeed, network links should allow IoV data to be sent
and control commands to be received.

bLea
av ≤ L

mec,av
∀mec, av ∈ AV ∪MEC (12)

• Latency constraint: Constraint (13) assures that the
autopilot VNFs are processed before the deadline d∑
ea∈EA

xmecea,vnf tea,vnf ≤ d ∀ea ∈ EA, vnf ∈ VNF

(13)

where tea,vnf is the processing time matrix of the autopi-
lot VNF (ea, vnf ).

• Non-negativity constraints: Used variables x and y are
binary in order to decide efficiently (without relaxation)
about the autopilot VNFs allocation.

xmecea,vnf ∈ {0, 1}

∀ve ∈MEC, ea ∈ EA, vnf ∈ VNF (14)

ymec ∈ {0, 1},

∀mec ∈MEC, ea ∈ EA, vnf ∈ VNF (15)

B. OVEAP: COMPLEXITY AND TRIGGERS
1) OVEAP COMPLEXITY
OVEAP algorithm is a non-deterministic polynomial time
approach which is feasible with a few instances. It is an NP
problem that has an exponential number of feasible solutions.

2) OVEAP TRIGGERS
OVEAP algorithm is proposed to be executed in an autopilot
manager entity with respect to ETSI standards. It has to
control, manage, and orchestrate the VNFs running autopi-
lot nodes. This offloading is executed after the following
triggers:

• System resources (computing, storage, and memory)
constraints through cea,vnf , gea,vnf , sea,vnf and rea,vnf
parameters.

• Networking constraint through Lmec,av and bLea
av param-

eters.
• Autopilot offloading requests prediction: OVEAP pre-
dicts the incoming autopilots as well as the correspond-
ing VNFs. Then, it makes the decision about the optimal
points of placements.

Once satisfying the above requirements, the algorithm is
executed periodically.

Exact optimization algorithms are non-deterministic poly-
nomial time approaches. In the following section, we propose
artificial intelligence techniques to solve the above optimiza-
tion problem. Autopilot VNFs are items to be offloaded into
distributed edge servers according to the resources discovery
procedure.

V. DVEAP: DRL-BASED VIRTUAL EDGE AUTOPILOT
PLACEMENT ALGORITHM
Artificial Intelligence defined optimization tries to replace
the tedious process of ILP by recent AI techniques. We insert
Deep Learning modules at the network edge that collect,
process, and analyze the raw data. Then, online decisions are
taken in order to self-organize the network. Still, data-centers
are used to process the big data that does not require real-time
optimization. The AI-driven placement of autopilot VNFs at
the network edge provides a lot of benefits, including safety
and efficient processing. This leads to a minimum latency and
enhances the overall path planning and driving qualities.

A. DVEAP: THE PROPOSED RL MODEL
We consider distributed edge servers with multi-resources
(CPU, GPU, RAM, Storage, and Bandwidth) that represent
the network environment. Then, autopilot VNFs are jobs
that arrive to the cluster with an online fashion in discrete
time-steps as shown in Figure 3. At each time step, the cluster
manager/scheduler chooses a VNF to place according to the
Deep-Q-Network (DQN) agent. This latter predicts the near
optimal actions using Deep Neural Network. We assume that
the VNF demands in terms of required resources are known
upon arrival.

FIGURE 3. Reinforcement learning technique: Placement on virtual edge
server use case.

1) THE STATE SPACE
We represent the state space st as the current placement of
autopilot VNFs on server slots.

2) THE ACTION SPACE
The action space at is the placement of a computing-intensive
autopilot VNF on a server slot. The placement takes into
consideration the server capacity (in terms of slots). In fact,
the agent will not place the autopilot VNF on a server slot if it
is occupied by running another VNF. The action is monotype
where the agent process VNFs one by one until processed all
the incoming user requests.

3) THE REWARD SPACE
The proposed reward r is the placement cost of such a VNF.
It is measured as the number of servers used after performing
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an action. It is formulated as follows

rt =

{
i if i Edge Servers are Occupied
0 Otherwise.

As shown in the above equation 16, the main objective of the
agent is to minimize the total opened servers. In other words,
the agent objective will be minimizing the total discounted
cumulative rewards.

B. DVEAP: THE PROPOSED DQN-DRL
In the DRL algorithm, we use Deep Neural Networks (DNN)
to approximate the above RL model while considering the
same state-action-reward state spaces. A succession of layers
of neural networks are used tomap the input state to the output
action. In Algorithm 1, we describe the pseudocode of our
proposed DRL algorithm.

Algorithm 1 DRL-based Virtual Edge Autopilot Place-
ment (DVEAP) at The Network Edge
1: Input: EA, VNF , Lea,MEC
2: Output: Q∗ (i.e., x and y)
3: Initialize a reply memory D
4: Initialise action-value Q with random weights
5: Observe the initial state s
6: repeat
7: Select a server a.
• with probability ε select a random server
• Otherwise select the server that has the maxa′ Q(s, a

′)
8: Place the autopilot SFC’s VNF on the Edge Computing Server a.
9: Observe the incurred allocation cost r and the new edge state s′ (new allocation

and another incoming autopilot SFC’s VNFs)
10: Store the experience {s, a, r, s′} in the replay memory.
11: Sample a random transition from the replay memory.
12: Calculate the target for each mini-batch transition (r + γ ×maxa Q(s′, a′))
13: Train the Q network using the following loss Loss = 1

2 ∗ (r + γ ×

maxa′ Q(s
′, a′)− Q(s, a))2

14: s = s’
15: until No incoming autopilot VNFs from all the SFC

We use the Stochastic Gradient Descent (SGD) algo-
rithm [51] to perform Deep-Q-Network (DQN) agent train-
ing. Then, we tune the main hyperparameter to decide about
optimal DNN configurations such as epoch/iteration num-
bers, optimizer parameters, and action selection strategies.
As shown in Algorithm 1 Line 13, SGD algorithm uses the
following Bellman equation in order to minimize the loss
function (squared error) between target and current Q-values:
Q(s, a) = r + γ × maxa′ Q(s′, a′). Then, DNN weight are
updated using back-propagation process. The training proce-
dure is an offline procedure which is performed before the
deployment of the DQN-DRL algorithm at the edge network.
Then, the algorithm will be used for real time resources allo-
cation. Network operators can update the pretrained model
according to their needs. It is worth mentioning that the
training time depends on the available resources and data
types. In our case, we use the structured data types which do
not require a significant time.

The DRL based approach consists in reducing ILP time
and RL state space complexities by reducing the number of
iterations to be considered in the optimizationwhile including
more parameters.

VI. PERFORMANCE EVALUATION: DRL-DVEAP VERSUS
ILP-OVEAP
In this section, we evaluate our proposed solutions as follows:

• Optimal autopilot resources allocation strategy is evalu-
ated in small scale IoAV networks.

• For the sake of dealing with large-scale networks, where
many AV autopilots require offloading at the same time,
AI-DRL method is evaluated and compared with the
optimal approach.

We evaluate the proposed algorithms (ILP and DRL) using
different optimization tools. CPLEX [52] is used to evalu-
ate the exact ILP model, while TensorFlow and Keras [53]
are used to configure and implement the DRL algorithm.
As explained above, we consider the following autopilot
VNFs: vPerception, vLocalisation, vPlanner , and vControl.
Indeed, the autopilot chain is composed of a set of VNFs.
Recall that the objective is to place each autopilot VNF in
the edge server, while assuring the chaining of all the VNFs
of the same autopilot. Tables 3 and 4 show the different
configurations used in the evaluation.

TABLE 3. Small scale configuration (AES: Autopilot Edge Servers).

TABLE 4. Summary of the parameters (AES: Autopilot edge servers).

It is worth mentioning that we evaluated the proposed algo-
rithms in small and large scale using simulation. We simulate
the datacenter using the ‘‘x86’’ architecture, the ‘‘Linux’’
operating system and the ‘‘Xen’’ hypervisor. For the sake of
better clarification, network and system parameters are shown
in Table 5. Recall that the simulation considers the offloading
of sensor data to the edge. This latter creates the world model
according to the vPerception VNF. Then, the vLocalisation
adds the position of the vehicle in the environment. The
vPlanner traces the chart between the source and the destina-
tion and the vControl executes the path by sending the control
command to the embedded vehicle.
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TABLE 5. Summary of simulation parameters.

A. KEY PERFORMANCE INDICATORS (KPIs)
For the interest of assessing the efficiency of the proposed
approaches (OVEAP ILP and DVEAP DRL), we propose
different KPIs as follows:
• Total Edge Servers Utilization (TESU): it represents
the number of servers allocated for the autopilot service
functions chain.

• Total Edge Servers Allocation Time (TESAT): it rep-
resents the required time for autopilot service functions
chain allocation.

• Successfully Allocated Autopilots: it represents the
number of successfully offloaded autopilots at the net-
work edge.

• Average Network Delay: It represents the average net-
work delay between autonomous vehicles and edge
computing servers.

• Service Time: it represents the end-to-end response
time including autopilot VNF submission, resources
discovery, VNF offloading, and computation results
forwarding to the end-user. It is coupled with the avail-
ability of resources and the offloading decisions, where
an efficient service is characterized by low execution
time.

• Processing Time: this KPI represents the duration
needed by the OVEAP controller to complete the exe-
cution of all submitted autopilot VNFs. In general, the
availability of resources among virtual edge servers is
an important metric that enhances the efficiency of pro-
cessing through decreasing the processing time.

B. COMPUTING ARCHITECTURES BASED ANALYSIS
To quantify the behavior of OVEAP, we compare our pro-
posed OVEAP optimization algorithm with state-of-the-art
computing architectures. We quote the relevant architecture
as follows:

1) Embedded Computing: This architecture allows the
local execution of autopilot modules, while edge com-
puting is still enabled to receive VNFs.

2) Edge Computing: This architecture prioritizes edge
computing servers for autopilots services offloading.

3) Cloud Computing: This architecture allows only the
use of the centralized cloud computing.

C. OBTAINED RESULTS
In this section, we introduce two scenarios in order to evaluate
the optimization algorithms. The first scenario targets small
networks, while the second deals with large scale networks.

1) THE SMALL-SCALE SCENARIO
For the sake of better selecting the appropriate allocation
strategy (OVEAP or DVEAP), different network scales (i.e.
small and large) are considered as follows. In Figure 4,
we show the total resources’ utilization at the network edge
for Edge1 and Edge2 respectively in small scale network.
In Figures 4a and 4c, we plot autonomous vehicles con-
figurations against the TESU metric. Results show that the
efficiency of the proposed DRL-DVEAP algorithm, since it
converges to the exact ILP OVEAP in terms of placement
cost. In addition, Figures 4b and 4d show that DVEAP algo-
rithm gives a non-significant placement time (in terms of
a few micro seconds) compared to OVEAP that still has a
feasible placement time.

FIGURE 4. Total resources utilization of autopilot edge servers in
small-scale network at Edge 1 and 2 (Time unit is in second).

2) THE LARGE-SCALE SCENARIO
Wefirst considered the entire autopilot allocation. In Figure 5,
we plot the main KPIs against the number of autonomous
vehicles. We consider the exact ILP OVEAP approach taking
into account the above constraints.

In Figure 5a, we plot the network average delay between
autonomous vehicles and edge computing servers.

In Figure 5b, we show that the edge computing reduces the
computing load on cloud computing when the autonomous
vehicles are increasing.

In Figure 5c, we show that the edge computing reduces the
average service time comparing to the embedded and cloud
computing architectures. Indeed, embedded autopilot offload
the heavy VNF to the near edge for efficient edge processing.

In Figure 5d, we show that edge computing reduces the
processing comparing to cloud computing.

a: THE IMPACT OF AUTOPILOT VNFs ALLOCATION
ON THE PROCESSING TIME
In Figure 6, we show the processing time variation when
increasing the number of autonomous vehicle. Results show
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FIGURE 5. Performance evaluation in large-scale networks.

FIGURE 6. Processing time evaluation in large-scale networks.

the proposed edge computing architecture reduces the pro-
cessing time of the autopilot vPerception, vLocalisation,
vPlanner, and vControl. Moreover, we show that the vPer-
ception and the vPlanner functions require more significant
processing time than other autopilot VNFs.

b: THE IMPACT OF AUTOPILOT VNFs ALLOCATION
ON THE SERVICE TIME
In Figure 7, we show the service time variation when increas-
ing the number of autonomous vehicle. Results prove the

FIGURE 7. Service time evaluation in large-scale networks.

FIGURE 8. Total resources utilization in large-scale network using DVEAP
approach.

feasibility and the efficiency of the proposed edge com-
puting architecture by reducing the service time shown.
This result validates the edge assistance autopilot function’s
offloading, since that this KPI reflects the total application
time.

In Figure 8, we quantify the behavior of the DRL DVEAP
algorithm in a large-scale network according to the different
edges configurations. We plot autonomous vehicle number
ranging from 20 to 100 against TESU . Results show that
increasing the computing capacity helps in better offloading
autopilot functions.

In Figure 9, we show the limit of the DRL approach in a
very dense network constituted by a hundred of autonomous
vehicles requiring services offloading. Results show that
most of the autopilots are successfully allocated on MEC
servers.

In Figure 10, we evaluate the DRL approach in terms
of VNF offloading time. The result proves the feasibil-
ity and the efficiency of the proposed algorithm in large
scale.
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FIGURE 9. Total resources utilization in large-scale network using DVEAP
approach.

FIGURE 10. Autopilots VNFs offloading time based on the DVEAP model.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an Artificial Intelligence
approach for autopilot placement (offloading) at the net-
work edge. First, we have proposed an end-to-end architec-
ture for edge computing assisted autonomous driving. Then,
we have proposed an optimal allocation approach (OVEAP)
that decides about optimal autopilot functions placement.
Further, to deal with dense IoAV networks, a deep rein-

forcement learning approach (DRL-DVEAP) is formulated
and implemented. Based on different configurations of edge
environments, the proposed DRL achieves a good result in
terms of offloading cost and processing time. In the future
work, we will focus on autopilot VNF migration in case of
near edge discovery scenario.
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