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ABSTRACT Although tremendous revolution has been made in the emerging cloud computing technologies
over digital devices, privacy gradually becomes a big concern in outsourcing computation. Homomorphic
encryption has been proposed to facilitate the preservation of data privacy while computational tasks being
executed on ciphertext. However, many existing studies only support limited homomorphic calculation
functions which barely satisfy complex computing tasks such as machine learning with massive computing
resources and rich types of function. To address this problem, a novel multifunctional and privacy-preserving
outsourcing computation toolkit is proposed in this paper, which supports several homomorphic computing
protocols including division and power on ciphertext of integers and floating point numbers. Specifically,
we first implement the homomorphic mutual conversion protocol between integer and floating point
ciphertext to balance the efficiency and feasibility, considering the high-precision ciphertext operation on
floating point numbers costs 100x computational overhead than that on integers. Second, we implement a
homomorphic K-means algorithm based on our proposed toolkit for clustering and design the homomorphic
silhouette coefficient as the evaluation index, thereby providing an informative cluster assessment for local
users with limited resources. Then, we simulate the protocols of our proposed toolkit to explore the parameter
sensitivity in terms of computational efficiency. Last, we report security analysis to prove the security of our
toolkit without privacy leakage to unauthorized parties. Comprehensive experiments further demonstrate the
efficiency and utility of our toolkit.

INDEX TERMS Privacy-preserving, secure outsourcing computation, K-means, silhouette coefficient.

I. INTRODUCTION
Cloud computing is a third party provider delivering
on-demand services of data storage, computing resources and
running functions without direct management by local users.
It exceeds local servers in massive storage, unlimited com-
putational resources and increasing availability. Therefore,
individuals and companies with limited resources resort to the
cloud services by outsourcing their computational tasks to the
cloud. Meanwhile, sensitive information exists in countless
domains, such as medical health monitoring [1], [2], financial
transaction records and location services [3]. Though power-
ful and flexible, the misgiving of privacy preservation on the
cloud remains as a prior concern, which may be deteriorat-
ing the functionality and performance of the cloud services.
For example, the personal information of over 77 million of
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accounts in Sony PlayStation Network outage were stolen
due to an illegal and unauthorized intrusion, which damaged
the reputation of the enterprise and caused huge economic
loss. The breach of photographs of the celebrity from iCloud
service in Apple company raised widespread condemna-
tion from the public which forced the company to improve
the data protection policy as well as technologies. As a
consequence, the security issues exposed in such incidents
have aroused an upsurge of research in both industry and
academia.

A. MOTIVATIONS
In general, the privacy preservation approaches rely on the
following assumptions: the cloud servers are honest-but-
curious, and they do not act maliciously against the users and
will follow the protocols as expected. However, the cloud
server may not always be trusted. On the one hand, they
might be vulnerable to the attackers who intend to gain access
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to the sensitive information from the outsourced data on the
cloud. On the other hand, some intelligent cloud servers can
be curious and sometimes even malicious who may deduce
the information of the original data through the model and
intermediate calculation results [4]. Therefore, how to design
effective and suitable privacy-preserving protocols to achieve
secure outsourcing computation on the cloud becomes an
opening challenge.

In recent years, machine learning technology has been
widely applied in natural language processing, computer
vision, intrusion detection and etc. Consider a clustering
task requested by a local user who uploaded the resource-
demanding task to the cloud. The privacy concerns of this
user are in threefold. First, the private training data has
potential risk of leakage through the deduction from model
parameters or predictions. Second, existing machine learning
algorithms may involve complex operations such as division,
power, exponential and logarithmic, which few secure out-
sourcing computation protocols are able to support. Previous
frameworks [5], [6] can only support homomorphic addition,
multiplication and comparison on ciphertext of floating point
numbers(FPN) which cannot meet the requirement of clus-
tering. Third, the secure outsourcing computation protocols
on integer ciphertext are not capable of ensuring the conver-
gence and precision of these machine learning algorithms.
If running the entire task on the ciphertext of floating-point
numbers is a must, it will cause huge computational over-
head and time cost since the computation overhead on FPN
is hundreds of times higher than that on integers. Further-
more, some of the previous outsourcing clustering algorithms
[7]–[9] only implemented the clustering algorithm on cipher-
text, and they did not consider how to evaluate the perfor-
mance of clustering on ciphertext. In practice, the data owners
are usually not aware of the number of classes that need
to be clustered, which is necessary to be compared through
multiple experimental evaluations.

Based on the above problems, we summarize the main
contributions of this paper in the next section.

B. MAIN CONTRIBUTIONS
In this paper, we propose a multifunctional and privacy-
preserving outsourcing computation toolkit and we have
implemented a secure and evaluable homomorphic clustering
algorithm. The main contributions of our paper are summa-
rized as follows:
• A multifunctional and privacy-preserving outsourcing
computation toolkit (MPOCT) is proposed in this paper
which provides several protocols both on ciphertext of
integers and floating point numbers(FPNs). Specifically,
our protocols achieve homomorphic operations such as
division, power, logarithm, etc.

• In MPOCT, mutual ciphertext conversion protocols
between FPNs and integers are provided to balance
calculation efficiency and precision. During outsourcing
computations, when encountering high-precision calcu-
lation tasks, we can transform the integer ciphertext to

FPN ciphertext for calculation. If tasks do not have high
requirements for precision, we can use integer ciphertext
for calculations to improve calculation efficiency and
reduce computational overhead.

• Based on MPOCT, we implement the homomorphic
algorithm of K-means. Furthermore, the homomorphic
silhouette coefficient is designed on the ciphertext of
clustering results, providing the informative clustering
assessment to the local data owners.

The rest of this paper is organized as follows. We dis-
cuss the related works in Section II. Then we introduce
the preliminaries of this paper in Section III. Our toolkit
is described in Section IV and its application on clustering
is introduced in Section V. We analyze the security of our
toolkit in Section VI.The experimental evaluation is reported
in Scetion VII. Section VIII concludes the paper and outlines
the future work.

II. RELATED WORK
In this section, we briefly review themost relevant research on
homomorphic encryption, secure outsourcing computation
frameworks and previous secure outsourcing computation
solutions for K-means.

Cloud computing drives the transition of local
on-demanding tasks to the cloud servers for storage and
calculation [10]. In recent years, privacy-preserving in cloud
security has gradually become an increasing important con-
cern [11]. The emergence of homomorphic encryption allows
people to perform simple calculations on the ciphertext which
is a powerful cryptographic primitive to secure outsourc-
ing computations against an untrusted third-party provider.
For example, Paillier cryptosystem [12] which is widely
used in industry supports additive homomorphism, while
Elgamal [13] supports multiplicative homomorphism. How-
ever, partially homomorphic cryptosystem only supports the
homomorphic operation of addition or multiplication, so the
application scenarios are very limited. Gentry [14] first pro-
posed a fully homomorphic encryption (FHE) based on ideal
lattice from a theoretical perspective in 2009. However, FHE
cannot be applied in real world due to its large computa-
tional overhead. To address with the efficiency problem of
FHE, many researchers have proposed more efficient FHE
schemes like BGV [15], BFV [16], CKKS [17]. Based on
the above-mentioned cryptographic schemes, many scholars
have also proposed secure outsourcing computation frame-
works. In 2016, Liu not only designed operations such as
homomorphic multiplication and comparison through dual
servers and Paillier cryptosystem, but also proposed secure
outsourcing computation frameworks that support rational
numbers [6] and floating-point numbers [5]. Liu et al. [18]
implemented a secure k-nearest neighbor based multi-label
classification scheme based on Paillier cryptosystem, which
both guarantees the security of the training data and classi-
fication model. Liu et al. [19] proposed a secure outsourcing
computation framework based on FHE and key packaging
technology, and this framework only required a single server
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FIGURE 1. A Call Graph of MPOCT. Blue: our implemented protocols. Grey: previous protocols in [5].

TABLE 1. Comparison between different solutions under untrusted server
scenario.

to perform oursourced computing tasks. Li et al. [20] pro-
posed a novel homomorphic encryption framework over non-
abelian rings and defined the homomorphism operations in
ciphertexts space which support real numbers encryption and
privacy-preserving for machine learning training and clas-
sification in data ciphertexts environment. Zong et al. [21]
investigated secure outsourcing computation of matrix deter-
minant based on BGV and proposed an efficient matrix
encoding technique which packs a matrix into a single cipher-
text and can be easily applied as a submodule in the high-level
applications. Nevertheless, above works more or less suffered
from low efficiency, accuracy degradation, lack of scalability
or ciphertext expansion issues.

As a common data mining algorithm, K-means [25] has
abundant application scenarios in daily lives. Therefore,
many scholars have studied how to perform clustering on
cloud servers under the premise of protecting data privacy.
Rao et al. [7] implemented the outsourcing computation of
K-means based on Paillier in 2015. Then, Rong et al. [9]
improved the computing efficiency by adding a trusted third
party with limited computing capabilities. Almutairi et al. [8]
also implemented the outsourcing computation of K-means
based on homomorphic encryption. This solution has greatly
improved the computing efficiency through a third party and
limited interaction between user and server. However, neither
of the above solutions provided evaluation indicators on clus-
tering ciphertext. Therefore, the user can only get the cluster-
ing result, but cannot get the evaluation of them. Besides, the
emergence of differential privacy [26] opened up new areas
of secure outsourcing computation. Xia et al. [22] could effi-
ciently complete outsourcing clustering tasks through local
differential privacy technology. However, the choice of pri-
vacy budget had a great impact on the results, which means
a better privacy may lead to a poorer precision. At the same
time, the frequent interaction between user and server also
puts a lot of pressure on the user side. Mohassel et al. [23]
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presented a scalable privacy-preserving clustering algorithm
and design a modular approach for multi-party clustering.
Although this scheme is computationally efficient, it relies
on frequent collaboration and interaction between sender and
receiver. Zou et al. [24] proposed a highly secure privacy-
preserving outsourced k-means clustering under multiple
keys in cloud computing, which applied both AES encryption
and BCP encryption to provide privacy preservation against
semi-honest adversaries. While the scheme guarantees strong
security, it does not provide users with an evaluation metric
for clustering. Table 1 summarizes the characteristics of dif-
ferent solutions to the aforementioned studies.

III. PRELIMINARIES
In this section, we will introduce the preliminaries of this
paper. Our toolkit is mainly based on privacy-preserving
outsourcing computation framework (POCF) [5], and we
have an expansion and improvement on it. The following
will introduce the overview of our system model, problem
statement, the basic framework of POCF, and its protocols on
integers and floating-point numbers.

A. SYSTEM MODEL
In our system, we mainly focus on how the cloud server
can fulfill the computing tasks requested by the users while
meeting the requirements of privacy protection. As shown
in Figure 2, the simple system comprises a Key Generation
Center(KGC), a Cloud Platform(CP), a Computation Ser-
vice Provider(CSP) and Data Owners(DOs), while it can be
extended to a distributed system with multiple pairs of CP
and CSP. In this paper, we only use the simple model. The
participants in this model are shown below.
• KGC: KGC is a trusted third party whose task is to
distribute and manage the keys in the system.

• DOs: DOs own the data and they are the requesers of the
computing tasks. DOs can encrypt their data by the pub-
lic key(pk). Then they outsourced the encrypted data to
CP for storage and requester CP to do some calculations
on the outsourced encrypted data. In addition, DOs can
use the private key(sk) to decrypt the encrypted result
calculated by CP and CSP.

• CP: CP has ‘unlimited’ data storage space. CP can store
and manage the outsourced data of all registered data
owners. CP has the public key(pk) and the partially
private key sk1. CP always stores the encrypted results
of the computational tasks.

• CSP: CSP assists CP in completing computing tasks
requested by the DOs. CSP owns the public key(pk) and
the partially private key sk2. CSP can partially decrypt
the ciphertext sent by CP and perform some operations
on the decrypted results. Then CSP encrypts the calcu-
lated results and returns them to CP.

B. PROBLEM STATEMENT
Consider DOs have a lot of data and a clustering task, and
their limited local resources make it impossible to complete

the clustering task. The data therefore needs to be encrypted
before being uploaded to the CP for storage. DOs can submit
the input parameters required for the clustering task to CP.
After CP and CSP cooperate to complete the calculation task,
the clustering result and its evaluation are returned to DOs.
In this process, we have the following challenges:
• Clustering algorithms and evaluation indicators involve
division and comparison operations, but many homo-
morphic encryption schemes cannot support divi-
sion homomorphism and comparison homomorphism.
Therefore, more calculation protocols need to be
constructed.

• Traditional K-means outsourcing computation schemes
based on homomorphic encryption always normalize the
original data and enlarge it. Then they encrypt the data
after rounding. However, simply calculating the magni-
fication of the plaintext is likely to exceed the limit of the
plaintext space after a finite number of multiplications.

• Through previous experiments, we have learned that the
calculation efficiency of floating-point number cipher-
text is low and the communication overhead is high.
However, in the process of clustering and evaluation,
we may encounter situations where floating-point num-
bers must be used. If the whole process is based on
floating-point ciphertext, it will take a lot of time to
complete the clustering task.

C. ATTACK MODEL
In our attackmodel, DOs, CP andCSP are honest and curious.
They will strictly implement the protocols, but they are also
interested in data uploaded. We assume that CP and CSP are
cooperative and not colluding. Meanwhile we assume that
the communication between KGC and all parties are secure.
Here, we introduce the adversary A∗ in our model. The
purpose of adversary A∗ is to use the following capabilities
to decrypt the ciphertext of challenger DO:

1) Adversary A∗ may eavesdrop on all communication
channels to obtain encrypted data transmissed.

2) Adversary A∗ may compromise CP, thereby guess-
ing the plaintext corresponding to encrypted data
outsourced from DO. In addition, it can perform inter-
active protocols with CSP to guess the plaintext corre-
sponding to ciphertext sent from CSP.

3) AdversaryA∗ may compromise CSP. Therefore, it can
perform interactive protocols with CP to guess the
plaintext corresponding to ciphertext sent from CP.

4) Adversary A∗ may compromise DOs to obtain their
decryption capabilities, with the exception of the chal-
lenger DO. Then adversary A∗ may try to guess all
the plaintext belonging to challenger DO through the
decryption capabilities of other DOs.

However, Adversary A∗ cannot compromise CP and CSP at
the same time. Moreover, adversary A∗ is restricted from
compromising challenger DO. The above restrictions are
common in adversarymodels in cryptographic protocols [27].
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FIGURE 2. The overview of our system model.

D. BASIC FRAMEWORK
The toolkit proposed in this paper is based on the Paillier
Cryptosystem with Partial Decryption (PCPD) [5]. The basic
functions and key splitting algorithm (KeyS) of Paillier have
been described in PCPD, the description is omitted here.
In this paper, we specify the following symbols: [x] rep-
resents the ciphertext of integer x and 〈x〉 represents the
ciphertext of floating-point number (FPN) x, where 〈x〉 =
([sx], [mx], [tx]). sx represents the sign of x, mx represents η-
significant digits, tx represents the exponent of base β. For
the sake of convenience, we will use η = 16 and β = 10 for
protocols on FPNs in this paper. Given [x], [y] and public key
N , we have the following properties:

[x + y] = [x] · [y]; [−x] = [x]N−1; [x − y] = [x] · [y]N−1.

E. PREVIOUS WORK ON INTEGERS &
FLOATING-POINT NUMBERS
Before presenting our toolkit, we briefly review the previous
study [5] of secure outsourcing computational protocols on
integers and floating-point numbers respectively. Besides,
the construction of floating point number ciphertext is also
introduced. Note that our toolkit is an extension based on this
previous work.

For simplicity, here we define ‘@’ as ‘performed by’. For
example, ‘@CP’ means ‘performed by CP’.

1) PROTOCOLS ON INTEGERS
Protocols on integers enable the cloud platform CP to cooper-
ate with the computation service provider CSP to implement

multiplication, comparison, xor and other operations of inte-
ger plaintext on the ciphertext.

a: REVISED SECURE MULTIPLICATION PROTOCOL (RSM)
It enables CP and CSP to cooperate to perform secure
integer plaintext multiplication on ciphertext, i.e. [f ] =
RSM([x], [y]), where f = x · y. Details are as
follows:
• Step-1 (@CP): CP randomly selects two random num-
bers rx , ry ∈ Z∗N and compute:
X = [x + rx] = [x] · [rx];
Y = [y+ ry] = [y] · [ry];
X1 = PDsk1 (X );Y1 = PDsk1 (Y );
After computation, CPwill send X ,Y ,X1 and Y1 to CSP.

• Step-2 (@CSP): CSP partially decrypts X1 and Y1 trans-
mitted from CP based on CSP’s owned partially private
key sk2, namely:
hx = x + rx = PDsk2 (X ,X1);
hy = y+ ry = PDsk2 (Y ,Y1);
h = hx · hy = (x + rx) · (y+ ry);
Then, CSP encrypts h based on public key pk to get
ciphertext H = [h] and sends H to CP.

• Step-3 (@CP): When CP receives H , CP first calcu-
lates:
[S1] = [rx · ry]N−1 = [−rx · ry];
[S2] = [x]N−ry = [−ry · x]; [S3] = [y]N−rx = [−rx · y];
Last, CP can compute the result of [x · y]: [x · y] = H ·
[S1] · [S2] · [S3] = [h− rx · ry − ry · x − rx · y].
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b: SECURE LESS THAN Protocol(SLT)
It performs secure integer plaintext comparison on ciphertext,
i.e. [f ] = SLT([x], [y]), if x ≥ y, then f = 0; otherwise,
f = 1. Details are as follows:
• Step-1 (@CP): CP computes:
[x1] = ([x])2 · [1] = [2x + 1]; [y1] = ([y])2 = [2y];
Then, CP randomly tosses a coin s ∈ 0, 1 and gener-
ates a random number r , where r satisfies r 6= 0 and
‖r‖ ≤ ‖N‖4 . If s = 1, then CP computes: [l] = ([x1] ·
(y1)N−1)r = [r(x1 − y1)]. If s = 0, then CP computes:
[l] = ([y1] · (x1)N−1)r = [r(y1 − x1)];
After that, CP uses its partially private key sk1 to com-
pute K = PDsk1 ([l]), and then send it to CSP.

• Step-2 (@CSP): CSP decrypts K with its partially pri-
vate key sk2 to get l. If ‖l‖ ≤ ‖N‖

2 , CSP sets u to 1;
otherwise, set u to 0. Next, CSP encrypts u with the
public key pk to get [u], and sends [u]to CP.

• Step-3 (@CP): When CP receives [u], CP will compute
[f ] according to the value of s. If s = 0, CP will compute
[f ] = [1] · ([u])N−1 = [1− u]; if s = 1, CP will refresh
the value of [u], i.e. [f ] = CR([u]).

c: SECURE EXCLUSIVE OR CALCULATION Protocol(SXOR)
It performs secure exclusive or result of two integer plaintext
on ciphertext, i.e. [f ] = SXOR([x], [y]), where x, y ∈ {0, 1}.
If x = y, f = 0; otherwise, f = 1. CP and CSP jointly
calculate as follows:

[f1] = RSM([1] · [x]N−1, [y]) = [(1− x)y];
[f2] = RSM([x], [1] · [y]N−1) = [(1− y)x];
[f ] = [x ⊕ y] = [f1] · [f2] = [x + y− 2xy].

d: SECURE EQUIVALENT TESTING Protocol(SEQ)
It performs secure equivalent between two integer plaintext
on ciphertext, i.e. [f ] = SEQ([x], [y]). If x = y, then f = 0;
otherwise, f = 1. CP and CSP jointly calculate as follows:
[u1] = SLT([x], [y]); [u2] = SLT([y], [x]);
[f ] = [u1 ⊕ u2] = SXOR([u1], [u2]).

e: SECURE EXPONENT CALCULATION Protocol(SEXP)
It performs secure integer plaintext exponent on ciphertext,
i.e. [f ] = SEXP(x, [y]) where x is a public integer, x > 0,
y ≥ 0 and f = xy. Details are as follows:
• Step-1 (@CP): CP selects a random number r ∈ Z∗N and
computes:
[y1] = [y] · [r] = [y+ r]; S = (xr )−1 mod N ;
Then, CP uses its own partially private key sk1 to com-
pute Y = PDsk1 ([y1]), and sends [y1] and Y to CSP.

• Step-2 (@CSP): CSP decrypts Y using its partially pri-
vate key sk2 to obtain y1. Then, CSP computes h = xy1
mod N and encrypts it into [h] using the public key pk ,
and sends [h] to CP. Obviously, there exists h = xy1+r

mod N .
• Step-3 (@CP): When CP receives [h], it will compute
[xy] by:
[f ] = [h]S = [xy1+r · (xr )−1] = [xy].

f: SECURE INVERSE CALCULATION Protocol(SINV)
It performs secure integer plaintext inverse on ciphertext, i.e.
[f ] = SINV([x]) where x 6= 0 and f = x−1 mod N . Details
are as follows:

• Step-1 (@CP): CP selects a random number r ∈ Z∗N and
computes [y1] = [y] · [r] = [y+ r].
Then, CP computes Y = PDsk1 ([y1]) using its partially
private key sk1 and sends [y1] and Y to CSP.

• Step-2 (@CSP): CSP decrypts Y using its partially
private key sk2 to obtain y1. Then, CSP computes h = y1
mod x and encrypts it as [h] using the public key pk .
Then it sends [h] to CP. Obviously, there exists h =
(y+ r) mod x.

• Step-3 (@CP): When CP receives [h], it will compute
[y mod x] by the following process:
[U ] = [h] · [r mod x]N−1 = [(y + r) mod x] · [r
mod x]N−1 = [((y+ r) mod x)− (r mod x)];

• Step-4 (@the collaboration of CP and CSP): Through
the above formula, we can get −x ≤ U ≤ x. But
((y + r) mod x) − (r mod x) and y mod x are not
always equal. Therefore, the following two cases are
discussed. If −x < U < 0, then f = U + x. If 0 ≤
U < x, then f = U . So it will only need to compare the
size of Uand 0:
[k0] = SLT([U ], [0]); [f ] = [U ] · [ku]x = [U+x ·ku] =
[((y+ r) mod x)− (r mod x)+ x · ku] = [y mod x].

g: SECURE MODULAR CALCULATION Protocol(SMOD)
It performs secure integer plaintext modular on ciphertext, i.e.
[f ] = SMOD([x], y) where y is a public integer and y � N
and f = x mod y. Details are as follows:

• Step-1 (@CP): CP selects a random number r ∈ Z∗N
and computes [x1] = [x]r = [r · x]. Then, CP computes
X = PDsk1 ([x1]) using its partially private key sk1 and
sends [x1] and X to CSP.

• Step-2 (@CSP): CSP decrypts X using its partially
private key sk2 to obtain x1. Then, CSP computes h =
(x1)−1 mod N and encrypts it as [h] using the public
key pk . Then it sends [h] to CP. Obviously, there exists
h = (r · x)−1 mod N .

• Step-3 (@CP):When CP receives [h], it will compute
[x−1 mod N ] by the following process:
[f ] = [h]r = [(r · x)−1 mod N ]r = [(r · x)−1 · r
mod N ] = [x−1 mod N ];

2) CONSTRUCTION OF FLOATING-POINT NUMBER
CIPHERTEXT(FPN)
In computer, floating-point number is expressed as follows.
Given base β and extreme value index emin, emax , there exists
at least one triple (s,m, t), so that x = (−1)s ·m · β t . In order
to facilitate the storage of floating-point ciphertext and the
construction of secure outsourcing computation protocols,
it is stipulated that all floating-point numbers in the system
should use the same significant digit η, base β, sign bit
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s ∈ {0, 1}, the significant digit m is a ηbit integer, and the
exponential bit t satisfies (emin−η+1) ≤ t ≤ (emax−η+1).

For example, when η = 5, β = 10 are fixed in the
system, −31 can be expressed as (−1)1 · 31000 · 10−3, i.e.
begin stored as (1, 31000,−3). 1.024 can be expressed as
(−1)0 · 10240 · 10−4, i.e. begin stored as (0, 10240,−4).
Through the above example, it can be found that this triple
expression is uniquely determined when a finite floating-
point number is given. When the integer triplet (sx ,mx , tx)
representing the floating point number x is uploaded to the
cloud platform, it is necessary to separately encrypt sx ,mx , tx .
On the cloud platform, the ciphertext storage form of floating
point number x is ([sx], [mx], [tx]).

3) PROTOCOLS ON FLOATING-POINT NUMBERS
Based on the above two parts(i.e. protocols on integers and
construcion of FPN ciphertext), we now introduce the proto-
cols on floating-point numbers [5] which drives the collabo-
ration of CP and CSP to implement addition, multiplication,
comparison and other operations of floating point number
plaintext on ciphertext.

• Secure Floating Point Numbers Equivalent Proto-
col(FPEQ): It performs secure equivalent between two
floating point number plaintext on ciphertext, i.e. [f ] =
FPEQ([[x]], [[y]]). If x = y, then f = 0; otherwise,
f = 1.

• Secure Floating Point Numbers Sorting With Abso-
lute Value(SFPS): It performs secure equivalent
between the absolute values of two floating point
number plaintext on ciphertext, i.e. [[A]], [[I ]] =

SFPS([[x]], [[y]]) where A = max (|x|, |y|); I =

min (|x|, |y|).
• Secure Floating Point Numbers Comparison(SFPC):
It performs secure equivalent between two floating
point number plaintext on ciphertext, i.e. [f ] =

SFPC([[x]], [[y]]). If x ≥ y, then f = 1; otherwise
f = −1.

• Secure Floating Point Numbers Addition Proto-
col(SFPA): It performs secure addition of two float-
ing point number plaintext on ciphertext, i.e. [[f ]] =
SFPA([[x]], [[y]]) where [[f ]] = [[x + y]].

• Secure Floating Point Numbers Multiplication Pro-
tocol(SFPM): It performs secure multiplication of two
floating point number plaintext on ciphertext, i.e. [[f ]] =
SFPM([[x]], [[y]]) where [[f ]] = [[x · y]].

IV. OUR TOOLKIT
In this section, we will introduce the protocols in our toolkit
concretely. To make the relationship and interdependence of
the protocols clearer, a call graph is presented in Fig 1. Here,
our implemented protocols are colored in blue, while the pre-
vious protocols in [5] are colored in grey. Similar to the secure
outsourcing computation protocols proposed in POCF [5],
our extended protocols can handle outliers(NaN) in the same
way. For the sake of simplicity, we only describe the process

that excludes these outliers. Below we will describe the
details of these secure computation protocols.

A. EXTENDED PROTOCOLS ON INTEGERS
1) SECURE INTEGER DIVISION PROTOCOL (SDIV)
Given two encrypted numbers [x], [y], where 0 ≤ |x| <
β
η0
0 , 0 < |y| < β

η0
0 , the goal of SDIV protocol is to calculate

the result 〈f 〉, s.t. f = bx · y−1c. The idea of SDIV is as
follows: we suppose f = b|x| · |y|−1c. Given the above range
of x and y, we can know that 0 ≤ b|x| · |y|−1c < β

η0
0 ,

i.e. 0 ≤ f < β
η0
0 . Therefore, there exists f ′ ∈ [0, βη00 ) s.t.

f ′ · |y| ≤ |x|. Then f is the maximal f ′ that satisfies the above
inequality.
Based on the above idea, the overall steps of SDIV protocol

are shown as follows:
Step-1: First, CP and CSP jointly determine whether

x, y ≥ 0,
[Lx] = SLT(bN2 c, [x]); [1− Lx] = [1] · [Lx]N−1;
[Ly] = SLT(bN2 c, [y]); [1− Ly] = [1] · [Ly]N−1;
[Ax] = RSM([Lx], [x]) · RSM([1− Lx], [x]N−1);
[Ay] = RSM([Ly], [y]) · RSM([1− Ly], [y]N−1);
Step-2: Initialize [V ] = [0].
for(i = 0 to η0 − 1){

[u1] = [0]; [U ] = [0];
for(j = 0 to β0 − 1){

[B1] = [(β0 − j) · β
η0−1−i
0 ]; [V1] = [V ] · [B1];

[M1] = RSM([Ay], [V1]);
[L1] = SLT([M1], [Ax]);
[u2] = SXOR([u1], [L1]);
[u1] = [L1];
[M2] = RSM([B1], [u2]); [U ] = [U ] · [M2];

}. Let [V ] = [V ] · [U ].
}
Step-3: Let [S1] = SXOR([Lx], [Ly]);
[S2] = [1− S1] = [1] · [S1]N−1; [V ′] = [V ]N−1;
[f ] = RSM([S1], [V ′]) · RSM([S2], [V ]).
Through the above steps, CP and CSP can jointly compute

[bf c] = [bx · y−1c] = SDIV([x], [y]).

2) SECURE INTEGER CIPHERTEXT DIVIDED BY INTEGER
PLAINTEXT PROTOCOL (SCDP)
Given one encrypted number [x] and a public integer y(y 6=
0), the goal of SCDP protocol is to calculate the result [f ],
s.t. f = bx · y−1c. The idea of SCDP is as follows: based on
the definition of bx · y−1c, we have:

b
x
y
c =


x − (x mod y)

y
, y > 0

−
x − (xmod |y|)

|y|
, y < 0

(1)

And, x − (x mod y) can be divided by y, so that we can
compute ciphertext of y−1 through Secure Inverse Calcu-
lation Protocol(SINV), and then compute the result of [f ]
through Revised Secure Multiplication Protocol (RSM).

The overall steps of SCDP protocol is shown as follows:
[M1] = SMOD(|y|, [x]); [M2] = [x] · [M1]N−1;
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[I1] = SINV([|y|]);
[f ] = RSM([M2], [I1]); if(y < 0){[f ] = [f ]N−1}.
Then, we have [bx · y−1c] = SCDP([x], y).

3) SECURE INTEGER CIPHERTEXT MULTIPLY FLOATING
POINT NUMBER (SIMF)
Given one encrypted number [x] and a floating point number
y, the goal of SIMF protocol is to calculate the result [f ], s.t.
f = bx · yc. In addition, we need a precision parameter η1,
where η1 is an integer. The overall process of SIMF protocol
is shown as follows:

[Y ] = [by · 10η1c]; [R] = RSM([x], [Y ]);
Let [f ] = SCDP([R], 10η1 ).
Then, we have [bx · yc] = SIMF([x], y).

4) SECURE INTEGER POWER PROTOCOL (SPOW)
Given one encrypted number [x] and one public integer y,
where y ≥ 0. The goal of SPOW protocol is to calculate the
result [f ], s.t. f = bxyc.
The idea of SPOW is as follows: since y is a positive

integer, we can calculate the power within O(log2 y) time
complexity through Exponentiation by Squaring algorithm.
Compared with cumulative multiplication, it can largely
reduce the number of calls to RSM, so as to improve
the computation efficiency and reduce the communication
overhead.

The overall process of SPOW protocol is shown as follows:
Step-1:(@CP) Let B = (bn · · · b1) is the binary string of y,

where the bit length of y is ny = blog2 yc + 1.
Step-2: Then, initialize [f ] = [0], [X ] = [x].
for(i = 1 to ny){

if(bi == 1){[f ] = RSM([f ], [X ]);};
if(i < ny){[X ] = RSM([X ], [X ]);}

}
Through the above steps, CP and CSP can jointly compute

[xy] = SPOW([x], y).

5) SECURE INTEGER LOGARITHM PROTOCOL (SLOG)
Given one encrypted number [x] and a public integer y, where
y ≥ 2 and 0 < x < yδ . The goal of SLOG protocol is to
calculate the result [f ], s.t. f = blogy xc. The overall process
of SLOG protocol is shown as follows:

Initialize [f ] = [0], [u1] = [0].
for(i = 1 to δ){

[u2] = SLT([x], [yi]); [v] = SXOR([u1], [u2]);
[u1] = [u2]; [f ] = [f ] · RSM([v], [i]);

}.
Let [f ] = [f ] · [−1].
Then, we have [blogy xc] = SLOG([x], y).

6) SECURE INTEGER ARRAY MAXIMUM (SIAX)
Given an integer ciphertext arrayC={[x0], [x1], · · · , [xn−1]},
where n ≥ 2. We calculate: [xmax] = [x0]; [imax] = [0];
for (i = 1 to n− 1){

[r1] = SLT([xmax], [xi]); [r2] = SEQ([r1], [1]);
[1− r2] = [1] · [r2]N−1;

[imax] = RSM([imax], [r2]) · RSM([i], [1− r2]);
[xmax] = RSM([xmax], [r2]) · RSM([xi], [1− r2]).

}
Then, we have [imax], [xmax] = SIAX(C), where imax =

argmax{x0, · · · , xn−1}, xmax = max{x0, · · · , xn−1}. Sim-
ilarly, we can implement Secure Integer Array Maxi-
mum(SIAN) protocol, i,e. [imin], [xmin] = SIAN(C), where
imax = argmin{x0, · · · , xn−1}, xmin = min{x0, · · · , xn−1}.

B. EXTENDED PROTOCOLS ON FLOATING-POINT
NUMBERS
1) SECURE FLOATING POINT NUMBER OPPOSITE (SFPO)
Given one encrypted FPN 〈x〉 = {[sx], [mx], [tx]}, the goal
of SFPO protocol is to calculate the result 〈f 〉, s.t. f = −x.
The overall process of SFPO protocol can be executed only
by CP:

[sf ] = ([sx])N−1; [mf ] = [mx], [tf ] = [tx]; Let 〈f 〉 =
{[sf ], [mf ], [tf ]}.

Then, we have 〈−x〉 = SFPO(〈x〉).

2) SECURE FLOATING POINT NUMBER SUBTRACTION
(SFPU)
Given two encrypted FPNs 〈x〉 and 〈y〉, the goal of SFPU
protocol is to calculate the result 〈f 〉, s.t. f = x − y. Since
subtraction is the inverse of addition, the overall process of
SFPU protocol is shown as follows:
• Step-1(@CP): 〈−y〉 = SFPO(〈y〉);
• Step-2: 〈x − y〉 = SFPA(〈x〉, 〈−y〉).
Then, we have 〈x − y〉 = SFPU(〈x〉, 〈y〉).

3) SECURE FLOATING POINT NUMBER RECIPROCAL (SFPR)
Given one encrypted FPN 〈x〉 = {[sx], [mx], [tx]}, the goal
of SFPR protocol is to calculate the result 〈f 〉, s.t. f = x−1.
Assuming that f = x−1(x 6= 0), f can also be converted to
a triple {sf ,mf , tf }. According to the property of reciprocal,
we can easily have sf = sx . Then the main problem is how to
determine mf and tf . Notice that βη−1 ≤ mx < βη, βη−1 ≤

mf < βη. Therefore, there exists m ∈ (βη−1, βη] s.t. mx ·
m ≤ β2η−1. Thenmf is the maximalm that satisfies the above
inequality.

Next, we will discuss this problem in two cases according
to the value of m′f .
Case I: if m′f = βη, then the number of significant digits

is η+ 1 bit. Since βη−1 ≤ mf < βη, we need to decrease m′f
by one bit, i.e. m′f = β

η−1.
Case II: if m′f ∈ [βη−1, βη), then it is consistent with mf

in terms of value range.
Then we confirm the value of tf , we have:

(mf · β tf ) · (mx · β tx ) = (mf · mx) · (β tf · β tx )

= (mf · mx) · β tf+tx

≈ 1 (2)

Consider mf · mx ≈ β2η−1, we have tf + tx = 1− 2η, i.e.
tf = 1− 2η − tx .
Based on the above analysis, the overall steps of SFPR

protocol are shown as follows:
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Step-1: CP and CSP first jointly handle the special cases.
We determine whether 〈x〉 is equal to 〈0〉, if 〈x〉 is equal to 〈0〉,
then the result is 〈0〉. This can be achieved by the following
calculations:

[Z ] = FPEQ(〈x〉, 〈0〉); [1− Z ] = [1] · [Z ]N−1.
Step-2: Then CP and CSP can jointly evaluate the signifi-

cance of f . Initialize [v] = [0], [E1] = [β2η−1].
for(i = 0 to η){

[E2] = [βη−i]; [u1] = [0]; [U ] = [0];
for(j = 1 to β){

[E3] = RSM([j], [E2]); [V1] = [v] · [E3];
[V2]=RSM([V1], [mx]); [u2]=SLT([E1], [V2]);
[u] = SXOR([u1], [u2]);[u1] = [u2];
[U ] = [U ] · RSM([u], [j− 1]);

}. Let [v] = [v] · RSM([U ], [E2]).
}
Step-3: Finally, CP and CSP can jointly evaluate the expo-

nents of f by combining the two cases in the analysis. Then
we calculate:

[v∗] = SMOD(βη, [v]); [r] = SEQ([v∗], [v]);
[1− r] = [1] · [r]N−1; [B0] = [βη−1];
[mf ] = RSM([r], [B0]); [m∗f ] = RSM([mf ], [Z ]);
[sf ] = [sx]; [T1] = RSM([r], [Z ]); [t1] = [tx]N−1 · [T1];
[t2] = RSM([ηmax], [1− Z ]); [tf ] = [t1] · [t2];
[t∗f ] = [tf ] · [2η − 1]N−1; 〈f 〉 = {[sf ], [m∗f ], [t

∗
f ]}.

Then, CP and CSP can jointly compute 〈x−1〉 =
SFPR(〈x〉).

4) SECURE FLOATING POINT NUMBER DIVISION (SFPD)
Given two encrypted FPNs 〈x〉, 〈y〉, the goal of SFPD proto-
col is to calculate the result 〈f 〉, s.t. f = x · y−1. The overall
process of SFPD protocol are shown as follows:
〈y−1〉 = SFPR(〈y〉); 〈f 〉 = SFPM(〈x〉, 〈y−1〉).
Then, we have 〈x · y−1〉 = SFPD(〈x〉, 〈y〉).

C. CIPHERTEXT MUTUAL CONVERSION PROTOCOLS
1) SECURE INTEGER TO FLOATING POINT NUMBER (SITF)
Given one encrypted number [x] where (|x| < 102η), the goal
of SITF protocol is to calculate the result 〈x〉. First, we need
to determine the sign of x, which is easy to achieve. Then the
question can be discussed in two cases:
Case I: If |x| ≥ βη, then tx > 0. We should keep the first

η significant digits of x as mx .
Case II: If |x| < βη, then tx ≤ 0. We should expand x to η

digits.
Based on the above idea, the overall steps of SITF protocol

are shown as follows:
Step-1: First, CP and CSP jointly determine whether x is

equal to 0, this can be achieved by the following calculations:
[Z ] = SEQ([x], [0]); [1− Z ] = [1] · [Z ]N−1.
Step-2: Then, CP and CSP jointly determine whether x is

greater than 0.
[S1] = [bN2 c]; [s] = SLT([S1], [x]);
[1− s] = [1] · [s]N−1;[−x] = [x]N−1;
[|x|] = RSM([s], [x]) · RSM([1− s], [−x]).

Step-3: CP and CSP jointly determine whether |x| is equal
or greater than βη.

[B0] = SLT([|x|], [βη]); [1− B0] = [1] · [B0]N−1.
Step-4: Then, CP and CSP jointly solve the first case that
|x| ≥ βη.

[u1] = [0]; [T1] = [0]; [m1] = [0]; [A1] = [|x|].
for(i = 0 to ηmax − 1){

[M1] = SMOD(βηmax−i−1, [|x|]);
[E1] = [ηmax−i− 1];
[u∗1] = SEQ([M1], [|x|]); [t1] = SXOR([u∗1], [u1]);
[T1] = [T1] · RSM([t1], [E1]);
[u1] = [u∗1]; [v1] = [A1] · [M1]N−1;
[A1] = [A1] · [V1]N−1; [v1]i = [v1];

}
[T2] = [T1] · [η]N−1; [T3] = [1] · [T2];
[B2] = SEXP(β, [T3]); [I2] = SINV([B2]);
for(i = 0 to ηmax − 1){

[E1] = [ηmax−i− 1]; [r1] = SLT([T2], [E1]);
[v1] = [v1]i; [v∗1] = RSM([v1], [I2]);
[V1] = RSM([r1], [v∗1]); [m1] = [m1] · [V1];

}
Step-5: After that, CP and CSP jointly solve the second

case that 0 < |x| < βη.
[u2] = [0]; [T4] = [0]; [m2] = [0]; [A2] = [|x|].
for(i = 0 to η − 1){

[E2] = [η−i− 1]; [M2] = SMOD(βη−i−1, [|x|]);
[u∗2] = SEQ([M2], [|x|]); [t2] = SXOR([u∗2], [u2]);
[T5] = [T5] · RSM([t2], [E2]); [u2] = [u∗2];
[v2] = [A2] · [M2]N−1; [A2] = [A2] · [v2]N−1;
[v2]i = [v2];

}. Let [T6] = [η] · [T5]N−1 and [B3] = SEXP(β, [T6]).
for(i = 0 to η − 1){

[E2] = [η−i− 1]; [r2] = SLT([T5], [E2]);
[1− r2] = [1] · [r2]N−1; [v2] = [v2]i;
[v∗2] = RSM([v2], [B3]);
[V2] = RSM([1− r2], [v∗2]) · RSM([v2], [0]);
[m2] = [m2] · [V2];

}. Let [T7] = [T6]N−1.
Step-6: Then CP and CSP jointly calculate:
[m] = RSM([1− B0], [m1]) · RSM([B0], [m2]);
[t] = RSM([1− B0], [t1]) · RSM([B0], [t2]);
Step-7: Finally, CP and CSP jointly calculate the final

result:
〈0〉 = {[s0], [m0], [t0]};
[s∗f ] = RSM([1− Z ], [s0]) · RSM([Z ], [1− s]);
[t∗f ] = RSM([1− Z ], [t0]) · RSM([Z ], [t]);
[m∗f ] = RSM([1− Z ], [m0]) · RSM([Z ], [m]);
Let 〈f 〉 = {[s∗f ], [m

∗
f ], [t

∗
f ]}. Then, CP and CSP can jointly

compute 〈x〉 = SITF([x]).

2) SECURE FLOATING POINT NUMBER TO INTEGER (SFTI)
Given one encrypted number 〈x〉, the goal of SFTI protocol
is to calculate the result [f ], s.t. f = bxc. For a floating point
number x, we can easily obtain the sign of x by sx . Then the
question can be discussed in three cases.
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Case I: if tx ≥ 0, then x = (−1)sx · mx · β tx .
Case II if tx ≤ −η, since βη−1 ≤ mx < βη, we have

0 ≤ mx · β tx < 1 which means |x| < 1. Therefore, x = 0.
Case III: if −η < tx < 0, we just keep the first η + tx

significant digits as |x|.
Based on the above analysis, the overall steps of SFTI

protocol are shown as follows:
Step-1: First, CP and CSP jointly determine whether mx is

equal to 0, this can be achieved by the following calculations:
[Zm] = SEQ([mx], [0]); [1− Zm] = [1] · [Zm]N−1;
Step-2: Then, CP and CSP jointly determine whether sx is

equal to 0, this can be achieved by the following calculations:
[Zs] = SEQ([ms], [0]); [1− Zs] = [1] · [Zs]N−1;
Step-3: CP and CSP jointly divide tx into three conditions.

First, we determine whether tx is equal or greater than 0.
Let [T1] = SLT([tx], [0]); [1− T1] = [1] · [T1]N−1; Then,

we determine whether tx is less than or equal to −η. Let
[T2] = SLT([−η], [tx]); [1− T2] = [1] · [T2]N−1.
Step-4: Now, CP and CSP jointly solve the first condition

that tx ≥ 0.
[B1] = SEXP(β, [tx]); [x1] = RSM([mx], [B1]).
Step-5: Next, CP and CSP jointly solve the second condi-

tion that tx ≤ −η. We have [x2] = [0].
Step-6: Finally, CP and CSP jointly solve the third condi-

tion that −η < tx < 0.
[x3] = [0]; [−tx] = [tx]N−1; [B2] = SEXP(β, [−tx]);
[I1] = SINV([B2]); [M ] = [mx].
for (i = 0 to η − 2){

[u] = SMOD(βη−1−i, [mx]); [v] = [M ] · [u]N−1;
[r] = RSM([v], [I1]); [M ] = [M ] · [v]N−1;
[E1] = [η − i]; [q] = SLT([−tx], [E1]);
[1− q] = [1] · [q]N−1; [r∗] = RSM([q], [r]);
[x3] = [x3] · [r∗];

}
Step-7: CP and CSP jointly combine the above cases.
[X1] = RSM([1− T2], [x2]) · RSM([T2], [x3]);
[X2] = RSM([1− T1], [x1]) · RSM([T1], [X1]);
[X ] = RSM([1− Zm], [0]) · RSM([Zm], [X2]);
[−X ] = [X ]N−1.
Step-8: CP and CSP jointly calculate the final result.
[f ] = RSM([1− Zs], [X ]) · RSM([Zs], [−X ]).
Based on the above steps, CP and CSP can compute

[bxc] = SFTI(〈x〉).

V. SECURE AND EVALUABLE CLUSTERING
In this section, we first introduce Square Euclidean Distance,
which will be used as a measure of the distance between sam-
ples. Next, we give the implementation of the homomorphic
algorithm of K-means. To evaluate the performance of the
clustering results on ciphertext, we design and implement
the homomorphic silhouette coefficient.

A. SECURE SQUARE EUCLIDEAN DISTANCE (SSED)
Given two arrays of the same length, x = {x0, · · · , xn−1}
and y = {y0, · · · , yn−1}, then the square euclidean distance
SED(x, y) =

∑n−1
i=0 (xi − yi)2. Therefore, given two integer

ciphertext arrays of the same length, x = {[x0], · · · , [xn−1]}
and y = {[y0], · · · , [yn−1]}, the square euclidean distance on
integer ciphertext is defined in Algorithm 1.

Algorithm 1 Secure Square Euclidean Distance(SSED)
Input: x = {[x0], · · · , [xn−1]}, y = {[y0], · · · , [yn−1]}
Output: the integer ciphertext [D] of square euclidean dis-

tance between x and y
1: Initialize [D] = [0];
2: for i = 0 to n− 1 do
3: [di] = [xi] · [yi]N−1; [si] = RSM([di], [di]);
4: [D] = [D] · [si];
5: end for
6: return [D];

B. SECURE K-MEANS CLUSTERING
K-means is a commonly-used cluster algorithm. Given a set
of samples(i.e. the observations) X = {x0, · · · , xm−1} where
each feature xi has n features, i.e. xi = {x0i , · · · , x

n−1
i }. The

algorithm partitions the samples into K disjoint subsets S =
{S1, S2, . . . , SK } so as to minimize the within-cluster sum of
squares. Here, we will introduce K-means algorithm module
by module. Then, we will introduce the implementation of
secure K-means clustering based on our toolkit MPOCT.

1) SECURE SAMPLE PARTITION
For each sample xi(0 ≤ i < m) in the dataset, the K-means
algorithm calculates the distance Di,k from each sample xi
to each cluster center Ck , and assigns the sample xi to the
cluster to which the nearest cluster center belongs. Suppose
Ci is the index of the cluster to which sample xi belongs.
The implementation of the above partition of samples on
ciphertext is shown in Algorithm 2.

Algorithm 2 Secure Sample Partition(SSP)
Input: i) encrypted samples X = {x0, · · · , xm−1};

ii) encrypted centroids of cluster C = {C0, · · · ,CK−1};
Output: i) encrypted cluster index of samples c =

{[c0], · · · , [cK−1]};
1: for j = 0 to m− 1 do
2: for k = 0 to K − 1 do
3: Calculate [dj,k ] = SSED(xj,Ck );
4: end for
5: Let dj = {[dj,0], · · · , [dj,K−1]};
6: [cj], [min{dj,0, dj,1, · · · , dj,K−1}] = SIAN(dj);
7: end for
8: Let c = {[c0], [c1], · · · , [cm−1]};
9: return c;

2) SECURE CLUSTER UPDATING
For each partitioned cluster set Sk , K-means algorithm will
recalculate its cluster center Ck = (C0

k ,C
1
k , · · · ,C

n−1
k )

where the i-th center of the j-th feature are computed
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as follows:

C j
k =

1
|Sk |

∑
xi∈Sk

x ji , 0 ≤ j < n (3)

The implementation of the above cluster updating
approach on ciphertext is shown in Algorithm 3.

Algorithm 3 Secure Cluster Updating(SCU)
Input: i) encrypted samples X = {x0, · · · , xm−1};

ii) encrypted cluster index of samples c =

{[c0], · · · , [cK−1]};
Output: i) encrypted cluster centroids C =

{C0, · · · ,CK−1};
1: for k = 0 to K − 1 do
2: Let [nk ] = [0];
3: for j = 0 to m− 1 do
4: [E1] = SEQ([cj], [k]); [1− E1] = [1] · [E1]N−1;
5: Let [C l

k ] = [0](0 ≤ l < n);
6: for l = 0 to n− 1 do
7: [t lj ] = RSM([1− E1], [x lj ]); [C

l
k ] = [C l

k ] · [t
l
j ];

8: end for
9: [nk ] = [nk ] · [1− E1];

10: end for
11: for l = 0 to n− 1 do
12: [C l

k ] = SDIV([C l
k ], [nk ]);

13: end for
14: Let Ck = {[C0

k ], [C
1
k ], · · · , [C

n−1
k ]}

15: end for
16: Let C = {C0,C1, · · · ,CK−1};
17: return C ;

3) SECURE K-MEANS
Based on the above two modules, for a given number of itera-
tions E , the implementation of K-means clustering algorithm
on ciphertext are shown in Algorithm 4.

Algorithm 4 Secure K-means(SKM)
Input: i)Encrypted samples X = {x0, · · · , xm−1};

ii) Cluster number K ;
iii) Iteration number E ;

Output: i) Encrypted cluster index of samples c =

{[c0], · · · , [cK−1]};
ii) Encrypted cluster centroids C = {C0, · · · ,CK−1};

1: Random choice k(k ≤ m) samples xr1 , · · · , xrk as cluster
centroids C = {C0, · · · ,CK−1}.

2: for i = 0 to E − 1 do
3: Partition the samples to K clusters: c = SSP(X ,C);
4: Updating cluster centroids: C = SCU(X , c);
5: end for
6: return C, c;

C. EVALUABLE CLUSTERING ON CIPHERTEXT
Since the previous schemes did not provide an evaluation
index on the ciphertext of the clustering result, DOs can only

obtain the clustering results returned by the server. How-
ever, it is impossible to evaluate the clustering results due
to DOs’ limited local resources. Here, we choose silhouette
coefficient [28] as the evaluation index of clustering. Here we
describe the silhouette coefficient module bymodule and give
the corresponding implementation on ciphertext based on our
tookit MPOCT.

1) SECURE DISTANCE CALCULATION BETWEEN SAMPLES
First, the silhouette coefficient needs to calculate the distance
between two samples di,j. This is easy to implement on
ciphertext, which is shown in algorithm 5.

Algorithm 5 Secure Distance Calculation Between Sam-
ples(SDCS)
Input: i) sample number m;

ii) cluster number K ;
iii) encrypted sample set X = {x0, · · · , xm−1};

Output: i) the encrypted distance between samples d =
{[di,j]};

1: Let di,jis the distance between xi and xj, then [di,i] =
[0], (0 ≤ i ≤ m− 1).

2: for i = 0 to m− 1 do
3: for j = i+ 1 to m− 1 do
4: Calculate [di,j] = SSED(xi, xj);
5: Let [dj,i] = [di,j];
6: end for
7: end for
8: Let d = {[di,j]};
9: return d ;

2) SECURE DISTANCE CALCULATION BETWEEN
SAMPLE AND CLUSTER
Next, the silhouette coefficient needs to calculate the distance
between each sample xi and each cluster Sk , which is defined
as follows:

Di,k =
∑
xj∈Sk

di,j (4)

Let Nk is the number of samples contained in each cluster,
Ei,k ∈ {0, 1} is the relationship between sample xi and
cluster ck , T is the product of all Nk , i.e. T =

∏K−1
i=0 Nk .

The implementation of the above process on the ciphertext is
shown in Algorithm 6.

3) SECURE COHESION CALCULATION
Then, we come to the calculation of cohesion. For sample xi,
its cohesion Ai is defined as follows:

Ai =

∑
xj∈Si SSED(xi, xj)

|Sci | − 1
(5)

where Sci is the cluster to which xi belongs and |Sci | is number
of samples in Sci . The implementation process of the above
formula on the ciphertext is shown in Algorithm 7.
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Algorithm 6 Secure Distance Calculation Between Sample
and Cluster(SDCSC)
Input: i) sample number m;

ii) cluster number K ;
iii) the encrypted distance between samples d = {[di,j]};
iv) encrypted cluster index of samples c =

{[c0], · · · , [cK−1]};
Output: i) encrypted distance between samples to clusters

D = {[Di,k ]};
ii) the encrypted number of samples contained in each
clusterN = {[N0], [N1], · · · , [NK−1]};
iii) the encrypted relationship matrix between samples
and clusters E = {[Ei, k]};
iv) the encrypted product T ;

1: for k = 0 to K − 1 do
2: for i = 0 to m− 1 do
3: [e0] = SEQ([k], [ci]);
4: Let [Ei,k ] = [1] · [e0]N−1 = [1− e0];
5: Update Nk : [Nk ] = [Nk ] · [Ei,k ]
6: for j = 0 to m− 1 do
7: [U ] = RSM([Ei,k ], [di,j]);
8: Update Dj,k : [Dj,k ] = [Dj,k ] · [U ];
9: end for
10: end for
11: end for
12: Initial [T ] = [1], which is used to calculate the product

of all Nk ;
13: for k = 0 to K − 1 do

[T ] = RSM([T ], [Nk ]);
14: end for
15: Let D = {[Di,k ]};
16: Let E = {[Ei,k ]};
17: Let N = {[N0], [N1], · · · , [NK−1]}
18: return D,N ,E,T ;

4) SECURE SEPARATION CALCULATION
Then we come to the calculation of separation bi. For sample
xi, separation bi is defined as follows:

Bi = min
0≤k<K ,k 6=ci

{

∑
xj∈Sk d(xi, xj)

|Sk |
} (6)

The implementation process of the above formula on the
ciphertext is shown in Algorithm 8.

5) SECURE SILHOUETTE COEFFICIENT
Silhouette coefficient combines cohesion and separation.
Based on the above modules, we can calculate the silhouette
coefficient of xi and the overall silhouette coefficient sc, i.e.

sci =
Bi − Ai

max (Ai,Bi)
(7)

sc =
1
m

m∑
i=1

sci (8)

Algorithm 7 Secure Cohesion Calculation(SCOC)
Input: i) sample number m;

ii) cluster number K ;
iii) encrypted distance between samples to clusters D =
{[Di,k ]};
iv) the encrypted relationship matrix between samples
and clusters E = {[Ei, k]};
v) the encrypted number of samples contained in each
clusterN = {[N0], [N1], · · · , [NK−1]};

Output: i) encrypted cohension of all samples A =

{[A0], [A1], · · · [Am−1]};
1: [Pi] = [0], [Qi] = [0], 0 ≤ i < m;
2: for k = 0 to K − 1 do
3: [e1] = SEQ([1], [Nk ]);
4: [e2] = [1] · [e1]N−1 = [1− e1];
5: [nk ] = [Nk ] · [−1] = [Nk − 1];
6: for i = 0 to m− 1 do
7: [u0] = RSM([Ei,k ], [nk ]);
8: [u0] = RSM([u0], [e1]) · RSM([1], [e2]);
9: [Qi] = [Qi] · [u0] = [Qi + u0];

10: [vi,k ] = RSM([Di,k ], [Ei,k ]);
11: [vi,k ] = RSM([vi,k ], [e1]);
12: [Pi] = [Pi] · [vi,k ]) = [Pi + vi,k ]
13: end for
14: end for
15: for i = 0 to m− 1 do
16: 〈Pi〉 = SITF([Pi]); 〈Qi〉 = SITF([Qi]);
17: 〈Ai〉 = SFPD(〈Pi〉, 〈Qi〉);
18: end for
19: Let A = {〈A0〉, 〈A1〉, · · · , 〈Am−1〉};
20: return A;

Thus we can implement the silhouette coefficient on the
ciphertext based on our toolkit MPOCT, which is shown
in Algorithm 9.

VI. SECURITY ANALYSIS
In this section, we first analyze the security of our outsourcing
computation protocols. Then, we demonstrate the security of
our toolkit MPOCT.

A. THE SECURITY OF PROTOCOLS
Before we explain the security of our protocols, we first
give the definition of the semantic security of a public key
encryption system that supports partial decryption. As the
semantic security of PCPD has been proven in [5], wewill use
it to demonstrate that our outsourcing computation protocols
are secure.
Definition 1 (Semantic Security): Let E = (KeyGen,Enc,

Dec) be a public-key encryption scheme supporting partial
decryption. We say that E is semantically secure if for any
polynomial-time adversary A it has a negligible advantage
(in the security parameter) in the following experiment
(between the challenger and the adversary):
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Algorithm 8 Secure Separation Calculation(SSEC)
Input: i) sample number m;

ii) cluster number K ;
iii) encrypted distance between samples to clusters D =
{[Di,k ]};
iv) the encrypted relationship matrix between samples
and clusters E = {[Ei, k]};
v) the encrypted number of samples contained in each
clusterN = {[N0], [N1], · · · , [NK−1]};
vi) the encrypted product T ;

Output: i) encrypted separation of all samples B =

{[B0], [B1], · · · [Bm−1]};
1: Let [G] = [1064];
2: for k = 0 to K − 1 do
3: [Vk ] = SINV([Nk ]); [Rk ] = RSM([T ], [Vk ]);
4: for i = 0 to m− 1 do
5: [e3] = [1] · [Ei,k ]N−1; [H ] = RSM([Di,k ], [Rk ]);
6: [z0] = RSM([Ei,k ], [G]);
7: [z1] = RSM([e3], [H ]);
8: [Zi,k ] = [z0] · [z1];
9: end for

10: end for
11: for i = 0 to m− 1 do
12: Let [Zi] = {[Zi,0], [Zi,1], · · · , [Zi,K−1]};
13: [Ii], [mi] = SIAN([Zi]);
14: 〈mi〉 = SITF([mi]); 〈T 〉 = SITF([T ]);
15: 〈Bi〉 = SFPD(〈mi〉, 〈T 〉);
16: end for
17: Let B = {〈B0〉, 〈B1〉, · · · , 〈Bm−1〉};
18: return B;

1) The challenger runs KeyGen(1k ) to obtain a public
and private key pair (pk, sk) and splits the private key
sk into two parts sk1 and sk2. Then the challenger sends
the public key pk as well as one part of the secret key,
e.g. sk1 to the adversary A.

2) The adversary A chooses two equal-length messages
m0 and m1. Then the adversary A sends them to the
challenger.

3) The challenger chooses a random bit b ∈ {0, 1} and
sends the ciphertext c∗ = Enc(mb) to A.

4) The adversary A outputs a bit b′ as a guess of b.

The adversary’s advantage in the above experiment is defined
as AdvE (k) := |Pr[b′ = b]− 1

2 |.
Theorem 1 ([5]): PCPD satisfies Semantic Security, i.e.,

AdvPCPD(k) := |Pr[b′ = b]− 1
2 | <

1
2k .

Here, we discuss the security model for securely imple-
menting an ideal functionality in the presence of non-
colluding semi-honest adversaries. For simplicity, we operate
according to the specific scenario of our functionality, which
involves three parties, challenger DO (i.e. D0), CP (i.e. S1
and CSP i.e. S2). Therefore, we need to construct three sim-
ulators Sim = SimD0 ,SimS1 ,SimS2 to against three kinds of

Algorithm 9 Secure Silhouette Coefficient(SSC)
Input: i) sample number m;

ii) cluster number K ;
iii) encrypted sample set X = {x0, · · · , xm−1};
iv) encrypted cluster index of samples c =

{[c0], · · · , [cK−1]};
Output: i) encrypted silhouette coefficient 〈sc〉;
1: d = SDCS(m,K ,X );
2: D,N ,E,T = SDCSC(m,K , d, c);
3: A = SCOC(m,K ,D,E,N );
4: B = SSEC(m,K ,D,E,N ,T );
5: for i = 0 to m− 1 do
6: 〈Ui〉 = SFPS(〈Bi〉, 〈Ai〉);
7: Compare Ai with Bi: [li] = SFPC(〈Ai〉, 〈Bi〉);
8: [Li] = SEQ([li], [1]); 〈Li〉 = SITF([Li]);
9: 〈1− Li〉 = SFPS(〈1〉, 〈Li〉);

10: 〈M0〉 = SFPM(〈Li〉, 〈Ai〉);
11: 〈M1〉 = SFPM(〈1− Li〉, 〈Bi〉);
12: 〈Wi〉 = SFPM(〈M0〉, 〈M1〉) = 〈max(Ai,Bi)〉;
13: 〈sci〉 = SFPD(〈Ui〉, 〈Wi〉);
14: end forInitialize 〈S〉 = 〈0〉;
15: for i = 0 to m− 1 do

〈S〉 = SFPA(〈S〉, 〈sci〉);
16: end for
17: 〈sc〉 = SFPM(〈sc〉, 〈 1m 〉);
18: return 〈sc〉;

adversaries (AD0 ,AS1 ,AS2 ) that respectively corrupt D0, S1
and S2.
Theorem 2: The SCDP protocol described in Section IV

is to securely calculate the ciphertext result of division on
the premise that the ciphertext of the dividend and the plain-
text of the divisor are known in the presence of semi-honest
(non-colluding) adversaries A = (AD0 ,AS1 ,AS2 ).

Proof: We now demonstrate how to construct three
independent simulators SimD0 ,SimS1 ,SimS2 .
SimD0 receives x and y as input and simulatesA = AD0 as

follows: it generates a public integer y and ciphertext [x] =
Enc(x) of x. Finally, it returns [x] and y to AD0 and outputs
AD0 ’s entire view.
The view of AD0 consists of the encrypted data. And the

views of AD0 in the real and ideal executions are indistin-
guishable due to the semantic security of PCPD.

SimS1 simulates AS1 as follows: First, it generates (ficti-
tious) a public number y and encryption [x] and [|y|] by run-
ning Enc(·) on randomly chosen x and above y. Then it uses
[x] and |y| as the inputs of SimSMOD

S1
(·, ·) and generates [M1].

Next, it uses [|y|] as the input of SimSINV
S1

(·) and generates
[I1]. Then, it calculates [M2] = [x] · [M1]N−1, uses [M2] and
[I1] as the inputs of SimRSM

S1
(·, ·) and generates [f ]. If y < 0,

it calculates [f ∗] = [f ]N−1. Otherwise, [f ∗] = [f ]. Finally,
SimS1 sends the encryption [M1], [I1], [M2], [f ], [f ∗] to AS1 .
If AS1 replies with ⊥, then SimS1 returns ⊥.

SimS2 is analogous to SimS1 . �
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FIGURE 3. Simulation results: (a) Running time on CP (vary with bit length of N). (b) Running time on CSP (vary with bit length of N). (c) Total Running
time (vary with bit length of N). (d) Communication cost (vary with bit length of N). (e) Running time on CP (vary with bit length of N , η = 16).
(f) Running time on CSP (vary with bit length of N , η = 16). (g) Total Running time (vary with bit length of N , η = 16). (h) Communication cost (vary
with bit length of N , η = 16). (i) Running time of SDIV (vary with base β0, η0 is the smallest positive integer that satisfies η0β0 ≥ 1015). (j) Running
time of SLOG (vary with δ). (k) Running time of SPOW (vary with y ). (l) Running time of SITF (vary with ηmax = 32).

The security proofs of SDIV, SIMF, SPOW, SLOG
are similar to that of the SCDP under the semi-honest
(non-colluding) adversaries A = (AD0 ,AS1 ,AS2 ). For the
encrypted floating point number calculations (include SFPR,
SFPD, SFPU, SFPO, SFTI and SITF), the security relies on
the basic encrypted integer calculation (the prove method is
similar to that of SCDP), which has been proven. Due to the
semantic security of PCPD, it is secure for all calculations to
be performed in the ciphertext domain.

B. THE SECURITY OF MPOCT
Here, we give an analysis to show that our toolkitMPOCT can
resist the system attackers defined in Section 2. The specific
analysis is as follows:
• If adversaryA∗ eavesdrops on the transmission between
DO and CP, then A∗ can obtain the original encrypted
data and the final result. In addition, adversary A∗ can
obtain the encrypted result transmitted between CP and
CSP through eavesdropping. However, these data are
encrypted during transmission. Based on the semantic
security of the PCPD cryptosystem, adversary A∗ will
not be able to decrypt the ciphertext without knowing the
private key of DO. Since the public key and private key
in the system are distributed securely to each participant
by KGC, our system model will not be affected by Man-
in-the-middle attack.

• Suppose adversary A∗ has compromised the CP
(or CSP) to obtain the challenge RU’s partially

private key. As the private key is randomly split by
executing KeyS algorithm of PCPD, adversary A∗ is
unable to recover the private key of the challenger DO to
decrypt the ciphertext. In addition, adversaryA∗ cannot
obtain useful information even if the CSP is compro-
mised, because our protocols use the known technique
of ‘‘blinding’’ the plaintext [29]: given the ciphertext
of the message, we use the additive homomorphism of
the PCPD cryptosystem to add random messages to it.
Therefore, the original plaintext becomes blinded.

• If adversary A∗ has a private key belonging to another
DO (i.e. which is not the private key of challenger DO).
Since the private keys of different DOs in our system
are irrelevant, adversaryA∗ is still unable to decrypt the
ciphertext of challenger DO.

VII. EXPERIMENTAL EVALUATION
In this section, we first evaluate the performance of proto-
cols in MPOCT. Then we analyze the performance of SKM
and SSC.

A. EXPERIMENTS OF MPOCT
First, we let N be 1024 bits to achieve 80-bit security [30].
The computation cost and communication overhead of the
proposed MPOCT are evaluated using a Python program,
and the experiments are performed on a single server with
2.3GHz one-core processor and 8GB RAM memory. The
performances of protocols for both integers and FPNs in
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FIGURE 4. Performance of SKM & SSC. (a) Calculation time of SKM per iteration(vary with number of clusters k , m = 50,n = 5). (b) Calculation
time of SKM per iteration (vary with number of samples m, k = 4,n = 5). (c) Calculation time of SKM per iteration (vary with number of features
n, k = 4,m = 50). (d) Calculation time of SSC (vary with number of clusters k , m = 20,n = 5). (e) Calculation time of SSC (vary with number of
samples m, k = 4,n = 5). (f) Calculation time of SSC (vary with number of features n, k = 4,m = 20).

TABLE 2. The Performance of protocols for Integer (80-bit security level).

MPOCT are respectively shown in Table 2 and Table 3,
while some protocols are evaluated under specific parame-
ters: SPOW(y = 31), SLOG(δ = 20), SDIV(β0 = 3,
η0 = 32), SITF(ηmax = 32). We can find that the pro-
tocols of integer ciphertext is faster in computing time and
lower in communication overhead than protocols of FPNs.
Then, we discuss the factors that affect the performance of
these protocols. From Figure 3(a)-(h), we can easily find
that both the running time and communication overhead of
the protocols increase with N . This is because the running
time required for basic operations (modular multiplication
and exponential) increases while N increases. Meanwhile,
more bits need to be transmitted. In addition, the running
time of some protocols will also change according to specific
parameters, which is shown in Figure 3(i)-(l). We find that
SDIV has the highest computational efficiency, when β0 is
equal to 3. In addition, the calculation efficiency of SLOG
changes linearly with δ and the calculation efficiency of SITF

TABLE 3. The Performance of protocols for FPNs (80-bit security level).

also changes linearly with ηmax . Since SPOW is based on the
idea of Binary Exponentiation, the calculation efficiency only
changes logarithmically with y.

B. EXPERIMENTS OF SKM AND SSC
1) COMPUTATIONAL EFFICIENCY ANALYSIS
According to the algorithm process of SKM and SSC,
we found that the main factors affecting the computational
efficiency are the bit size of the public key |N |, the number
of clusters k , the number of samples m and the number of
features n. From Figure 4(a)(b)(c), we find that the calcu-
lation time of SKM is linearly related to k,m and n. From
Figure 4(d)(e)(f), we find that the calculation time of SSC is
non-linearly related to m, but it is linearly related to k and n.
Since SSC needs to calculate the distance between paired
samples, the calculation time of SSC is related to m2. There-
fore, the calculation time of SSC will increase significantly
when the number of samplesm increases. In addition, we have
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TABLE 4. Dataset statistic.

TABLE 5. Classification accuracy on public datasets.

also compared with the previous scheme PPODC [7] and
PPCOM [9]. We fix the bit size N of public key in our Paillier
cryptosystem to be 1024. When m = 10000, n = 10, k = 4,
the running time of PPODC on Python is 13360 minutes per
iteration and 1856 minutes on PPCOM, while our solution
SKM only needs 577 minutes, which is more than 20 times
faster than PPODC and 3 times faster than PPCOM.

2) PERFORMANCE ANALYSIS
To demonstrate the effectiveness of SKM and SSC, we con-
duct extensive experiments over three public datasets. The
dataset description is shown in Table 4.

First, we compare the performance of three different
K-means algorithms, i.e. SKM, K-means on plaintext,
K-means using differential privacy(DP-K-means [22]).
Parameter configuration: the number of iterations E is set
as 10. The privacy-preserving budget of DP-K-means ε is
set as 1. Since the datasets have provided label information,
we conduct our experiments in two aspects: with and without
labels.

Table 5 shows the classification accuracy of three methods
with labels. We can find that the K-means on plaintext out-
performs the others with the highest accuracy. Our scheme
SKM achieves the second place, and it is competitive with the
performance of K-means on plaintext. This is because SKM
requires a given fixed number of iterationsE and thusmay not
fully converge. To ensure convergence, it is only necessary to
set a larger number of iterations. However, the computational
cost increases linearly as the number of iterationsE increases.
Therefore, in order to balance the computational efficiency
and the usability of the algorithm, we choose a small number
of iterations E for experiments. DP-K-means performs rela-
tively inferior due to the added noise in data.

Since ground truth labels are hard to obtain in a real
application scenario, we use silhouette coefficient for eval-
uation. As an effective index to evaluate the performance of
clustering, the silhouette coefficient ranges from−1 to 1. The
closer the it is to 1, the better the clustering performance is;
on the contrary, the closer the silhouette coefficient is to −1,
the worse the clustering performance is. Table 6 shows the sil-
houette coefficient of three methods. The situation is similar
to those with labels. K-means on plaintext surpasses the oth-
ers with the highest silhouette coefficient. The performance

TABLE 6. Silhouette coefficient on public datasets.

TABLE 7. Performance of secure silhouette coefficient.

of our scheme SKM is competitive with that on K-means.
DP-K-means, however, performs relatively inferior for the
same reason above.

Last, we validate the effectiveness of secure silhouette
coefficient. Based on the clustering results obtained by SKM,
we evaluate the performance of silhouette coefficient on the
decrypted plaintext(SC) and secure silhouette coefficient on
the ciphertext(SSC). We can observe from Table 7 that the
proposed SSC in this paper can ensure the same availability
as that on the plaintext.

VIII. CONCLUSION AND FUTURE WORK
In this paper, a novel multifunctional and privacy-preserving
outsourcing computation tookit (MPOCT) is proposed to
support several homomorphic computing protocols including
division and power on ciphertext of integers and floating point
numbers. Concretely, we first extend several homomorphic
operations on the ciphertext of floating-point numbers based
on the previous framework POCF. However, due to the low
efficiency and high communication overhead on the cipher-
text of floating-point numbers, we further extend the secure
outsourcing computation protocols on the ciphertext of inte-
gers. After that, homomorphic mutual conversion protocols
between integer and floating-point ciphertext are proposed to
balance the efficiency and feasibility of computation. Next,
we implement a homomorphic K-means algorithm based
on MPOCT for clustering and design the homomorphic
silhouette coefficient as the evaluation index, providing an
informative cluster assessment for local users with limited
resources. Comprehensive experimental results and security
analysis have proved the proposed MPOCT can achieve
efficiency and utility without privacy leakage to unauthorized
parties.

In the future, MPOCT is expected to resort to homomor-
phic neural network modules such as homomorphic convo-
lution and homomorphic pooling. In addition, MPOCT can
only be applied to the algorithms with certain termination
conditions(i.e. the homomorphism of the while loop cannot
be implemented) since the servers cannot be aware of the
comparison results of ciphertext. An improved scheme of
solving this problem is to be explored in the future.
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