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ABSTRACT We present a novel approach to enhance the quality of humanmotion data collected by low-cost
depth sensors, namely D-Mocap, which suffers from low accuracy and poor stability due to occlusion,
interference, and algorithmic limitations. Our approach takes advantage of a large set of high-quality and
diverse Mocap data by learning a general motion manifold via the convolutional autoencoder. In addition,
the Tobit Kalman filter (TKF) is used to capture the kinematics of each body joint and handle censored
measurement distribution. The TKF is incorporated with the autoencoder via latent space optimization,
maintaining adherence to the motion manifold while preserving the kinematic nature of the original motion
data. Furthermore, due to the lack of an open source benchmark dataset for this research, we have developed
an extension of the Berkeley Multimodal Human Action Database (MHAD) by generating D-Mocap data
from RGB-D images. The newly extended MHAD dataset is skeleton-matched and time-synced to the
correspondingMocap data and is publicly available. Along with simulated D-Mocap data generated from the
CMUMocap dataset and our self-collected D-Mocap dataset, the proposed algorithm is thoroughly evaluated
and compared with different settings. Experimental results show that our approach can improve the accuracy
of joint positions and angles as well as skeletal bone lengths by over 50%.

INDEX TERMS Autoencoder, human motion manifold, depth sensors, motion capture, Tobit Kalman filter.

I. INTRODUCTION
Marker-based optical motion capture (Mocap) technology
is the gold standard for human motion data collection due
to its high accuracy and low latency [5], [9], [26], [48].
However, there is a need for a practical low-cost solution in
motion capture that provides reasonable accuracy and high
flexibility. Previous research has yielded some promise with
the use of inertial measurement units (IMUs) [8], but these
devices suffer from drift and must be attached to the subject’s
body. During the past decade, low cost RGB-D depth sensors
have emerged as a promising alternative for motion capture
(D-Mocap). They have proven useful in the clinical setting
for gait assessment [17], [25], [40], [46], rehabilitation [47],
human mobility analysis [32], and exercise systems [14].
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In addition, there is a wealth of off-the-shelf or open source
software which generates D-Mocap (Fig. 1).

Due to depth sensors’ limited range [7], interference
susceptibility [38], and tendency toward self-occlusion
errors [15], when compared to Mocap data, D-Mocap is
low-quality and less accurate (Fig. 1(b)). Our aim is to
combine two paradigms of human motion enhancement, fil-
tering techniques and deep learning to achieve an afford-
able and practical markerless motion capture tool which
alleviates the deficiencies of D-Mocap and could be used
in a free-setting for a variety of biomedical and clinical
applications (Fig. 1(c)).

Our method consists of two main elements, learning
and filtering. The first involves a convolutional autoencoder
based on [22], [23] which is trained on a large quantity of
wide-ranging high-quality Mocap data. We chose a convolu-
tional autoencoder to tackle the high dimensional nonlinear
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FIGURE 1. (a) A depth sequence from the MHAD dataset [42];
(b) D-Mocap data generated from (a) by using OpenPose [11];
(c) enhanced D-Mocap data by the proposed algorithm; (d) the
ground-truth Mocap reference.

problem of human motion enhancement because of the abil-
ity of autoencoders to reduce the dimensionality of the
data and extract noise through the use of a learned human
motion manifold. The second involves the Tobit Kalman
filter (TKF) which is a nonlinear Kalman filter devised tomit-
igate censoredmeasurements in a temporal data sequence [2].
We adaptively vary the censoring limits of the TKF using the
velocities of human joints in light of the fact that most errors
in D-Mocap are accompanied by an unnatural shift in joint
velocity [61]. Joints with a higher velocity component are
more prone to error and joints that have been occluded have a
higher velocity component caused by tracking failure. In [22]
Holden et al. introduced manifold-based human motion syn-
thesis via constraint-guided latent space optimization. The
compelling idea of optimization in the latent space inspired us
to develop a method in which a TKF filtered motion sequence
with additional kinematic constraints could be used as a target
for optimization. In this manner, we could capitalize on a
separate method of motion enhancement and meld the two
in the latent space of the autoencoder.

In our early work [29] we developed a method that
applies Kalman filters after the use of the autoencoder and
feeds the result back to the latent space for optimization.
hlHowever, our recent studies reveal that while the autoen-
coder has the ability to project high-dimensional data onto
a low-dimensional manifold, it may not preserve the natural
kinematics of each joint trajectory along time due to its
dimensionality reduction effect. This realization led us to an
improved version [30] where the filter is applied in paral-
lel with the autoencoder and the filtering output is directly
used as the target for latent space optimization, resulting in
more kinematics-compliant motion data enhancement, a new
paradigm we call TKF-assisted autoencoder (Fig. 2(a)).
As an alternative, we cascade the TKF with the autoencoder
in a serial form to handle missing or lost motion data, lead-
ing to a second paradigm for motion enhancement called

FIGURE 2. (a) The first paradigm: TKF-assisted autoencoder for motion
denoising. (b) The second paradigm: TKF-refined autoencoder for missing
data completion.

TKF-refined autoencoder (Fig. 2(b)). Both algorithms are
evaluated quantitatively and comprehensively in this paper.

Although there are many recent approaches proposed for
human motion enhancement or motion denoising, a common
benchmark dataset for performance evaluation and algorithm
comparison is lacking. In order to promote related research
activities in the community, we have developed a new open
source D-Mocap dataset that is extended from the Berkeley
Multimodal Human Action Database (MHAD) [42] and
available on GitHub.1 Our extended MHAD dataset includes
a rich set of D-Mocap data generated from the RGB-D images
which are time-synchronized and skeleton-matched with the
optical Mocap reference data. Moreover, we captured our
own D-Mocap data focused on human gaits by using a depth
sensor side-by-side an optical Mocap system in two labs
at Oklahoma State University (OSU). We have also gener-
ated a set of simulated D-Mocap data from the Carnegie
Mellon University Motion Capture Database (CMU) [56]
by considering two types of data corruption, i.e., additive
white Gaussian noise (AWGN) and data drop-out (missing
data). For the first time, our two algorithms (Fig. 2) are thor-
oughly evaluated against the three aforementioned D-Mocap
databases with promising results.

To summarize, this manuscript provides new in-depth anal-
ysis of our TKF-assisted autoencoder through several previ-
ously unexplored means. These contributions are as follows:
• The proposed TKF-assisted autoencoder takes advan-
tage of both joint-level kinematics and skeleton-level
joint spatio-temporal modeling.

• We develop an extended MHAD dataset which includes
D-Mocap data for use in human motion enhancement.1

1https://github.com/natelannan-osu/MHAD-D-Mocap
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• We provide comprehensive error analysis for simulated
and real-world D-Mocap data that includes joint angles,
bone lengths in addition to the traditionally used joint
positions.

II. RELATED WORK
In examining related work in human motion enhancement,
we have focused our synopsis on the improvement of
D-Mocap data. We have categorized these approaches into
three groups, filtering methods, machine learning methods,
and deep learning methods.

A. FILTERING METHODS
Of all the traditional filtering methods, the Kalman filter (KF)
has garnered the most attention in human motion enhance-
ment. The linear KF was used in [55] constrained by joint
dynamics in an effort to keep bone length constant. The
authors improve upon the KF process through the use of
the dynamics of human motion, but due to the nonlinear
nature of D-Mocap data many researchers resorted to non-
linear KFs for motion denoising like the extended Kalman
filter (EKF) or the unscented Kalman filter (UKF) [31], [49],
[50]. Especially, the TKF may be best suited to deal with
the nonlinearity and non-Gaussianity of D-Mocap due to
the censored nature of occluded data [1]. Errors caused by
self-occlusion were found to be reduced significantly more
using the TKF over the KF in [36]. Using this knowledge
Loumponias et al. then refined their work through a method
for adapting the censor limits of the Tobit model showing
that the troublesome aspects of D-Mocap can be confronted
through the use of the TKF [37].

Traditional filtering methods have also been combined
with evolutionary algorithms to varying degrees of success.
In [54] a multi-objective genetic algorithm is combined with
a particle filter to constrain bone length while filtering human
motion data. Similarly in [16] a differential evolutionary
algorithm (DE) is used in conjunctionwith the KF tomaintain
consistent bone length. Finally, DE is combined with the TKF
in [61] to counteract changing bone lengths while benefiting
from dynamically coupling the censoring limits of the TKF
to joint velocity.

B. MACHINE LEARNING METHODS
Machine learning methods in recent human motion enhance-
ment research include dimensionality reduction, sparse cod-
ing, Gaussian Process (GP) models, and deep learning.
In dimensionality reduction, authors in [51] utilize Greedy
Kernel PCA [20] to represent human motion in the Hilbert
space. This method can then be used to remove aspects of
the data that are uncharacteristic of human motion. In sparse
coding, researchers in [19], [58] used sparse coding dictio-
naries to reduce noise and outliers in human motion through
L1 optimization. Likewise, a bone length and smoothing
model is used with sparse coding dictionary learning to
enhance human motion data. The work in [35] learns a mix-
ture of Gaussian Processes and constrains velocity variations

in optimization. Similarly, researchers in [14] train a GP
regression model to map Kinect SDK data to Mocap data that
has been captured simultaneously.

C. DEEP LEARNING METHODS
By far, the most popular method in machine learning with
regard to human motion enhancement is based on deep learn-
ing. The work in [43] uses two recurrent neural networks to
improve D-Mocap data. These networks were each trained on
two aspects of the kinematics of human motion, namely joint
positions and joint velocities and the networks were intercon-
nected. Sharing a similar spirit with our work, this work is
an attempt to integrate the natural kinematics of the motion
data into the neural network.Many researchers are focused on
learning a lower dimensional representation of humanmotion
data in the form of a manifold so that deviant motion can
be removed from data [10], [22], [23], [29], [30], [33], [34],
[57]. The authors in [10] employ three types of temporal
encoders in an attempt to expunge unnatural motion. The
work in [57] uses a network broken into three parts, a tem-
poral section, a spacial section, and a residual section. The
temporal section is a bi-directional LSTM encoder/decoder
to learn time dependencies in human motion, the spacial
section is a fully connected encoder/decoder that breaks up
the human body into sections and learns spacial dependen-
cies, and the residual network is a fully connected network
which learns to remove high frequency noise. Researchers
use a convolutional autoencoder in [22], [23] which simulta-
neously learns temporal and positional interdependencies of
joints in order to build a robust manifold of human motion.
The authors in [33], [34] expand on the ideas of [22] and
incorporate a bidirectional long short-term memory (LSTM)
network in a denoising autoencoder. This network is trained
to reduce four loss functions, reproduction loss, perceptual
loss, smoothness loss, and bone length loss.

Thework by Li et al. [33], [34] recognizes an aspect of the
work by Holden et al. [22] that we recognized in our own
work, which is that much of the original natural kinemat-
ics of the data is lost when the convolutional autoencoder
is used. This is because the autoencoder is trained on a
rich dataset of varied Mocap data to create a manifold of
human motion, but this manifold does not take into consid-
eration the kinematics inherent amongst the sequential data.
Li et al. use the addition of an LSTM to learn the natural
kinematic dependencies of the original motion, whereas we
have chosen to use the TKF to create a set of target motions
that the data can be optimized toward in the latent space
while adhering to the manifold learned by the convolutional
autoencoder [29], [30]. Our TKF-assisted autoencoder builds
upon the state of the art by combining the robust manifold
obtained through deep learning and the preserved kinematics
of human motion through recursive filtering. It uses filtering
and deep learning methods and combines them in a syner-
gistic way yielding a method that is greater than the sum of
its parts.

VOLUME 10, 2022 29235



N. Lannan et al.: Human Motion Enhancement via Tobit Kalman Filter-Assisted Autoencoder

III. PROPOSED METHOD
Our research goal is to capitalize on the capabilities of
the TKF with dynamically adapting censor limits while
conforming to the learned human motion manifold of
a robustly trained convolutional autoencoder. The first
paradigm (TKF-assisted autoencoder as shown in Fig. 2(a))
retains the natural kinematics or the original data while
benefiting from hours of valid Mocap data learned by the
deep neural network. The second paradigm (TKF-refined
autoencoder as shown in Fig. 2(b))) is for human motion
data suffering from excessive amounts ofmissing information
(data drop-out). In this scenario the autoencoder is used first
in order to generate initial estimation and the TKF is further
used to refine the motion data. This paradigm is used because
the autoencoder is more aptly able to deal with missing data
at the onset than the TKF. In the TKF-assisted autoencoder
method, data is enhanced through a 7 step process as shown
in Figure 3. The original data are filtered with the TKF to
produce a target for optimization over the latent space. The
original data are also processed through the autoencoder to
produce an estimate of clean motion data. This estimate,
in conjunction with the TKF target, are used in a cost function
and this cost function is optimized by modifying values in
the latent space of the autoencoder. In the following, we will
present a few key technical components in detail with a
focus on the TKF-assisted autoencoder as the TKF-refined
autoencoder is relatively straightforward.

A. FRAMEWORK
The backbone of our method is a convolutional autoencoder
originally proposed in [23]. The advantage of using this
network is that it encodes human motion data into a subspace
(latent space) where it is represented in a concise form and
then decoded to build a recreation of the original data. If it
is trained on a large amount of diverse quality human motion
data, the network can be used to remove characteristics of the
data that do not adhere to the learned motions. In addition, the
lower dimensional subspace can be directly accessed in the
autoencoder through the latent space values, and optimization
can be performed on data without diverting from the motion
manifold. Here we examine the anatomy of the autoencoder
which includes two sections, an encoder, 8, and a decoder,
9 (Fig. 3).
The backbone of our autoencoder is a convolutional neural

network (CNN) instead of a fully connected or recursive
network. A CNN was chosen over a fully connected or recur-
sive network, due to the ability of the convolution step to
learn associations of joints in space as well as time. This is
because the encoder section of the autoencoder consists of
a convolution of weights and biases, or convolutional filters,
along the frames of motion of the input motion data, thereby
simultaneously learning positional and temporal dependen-
cies among joint position data. The decoder performs an
inverse convolution and is trained to reconstruct the original
data. This is done so that when data are introduced that

FIGURE 3. The illustration of the convolutional autoencoder where the
TKF filtering output is projected into the motion manifold via latent space
optimization in a 7 step enhancement process. 1) Original data are
filtered with the TKF to produce a target matrix. 2) Original data are
convolved with weight matrix and 3) maxpooled to form the latent space.
4) The latent space is inversely maxpooled and 5) deconvolved with the
weight matrix to produce an estimate. 6) The estimate along with the
target matrix form a cost function that is 7) optimized by modifying
values in the latent space.

contain elements that do not adhere to valid human motion,
these elements are expunged as there is no representation in
the latent space for them. As shown in Figure 3, the input data
are filtered with a TKF in parallel to the autoencoder in order
to create an optimization target. This target is compared to the
Cartesian space output of the autoencoder, but all adjustments
for optimization are done in the latent space to incorporate
the kinematic benefits of the TKF without deviating from the
motion manifold.

This neural network framework was coded in Python
3.9 with the Theano 1.0.5 Python library. The Theano library
was used for all symbolic differentiation and optimization
over the latent space of the convolutional autoencoder. The
Tobit Kalman filtering process was coded in Matlab R2021b
and the resultant data was converted to a NumPy array for use
in optimization over the latent space of the autoencoder using
Theano and Python.

B. AUTOENCODER
The convolutional autoencoder processes data in the form of
a matrix of joint positions in Cartesian space over frames
of motion. In our experimentation we used data of varying
skeletal model types and therefore the network was retrained
for each of these models. Training clips were 240 frames
which corresponds to four seconds of human motion. For
a model with, N , joints each of which have 3 Cartesian
dimensional values, training matrices were X ∈ R240×3N .
Figure 4 depicts the autoencoder training on a 240-frame clip
with a skeletal model of 22 joints. However, after training
the autoencoder is not limited to 240-frame clips and can be
arbitrarily long. Thus, the structure of the network is variable,
where a general input matrix would be X ∈ RM×3N , where
M is the number of frames of the input matrix.
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FIGURE 4. The matrix structure of convolutional autoencoder for a
22 joint skeleton over 240 frames.

The purpose of the encoder (8(X)) is to convert the joint
positions of the human motion to the latent space through the
convolutional filters. In this work there are 256 convolutional
filters each 25 frames wide yielding a weight matrix of W ∈
R256×3N×25 and a bias vector of b ∈ R256. The weight
matrix is convolved across the input with a stride of one
frame, and the bias vector is added before a max pooling
operation (S(·))is performed, removing the lowest value of
each pair of values along the dimension of the frames of
motion, effectively halving the size of the resultant matrix.
The output of the maxpooling operation is activated with
the rectified linear unit (ReLU (x) = max(x, 0)) yielding the
latent space (H),

H = 8(X) = ReLU (S(X ∗W+ b)). (1)

Equation (1) is themathematical process that the inputmatrix,
X, undergoes in transformation into the latent space of the
autoencoder.

The purpose of the decoder (9(H)) is to transform the data
in the latent space back into the Cartesian space using the
inverse operations of the encoder. First, inverse maxpooling,
S−1(H), is approximated since any value lost during max
pooling is not recoverable. In this case, the max value saved is
repeated in two adjacent units. The bias vector is subtracted
and inverse convolution is performed on the result. This is,
the process of convolving with W̃, the same weight matrix
from the encoder only reflected across the frame axis, and
transposedwith regard to the other two axes. Thus, an approx-
imation of the original input, X̂,

X̂ = 9(H) = (S−1(H)− b) ∗ W̃, (2)

is generated from the output of the decoder and is based on
the information learned in the latent space. Equation (2) is
the mathematical process that the latent space, H, undergoes
in transformation into the input estimation, X̂.

C. TOBIT KALMAN FILTER FOR HUMAN KINEMATICS
The pivotal contribution that our work offers is the synergistic
incorporation of the TKF with the learned motion manifold

of the convolutional autoencoder. This is done through opti-
mization over the latent space of the autoencoder using the
TKF filtered data as a target. For our verification purposes,
the TKF was used to assist the autoencoder for comparative
analysis. This section focuses on the fundamental elements
and principles of the TKF as they apply to human kinematics.

The KF is widely used for tracking applications because of
its considerable efficiency and simple implementation. How-
ever, the standard KF is better suited for use in linear systems,
while human motion is inherently non-linear. In contrast,
the TKF is a novel approach that more accurately models
human motion data obtained from D-Mocap systems. The
TKF is a nonlinear KF based on the Tobit model, a statistical
model which addresses data that has been censored in some
way [53].

As with traditional KFs, the state value in the TKF is
predicted at each time step k from the immediately preceding
instant, by a state-transition model F and process noise.
Hence, the state-transition function is expressed as

Xk = FXk−1 + wk ,wk ∼ N (0,Qk ) (3)

where in Equation (3) the process noise wk is assumed to be
a multivariate Gaussian with zero mean and covariance Qk .
In human motion enhancement, we aim to estimate the

movement of joints in Cartesian space; therefore, we assume
the true state of the system is the positions, p, and velocities,
v, of the joints

Xk = [p(x)k p(y)k p(z)k v
(x)
k v(y)k v(z)k ]T . (4)

In Equation (4) the superscript denotes the three-dimensional
directions of Cartesian coordinates, and this yields a state
vector of 6 elements. Likewise, the observedmeasurements in
humanmotion enhancement can be defined as the coordinates
of skeletal joints, q,

Yk = [q(x)k q(y)k q(z)k ]T , (5)

which correspond to the joint positions of the observed D-
Mocap data. Given what we know of Newtonian physics,
we can predict the state of the system using (4) and a constant
velocity (CV) model [60],

F =


1 0 0 1t 0 0
0 1 0 0 1t 0
0 0 1 0 0 1t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (6)

where 1t is the period of the sampling of human motion
data. The original D-Mocap data are represented in the form
of a dynamic skeleton that has a fixed number of moving
joints. Therefore, we create a multi-channel motion sequence
where each channel corresponds to the 3D trajectory of one
joint, and the joint-level TKF is performed on each channel
individually. In other words, data association in the TKF is
based on the joint index in the skeleton. At each joint, we use
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the CV motion model in (6) as the transition matrix in (3) to
model the joint-level kinematics for the TKF.

The Kalman filter is a model-based optimal filter, which
requires exact knowledge of process and measurement mod-
els as well as process and measurement noise statistics.
However, for some applications, such as target tracking [12],
[18], the exact knowledge of the process model is difficult
to derive. For these kinds of applications, the process model
is based on the first principle of common physical laws.
As reviewed in [24], the constant velocity (CV) model is a
commonly used assumption to derive a process model. Due to
the nature of human motion, the exact motion model is chal-
lenging to establish and derive. In [6] the authors attempted
to remedy tracking error caused by rapid changes in target
motion by fusing head-pose priors with amodifiedCVmodel.
This modified model uses a windowed approach to smooth
the velocity calculation and produce an instantaneous prior
belief of where the target will move. This method attempts to
address nonlinearities in human motion through a windowing
of velocity information. In [36], the CV model was used in
the TKF for human motion denoising where the velocity of
the joint is updated frame by frame and that shows some
promising results. Here, the nonlinearities of human motion
are handled purely through the use of the TKF. Inspired
by [36] and [6], we have chosen to use the CV model in
the TKF with windowed velocity incorporated into dynamic
threshold calculations of the TKF as the joint-level motion
model in our research.

Since the observed measurements in (5) are the joint posi-
tions, the observation model merely extracts the position
portion of the state and disregards velocity information,

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 . (7)

In Equation (7), H assumes the positions are observed
directly and is only subject to the noise associated with
measurement devices.

The crux of the TKF is the use of the Tobit model with
regard to measured data. In enhancing D-Mocap, the benefit
of this model is based on the assumption that some joint
positions may be occluded or blocked by other parts of the
body during the movement, resulting in only a portion of the
true state value being observed. Two thresholds are specified
using the Tobit model, TL, and TH to censor values that cross
these thresholds. Values that are below the lower threshold,
TL, and values above the upper threshold, TH , instead take
on the value of the respective threshold.

This is an important development in human motion
enhancement as joint data are often partially obtained due
to occlusion and algorithmic inadequacy. The TKF allows
for the predictive ability of the KF while compensating for
incomplete measurements assuming the thresholds are adapt-
able and chosen in an intelligent fashion. In our work these
thresholds are dynamically adjusted using the previous joint
position and the absolute value of the maximum velocity of

the joint, |vmax |, for a small window of frames centered at
the previous time step. This window size ranges from 50 to
80 frames to include a complete human action, increasing the
accuracy of our estimation, while minimizing computation
expense. A different set of upper and lower thresholds are
used for each Cartesian direction, so if we consider the x
coordinate at time step k we have,

TH (x)
k = p(x)k−1 + |v

(x)
max |1t

TL(x)k = p(x)k−1 − |v
(x)
max |1t, (8)

where p(x)k−1 is the x coordinate of joint position p at the previ-
ous time step. More information on the thresholds selection
in (8) can be found in [36].With the introduction of thresholds
into the KF, the linear relationship between the observation
model in (7) and the state vector in (4) no longer exists.
Therefore, we must introduce a new measurement model for
our system,

ρ
(x)
k =


q(x)k , TL(x)k < q(x)k < TH (x)

k

TL(x)k , q(x)k ≤ TL
(x)
k

TH (x)
k , q(x)k ≥ TH

(x)
k ,

(9)

where ρ is a latent variable that can be defined as a vector
of all three Cartesian coordinates as ρ. Equation (9) splits
the observation into three regions, above the upper threshold,
below the lower threshold, and between the thresholds. Due
to this change, the Kalman gain in the update step becomes

Kk = RXYkR
−1
YYk , (10)

where RXYk is the cross-covariance between state and error
and RYYk is the variance of the error. A detailed derivation
for (10) can be found in [2]. In addition, the a posteriori
estimate for the system state, Xk|k , is modified from the
familiar linear KF by

Xk|k = Xk|k−1 + Kk (ρk − E(Yk )), (11)

where the expectation, E(Yk ), is a combination of the expec-
tations of all three sections of the measurement model in (9).
Thus, the computation for this expectation is given by

E(Yk ) = p(uc)k � ρk + p(l)k � TLk + p(h)k � THk , (12)

where� is the Hadamard product and p(uc)k , p(l)k , and p(h)k are
the probability vectors for the three sections of the measure-
ment model [62]. Details regarding these probability vectors
and the derivation of (12) can be found in [2]. Equation (11)
replaces the calculation for the updated state estimate in a
traditional linear KF but still acts as a weighting between
the a priori state estimate, Xk|k−1, and the observation using
the Kalman gain. Finally, the a posteriori estimate of error
covariance, Pk|k , is modified slightly from the linear KF by

Pk|k = (I − Kkp
(uc)
k H )Pk|k−1. (13)

Equation (13) differs only slightly from the traditional linear
KF, taking into account the three-sectional nature of the
motion model.
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This TKF method is applied to the D-Mocap to generate a
target for optimization in the latent space of the autoencoder.
In this way the network can benefit from the preserved kine-
matics and adjustment for censored data rooted in the TKF.

D. LATENT SPACE OPTIMIZATION
In our previous work, [29], we devised a method to optimize
the output of the autoencoder over the latent space using
target motion data. We originally filtered the joints of the
approximation (X̂), to create our target for optimization.
This method was used with moving average filters which
do not consider the kinematic nature of the data. However,
in introducing Kalman filtering [30], it is necessary to filter
the original data and not the approximation to preserve
the kinematic content so that it can add relevance to the
autoencoder. The ability to successfully meld the TKF and a
human motion manifold hinges on adherence to the manifold
while optimizing toward the TKF. The capability to do this
requires that we analyze our progress in Cartesian spacewhile
modifying the latent space. If we consider the approximation,
X̂, from the output of the decoder in (2), as a matrix of
approximated joint positions, we can consider the individual
joint positions, p̂, for each joint, j, and each frame k . This
separation would result in the general term, p̂k,j, for the
coordinates of an approximated joint at a specific frame.With
reference to (2), the inverse mapping

H = 9−1(X̂). (14)

yields the representation of the approximation in the latent
space. Equation (14) provides a useful tool for mapping all of
the output of the autoencoder back into the latent space, but to
modify individual joints we use (15) to define the mapping of
a particular joint at a specific frame, p̂k,j into the latent space
as

pHk,j = 9
−1 (̂pk,j), (15)

where pHk,j represents the values in the latent space that
produce the joint of interest. Using this definition, we can
optimize the autoencoder output toward a Cartesian target as
long as the target corresponds frame-by-frame to the approx-
imation of the autoencoder. We define our target as a set of
desired joint positions at each frame where rk,j is a particular
target joint at a specific frame. We then use L2 optimization
on the difference of the autoencoder approximation with our
target in Cartesian space

Cost(H) =
∑
j

∑
k

∥∥∥9(pHk,j)− rk,j
∥∥∥
2
, (16)

but modify only the values in the latent space to do so.
The optimization in (16) is implemented using the Adam
method for stochastic gradient descent in the Theano coding
environment [52]. It is important to note that the TKF-refined
autoencoder (Fig. 2(b)) was used for human motion with
excessive missing data. In this case, the TKF has difficulty
mending large voids in data and dealing with transient

FIGURE 5. Skeletal structures of the three testing datasets used for
quantitative analysis. The autoencoder was retrained with these three
structures by omitting unneeded joints from the simplified CMU
structure. (a) Simplified 21 joint CMU model. (b) Extended MHAD model.
(c) OSU model.

FIGURE 6. Four quadrants of the skeletal structure with phantom joint
projected from the center of the hips to the y = 0 plane to promote
learning of local body motion.

changes. Therefore, the autoencoder was used first to create
an approximation since the manifold is better equipped to
deal with this type of data.

IV. TRAINING METHODS
The training data for the network consisted of four datasets of
diverse accurate Mocap data, namely the CMU dataset, the
MHAD dataset, the Mocap Database HDM05 [41], and the
data originally collected in [22], [23]. In order to maintain
a consistent skeletal structure, all data were retargeted to
a single homogeneous structure consistent with the CMU
dataset with inverse kinematics onmatching joint angles. This
process involved first, creating a target skeleton based on
a simplified 21 joint CMU skeleton (Fig. 5(a)). This target
skeletal structure ensures the training data have constant
bone lengths, size, and structure. Second, corresponding joint
angles from the dataset source skeleton were copied to the
target skeleton. Third, the dataset source skeleton was scaled
to match the size of the target skeleton. Fourth, full-body
inverse kinematics was used to match the joint positions of
the target skeleton to those of the dataset skeleton while
maintaining constant skeletal structure. Details regarding this
process can be found in [59]. Finally, joint angles were used to
convert the data to joint position data in Cartesian space, and
a joint was added from the projection of the center hip joint to
the y = 0 plane. This phantom joint is very close to the origin
(x = 0, y = 0, z = 0), and is generated for training purposes
so that the network learns the local body motion but does not
learn translational motion. We characterize the skeletal data
as four body quadrants, which we use for error analysis in
Section VI-C (Fig. 6).
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FIGURE 7. The processing pipeline to repurpose the MHAD dataset (RGB-D and Mocap data) to include D-Mocap data.

Not all of the datasets we tested on were congruent
to the simplified 21 joint CMU structure. The extended
MHAD dataset, the formation of which will be discussed
in Section IV, is based on a 16 joint model (Fig. 5(b)), and
the OSU dataset is based on a 6 joint model (Fig. 5(c)). For
testing with these skeletal models, unnecessary joints were
omitted from the 21 joint model (Fig. 5(a)) and the network
was retrained. Thus, after adding the projection of the center
of the hips to the floor, the network was trained three times,
once for a 22 joint system, once for a 17 joint system, and
once for a 7 joint system.

The network loss was based on a squared L2 norm (‖·‖2)
of the difference between the input X and the approxima-
tion of the input X̂. This is done to match the output of
the autoencoder as closely as possible to the input thereby
learning the most essential aspects of the human motion in
the latent space of the network. Also incorporated in the loss
function is L1 (‖·‖1) sparsity regularization of the weights
and biases, θ , with a controlling hyper parameter, α. Further
regularizationwas performed in the form of a training dropout
rate of 0.2. This training dropout is not to be confused with
the data drop-out discussed in the introductory paragraph
of Section III. Data drop-out is the method used to corrupt
ground truth Mocap data and training dropout is the method
used in training in which a certain percentage of neurons are
ignored during the update step of training. The Loss,

Loss(X, θ) = ‖X−9(8(X))‖22 + α ‖θ‖1 , (17)

is optimized with the Adaptive Moment Estimation (Adam)
algorithm [28] usingmoments of 0.9 and 0.999 and a learning
rate of 0.001. Equation (17) is written in such a way that
the encode and decode operations are explicit so that the
operation of the autoencoder is depicted in the equation.

V. REFERENCED D-MOCAP GENERATION FROM MHAD
Due to the lack of a common dataset, researchers in human
motion enhancement have been validating their work in two
ways. The first method is the corruption of Mocap data which
can be compared to the original data after enhancement [22],

[23], [29], [30], [34], [57], [61]. The second method is to
capture D-Mocap in the lab along with time-synced Mocap
for reference [14], [22], [29], [30], [34], [35], [61]. This
method is more indicative of real-world performance but
data are often not available to the public and not directly
related to existing human motion databases. Thus, we aim
to create an extensive dataset that is fully referenced and
contains D-Mocap time-synced with optical Mocap. The
MHAD dataset is rich in motion data containing RGB-D
images captured with two Kinect cameras on 12 human
subjects performing 11 actions. The RGB-D images were
recorded simultaneously with an Impulse optical Mocap sys-
tem and time-synced for use as a ground truth compari-
son. But, in order to use MHAD, the dataset had to be
expanded and repurposed for human motion enhancement by
generating D-Mocap from these depth images (Fig. 1). The
D-Mocap data was generated from the RGB-D images using
a five-step process (Fig. 7). This process included generation
of D-Mocap data using ros_openpose_rgbd [13], removal of
outliers with Hampel filtering, skeleton matching with the
optical Mocap reference data, registration of the data through
singular value decomposition (SVD) [3], and finally bias
removal.

The MHAD dataset was chosen due to the fact that it is
well respected and used across a wide range of study. MHAD
has recently been used in work including human action
recognition [21], [45], multi-view and view invariant action
recognition [57], human motion synthesis [22], [44], human
shape reconstruction [27], and human motion enhancement
[23], [30]. In addition, MHAD is multimodal, containing
simultaneous recordings by five different systems (Fig. 8).

A. SKELETON ESTIMATION AND HAMPEL FILTERING
The D-Mocap of our extended MHAD dataset is pro-
duced using the RGB-D data in the MHAD dataset and
ros_openpose_rgbd. ros_openpose_rgbd is open source soft-
ware that extends thewell-knownOpenPose [11] algorithm to
3-D space using depth information in RGB-D data. Initially, a
2-D skeleton is generated from RGB images with OpenPose
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and then this skeleton is extended to 3-D space using depth
data. This software exhibits the problems we are looking
for in D-Mocap data, but also tends to generate extreme
outliers in joint position data. These outliers are not typically
produced by off-the-shelf SDKs and can skew experimental
findings, so they are removed with Hampel filtering (Fig. 9).
A Hampel filter is much like a median filter in that a sliding
window of seven samples is used and a median is calculated
for this window. Standard deviation from the windowmedian
can be estimated using median absolute deviation (MAD)
where σ = 1.4826 MAD. Using this estimation, the joint
position datum is replaced by the windowmedian if it is more
than three standard deviations away from the median.

B. SKELETON MATCHING AND REGISTRATION BY SVD
The reference Mocap data provided by MHAD is recorded
with a 35 joint skeleton which can be simplified to compare
with the BODY_25 model of OpenPose. The two models
share 16 common joints (Fig. 10) which can be directly used
in the analysis of human motion enhancement. In contrast,
if the COCO_18 model is used instead of BODY_25, there
are only 13 joints that can be matched, which omits some
representative end effectors like toes that often reflect the
effectiveness of filtering and other optimization methods.
Though the D-Mocap data and optical Mocap data share the
same skeletal model after this skeleton matching, they do
not reside in the same Cartesian space and must go through
registration. In registration with SVD, a centroid for each set
of data is determined using all joint positions for the entire
sequence,

C =
1

N ·M

M∑
k=1

N∑
j=1

pk,j, (18)

where N is the number of joints in the skeletal model and M
is the number of frames. Using (18), an intermediate matrix
A is calculated from the D-Mocap dataX, Mocap dataX, and
the centroids of each dataset (CX, CX),

A = (X− CX)(X− CX)T . (19)

We can then calculate a rotation matrixR and translation vec-
tor t for the D-Mocap data using the SVD of the intermediate
matrix A defined in (19):

[U,S,V] = SVD(A), (20)

R = UVT , (21)

t = CX − RCX, (22)

where U, S, and V are the unitary and diagonal matrices
obtained via SVD in (20). A detailed explanation for the
derivation of (19), (21), and (22) can be found in [3]. A rigid
body transform can then be performed on the D-Mocap data
so that the skeletons are matched as closely as possible in the
same 3-D space,

X̃ = RX+ t, (23)

FIGURE 8. The MHAD dataset is multimodal with off-center Kinect
cameras. In generating the MHAD D-Mocap data, this causes a higher
amount of occlusion error in the right half of the body. Particularly, in the
upper body where motions of higher velocity exist. Image adapted
from [42].

FIGURE 9. The removal of D-Mocap outliers with Hampel filtering for a
1D motion sequence.

where X̃ is the D-Mocap data after registration. The operation
in (23) aligns the skeletons by rotating and translating the
D-Mocap data without modifying the relative positions of the
joints.

C. BIAS REMOVAL AND NETWORK PREPROCESSING
Finally, since the skeleton models are defined differently, the
offset for each joint must be removed so that the D-Mocap
can be compared to the optical Mocap. These constant offsets
are not a result of occlusion or noise and are a result of how
these two skeletal models define their joint positions. Thus
this bias can be removed by calculating the difference of each
Cartesian coordinate for each joint j in each frame k , between
the D-Mocap data and Mocap reference data. These values
are then averaged over all frames using:

Biasj =
1
M

M∑
k=1

X̃k,j − Xk,j, (24)

where M is the total number of frames, X̃ is the D-Mocap
data in Cartesian space, and X is the Mocap data in Cartesian
space. The calculation in (24) is done for each joint so that the
constant offset can be removed and we can more accurately

VOLUME 10, 2022 29241



N. Lannan et al.: Human Motion Enhancement via Tobit Kalman Filter-Assisted Autoencoder

FIGURE 10. Skeletal model generation for the MHAD D-Mocap data: (a) OpenPose skeletal models (COCO_18/BODY_25); (b) the
skeletal model from MHAD Mocap; (c) the skeletal model after matching BODY_25 in (a) and (b).

FIGURE 11. Scaling the MHAD subject skeleton as a preliminary
procedure to match the skeleton to the autoencoder training data. The
blue and red skeletons are the T-Pose from the training data and an
MHAD subject, respectively, (a) before scaling and (b) after scaling.

characterize the error between the D-Mocap data and the
reference Mocap data.

As discussed previously, the convolutional autoencoder is
trained on a homogeneous set of motion clips which have
all been retargeted to the same skeletal structure. As a result,
the network needs to work with data of this same structure,
and will produce results of this skeletal structure as well.
Therefore, theMHADD-Mocap data must be adjusted before
passing through the neural network, and must be adjusted
once again at the output in order to compare our results with
the ground truth Mocap data which adheres to the original
skeletal structure. The D-Mocap data comes from a variety of
subjects with varying heights and bone lengths. To mitigate
the height discrepancy, the data was first scaled by calculating
the mean distance from the center of the hips to the floor,
y = 0 plane, over all of the frames of that subject’s T-Pose
clip (Fig. 11). The ratio between this distance and the hip-to-
floor distance of the T-pose of the simplified CMU 21 joint
skeleton (Fig. 5(a)), is used to scale the subject’s skeleton.

Once scaled, the test data are matched to the skeletal
structure of the training data by optimizing the bone lengths
of the D-Mocap data to conform to the known bone lengths
of the training data. Since the training data are homogeneous,
these lengths are known and are constant. Thus the D-Mocap
data are optimized over the latent space of the convolu-
tional autoencoder with a bone constraint before recovery,
which ensures the D-Mocap skeleton adheres to the skeletal
structure of the training data. Given that the Cartesian joint
positions at the endpoints of bone b at frame k are represented

by bm,k and bn,k , the constraint that is optimized is given by

Bone(X̃) =
∑
k

∑
b

∣∣‖bHm,k − bHn,k‖2 − lb
∣∣2, (25)

where bHm,k and bHn,k are the mappings of the joints at the
two ends of bone b into the latent space at frame k as done
in (16), and lb is the known bone length of bone b from the
training data. After matching the skeletal structure to that of
the training data using (25), a phantom joint is added at the
projection of the center of the hips on the y = 0 plane. Thus
theMHAD skeleton becomes a 17 jointmodel for usewith the
autoencoder. After recovery, the D-Mocap data are inversely
scaled to their original size and the bias between the skele-
tal structures is removed using (24). This methodology was
chosen over retargeting in order to keep the reference Mocap
data unmodified, as retargeting to the skeletal structure of the
training data would require the retargeting of the reference
Mocap as well as the D-Mocap.

As an initial cursory investigation of the extended MHAD
dataset, we examined the results of four recent methods
of human motion enhancement, including three nonlinear
Kalman filtering (KF) methods [61], namely the EKF, the
UKF, the TKF, and a convolutional auto encoder [23]. These
results prove a good baseline for our new extended MHAD
dataset and are reported on a joint-by-joint basis in Table 1.

VI. EXPERIMENTAL RESULTS
To ensure robust analysis, our two proposed algorithms
(TKF-assisted and TKF-refined autoencoders) were evalu-
ated on two types of test data, simulated and real-world
D-Mocap data. In the following, we will first discuss three
datasets used for testing, then the processing of D-Mocap data
captured by the two labs at OSU, and the experimental results
of using these datasets.2

A. TESTING DATA OVERVIEW
Simulated data were derived by corrupting the CMU Mocap
data with two types of noise at two different levels. First,
CMU data were corrupted with zero mean additive Gaussian

2The OSU dataset has an active IRB Approval from OSU (EN-18-8).
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FIGURE 12. The process for creating internal joint data from Mocap markers for the OSU dataset: (a) OptiTrack marker definitions; (b) OptiTrack
marker positions; (c) MotionBuilder marker positions with centroids; (d) Nuitrack joint positions.

TABLE 1. Baseline results for four human motion enhancement methods
using the extended MHAD dataset (cm).

white noise (AWGN) at standard deviations of 7cm and 10cm.
Secondly, data were randomly removed from the CMU data
at two different rates, 25% and 50%. This data drop-out was
quite excessive and was better handled by the autoencoder
than the TKF. Two data sets of real-world D-Mocap data were
used for robustness in analysis. The first was captured at OSU
by the Biomechanical Analysis and Musculoskeletal Mod-
eling (BAMM) Lab and the Visual Computing and Image
Processing Lab (VCIPL). The second set of D-Mocap data
was the extended MHAD dataset discussed in the previous
section. These testing sets consist of three different skeletal
structures (Fig. 5) and prove the flexibility of our method for
varying skeletal models.

The convolutional autoencoder central to our work is
trained on a retargeted homogeneous skeleton which presents
a challenge if it is to be used on motion data that is not of
matching skeletal structure. The simulated data derived from
corrupting the CMU dataset is of the same structure as the
training data before corruption, so no additional processing
is necessary for this analysis. However, the other two real
world datasets must undergo some processing in order to be
analyzed with regard to their respective Mocap ground truth
references. The OSU real-world dataset is discussed briefly
here as was done in the previous section for MHAD since it
differs from the structure of the retargeted CMU skeleton.

B. OSU D-MOCAP DATA PROCESSING
The OSU D-Mocap dataset was originally created for gait
assessment and therefore concentrates on the six most impor-
tant joints at the lower-body. These joints being the hip, knee,
and ankle joints [4], [39]. The depth data for this dataset
were captured with an Orbbec Astra and processed with the
Nuitrack SDK to produce the OSU D-Mocap. An Optitrack
Mocap system was used to capture marker data side-by-side
to the D-Mocap data. The motions captured in this dataset
were all gaits from the same subject that consisted of three
distinct walking motions.

The Mocap collected from the Optitrack system was in
the form of 32 external marker positions (Fig. 12(a)) and
(Fig. 12(b)), and the D-Mocap data collected was in the form
of internal joint positions (Fig. 12(d)); therefore, they could
not be directly related. We used MotionBuilder software to
restore any missing marker data and created rigid bodies with
the markers nearest to joints of interest. We then calculated
the centroids for these rigid bodies to be used as the internal
joints of the Mocap data (Fig. 12(c)).

In order to accommodate the OSU data that only cover
six lower-body joints, the convolutional autoencoder was
retrained with the retargeted CMU data by omitting all joint
data other than joints 2, 3, 4, 6, 7 and 8 from (Fig. 5(a)).
The D-Mocap data captured from the Nuitrack SDK was
then size matched to the training data using the distance
from the hips to the floor of both skeletons. The autoen-
coder is biased toward generating recovery motion of the
same skeletal structure as the training data. Thus, before
the resultant OSU data can be effectively compared to the
Mocap reference ground truth, this bias must be removed.
This bias is not related to error in motion estimation but rather
just a difference in the skeletal structure of the OSU subject
and the CMU subject. After the data are recovered from
the autoencoder it is first re-scaled using the inverse ratio
of hip-to-floor measurements that it was originally scaled
with. Next, bias removal is done using (24) as was done with
the MHAD data.

C. QUANTITATIVE EVALUATION
We use three metrics to quantify the results of our work.
The first metric is the Euclidean distance of each joint
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FIGURE 13. Joint angle definitions used in gait analysis: (a) Knee flexion
angle (LKF/RKF); (b) hip flexion angle (left, LHF) and Hip extension angle
(right, RHF); (c) hip abduction angle (left, LHA) and hip adduction angle
(right, RHA).

TABLE 2. Average joint RMSE for three datasets (cm).

position from its respective ground truth joint position.
These distances are averaged over all frames of motion to
yield a joint-by-joint average distance from ground truth
(RMSE). In order to succinctly analyze our results, these
joint-by-joint values are averaged over all joints in order to
arrive at a single mean Euclidean distance for the skeleton
as a whole. The second metric is the bone length error
using the corresponding bone length from the reference
Mocap data:

Err (b) =
1
M

M∑
k=1

∣∣‖b(b)m,k − b(b)n,k‖2 − ‖l
(b)
m,k − l(b)n,k‖2

∣∣, (26)

where Err (b) is the error of the length of bone b averaged over
M frames, b(b)m,k and b

(b)
n,k the estimated joint positions, and l(b)m,k

and l(b)n,k the Mocap reference ones at the two ends of bone b.
In this way, (26) is used to quantify an average diversion from
the known bone lengths of the reference Mocap data. In addi-
tion, humanmotion is analyzedwith regard to five lower body
joint angles that are often used for gait assessment [4], [39],
an important field that could greatly benefit from the use of
depth sensors rather than optical Mocap systems. The angles
studied for both the right and left legs are knee flexion angle
(LKF/RKF), hip flexion angle (LHF/RHF), hip extension
angle (LHE/RHE), hip abduction angle (LHAB/RHAB), and
hip adduction angle (LHAD/RHAD). The definitions of these
joint angles are represented in Fig. 13. In the interest of
simplicity, the hip flexion and extension angles have been
combined (LHF/RHF) as have the hip abduction and adduc-
tion angles (LHA/RHA).

We provide results on these metrics for the follow-
ing: unaffected low-quality Mocap data, data enhanced
with the autoencoder only, data enhanced with the TKF
only, data enhanced using KF-assisted autoencoder, and

TABLE 3. Average bone length error over all frames (cm).

TABLE 4. Average joint angle error for each dataset (◦).

data enhanced using TKF-assisted autoencoder (real-world
D-Mocap and simulated D-Mocap with AWGN corruption)
and TKF-refined autoencoder (simulated D-Mocap with data
drop-out corruption). Over 100, 000 frames of corrupted data
were tested in each of the simulation data groups. The size
of the real-world D-Mocap datasets used were 147, 390, and
2, 800 frames for the extended MHAD dataset and OSU
dataset respectively.

1) JOINT POSITION ERROR
Table 2 serves as a synopsis of our results with regard to
joint position error and provides joint position RMSE aver-
aged over all joints. In the interest of space, for the fol-
lowing tables we will refer to the KF-assisted autoencoder,
TKF-assisted autoencoder, and TKF-refined autoencoder
methodologies as KF-A, TKF-A, and TKF-R respectively.
Here we see the autoencoder performs well on simu-
lation data as the motion manifold easily removes the
noise that is very uncharacteristic to human motion. The
TKF-assisted/TKF-refined methods improve the results of
the autoencoder and the TKF, which shows that our method-
ology is a copacetic merger of the kinematic information
contained in the TKF and the human motion manifold con-
tained in the neural network. The autoencoder does not per-
form as well on the real-world D-Mocap data as it does
not have a noise component that is as easily extracted
as the simulation noise. Here the TKF-assisted method
shows improvement over both the autoencoder and the
TKF and goes to show that the autoencoder benefits from
the preservation of the kinematic aspects of the original
data.

2) BONE LENGTH ERROR
Table 3 provides a synopsis of average bone length error over
all testing frames. It is worth noting the benefits of using
the autoencoder which is based on a homogeneous skeleton
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TABLE 5. Joint angle errors of six joints for each dataset (◦).

with constant bone length. The neural network is trained on a
consistent structure so the results of the autoencoder are also
consistent and benefit from the fact that the learned human
motion manifold adheres to a constant bone length. Inter-
estingly, when a KF-assisted autoencoder is used, the bone
length results are hindered as the KF assumes a linear system
and it is not working synergistically with the autoencoder.
However, the TKF is more amenable to the structure of the
learned motion manifold, resulting in a more consistent bone

structure. As a whole, these three tables show that our two
algorithms (TKF-assisted/TKF-refined) consistently improve
on both the results of the autoencoder and the TKF when
they are used alone. It is also shown that the TKF is more
kinematically accurate and amenable to the motion manifold
compared with the KF.

3) JOINT ANGLE ERROR
Table 4 provides joint angle errors averaged over all test-
ing frames and averaged over all 6 joint angles. In addi-
tion, we provide an angle-by-angle joint angle error analysis
on all six joint angles discussed previously in this section.
These individual joint angles are important to the field of
gait assessment which could benefit from a human motion
capture method using RGB-D data instead of optical motion
capture systems. Because of this interest in depth sensors as
a newly viable method for gait assessment we have chosen to
include a breakdown of our findings rather than averages as
shown in Table 4. Table 5 provides the average joint angle
error for each angle using the three test datasets. We see
the TKF is able to work harmoniously with the hours of
quality training data from the autoencoder, as well as preserve
the kinematics of the motion data resulting in joint angle
errors (around 3◦ ∼ 5◦) near those achieved by inertial
sensors [8]. This is important as the field of gait analy-
sis could benefit from the freedom of using a markerless
system that is not tied down to a particular area and is
not dependent on the restrictive markers that other systems
require.

4) BODY QUADRANT ANALYSIS USING THE EXTENDED
MHAD DATASET
We chose to adaptively adjust the thresholds of the TKF using
joint velocity for two reasons. First, actions of higher velocity
increase the possibility of estimation error since the joint
positions are rapidly changing from frame to frame. Secondly,
occlusion error is often accompanied by a rapid shift in veloc-
ity as the joint re-emerges. Fortunately the MHAD dataset
provides us with a unique tool to analyze the benefits of using
the TKF-assisted autoencoder to alleviate these problems.
This is because the majority of motions in the MHAD dataset
are upper body motions, and the front-facing Kinect camera

TABLE 6. Body quadrant joint analysis for real-world MHAD D-Mocap.
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is placed at an angle with reference to the human subject,
and thereby obscures the right half of the body slightly. This
results in a greater frequency of occlusion errors in joint
estimation (Fig. 8). Using this knowledge, we can confirm
actions of higher velocity increase the possibility of estima-
tion error, the off-angle camera placement causes occlusion
which increases joint position error and joint velocity, and
that adaptively adjusting the limits of the TKF using joint
velocity is critical in mitigating these problems.

a: ACTIONS OF HIGHER VELOCITY INCREASE THE
POSSIBILITY OF ESTIMATION ERROR
Table 6 depicts the results of enhancing D-Mocap from the
extended MHAD dataset with respect to four quadrants of
the body (Fig. 6). This dataset is taken from approximately
82 minutes of RGB-D data from the front-facing Kinect
camera in the MHAD dataset. We see in Table 6, that when
the upper body is isolated, the average RMSE is 3.9 cmworse
than that of the lower body and the average joint velocity of
the MHAD reference is 4.8 cm/s greater in the upper body.
The upper body has a higher average velocity component due
to most of the subject’s movement being in the upper body
and this increases the possibility of estimation error.

b: OCCLUSION INCREASES JOINT POSITION ERROR AND
VELOCITY
Because of the off-angle placement of the Kinect cam-
era in the MHAD dataset, we expect to see a higher joint
RMSE on the right side of the body due to occlusion.
When considering the upper body which contains the most
significant movement, we see the average RMSE of the upper
right quadrant of the body is 1.3 cm worse than that of the
upper left quadrant. Moreover, the mean joint velocity in
the upper right quadrant increases 82.5% when compared to
Mocap data and the upper left only increases 70% (Table 6).
The reason for the larger increase in the right half of the body
is largely due to the occlusion error caused by the off-angle
position of the Kinect camera, which slightly obscures the
right portion of the body. Thus, we see that occlusion errors
increase the velocity component of joints in D-Mocap data.

c: ADAPTIVE CONTROL OF THE TKF USING JOINT VELOCITY
MITIGATES THESE ISSUES
We have adaptively adjusted the limits of the TKF using joint
velocity to remedy estimation error since joint occlusion is
often accompanied by large shifts of velocity, and joints with
a higher velocity component are more prone to estimation
error. Therefore, we should see the largest improvement in
our TKF-assisted autoencoder in the section of the body that
has the largest content of joint position error. This section of
the body should also have the largest increase of joint velocity
associated with it. We find that this is indeed the case as we
see the greatest improvement in RMSE, 37.2 cm, in the upper
right quadrant of the skeleton, which has the highest joint
position RMSE, 11.7 cm, and the highest increase in joint
velocity, 37.8 cm/s.

FIGURE 14. The Cartesian coordinates of the left ankle of CMU dataset,
subject 8, trial 4. Depicted are (a) X coordinate, (b) Y coordinate, and
(c) Z coordinate. Original Mocap data are depicted in blue, Mocap data
corrupted by AWGN in red, and the TKF-assisted recovery in green.
Corresponding frames of motion are depicted in (d) data corrupted by
AGWN, (e) TKF-assisted recovery, and (f) Mocap reference data.

D. QUALITATIVE EVALUATION
The smoothing and recovery effects of the
TKF-assisted/TKF-refined autoencoder algorithms on the
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FIGURE 15. The Cartesian coordinates of the right hand of CMU dataset,
subject 115, trial 10. Depicted are (a) X coordinate, (b) Y coordinate, and
(c) Z coordinate. Original Mocap data are depicted in blue, Mocap data
corrupted by AWGN in red, and the TKF-assisted recovery in green.
Corresponding frames of motion are depicted in (d) data corrupted by
data drop-out, (e) TKF-assisted recovery, and (f) Mocap reference data.

lower quality Mocap data are depicted in (Figs. 14, 15, 16,
and 17). The Cartesian coordinates of the left ankle corrupted
by AWGN are shown in (Fig. 14). Likewise, the results

FIGURE 16. The Cartesian coordinates of the left knee of OSU dataset
normal walk motion. Depicted are (a) X coordinate, (b) Y coordinate, and
(c) Z coordinate. Original Mocap data are depicted in blue, Mocap data
corrupted by AWGN in red, and the TKF-assisted recovery in green.
Corresponding frames of motion are depicted in (d) D-Mocap,
(e) TKF-assisted recovery, and (f) Mocap reference data.

on the right hand of simulated data drop-out, those of the
left knee in the OSU D-Mocap data, and those of the right
elbow in the MHAD data are shown in (Figs. 15, 16, and 17)
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FIGURE 17. The Cartesian coordinates of the right elbow of MHAD
dataset, subject 3, action 9, repetition 1. Depicted are (a) X coordinate,
(b) Y coordinate, and (c) Z coordinate. Original Mocap data are depicted
in blue, Mocap data corrupted by AWGN in red, and the TKF-assisted
recovery in green. Corresponding frames of motion are depicted in
(d) D-Mocap, (e) TKF-assisted recovery, and (f) Mocap reference data.

respectively. In addition, longer frame sequences are shown
in (Figs. 18, 19, 20, and 21). From these figures we can

FIGURE 18. Motion from subject 12 trial 4 of the CMU Motion Capture
Database. Mocap reference is depicted in blue, Mocap affected with
AWGN is depicted in red, and the TKF-assisted recovery is depicted in
green.

FIGURE 19. Motion from subject 8 trial 1 of the CMU Motion Capture
Database. Mocap reference is depicted in blue, Mocap affected with data
drop-out is depicted in red, and the TKF-assisted recovery is depicted in
green.

see that the proposed two algorithms successfully enhance
the lower quality D-Mocap data and make them closer to
the corresponding ground truth joint positions. The images
associated with the simulation data (corrupted Mocap data)
are quite striking because the autoencoder is very efficient
at reducing noise and outliers that are common in real-world
D-Mocap data.

E. RUN-TIME EVALUATION
The TKF-assisted method was evaluated on two systems
working in parallel. One system to create target TKF data,
and one system to optimize the recovered motion in the
latent space of the autoencoder. The first system used an
Intel Core i7-4770 CPU with 16GB of memory, and all the
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FIGURE 20. Motion from the elongated step motion of the OSU dataset.
Mocap reference is depicted in blue, D-Mocap is depicted in red, and the
TKF-assisted recovery is depicted in green.

FIGURE 21. Motion from subject 9, action 8, repetition 1, of the extended
MHAD Database. Mocap reference is depicted in blue, D-Mocap is
depicted in red, and the TKF-assisted recovery is depicted in green.

TKF code was written in MATLAB. The second system
used an Intel Core i7-8700K CPU with 32GB of memory
and a GeForce GTX 1080 GPU with 8GB of memory. The
autoencoder and all optimization code was written in Python
3.9 with the Theano 1.0.5 library [52]. Due to the nature
of our method and the need for a complete motion tar-
get for optimization in the latent space, real-time operation
is not possible. Table 7 compares the run-time of several
recent human motion enhancement methods. The table is
split into real-time methods and off-line methods and the
hardware and software used in evaluation is included where
reported in literature. Run-time values are given in seconds
per frame and are either reported directly or calculated from

TABLE 7. Run-time comparison.

literature using the length of the testing data and the reported
run-time.

VII. CONCLUSION
We present a novel approach to human motion enhancement
for low-quality D-Mocap data, and our goal is to make
low-cost depth sensors a practical and viable motion analysis
tool for clinical applications where the opticalMocap systems
may not be plausible. The advantage in our approach is
the synergistic melding of the two complementary elements,
TKF-based filtering and autoencoder-based manifold learn-
ing. The former is able to preserve the kinematics properties
of joint trajectories by involving a unique Tobit model to
handle censored measurements mainly caused by occlusion
or interference. The latter is used to take advantage of the
rich and diverse high-quality CMUMocap data by learning a
general motion manifold to capture the joint spatial-temporal
structure of skeleton-based motion data. To accommo-
date different types of data corruption, two paradigms, the
TKF-assisted and TKF-refined autoencoders, have been pro-
posed. The first involves latent space optimization of two
elements that is able to handle noisy motion, and the second
one is a serial connection of the two elements that is suitable
formissing data handlingwith data drop-out.We have created
an open source D-Mocap dataset by extending the MHAD
database and including our self-collected OSU data that is
intended to promote human motion enhancement research in
the community. Our proposed algorithms have been evaluated
and compared on both real-world and simulated D-Mocap
datasets, and experimental results demonstrate that motion
data have been significantly improved in terms of both kine-
matics (joint positions/angles) and anthropometrics (bone
lengths). Our future research will focus on the applicability
and relevance of improved D-Mocap for clinical biomechan-
ics study.
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