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ABSTRACT Reactive power optimization and voltage control is one of the most critical components of
power system operation, impacting both the economy and security of system operation. It is also one of
the most complex optimization problems, being highly nonlinear, and comprising both continuous and
discrete decision variables. This paper presents the problem formulation, and a thorough literature review
and detailed discussion of the various solution methods that have been applied to the Volt/VAR optimization
problem. Each optimization method is described in detail, and its strengths and shortcomings are outlined.
The review provides detailed information on classical and heuristic methods that have been applied to
the Volt/VAR optimization problem. The classical methods reviewed include (i) first- and second-order
gradient-based methods, (ii) Quadratic Programming, (iii) Linear Programming, (iv) Interior-Point Methods,
(iv) and mixed-integer programming and decomposition methods. The heuristic methods covered include
(i) Genetic Algorithm, (ii) Evolutionary Programming, (iii) Particle Swarm Optimization, (iv) Fuzzy Set
Theory, and (v) Expert Systems. A comparative analysis of the key characteristics of the classical and
heuristic optimization methods is also presented along with the review.

INDEX TERMS Volt/VAR optimization, reactive power/voltage control, classical/numerical optimization,
heuristic methods, artificial intelligence techniques.

I. INTRODUCTION
Optimization of power system operation as a subject of study
has quite a long history, enriched over the years by advances
in mathematical programming techniques and computational
methods, but certainly predating the advent of digital com-
puters which have revolutionized numerical optimization and
computation in general. One of the most widely studied
power system optimization problems is the Optimal Power
Flow (OPF) problem, the first complete formulation of which
is generally attributed to Carpentier [1], [2]. The OPF prob-
lem seeks to optimize some aspect of power system operation
(could be economical, technical, environmental, etc.), while
satisfying the physical and operational constraints of the
system [3].

Reactive power optimization and voltage control (also
known as Volt/VAR Optimization (VVO), or optimal reac-
tive power dispatch (ORPF)) can be considered to be a
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sub-problem of the OPF problem (or a variant formulation
thereof) that is mainly concerned with the determination
of the optimal coordinated dispatch of voltage-regulating
devices and reactive power sources so as to maintain a secure
voltage profile, while also optimizing some aspect of power
system operation, subject to physical and operational system
constraints [4], [5]. Optimal reactive power dispatch plays a
key role in the efficient transfer of real power, especially in the
bulk power transmission system, and contributes significantly
to the security, reliability, quality and economy of power
system operation [6]. The extensive research that has been
(and continues to be) conducted in the area of Volt/VAR
optimization gives evidence to the continued relevance of
research in this aspect of power system operation, particularly
in the wake of changes taking place in the electric power
system, spurred on by such developments as electric power
system deregulation, electric grid modernization under the
paradigm of the smart grid, and the rapid growth of renewable
and distributed power generation [7]–[13]. Largely progres-
sive as all these developments are, they nonetheless pose a
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significant challenge to the power system operator [14], and
hence the growing need for advancements in optimization
techniques and computational methods that will support the
secure, reliable, and economical operation of the 21st century
power system and beyond [15].

Volt/VAR optimization has a number of characteristics
that make it a very challenging optimization problem, and
much effort has been dedicated over the decades to the
study of a variety of problem formulations, as well as the
development of solution techniques for the various formu-
lations. Key developments in the treatment of the OPF
problem over the years have been presented in a number of
review papers, some notable ones being [16]–[23]. Aspects
of interest that have been emphasized in these review papers
have mainly been the problem formulation, as well solution
techniques, considering both the classical/deterministic and
the non-deterministic/artificial intelligence-based optimiza-
tion methods.

A few review papers have focused on solution techniques
for Volt/VAR optimization. A review of literature on reactive
power planning has been presented in [24]. Reference [25]
presents a review of algorithmic and heuristic methods for
Volt/VAR control. Reference [26] focuses in their review of
Volt/VAR control on reactive power sources and their control
devices, as well as discussing a number of solution methods
for the Volt/VAR control problem.

Reactive power planning, a problem that is closely related
to Volt/VAR optimization (or optimal reactive power dis-
patch), focuses on optimal investment in new reactive
power sources to meet future reactive power compensation
needs [24]. The authors of [27]–[31] have carried out exten-
sive work in this area, exploring the application of FACTS
devices in reactive power planning [27], [28], and the imple-
mentation of heuristic optimization techniques such asWhale
optimization, ameliorated Harris Hawk optimization, and
hybrid Particle Swarm Optimization (PSO)-Grey Wolf Opti-
mization (GWO) [29]–[31] to reactive power planning. The
relevance of effective reactive power planning has become
even more pronounced in recent years, due to the need to
account for the impact of the growing share of variable
renewable generation such as wind and photovoltaic power
generation on reactive power compensation. A multi-period,
multi-scenario corrective security-constrained OPF has been
explored in [32] as a way of dealing with increasing pene-
tration of variable renewable generation. Reference [33] has
proposed a probabilistic multi-objective reactive power plan-
ning framework that considers large-scale wind generation
integration. In [34], the coordination of the reactive power
control of large-scale renewable generation with the main
grid has been investigated as a way of enhancing the voltage
stability of the entire system.

Recognition has continued to increase among utilities and
researchers of the role to be played by smart inverters in vari-
ous forms of grid support. As an example, California Rule 21,
which regulates the integration of distributed generation (DG)
to the power grid, has implemented an adjustment to the rule

that requires the use of advanced (i.e. smart) inverters capable
of performing a variety of grid support functions, such as
Volt/VAR management [35]. Incorporation of smart inverters
in Volt/VAR optimization has been explored as a means of
mitigating voltage volatility and voltage fluctuations induced
by renewable generation variability [36], [37]. Multi-agent
deep reinforcement learning has been applied to the control
of DGs via smart inverters in [38] and [39] as a way of
adapting to time-varying conditions, as well as the spatial and
temporal uncertainties resulting from intermittent generation.
The overarching concept underlying many of these works
is to exploit the capabilities of modern smart inverters to
actively regulate inverter-based DG output so as to support
network functions such as voltage regulation, network loss
minimization, and electricity market-based day-ahead power
dispatch, among others [13], [40], [41].

This article focuses on the operational aspect of
reactive power compensation. It presents an up-to-date
comprehensive survey of the problem formulation and
solution approaches for the Volt/VAR optimization problem.
Both classical/conventional and heuristic/intelligent search-
based optimization methods are covered. Each optimization
method is discussed in detail, its strengths and drawbacks
are highlighted, and a thorough comparative analysis of the
key characteristics of the classical and heuristic methods is
presented.

A pictorial summary of some pertinent aspects of the
review is presented in Figs. 1 to 3. Fig. 1 depicts a graph of
the number of publications that have been reviewed, plotted
against the year of publication, Fig. 2 indicates the number of
each of the optimization algorithms that have been covered,
and Fig. 3 shows the classification of the algorithms.

The rest of the paper is organized as follows. Section II
briefly discusses the main devices for reactive power and
voltage control in the power system. The VVO problem
formulation is presented in section III, encompassing the
objectives, decision variables, and constraints. Then the
solution approaches to the VVO problem are presented in
section IV, covering both classical and heuristic methods.
In section V, a comparative analysis of the solution meth-
ods is presented, and the concluding remarks are given
in section VI.

II. REACTIVE POWER AND VOLTAGE CONTROL
IN THE POWER SYSTEM
As mentioned in the introductory section, reactive power and
voltage control plays a pivotal role in the secure and eco-
nomical operation of the power system. In the course of the
operation of a power system, a variety of phenomena occur
that need some form of intervention in order to maintain the
system voltage, frequency and other vital system parameters
within the nominal range. These phenomena may be classi-
fied as either steady-state or dynamic, depending on the speed
of response required in addressing them. Table 1 lists (not
in any order of precedence) some of the main phenomena,
the addressing of which typically requires reactive power
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FIGURE 1. Number of publications reviewed plotted against year of publication.

FIGURE 2. Number of publications reviewed in terms of algorithm.

and voltage control of some form [42]. In the following
paragraphs, the main power system devices that are typically

employed in the provision of reactive power and voltage
control are briefly discussed.
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FIGURE 3. Classification of algorithms reviewed.

TABLE 1. Typical power system phenomena requiring Volt/VAR optimization.

A. SYNCHRONOUS GENERATOR
Although the synchronous generator’s main role in the power
system is to supply active power demand, it is also prin-
cipally used to regulate system reactive power, with abil-
ity to either generate (leading) or absorb (lagging) reactive
power, depending on whether it is overexcited or underex-
cited. An automatic voltage regulator continually adjusts the
generator’s field excitation in response to system conditions,
usually so as to maintain the terminal voltage or voltage at
some other system bus at a desired level. The fast response
characteristic of the synchronous generator’s reactive power
generation/absorption implies that it can be used to rem-
edy dynamic system phenomena requiring Volt/VAR control.
However, its reactive power supply/absorption capability is
limited by the machine thermal and steady-state stability
limits, and is a function of the real power output [43].

When a synchronous generator is specially designed and
operated so at to generate reactive power only (i.e. real power
output set to be zero), it is referred to as a synchronous
condenser. As a device dedicated to reactive power sup-
ply/absorption, it typically has automatic controls that enable

fast dynamic response to system anomalies, and has a short-
time overload capability that can be utilized in extreme situ-
ations. The main disadvantage of the synchronous condenser
is its higher capital and maintenance costs compared to other
solutions for reactive power supply and absorption [43].

B. SHUNT CAPACITORS
Shunt capacitors constitute a flexible and economical means
of providing leading reactive power, which is typically
required to boost system voltages during heavy loading peri-
ods, or to improve system power factor. Their flexibility stems
from their modular nature, large banks can be constructed
from several small-size units, which in turn gives them
the characteristics of greater control, expansion capability,
transportability, and availability. Compared to synchronous
generators, shunt capacitors, being static components, have
lower maintenance costs, and are generally a cheaper source
of reactive power. Their response characteristics, however,
make them a lot less effective than synchronous gener-
ators in responding to dynamic system phenomena [44].
Also, unlike synchronous generators, they supply discrete
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(rather than continuous) reactive power, which may affect
their treatment in optimization problems, as the corre-
sponding control variable will be discrete rather than
continuous [5].

C. SHUNT REACTORS
Shunt reactors are employed in the bulk transmission system
to remedy abnormally high transmission voltages, often in
lightly loaded conditions, when the capacitive line-charging
effects of high-voltage transmission lines tend to lead to con-
ditions exceeding design levels. They are typically required in
extra high voltage lines longer than 200 km, where the effects
of capacitive line charging can be quite pronounced [43].

D. FACTS DEVICES
Flexible AC Transmission System (FACTS) devices have in
recent times emerged as a vital component in the efficient
control of active/reactive power and voltage magnitude and
frequency. A static VAR compensator (SVC), for example,
has ability to continuously vary inductive or capacitive reac-
tive power injection into the system, making use of power
electronic technologies. In terms of construction, an SVC can
be thought of as being comprised of a controllable reactor
and a fixed capacitor, both of which are controlled by means
of power electronic switches in accordance with the required
reactive power injection, the main purpose being to maintain
bus voltage at some specified level. Use of power electronic
switches gives FACTS devices ability to provide continu-
ous, instantaneous reactive power, and are thus suitable for
addressing many of the dynamic system phenomena asso-
ciated with Volt/VAR control. Some drawbacks of FACTS
devices are their relatively higher cost, and possible negative
impact on system power quality due to harmonic generation
by power electronic switches [42].

E. UNDER-LOAD TAP-CHANGING TRANSFORMER
A transformer equipped with a load tap-changing mecha-
nism (LTC) can adjust the transformer turns ratio in response
to system conditions so as to keep the system voltage within
desired ranges. So unlike the devices discussed in the pre-
ceding sub-sections, the LTC is not a reactive power source,
but rather a voltage-regulating device. Tap positions are dis-
crete points on the windings of the transformer which can
be varied so as to realize different transformer turns-ratios,
and correspondingly different voltage transformations. The
voltage can thus only be varied in discrete steps (rather than
continuously). Equipping a transformer with an LTC adds
significantly to the cost, and thus requires the utility provided
thereby to justify the added cost, which is typically the case in
the bulk voltage system where effective voltage regulation is
of paramount importance to the secure and efficient operation
of the system [43].

F. DISTRIBUTED GENERATION
The proliferation of diverse distributed generation technolo-
gies in the power system has been one of the most noteworthy

developments in the electric power industry in recent years.
Along with their growth, the need for their contribution to
the provision of grid ancillary services has been identified as
key to their sustained growth and overall improvement in grid
operation [45]. Thus, the consideration of distributed gener-
ation in Volt/VAR optimization has become an active area
of research [38], [40], [41], [46], [47]. The diversity of the
technologies (incorporating both conventional synchronous
generators and newer technologies in the form of inverter-
based generation systems) certainly presents an opportunity
for exploiting this form of system resource in the meeting of
the various steady-state and dynamic system requirements for
the provision of reactive power and voltage control [44], [48].

Table 2 summarizes the principal characteristics of the
major devices for reactive power and voltage control that
have been discussed in this section. It is the operation of
these devices that has to be optimized in order to realize
the secure, efficient and economical operation of the power
system, as discussed in detail in section IV. The next section
addresses the problem formulation for the Volt/VAR opti-
mization problem.

III. VOLT/VAR OPTIMIZATION PROBLEM FORMULATION
Volt/VAR optimization is a constrained optimization prob-
lem. The main components of the problem formulation are
the objective function, the decision or control variables, and
the constraints to be satisfied by the optimal solution to the
problem. Mathematically, the objective and constraint func-
tions can be either linear or nonlinear, the decision variables
can be either continuous or discrete. Various combinations
of these choices will lead to different formulations of the
problem. The salient aspects of these components of the VVO
problem formulation are briefly discussed in the following
sub-sections.

A. OBJECTIVES AND DECISION VARIABLES OF THE
VOLT/VAR OPTIMIZATION PROBLEM
There are multiple ways in which optimal reactive power
dispatch contributes to the economical, secure and effi-
cient operation of the power system. This can directly be
related to the objectives of Volt/VAR optimization. Power
loss minimization has featured as the main objective in
many research works over the years, both in earlier pub-
lications [49]–[52], and in more recent ones [53]–[57].
Maintaining network voltages within the specified range
of nominal values constitutes another key objective for
Volt/VAR optimization [56], [58]–[60]. Then there is maxi-
mization of voltage security [61]–[63], and minimization of
the frequency of operation of the Volt/VAR control devices
[64]–[66]. Each of these objectives enhances in one way or
another the economics, security, power quality, and efficiency
of power system operation.

As there are several objectives that can be considered,
the VVO problem may be formulated as a single-objective
optimization problem (the most prevalent formulation,
based on the reviewed literature) or as a multi-objective
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TABLE 2. Main characteristics of reactive power and voltage control devices.

optimization problem, examples of which can be found
in [50], [51], [57], [65], [67]. A multi-objective formula-
tion permits the simultaneous consideration of economic and
security objectives, for example. A major concern in multi-
objective optimization is how to formulate the problem in
such a way that the obtained solution is optimal for all the
considered (and potentially conflicting) objectives. The most
common approach is to reduce the multiple objectives to a
single objective function by a weighted summation of the
individual objectives. This approach has the desirable charac-
teristic of being simple to implement, but also has a number of
drawbacks, such as the dependence of the obtained solution
on the choice of the weighting vector, with considerable
reliance on user expertise and experience. The subject of
multi-objective optimization is discussed in detail in [68].

A key consideration regarding the objective function of
the VVO problem is its dynamic characteristics, particularly
in terms of whether it is linear or nonlinear. Taking the real
power transmission losses as an example, the mathematical
expression thereof can be stated as [69]:

PLoss =
NL∑
k=1

Gk
[
V 2
i + V

2
j − 2ViVj cos θij

]
(1)

where the symbols are defined as follows:

Gk series conductance of branch k
NL number of branches in the network
PLoss total power transmission losses
Vi,Vj voltage magnitude at buses i and j
θij phase angle of ijth Y-matrix component

It can be deduced from (1) that the expression for the
real power transmission losses is both nonlinear and noncon-
vex, being quadratic in terms of the bus voltage magnitudes,
in addition to having trigonometric function components.
The inherent difficulty of evaluating a nonlinear objective
function of this nature has motivated the devising of alter-
native (i.e. simpler) formulations of the objective function,
chiefly by means of linearization. Thus, a number of linear
objective functions for the loss minimization-based VVO
problem have been proposed in the literature, for example
[50], [51], [69]–[71]. Linearization is normally performed
about some desired operating point. In [50], [51] and [70],
a sensitivity-based method is used to develop a linearized
form of the objective function for the VVO problem, where
(small) changes in state variables (bus voltage magnitudes,
phase angles and slack-bus real power) are expressed as
linear functions of corresponding changes in the control
variables, and this forms the basis for the solution algo-
rithm development for the optimization problem. In [69] the
loss-minimization objective function is linearized by taking
partial derivatives of (1) with respect to bus voltage magni-
tudes, so that incremental losses are the ones to beminimized,
expressed as linear functions of the bus voltage magnitudes.

As for the decision or control variables for the VVO
problem, these can be classified into those derived from
voltage-regulating devices, and those derived from reac-
tive power sources, as has been briefly presented in
section II. Voltage regulation is mainly through synchronous
generator terminal voltage magnitude adjustments and
Under-Load Tap-Changing (ULTC) transformers. Reactive
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power injection/consumption devices are synchronous gen-
erators, synchronous condensers, shunt capacitors and reac-
tors, Flexible AC Transmission System (FACTS) devices,
and Distributed Generation to the extent that is dependent on
the specific technology [72]. Some of these devices generate
continuous variables, others discrete variables. A complete
and most accurate formulation of the VVO problem would
thus be a Mixed Integer Nonlinear Programming (MINLP)
problem formulation [65].

B. CONSTRAINTS OF THE VOLT/VAR
OPTIMIZATION PROBLEM
The constraints of the Volt/VAR optimization problem essen-
tially consist of limits on the permissible range of values
for the control variables (e.g. transformer tap limits, shunt
capacitor range), operating limits on the power system state
variables (e.g. generator real and reactive power outputs, volt-
age magnitudes and phase angles, line and transformer flow
limits, etc.) [73]. The standard set of constraints considered
in most formulations of the VVO problem can be stated as:
Network Power Balance Equations:

Pi (V , δ, τ )− PGi + PLi = 0 (2)

Qi (V , δ, τ )− QGi ± QSi + QLi = 0 (3)

where (expressed in polar form):

Pi (V , δ, τ ) = Vi

NLi∑
j=1

VjYij cos
(
δij − θij

)
Qi (V , δ, τ ) = Vi

NLi∑
j=1

VjYij sin
(
δij − θij

)
Control Variable Limits:

Vmin
Gi ≤ VGi ≤ Vmax

Gi (4)

τmin
k ≤ τk ≤ τ

max
k (5)

Qmin
Si ≤ QSi ≤ Qmax

Si (6)

State Variable Constraints:

Pmin
G1 ≤ PG1 ≤ Pmax

G1 (7)

Qmin
Gi ≤ QGi ≤ Qmax

Gi (8)

Vmin
Li ≤ VLi ≤ Vmax

Li (9)

|Sk |2 ≤
(
Smax
k

)2 (10)

The symbols in the above expressions have the following
definitions:

Pi (V , δ, τ ) active power injection at bus i
PGi generator active power output at bus i
PG1 generator active power output of slack bus
PLi active power demand at bus i
Qi (V , δ, τ ) reactive power injection at bus i
QGi generator reactive power output at bus i
QLi reactive power demand at bus i

QSi reactive power source/sink magnitude at
bus i

VGi generator terminal voltage magnitude at
bus i

VLi voltagemagnitudeatPQbusi
τk tap position of ULTC connected in branch k
Sk apparent power flow in branch k
Yij ijth component of admittance matrix
δ voltage phase angle
NLi number of branches connected to bus i

The set of constraints (2)-(10) defines the feasible region
for the VVO problem, and a solution for the problem (i.e.
a set of control variables that minimizes (1)) is admissible
only if it is feasible with respect to the constraint set. It can be
observed that this constraint set is nonlinear and non-convex,
because the constraint equations (2) and (3), for example,
have trigonometric terms, and (4), (7)-(9) are non-convex
quadratic [2], [3]. Moreover, some control variables (specif-
ically ULTC tap positions and shunt reactive power sources,
represented by (5) and (6) respectively) can only take on dis-
crete values. This gives the constraint set (indeed the overall
problem formulation) for the VVO problem the characteristic
of being highly nonlinear [18], and poses special challenges
for any solution algorithm that may be applied to solve the
problem.

In the following section, a detailed discussion of the vari-
ety of solution approaches that have been applied over the
decades to the VVO problem is presented, based on the
surveyed literature.

IV. OPTIMIZATION METHODS FOR THE VOLT/VAR
OPTIMIZATION PROBLEM
The problem formulation for VVO, and the accompanying
discussion that has been presented in section III, clearly
shows that it is a complex optimization problem. The com-
plexity is in part due to the nonlinearity and non-convexity
of both the objective function and the constraint set, as well
as the mixed continuous-discrete nature of the decision
variables.

As a result, this section presents an overview of the classi-
cal and heuristic optimization methods for supporting voltage
and reactive power regulation using the control devices as dis-
cussed in section II, and its problem formulation, as presented
in section III.

The various approaches that have been proposed over the
years for the solution of the VVO problem may be taken to
fall into twomain categories: classical/conventional methods,
and heuristic/intelligent search-based techniques. The merit
of any candidate solution approach can be gauged on the
basis of its ability to address the performance characteristics
relevant to the VVO problem, among them being (in no
particular order of importance) [21], [73]:
• Accuracy requirement of problem formulation
• Computation time and memory requirements
• Possibility for real-time implementation
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• Scalability of solution approach
• Global convergence characteristics
• Global optimality characteristics
• Reliability of solution
• Robustness of solution method
• Ability to handle both continuous and discrete decision
variables

• Ability to (simultaneously) address multiple objectives
• Simplicity of solution method

Model accuracy is a very important consideration in an
optimization problem, from the perspective of the accuracy
(and usability) of the obtained solution, as well as the com-
plexity of the optimization problem, which has a bearing on
the choice of the solution algorithm for application to the
problem [74]. Indeed, different solution algorithms require
different levels of accuracy (or detail) of the problem formu-
lation.With VVO being an operational optimization problem,
speed of computation is also an important consideration,
especially in the context of real-time implementation, where
control decisions need to be generated quickly in response
to dynamic system variations so as to maintain the reliability
of system operation. Similar observations can be made about
each of the other performance characteristic requirements of
solution approaches for the VVO problem outlined above.
The interested reader may refer (for example) to [75] for a
more detailed discussion of desirable performance character-
istics of optimization algorithms.

It is evidently hardly practical to find a single solution
algorithm that effectively addresses all of the performance
characteristics listed above, in part due to the inherent
mutual conflict that they may exhibit. Commonly, the vari-
ous solution algorithms are differentiated by how well they
address some (and not necessarily all) of these require-
ments. In the following sub-sections, some of the solution
algorithms that have been proposed in the literature are
discussed under the two main categories as stated earlier
(i.e. classical/conventional methods, and heuristic/intelligent
search-based techniques).

A. CLASSICAL/CONVENTIONAL METHODS
FOR VOLT/VAR OPTIMIZATION
Awide variety of solution methods falling under the category
of classical/conventional optimization techniques have been
applied to the VVO problem, among them being first-order
and second-order gradient-based methods, Quadratic Pro-
gramming (QP), Linear Programming (LP), Interior-Point
Methods (IPM), and Mixed-Integer Programming (MIP),
along with decomposition techniques.

Gradient-based methods are iterative optimization tech-
niques that seek to extremize (i.e. minimize or maximize) a
differentiable nonlinear function by generating a sequence of
improving estimates of the decision vector, moving in such a
direction as to achieve progressively lower values (in the case
of minimization) of the objective function, until the sequence
hopefully terminates at the solution (i.e. the minimum of the

objective function to be optimized) [75]. Some of the earliest
efforts to algorithmically solve the VVO problem applied
gradient-based methods, examples of which can be found
in [49], [50], [76].

1) FIRST-ORDER GRADIENT-BASED METHODS
The principal first-order gradient-based methods that have
been applied to the solution of the VVO problem are the
Reduced Gradient (RG) [78], [79], Generalized Reduced
Gradient (GRG) [80], and Conjugate Gradient (CG) [50]
methods.

In the Reduced Gradient (RG) method, first applied to the
OPF problem in [76], the functional and equality (i.e. power
flow equation) constraints are handled by means of penalty
terms and Lagrangian multipliers respectively, forming a
linear combination with the objective function to construct
the Lagrangian function, to which the Karush-Kuhn-Tucker
(KKT) conditions are then applied to solve the minimization
problem [77]. The RG method provides a way to reduce
the problem size, where the problem variables are divided
into decision variables and state variables, the objective
function expressed as a function of the decision variables,
while the state variables are adjusted to maintain solution
feasibility [78].

The Generalized Reduced Gradient (GRG) method is an
extension of the RGmethod that allows for the direct handling
of nonlinear and inequality constraints. Inequality constraints
are turned into equality constraints by the introduction of
nonnegative slack variables, and the (nonlinear) constraints
are then linearized about the operating point. The generalized
reduced gradient is then defined as the gradient of the lin-
ear combination of the objective function and the linearized
constraints [80]. Each such linearization is treated as a sub-
problem, which can be solved by a gradient-based method
such as the RG method, and a series of such subproblem
solutions should lead to the solution of the original problem.
The GRG method was applied in [79] to the solution of
a variety of optimal power flow problems, chiefly power
loss minimization and network voltage profile optimization.
Some of the attractive features of the GRG method are the
avoidance of penalty terms in dealing with the functional
constraints, the convenient way it provides for transforming
a nonlinear constrained optimization problem into an uncon-
strained one that can be solved by a gradient-based method,
and the reduced dimensionality of the resulting problem [81].

The Conjugate Gradient (CG) method was proposed in
the 1950s as an iterative method for solving linear systems
with symmetric positive definite matrices [82], offering an
alternative to existing methods such as Gaussian elimination,
and especially well-suited to solving large-scale problems.
Extension of the method to the application to nonlinear prob-
lems was developed in the 1960s [83], and constituted one of
the earliest known methods for solving large-scale nonlinear
optimization problems [75]. The nonlinear CG method was
applied in [50] to the minimization of the node voltage mag-
nitude deviations from their nominal values. The conjugate
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gradient vector (which establishes the search direction in the
CG method) is computed as a linear combination of succes-
sive previous search directions. This method of constructing
the search direction ensures non-interference of consecutive
search directions, consequently leading to greater advance
of the algorithm towards the solution. Key features of the
CG method are low storage requirements, and more rapid
advance towards the solution relative to the steepest gradient
method.

First-order gradient-based methods offer a reliable and
fairly unsophisticated way to optimize a differentiable non-
linear function, without being computationally expensive.
Their main drawback is the slow rate of convergence, as they
rely solely on first-order information of the function to be
optimized in advancing toward the solution. The second-
order methods, discussed in the next sub-section, constitute
an improvement in this aspect.

2) SECOND-ORDER GRADIENT-BASED METHODS
2nd-order methods differ from 1st-order methods chiefly in
the construction of the search direction for the optimiza-
tion algorithm. Whereas 1st-order methods rely solely on
the 1st-order (partial) derivatives of the objective and con-
straint functions, 2nd-order methods additionally incorporate
2nd-order information. The second partial derivatives carry
the function’s curvature information, and incorporation of
this information leads to faster convergence of the algo-
rithm to the solution. Newton’s method, the representative
2nd-order gradient-based method, applies a 2nd-order Taylor
series expansion to the objective function about the current
iterate xk , which leads to the search direction dk at xk being
defined by dk = − (H (xk ))−1 ∇f (xk ), where H (xk ) is the
Hessian matrix (i.e. the matrix of 2nd-order partial deriva-
tives of the objective function), and ∇f (xk ) is the vector of
1st-order derivatives of the objective function at xk . Examples
of the application of Newton’s method to the VVO problem
can be found in [84]–[86].

The distinguishing feature of 2nd-order methods is their
quadratic rate of convergence, much faster than the conver-
gence rate of 1st-order methods, although this comes at the
expense of additionally having to compute the inverse of the
Hessian matrix, which may be a cumbersome, error-prone,
and computationally expensive process, especially in the case
of problems with a dense Hessian matrix. An alternative is
Quasi-Newton methods, which avoid the exact computation
of the Hessian matrix by approximating it using information
about the change in the 1st-order derivatives [75]. Two other
issues with 2nd-order methods are the need for the Hessian
matrix to be positive definite to ensure the search direction
is a descent direction, and the difficulty in dealing with
the inequality constraints of the VVO problem [16], [85].
The reliability of Newton’s method particularly requires
that the difference between the objective function and its
2nd-order approximation at the current iterate not be too large.
Despite these issues, Newton’s method is not only a classical
method for nonlinear optimization, but also represents an

important optimization approach, both efficient and robust for
a large class of problems [86].

3) QUADRATIC PROGRAMMING
Quadratic Programming (QP) is a special case of nonlinear
programming in which the objective function is quadratic
and the constraint set is linear. When applied to the VVO
problem, a technique known as sequential quadratic program-
ming (SQP) is employed, involving iteratively generating a
quadratic approximation of the objective function, and lin-
earizing the constraints about the current operating point. The
solution of these QP subproblems should converge to the opti-
mal solution of the original nonlinear problem [87]. Quadratic
programming is somewhat of a compromise between the
general nonlinear programming problem and a linear pro-
gramming formulation, trying to achieve some balance
between the accuracy of the model representation and the
computational complexity of the solution of the problem [88].

Depending onwhether the QPmodel formulation is convex
or nonconvex, a variety of solution techniques exist, among
them being active set methods and interior point methods.
Examples of the QP model formulation of the VVO problem
can be found in [88]–[90].

In [88], a convex QP formulation has been developed for
the real power loss minimization reactive power dispatch
problem, and solved by the active-set projection method.
In [89], the real and reactive power dispatch problem is solved
by quadratic programming, considering a quadratic cost func-
tion for the generation and transmission line losses, and a lin-
ear approximation of the system constraints. An improvement
in accuracy is obtained over the linear programming-based
model, and faster solutions compared to the exact nonlinear
model of the combined active/reactive power optimization
problem. Reference [90] also applies SQP to reactive power
optimization, and develops a quadratic multi-objective opti-
mization problem, combining economic and security objec-
tives, which is also solved by the Newton-based active-set
method.

The attractiveness of the quadratic programming solution
technique lies in its providing a means to achieve a good
balance between the requirements of a reasonably accurate
model of the VVO problem, and the computational expense
associated with the exact nonlinear model formulation. The
quadratic approximation of the nonlinear system power loss
function is sufficiently accurate, and permits the application
of efficient QP solution techniques to the problem [88], [90].

4) LINEAR PROGRAMMING
An optimization problem is classified as a linear pro-
gramming (LP) problem when both the objective function
and the constraint set are linear functions of the decision
variables. Because the VVO problem is inherently nonlin-
ear (as discussed in section III), an LP formulation of the
problem entails the linearization of both the objective func-
tion and the constraint set (section III, equations 1 and 2-10
respectively). As pointed out in section III, linearization is
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typically performed around some desired operating point, and
can be done based on the first-order Taylor series expansion
(i.e. taking the first-order partial derivatives of the nonlinear
power loss functionwith respect to the control variables) [69],
or on the basis of sensitivity relationships devised to relate
changes in the state variables to changes in the control
variables [50], [51], [70].

Linear programming has traditionally been a popular
approach for the solution of the OPF problem, which includes
economic dispatch and reactive power dispatch [91]. The
approach has many desirable characteristics, such as relia-
bility, very good convergence properties even for large-scale
problems, faster computation speed, and availability of very
efficient algorithms for solving the problem [75]. The main
solution techniques for the LP problem are several variants of
the Simplex method, and Interior Point Methods (IPM).

Examples of LP formulations of the VVO problem are
to be found in [50], [69]–[71], [92]–[96]. In [92], an LP
formulation was devised for the reactive power dispatch
problem incorporating voltage stability, to minimize the risk
of voltage collapse in the system, and solved by the dual
revised simplex method. The linearization and solution of
the problem is done in an iterative manner, leading to what
is commonly referred to as sequential linear programming
(SLP). The desirable characteristic of this technique that is
highlighted is convergence of the solution that is independent
of the problem size, whereas in the case of the original
nonlinear problem formulation, depending on the solution
algorithm, global convergence may not be guaranteed [21].
An LP-based network-constrained reactive power control
problem is presented in [93], which is found to be suitable
for real-time application in large-scale power systems, with
speed of solution and convergence characteristics that are
difficult to achieve in the case of the classic nonlinear for-
mulation of the problem.

With all the desirable characteristics of the LP approach to
VVO, it must be borne in mind that this comes along with the
compromise of the accurate representation of the otherwise
highly nonlinearmodel of the VVOproblem. Efforts to devise
more efficient solution techniques for the original nonlinear
problem formulation have thus continued to attract a lot of
attention [24].

5) INTERIOR-POINT METHODS
Interior point methods (IPM) are a class of optimization
techniques that were initially developed as an alternative to
the Simplexmethod for solving linear programs [97], with the
introduction of Karmakar’s method [98], a polynomial-time
linear programming method. Whereas the Simplex method
exploits the convexity of the feasible region of the LP prob-
lem, searching along the vertices of the polytope that defines
the feasible region for the optimal solution to the problem,
IPMs take a different approach, attempting to confine the
search path within the feasible region, and establishing and
following a ‘‘central path’’ towards the optimal solution of
the problem. Besides having pseudo-polynomial complexity,

IPMs also exhibit some advantages relative to the Simplex
method, such as being especially efficient for large-scale
problems, and making more rapid convergence towards the
optimal point [99]. The successes of IPMs in LP incited
research efforts to extend them to general nonlinear problems,
and these methods have attractive properties that make them
especially suitable for nonlinearly constrained optimization,
such as the efficient handling of inequality constraints (which
is quite problematic for the classical Newton-basedmethods),
rapid convergence, and not having to start from a strictly
feasible initial solution [100].

IPM-based reactive power optimization and voltage con-
trol has been presented for example in [101]–[103]. In refer-
ence [101], the primal-dual logarithmic barrier interior point
algorithm (PDIPM) was applied to the solution of the optimal
reactive power dispatch (ORD) problem. It is highlighted
in the paper that ORD is a large-scale highly nonlinear,
nonconvex optimization problem, and the characteristics of
the chosen IPM that make it suitable for application to this
problem are the insensitivity of the problem complexity (i.e.
number of iterations required to reach to solution) to the prob-
lem size, more efficient handling of the nonlinear inequal-
ity constraints, and numerical robustness, even ability to
handle large-scale, ill-conditioned problems. Reference [103]
used a version of the PDIPM method known as predictor-
corrector PDIPM (PC-PDIPM) to solve the reactive power
optimization/voltage control problem, a method which seeks
to improve the search direction at each iteration [104]. The
authors focused in the development of their algorithm on
computational speed to be suitable for real-time applica-
tion, reliability to converge even from an initially infeasible
starting point, and the effective detection and handling of
infeasibility. Comparison with quadratic programming and
least squares-based infeasibility handling showed that the
developed PDIPM method scaled better with the number
of constraints (i.e. increase in number of constraints having
less impact on computational speed), and the infeasibility
detection and handling approach taken added much less com-
putational burden to the overall optimization process. Interior
point methods have thus been found to be very suitable for
solving the large-scale, highly nonlinear constrained OPF
problems, an example of which is the VVO problem [101].

6) MIXED INTEGER PROGRAMMING AND
DECOMPOSITION TECHNIQUES
In all the solution algorithms discussed thus far, only con-
tinuous control variables are considered in the formulation
of the VVO problem. However, as pointed out in section III,
the presence of discrete control variables (e.g. transformer tap
positions in ULTC transformers) makes the general formula-
tion of the VVO problem a mixed integer programming prob-
lem, implying that integrality constraints have to be enforced
on a subset of control variables. The motivation for consid-
ering a continuous approximate formulation of the problem
has been the very high computational expense associated
with the full mixed integer nonlinear programming (MINLP)
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problem, especially in large-scale systems with possibly
thousands of mixed integer and continuous variables, and
nonlinear objective and constraint functions [4]. The draw-
back of this approach is that achieving feasibility of the
continuous solution by rounding off the values of the control
variables required to be integral to the nearest integer values
may in many cases be difficult. Moreover, the objective value
of the rounded-off solution may deviate significantly from
that of the continuous optimal solution [80]. These consider-
ations, along with the advances in computational capabilities
of modern computers that have enhanced the tractability of
this class of problems, have encouraged the search for effec-
tive algorithms to treat the full MINLP [105].

The most commonly used optimization algorithm for
MINLP is the branch-and-bound (B&B) algorithm, devel-
oped by Land and Doig [106] to solve integer linear
programming problems, which was subsequently extended
to the solution of MINLP problems. In the B&B method of
solving MIP problems, an indirect approach is taken where
firstly a continuous version of the problem is optimized by
relaxing the integrality constraints (thus obtaining a continu-
ous optimal solution), then each of the integrality constraints
is progressively enforced until an integer optimal solution is
found. The key components of the algorithm are branching,
where for a given continuous optimal solution the associated
integer feasible solutions are evaluated for optimality; and
bounding, where the prevailing integer optimal value is used
as an upper bound to eliminate from further consideration
any alternatives that cannot possibly achieve a better optimal
solution. Further details on the algorithm can be found for
example in [99].

Examples of MINLP formulations of the VVO prob-
lem can be found in [53], [65], [108], [109]. Due to the
need to simultaneously treat both continuous and discrete
variables, it is common to apply decomposition tech-
niques in solving mixed-integer programming problems. The
problem is reformulated into two separable optimization
sub-problems, a continuous one and a discrete one. The
two sub-problems are then solved alternately, and related
together by some decomposition technique, such as Benders
decomposition [110], one of the most commonly applied
decomposition methods to which the MINLP problem is very
amenable. Such an approach has been used in [108], for
example, where Benders decomposition is used along with
the B&B algorithm to solve the combined reactive power
planning and real-time voltage control (or reactive power
dispatch) problem formulated as a MINLP problem.

The main advantage of solving the VVO problem as a
mixed-integer programming problem is the greater accuracy
of problem formulation and resulting optimal solution that
can be achieved, enabling the accurate modeling of all control
devices involved in the problem, including discrete ones such
as shunt capacitors, ULTC transformers, and a variety of
FACTS devices [108]. This comes at the cost of greater com-
putational complexity of the problem, however. Improvement
of algorithms geared towards this class of problems and such

paradigms as parallel computing can enhance results that are
achievable using this approach of solving the VVO problem.

B. HEURISTIC/INTELLIGENT SEARCH-BASED METHODS
FOR VOLT/VAR OPTIMIZATION
Heuristic/intelligent search-based optimization techniques
employ a variety of optimum-seeking strategies that are dis-
tinctly different from the approaches taken in conventional
optimization algorithms. The search strategies employed in
these techniques are meant to overcomemany of the deficien-
cies of the conventional optimization problems, such as the
local (rather than global) nature of the search, the limited abil-
ity to handle combinatorial problems with discrete decision
variables, and the requirement for smoothness of the objective
and constraint functions for gradient-based methods, among
other factors [22]. Over the past few decades a wide variety
of these heuristic optimum-seeking techniques have been
developed. A representative sample of them are discussed in
this section, as they have been applied to the VVO problem,
particularly Genetic Algorithms (GA), Evolutionary Pro-
gramming (EP), Particle Swarm Optimization (PSO), Fuzzy
Set Theory, and Expert Systems (ES). The main distinctive
characteristics of each technique are briefly discussed, and a
sample of applications is also given.

1) GENETIC ALGORITHM
Genetic algorithm (GA) is a population-based search algo-
rithm that is modelled after the processes of natural selection
and natural genetics, combining the features of survival of
the fittest in a population of optimal solution candidates,
efficient exploitation of historical information, and random-
ized information exchange among the population candidate
solutions so as to evolve the population into a new generation
of improved candidate solutions [111]. The development of
GAs was inspired by the robustness, efficiency and effi-
cacy through adaptation observed in biological processes,
and efforts were made to develop artificial software systems
that could mimic and replicate the natural processes respon-
sible for these characteristics, such as selection, crossover
and mutation [112], [113]. GAs, though conceptually and
computationally simple, constitute an efficient, effective and
robust approach to search for optimal solutions to a variety of
problems in diverse environments, with no reliance on such
limiting assumptions of conventional optimization methods
as continuity, existence of derivatives, and unimodality [111].
Once an initial population of candidate solutions is generated,
either randomly or heuristically, the population is evolved
through the sequential and iterative application of the selec-
tion, crossover and mutation operations, into a new genera-
tion of improved solution candidates [114].

A number of works have applied GAs to the VVO problem,
examples of which can be found in [60], [115]–[119]. In refer-
ence [115], the property of GAs of being domain-independent
search mechanisms, providing powerful search character-
istics for large, complex search spaces without requiring
full knowledge of the problem domain is highlighted.
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Reference [116] proposes an alternative crossover method
and incorporation of stochastic ‘‘if-then’’ rules (akin to expert
systems) into the GA applied to reactive power planning,
so as to enhance the algorithm’s efficiency and effectiveness.
A hybridized GA is considered in [117] for the solution of the
reactive power operation and planning problem, combining it
with successive linear programming (SLP), and using a new
population selection and generation method that makes use
of Benders’ cuts, in an effort to combine the positive charac-
teristics of deterministic and non-deterministic optimization
techniques.

Many appealing characteristics have been highlighted in
the literature that make the genetic algorithm an effective
searchmechanism. The effectiveness, however, is also a func-
tion of the algorithm design, including choices regarding the
selection, crossover and mutation operations, the encoding of
the candidate solutions used, and the fitness function [114].

2) EVOLUTIONARY PROGRAMMING
Evolutionary Programming (EP) was conceived and devel-
oped by L.J. Fogel in the early 1960s as an alternative
approach to realizing artificial intelligence (AI), utilizing
the concepts of Darwinian evolution to iteratively generate
increasingly appropriate solutions to a given optimization
problem [120]. It can be seen as an approach to optimization
that makes use of simulated evolution to evolve a set of
solutions (or organisms) which exhibit increasing intellect
evidenced by ability to make correct predictions, to translate
those predictions into suitable actions, and to adapt behaviour
so as to meet specific goals in a range of environments [112].
As an evolutionary algorithm, EP employs the key concept
of selection-by-fitness, which entails the generation of a pop-
ulation of candidate solutions (to an optimization problem),
devising a suitable fitness function with which to evaluate the
worth of each candidate solution in light of stated objectives,
and application of evolutionary operators such as mutation to
evolve the population through generations of ever-improving
candidate solutions [121]. The selection of candidate solu-
tions to propagate through to the next generation can be either
elitist (the best in each generation are selected to form the
next one) or by stochastic tournament (probabilistic selection
of next-generation candidate solutions).

EP has been used as the solution algorithm to the VVO
problem in [122]–[124]. The global search characteristics of
the EP algorithm, and the non-reliance on the smoothness
and/or convexity properties of the objective and constraint
functions for effective search, are highlighted in [122] as
making it suitable for solving the reactive power optimiza-
tion and voltage control problem, which is highly nonlinear
and nonconvex. By maintaining a population of candidate
solutions at each iteration, which are propagated through
future generations using probabilistic transition rules as a
function of their overall merit, with a Gaussian relationship
between parents and offspring, the EP algorithm is able to
move over hills and valleys of the search space, and therefore
arrive at the globally optimal solution. In [123], enhanced

evolutionary algorithms (evolutionary programming and evo-
lutionary strategies), the enhancement consisting in use of
alternative mutation strategies, have been applied to the solu-
tion of the reactive power dispatch problem, demonstrating
that enhancements can be made to the standard algorithm
to improve its efficiency and effectiveness. The effective-
ness of population-based evolutionary algorithms in finding
pareto-optimal solutions in multiobjective optimization has
been pointed out in [124], where a multiobjective evolution-
ary algorithm has been developed for the optimal reactive
dispatch problem.

The main evolutionary operations used in EP are mutation,
competition and reproduction. As with other evolutionary
algorithms, parameter selection plays a key role in exploiting
the various desirable attributes of the algorithm, and ensuring
its efficiency and effectiveness.

3) PARTICLE SWARM OPTIMIZATION
Swarm intelligence is a stream of AI research that got estab-
lished in the early 1990s, based on the study of the swarm
behaviour of natural creatures, in terms of how decision
making of the individual is influenced by both the individ-
ual’s experience and the experiences of others [125]–[127].
Particle swarm optimization (PSO), one variant of swarm
intelligence techniques that has become prominent, was
developed by Eberhart and Kennedy [128], and is based on
the analogy of swarms of birds and fish schooling. The algo-
rithm uses a population of particles exploring the search space
in search of the optimal solution to an optimization problem.
Associated with each particle is a position and a velocity in a
two-dimensional search space, and the change in position of
the particles as a function of the current best positions of the
individual and of the overall population is what constitutes the
population’s evolution towards the optimal point. The use of a
population of candidate solutions, incorporating randomness
and memory, as well as diversification at the beginning, and
intensification towards the end of the search, adds greatly to
PSO’s efficiency as a search mechanism [129].

Having been originally developed to treat nonlinear opti-
mization problems with continuous variables, a number of
enhancements to the standard PSO algorithm have been
proposed and developed, to improve the algorithm’s effi-
ciency, and to extend its applicability to other problems (e.g.
combinatorial optimization, and mixed-integer nonlinear
programming (MINLP) problems).

Examples of the application of PSO to the solution of the
VVO problem can be found in [57], [130]–[134]. In refer-
ence [57], a multi-objective Volt/VAR control problem that
considers robustness in addition to power loss minimization
has been solved using the PSO algorithm, exploiting the
ability to structure the algorithm so as to handle multiple
objectives [135]. Amodified PSO algorithm has been applied
to optimal reactive power dispatch in [130], the modification
consisting in adding mutation to the standard algorithm in
order to improve its global search characteristics and prevent
rapid convergence to local optima. Reference [131] follows
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a different approach to enhancing the global search char-
acteristics of the PSO algorithm, which is to hybridize it
with the Tabu Search algorithm, another stochastic search
algorithm [136]. In [132], the reactive power and voltage
control problem has been solved using the differential evo-
lution (DE) (an evolutionary computation algorithm) [137]
and PSO algorithms, and performance comparison of the two
methods has been made, particularly in terms of solution
quality and convergence characteristics. The authors found
the PSO algorithm to slightly outperform the DE algorithm,
although exhibiting relatively greater computational effort.
Reference [133] takes advantage of the PSO’s ability to bet-
ter handle discrete control variables than the conventional
optimization methods, and applies it to the solution of the
optimal reactive power dispatch problem considering discrete
variables. The focus in [134] is on how PSO-based optimal
reactive power dispatch can enhance system security consid-
ering the impact of intermittent renewable generation such as
wind power generation.

Besides being able to address diverse optimization objec-
tives, as can be deduced from the surveyed literature, the
PSO algorithm additionally has the desirable characteristic
of being quite simple to implement, in the sense that sim-
ple rules governing individual agent behaviour can result in
sophisticated swarm behaviour. The model of each individual
agent (or particle) is relatively simple, yet can lead to effective
and efficient collective behaviour of the whole swarm in
terms of searching for the optimal solution in a search space.
Hybridization with other methods, and other enhancements
to the standard algorithm, are often considered to improve the
efficiency and effectiveness of the algorithm [129].

4) FUZZY SET THEORY
Although conventional optimization problems are computed
with the assumption of precise information, in reality most
real-world data that serves as input to the optimization prob-
lems is embedded with uncertainty and imprecision. Power
systems are especially prone to a significant amount of
uncertainty in operational data, largely due to their large
scale, being geographically widely distributed, complexity
in operational dynamics, and susceptibility to unexpected
events [138]. Fuzzy set theory is a mathematical approach
that can be used to capture this uncertainty and imprecision
of information, the incorporation into the optimization prob-
lem of which can enhance the robustness of the obtained
results [97]. Fuzzy set theory enables objective and con-
straint functions to be represented as fuzzy sets, where the
membership to these sets represents the degree of closeness
to the optimum (for the objective function) and the degree
of enforcement of the constraints (for constraint functions).
The maximization of membership functions then implies
the simultaneous optimization of the objective function and
enforcement of the constraint set, all while taking uncertain-
ties into account. This leads to a better compromised solution,
more robust in the sense of being less sensitive to parameter
variations [24].

Fuzzy set theory is not actually an optimization technique,
and so it is normally used in conjunction with optimization
techniques, where it essentially serves as a tool for model-
ing uncertainty and imprecision in the problem formulation.
Applications to reactive power optimization and voltage con-
trol have been many over the years, combining with a variety
of optimization techniques, examples of which can be found
in [58], [59], [139]–[144]. In reference [58], fuzzy set theory
was combined with a strength-pareto evolutionary algorithm
(SPEA2) to solve the multi-objective reactive power/voltage
control problem. References [139]–[141] formulate a fuzzy-
linear programming-based reactive power/voltage control,
combining the reliability and speed characteristics of linear
programming with fuzzy set theory’s ability to more effi-
ciently depict the realistic system objective and constraint
functions, leading to a more practical solution of the prob-
lem. Other examples of hybrid methods incorporating fuzzy
set theory or fuzzy logic are the fuzzy-dynamic program-
ming approach presented in [142], and the fuzzy-PSO
multi-objective algorithm presented in [143].

The strength of fuzzy set theory that has been exploited
in reactive power optimization and voltage control (among
other power system applications) is the capability of han-
dling ambiguity, conflicting objectives, and soft constraints
in a flexible way that can moreover improve computational
complexity of power system optimization problems [138].
By providing the means to effectively model uncertainty
and imprecision, and to incorporate the approximate rea-
soning and subjective judgment of expert operators into the
mathematical model [141], fuzzy set-based modeling facili-
tates the realization of a better compromised solution, where
both accuracy and robustness of the solution are taken into
account [138].

5) EXPERT SYSTEM
Expert systems (also known as knowledge-based systems)
constituted one of the earliest approaches to building AI
systems in the 1960s, and were among first successful com-
mercial applications of the then nascent field of artificial
intelligence [145]. An expert system (ES) can be defined as an
intelligent computer-based system in which representations
of human expert knowledge are stored, and it can apply
inference procedures and heuristics to this knowledge base
to solve complex problems in a manner that a human expert
would do. An ES is fashioned after the model of human
reasoning, which may be considered to be based on the cre-
ation of categories, application of specific (a priori) rules, use
of heuristics (i.e. rules-of-thumb, representing conventional
wisdom), as well as use of past experience (precedence-
based reasoning). Most expert systems make use of rule-
based reasoning, the main components of which are the
knowledge/rule base containing much of the problem-solving
knowledge, a database containing some data of interest to the
system, an inference engine generating the decisions, and a
user interface providing a means for user interaction with the
system [146].
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TABLE 3. Summary of main characteristics of conventional optimization techniques.

Expert systems are especially applicable to fields such as
power system operation, where a wealth of system opera-
tional knowledge and expertise has been accumulated, and
can be used to build intelligent decision support systems that
can aid system operators in making decisions and taking

quick action especially under anomalous conditions, where
not only correct action, but also speed of execution can be
critical in preventing major emergencies [147].

A number of researchers have built expert systems for opti-
mal reactive power dispatch and voltage control, examples
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TABLE 4. Summary of main characteristics of nonconventional/heuristic optimization techniques.

of which are to be found in [148]–[153]. In many of these
applications of expert systems to the reactive power/voltage
control problem, the emphasis is placed on leveraging human
expert knowledge and experience, and historical information
to build a system that can quickly provide effective reme-
dial action in emergency conditions, when human operator
reaction may be too slow, and conventional optimization
methods ineffective [148]. In reference [149], an ES is built

that applies empirical rules to generate appropriate controls
when slight voltage violations occur, whereas mathematical
programming software is used to address more severe contin-
gencies. In [150] an ES is developed for reactive power and
voltage control based on a sensitivity-tree approach, where
the most effective control measures to alleviate abnormal
voltage conditions are determined on the basis of the rule base
coded into the ES. Scalability and possibility for real-time
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TABLE 5. Comparison of conventional with nonconventional/heuristic optimization techniques.

application are highlighted as the main characteristics of the
proposed system. A similar sensitivity-based approach has
been used in the ES developed in [151] for reactive power
control for voltage profile improvement. In [152], historical
information and real-time data is exploited to develop an ES
for substation voltage and reactive power control. The oppor-
tunity to leverage years of operating experience in developing
the ES is highlighted as one of the main advantages of this
approach. The ES developed in [153] is focused on moni-
toring and improving power system voltage stability. The ES
can use the empirical knowledge in the knowledge base to
effectively identify the critical load buses most susceptible
to excessive voltage violations, and recommend the most
effective remedial actions, as an aid to the system operator.

Expert systems present many advantages as intelligent
decision support systems where decisions have to be made
to solve complex problems, as in the case of reactive
power/voltage control under emergency conditions. Notable
among these advantages are the opportunity to combine the
knowledge and experience of several human experts, accumu-
lated over a period of time, along with historical information,
to build an efficient and effective decision-support system,
little reliance on precise mathematical models of the system,
thus especially effective under anomalous operating condi-
tions, and others such as reproducibility, consistency, and lack
of fatigue (which human operators are very susceptible to).
Some obvious disadvantages of expert systems are that they
lack the human capabilities of common sense, creativity, and
learning. There is also the likelihood of gradual degradation
of the system, requiring periodical update of the rule base
to remain up to date as the modeled system undergoes any
changes [146].

V. COMPARATIVE ANALYSIS OF SOLUTION
APPROACHES FOR THE VVO PROBLEM
It is quite evident that the two classes of optimiza-
tion techniques discussed in the preceding section present
diverse characteristics, both in terms of operating principle,
as well as strengths and drawbacks when gauged against the
desired performance characteristics outlined at the beginning
of section IV.

The key characteristic of classical/conventional optimiza-
tion methods is their implementation of a mathemati-
cally rigorous and systematic iterative procedure in the
search for the optimal solution to an optimization problem
within the feasible space. They do differ, however, in key
performance metrics, such as accuracy, speed, reliability,
convergence characteristics, and effectiveness of handling
inequality constraints and discrete variables, among other
criteria. Collectively, the class of conventional optimization
methods suffer from a number of significant deficiencies or
drawbacks, notably the inherent difficulty of handling dis-
crete variables, the requirement for the (nonlinear) objective
and constraint functions to be smooth (i.e. for the gradient-
based methods), and the difficulty of handling nonconvexity
in nonlinear problems (meaning they can only find local
optimal solutions) [21].

Heuristic optimization techniques employ a variety of
optimum-seeking strategies that differ conceptually from
those employed in conventional optimization methods.
By and large, these techniques make use of a population of
candidate search points, which, coupled with their stochastic
nature, generally gives them global search characteristics
(that is, the ability to globally converge to a solution where
one exists, independently of the initial point, and to find the
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globally optimal solution, despite nonconvexity of the objec-
tive function and the feasible region). They do suffer some
drawbacks, however, when compared with the conventional
methods, such as lacking mathematical rigor (by virtue of
their heuristic nature), being relatively computationally more
expensive, and their effectiveness being very dependent on
judicious choice of the algorithm parameters.

Tables 3 to 5 present a succinct summary of the salient
characteristics of all the optimization methods that have been
discussed in this review. Tables 3 and 4 present details for the
conventional and heuristic optimization techniques respec-
tively, and table 5 presents a high-level comparative analysis
of the conventional and heuristic techniques. The comparison
is made on the basis of some of the key performance charac-
teristics for an optimization technique that have been outlined
in section IV, such as computational speed, reliability, robust-
ness, convergence and global optimality properties, among
others. The tables provide a general overview of the relative
strengths and shortcomings of the two classes of methods,
which should prove to be informative to researchers and other
practitioners in the field of engineering optimization.

VI. CONCLUSION AND FUTURE WORK
Volt/VAR optimization is one of the key operational tools
needed by electric power system operators, and has a sig-
nificant impact on the security, economy, technical viability
and efficiency of system operation. It is also one of the most
complex optimization problems to solve, being nonlinear,
nonconvex and involving both continuous and discrete vari-
ables. This paper has presented a survey of the formulation of
the problem (encompassing the objectives, decision variables
and constraints), as well as a thorough discussion of the
various solution techniques that have been applied to the
problem over the years.

The challenge of efficiently and effectively solving the
VVO problem is reflected in the diversity of the solution tech-
niques that have been applied to the problem, which exhibit
varying characteristics, both in operating principle and how
effectively they address the key performance characteris-
tics of the optimization problem. Conventional optimization
methods have proven to be efficient, reliable, fast and quite
straightforward to algorithmically implement, but suffer from
significant drawbacks when applied to the VVO problem,
as discussed in section IV.A. Particularly, shortcomings exist
in their convergence and global optimality properties, and
the difficulty in the handling of inequality constraints and
discrete variables. The nonconventional/heuristic optimiza-
tion techniques present some advantages exactly where the
conventional techniques fall short, such as superior global
search characteristics, thus having the ability to achieve
global convergence and global optimality independently of
the problem formulation, and the natural ability to handle
discrete variables. Their main drawbacks are that their heuris-
tic nature implies that parameter selection weighs heavily on
their efficiency and effectiveness, and they incur relatively
greater computational expense.

Multi-faceted approaches are clearly needed to devise
novel operational techniques that can deal with the emerg-
ing complexities as power systems become ever more com-
plex, due to such developments as deregulation, electricity
markets, proliferation of distributed renewable generation,
and smart grid initiatives. Therefore, the authors plan to
continue their future work in this area by developing and
implementing VVO approaches that combine conventional
and heuristic methods in order to take advantage of both
classes’ complementary strengths. Parallel computing will be
a significant emphasis of the research, as a way to save time,
save money, solve complex problems and leverage remote
resources, which will help to increase the scalability of the
developed methods and make the optimization problem more
computationally tractable. This work will be discussed in
more detail in future publications.
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