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ABSTRACT Research on lower limb exoskeleton (LLE) for rehabilitation have developed rapidly to meet
the need of the population with neurologic injuries. LLEs for rehabilitation include therapeutic LLEs that
aim to restore walking ability for patients, and assistive LLEs that offer support on activities in daily life.
A substantial part of them can serve both purposes. However, these devices are yet to reach the final goal of
performing human-machine joint movement agilely and smartly. Control strategy plays an important role in
achieving their designed goal. At present, control strategies face three major challenges: how to detect human
intention, how to do motion control with given intentions, and how to optimize control parameters to suit
different individuals. As a contribution, this paper offers an overview on the state-of-the-art control strategies
for rehabilitation LLEs by classifying them into eight categories, each of which is presented with a technical
summary and tabulated information of representative papers. Moreover, current approaches addressing the
three challenges are discussed in amacroscopic perspective. Finally, it has been explored which requirements
the future control strategies should meet for maximizing the performance of rehabilitation LLEs.

INDEX TERMS Rehabilitation exoskeletons, lower limb, control strategies, rigid exoskeletons.

I. INTRODUCTION
Powered exoskeleton is a unique kind of assistive robot that
possesses human-machine shared autonomy. On one hand,
it respects human intention input and therefore keeps human
in the control loop. On the other hand, it provides robotic
guidance to human especially who needs motion assistance.
Keywords ‘exoskeleton’ and ‘powered’ mean the device is
built by rigid structure and it contains active joint(s) respec-
tively [1]. Powered exoskeletons are categorized into human
augmentation exoskeletons and rehabilitation exoskeletons.
The former is used to enhance strength and endurance for
military personnel [2] or people in the workplace [3]. The
latter is used to regain movement ability for patients with neu-
rologic injuries [4]. Further the rehabilitation exoskeletons
are divided into therapeutic ones employed in rehabilitation
therapy centers and assistive ones for assisting activities in
daily life (ADL) [5]. This taxonomy is considering that the
rehabilitation process often benefits from robotic assistance,
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as well as the assistive and the therapeutic exoskeletons share
many similarities in mechanics, actuation, and control.

The earliest assistive LLE dates back to 1969, when
researchers in Mihajlo Pupin Institute developed a pneumat-
ically powered exoskeleton for persons with walking disabil-
ities [6]. In 1976, a therapeutic LLE was born for physical
therapist to provide tele-guidance to patients from a mas-
ter exoskeleton [7]. Recently, commercialized devices have
made robotics rehabilitation publicly available. For example,
Lokomat (Hocoma, Switzerland) is a treadmill-based gait
training device with dynamic body weight support and fixed
trajectory repeating [8]. ReWalk (ReWalk Robotics, Israel)
and Ekso (Ekso Bionics, USA) is also kinematically pre-
programmed, but are more portable, thus serve both purposes
of assisting ADL and rehabilitation therapy [9], [10]. Rex
(REX Bionics, USA) and Atalante (Wandercraft, France)
are cumbersome but self-balanced [11], [12]. Indego (Parker
Hannifin, USA) is the only commercially available LLE with
backdrivable actuators, and is originally developed in Vander-
bilt University then out-licensed to ParkerHannifin [13], [14].
However, the efficacy of these exoskeletons control system
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has yet to reach the desired level. First, although robotics
interventions have reduced the need for human labor and have
increased the average training time, whether the effectiveness
of robotic-assisted rehabilitation surpass that of the conven-
tional one is still inconclusive [15]–[17]. Second, the con-
trol strategy is not enough intelligent to achieve agility and
embodiment. On the way to design smart control strategy,
various explorations have been done, in which few were
implemented in commercialized devices. Thus, this paper
focus on the control strategies for rehabilitation LLEs.

Previous reviews have covered rehabilitation LLEs gener-
ally [17], [18], or focused on aspects such as mechanics [19],
medical evaluation [20], commercially available devices [21],
and control strategies. One of the earliest and most cited
review [22] highlighted many key aspects of control design
such as walking phase separation. Tucker et al. [23] first
draw a big picture of control strategies for lower limb
assistive devices. Then subsequent reviews have summa-
rized them according to different human-machine interfaces
(HMI) [24], kinetic/kinematic control [25], or actuating dif-
ferent set of joints [26]. However, as advanced control
strategies develop overtime, the categorization should be
refined, rather than binary classification such as assist-as-
needed / trajectory tracking or kinematic / kinetic control.
Moreover, many ideas for control are shared across LLEs
actuating different joints or that using different actuators
or HMIs.

The scope of this review is themodern control strategies for
lower limb rehabilitation exoskeletons. Specifically, on one
hand, the reviewed exoskeletons 1) is composed of rigid
links (exclude soft exo-suit), 2) contain at least one active
joint (exclude unpowered exoskeleton), 3) assist human
lower limb (exclude upper limb exoskeleton). In contrast
with unpowered exoskeletons [27], [28] that utilize passive
dynamics to assist human locomotion, powered exoskele-
tons can leverage active control strategies, which reshape the
dynamics of the human-machine system into a desired form.
Soft exo-suit and rigid exoskeleton are two important types of
assistive robot. The former is promising to achieve comfort-
able, light-weighted, and backdrivable assistance [29], [30].
While the latter can offer greater assistive torque, offload the
body weight and output torque to the ground, and thus suits
patients with more severe lower limb impairments [31]. For
more information on exoskeletons that are beyond the scope
of this paper, readers are referred to [1], [32]. On the other
hand, control strategies are categorized according to similar-
ities within the whole strategy, which encompasses 1) HMI
input; 2) high-level trajectory optimization or selection; and
more emphatically 3) the mid-level core control algorithms;
and 4) low-level kinematic or torque tracking. Each control
strategy targets at neither one specific actuator, nor one set
of actuated joints. It is also not restricted by the type of
HMI input. But given that the actuator and sensor input does
have a great impact on controller design, how to select the
appropriate strategy for a particular set of hardware is also
discussed.

The contribution of this paper include: 1) as a paper ded-
icated to review control strategies of rehabilitation LLEs,
eight categories of control strategies are listed to summarize
the state of the art; 2) general frameworks in various form
for capturing a big picture for every category are proposed;
3) current approaches addressing the three challenges—
human intention detection, motion control, and control
parameter optimization—are discussed in a macroscopic
perspective.

The remainder of this paper is organized as follows.
In section II, the control strategies are sorted into eight cate-
gories. Within each of the category presentations, technical
overview with the aid of mathematical expression or fig-
ure illustration is reported.Moreover, details of typical papers
of these control categories are listed in Table 1. In section III,
the state-of-the-art controller is discussed in a different per-
spective that features three key elements: sensing technolo-
gies, motion control algorithms, and optimization techniques.
The future expectations of LLEs are also considered. In the
end, Section IV concludes this paper.

FIGURE 1. General framework of control strategies for lower limb
rehabilitation exoskeletons.

II. CONTROL STRATEGIES FOR LOWER LIMB
REHABILITATION EXOSKELETONS
The general framework of control strategies is shown in Fig.1.
The controller takes human intent decoded by HMI as input
and drives the LLE to provide assistive torque. The raw
human input can be collected from neural signals along the
descending tracts, or physical input such as interaction torque
and pressing buttons. The human intent can be estimated as
discrete commands such as walk/stop or continuous signal
such as desired kinematic profile and voluntary joint torque.
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FIGURE 2. General framework of trajectory tracking control.

For the controller of exoskeletons, usually a hierarchical
structure is adopted. Some papers emphasize high-level tra-
jectory planning, while some highlights mid-level kinematics
or kinetics computing. Importantly, with these control strate-
gies, the LLE is able to generate human-machine joint move-
ment and thus provide sensorimotor feedback that echoes
the original human intention. This closes the proprioceptive
feedback loop and therefore promotes motor learning and
rehabilitation.

Within this general framework, hereby the control strate-
gies are further divided into eight categories, each of which
are presented as follows.

A. TRAJECTORY TRACKING
1) BRIEF OUTLINE

1) Purpose: perform movement tasks without assuming
any motor ability of human.

2) Concept: make the actuated joints follows a predefined
trajectory.

3) Advantages: versatile enough to perform activities in
daily life; simple implementation.

Among many control strategies for rehabilitation LLEs,
one of the simplest approaches is trajectory tracking, which
is to replay a predefined position or velocity profile on the
actuators. As shown in Fig.2, it often incorporates three parts:
offline trajectory definition, online trajectory regulation, and
real-time trajectory tracking. The offline trajectory definition
can be accomplished by manually setting the position profile
such as sinusoidal curve [33], or modified from gait data of
healthy subjects [34]. But these simple definition does not
guarantee balance without crutches. Some method also used
offline optimization techniques to take individual information
and balance maintenance into consideration [12]. The online
trajectory regulation part often includes, frommacro tomicro,
safety guard for ensuring the trajectory is in the acceptable
region, finite state machine (FSM) with human intention or
walking condition input for selecting the optimal trajectory
to replay, and parameter alteration for adapting the trajectory
to the real walking scenario. For real-time trajectory tracking,
PID control is a common choice, and is often built in the
low-level motor driver [35]. Other choices including sliding
mode control, LQR, or model-based controller with distur-
bance rejection. To date, the trajectory tracking control has

been adopted by many commercialized exoskeleton such as
ReWalkTM [9], EksoTM [36], ExoMotusTM, etc. Moreover,
it is also widely used in the Powered Exoskeleton Race
session of a unique competition – Cybathlon [37], [38]. The
result of the competition (e.g. Mina v2 [39], [40], SGMecha-
tronics [41]) shows that the trajectory tracking method can
enable patient with complete lower limb paralysis to perform
ADL with crutches to maintain balance.

B. ADMITTANCE SHAPING
1) BRIEF OUTLINE

1) Purpose: make the LLE compliant to interaction torque
or voluntary muscle torque.

2) Concept: reshape the intrinsic admittance of the LLE.
3) Advantages: simple one-DoF dynamicsmodel, compli-

ance, encourage voluntary muscle recruitment.

Admittance shaping has been extensively applied to robots
which inevitably interacts with external environment. From
the perspective of human especially with muscle weakness,
it can alter the dynamic response of the wearable devices
and even render it assistive to intended motions. Meth-
ods for admittance shaping include admittance control and
impedance control [42]. Admittance control refers to control
structures that use a virtual admittance that takes effort as
input then outputs desired flow. The desired flow is further
tracked by an impedance (i.e. trajectory tracking controller)
to generate effort on the intrinsic admittance of the con-
trolled object. While impedance control refers to controllers
which directly generate effort on the controlled object using
impedance model. Despite similarity, admittance control has
been widely adopted for LLEs because of its good perfor-
mance in soft contact environment [43].

Inspired by the work of Keemink et al. [44] and
Nagarajan et al. [45], hereby a admittance shaping frame-
work dedicated for LLE is proposed, as shown in Fig.3.
The framework takes two variations into account: whether
interaction torque or voluntary joint torque is inputted to
the admittance model; and whether predefined trajectory is
required for the admittance model.

The human-machine system is shown in Fig.3(a), The goal
of this admittance shaping controller is to reshape the appar-
ent exoskeleton admittance Ya in order to make the dynamic
response of the exoskeleton assistive to the human motion.
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FIGURE 3. Framework of admittance shaping. where τvol and τint represent voluntary muscle force and interaction force; θ0, θe, and θh represent
desired joint angle, actual joint angle of LLE, and the actual human joint angle; Yh, Ye,Ya, and Zc represent the intrinsic admittance of the human limb,
intrinsic admittance of the LLE, apparent admittance of the exoskeleton felt by the wearer, and the soft coupling impedance; θd , τm, and Ye represent
the desired angle calculated by the admittance controller, the motor torque output, and the intrinsic admittance of the exoskeleton. Yu, Zu, and Zptc
represent the admittance controller, impedance controller, and position tracking controller.

Ya is expanded to either the system in Fig.3(c) with admit-
tance controller or system in Fig.3(b) with impedance
controller.

In Fig.3(b), the virtual impedance Zu(s) must be negative
to render the device assistive [45]. But the parameters of
this negative impedance should be carefully designed not to
induce instability since it introduces positive feedback [45].

When the key is switch to θ0 (i.e. control with predefined
trajectory) in Fig.3(a) and accordingly Fig.3(c), the overall
effect of this control scheme is allowing the wearer to move
around the equilibrium point but at the same time attracted
to this point [46], [47]. When the key is switch to θe (i.e.
without predefined trajectory) in Fig.3(a) and accordingly
Fig.3(c), the wearer is able to move freely with the reshaped
exoskeleton dynamics [48], [49].

When the key is switched to τint in Fig.3(c), and accord-
ingly the switch of τvol in Fig.3(a) is off, the virtual admit-
tance Yu(s) takes the interaction torque as input. When the
key is switch to τvol (i.e. muscle voluntary force as controller
input), wearers do not have to push on the exoskeleton after
counteracting their own limb’s inertia and gravity. Instead,
the dynamic response of the device is directly according to
the muscle force [50], [51] or even muscle force intention
only [52], [53]. It can also be deemed as reshaping the admit-
tance of the human-machine system [54].

Regarding the virtual admittance controller, a second-order
inertia-damping-stiffness model is sufficient to emulate the
desired behavior. Although the implementation of damping
and stiffness shaping is simple [55], [56], inertia compensa-
tion is often sophisticated [57], [58]. Promising results have
been achieved by paper [45], [59]. For more guidelines on
reducing apparent inertia readers are referred to paper [44].

C. CONTROLLERS UTILIZING BACKDRIVABILITY
One of the properties of the exoskeleton joints is backdriv-
ability, which measures how much torque a person needs
to apply on the joint to reverse it. Backdrivability of joints
can be achieved by either the unique mechanical design of
actuators or some specific controllers such as admittance
shaping and zero-torque control. But the problem of lim-
ited bandwidth has been shown for controller-implemented

backdrivability [60]. Recent years have witnessed several
LLEs with backdrivable actuators, including Vanderbilt
exoskeleton [61], a knee exoskeleton by Wang et al. [62],
and a knee-ankle exoskeleton by Zhu et al. [63], etc. Among
them a common choice to obtain backdrivability is quasi-
direct drive actuator, which is compliant through the lack
of inertia of the motor. Interestingly, backdriving the motor
results in harvesting energy and prolonging the battery life.
There have been literature that aimed to provide guidance
on how to design actuators [64] and the whole mechanics
of the robot [65] to improve backdrivability. Without going
deep into details of actuator design, this chapter aims to sum-
marize the control strategies that fully utilize the mechanical
backdrivability of the exoskeleton joints.

Given the fact that the expected users of backdrivable
exoskeleton still have partial abilities to move the affected
leg, one of the simplest approaches in this category is using
FSM to provide assistance only when necessary, and allowing
the user to voluntarily move the limbs in the rest of the time.
Murray et at. has proposed a control strategy for patients
with lower limb hemiparesis [66]. The controller consists of
three types of behaviors: gravity compensation, feedforward
movement assistance especially when reversing or initiating
lower limb movements during swing phase, and knee joint
stability reinforcement. The assistance strategy was designed
without specifying spatiotemporal trajectories such that users
should help themselves to maintain balance and select step
length.

1) VIRTUAL-FIELD-BASED CONTROL
a: BRIEF OUTLINE
1) Purpose: provide both gait guidance and assistance.
2) Concept: impose a virtual field to the configuration

space of LLE.
3) Advantages: allow step-to-step variance, encourage

voluntary walking.

Virtual-field-based control explicitly guide patients to a
suitable gait trajectory. The virtual field can be in the form
of torque field or flow field [67]–[69]. The torque field is
equivalent to a spring-damper system that connects an arbi-
trary point in the configuration space perpendicularly to the
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desired path, and thus it will always pull the leg normal to the
path. The damping and stiffness coefficients are adjustable.
Specifically, when the damping coefficient is zero, the control
scheme can be regarded as an artificial potential field, where
torque is the gradient of the field.

In contrast, flow field offers both guidance and assistance
and combines them into one single component. The flow
field is defined in order that the leg would be dragged by
a flow force when the configuration point is immersed in a
viscous fluid. Thus, the force exerted on the leg depends on
the comparison between the real velocity in the state space
and the reference velocity. It was further reported that the
flow-field-based control can provide assistance to s DoFs
in a m DoFs system, where actuated joints coordinate with
unactuated joints [67].

2) ENERGY SHAPING
a: BRIEF OUTLINE
1) Purpose: provide partial assistance to voluntary human

movement.
2) Concept: impose desired dynamics on the controller-

plant system.
3) Advantages: allow free movement of wearer; task-

invariant assistance.
Energy shaping is another control strategy that relies on

backdrivable actuators. It imposes desired behavior on the
controller-plant system. In contrast with admittance shaping
which is only capable of reshaping the apparent dynamics
of one DoF, energy shaping extends to reshape the whole
actuated DoFs. This strategy has been explored in under-
actuated robotic systems such as bipeds [70]. Locomotor
Control System Laboratory recently assessed the feasibility
of using this strategy in the control of LLE with backdrivable
motors [71]–[75].

In this control strategy, a relatively accurate dynamic
model —underactuated model is needed for describing the
exoskeleton side. It is generally expressed as:

Mq̈+ Cq̇+ N = Bu+ Bv (1)

whereM andC is the inertia and Coriolis matrix respectively,
u and v is the torque input from the motor and the human
respectively, N is the gravity vector, q is the generalized
coordinates, and B maps the force input to all degrees of
freedom. The three-dimensional position of the floating base
and the angle of unpowered joints are typically underactuated
degree of freedom.When deriving the dynamic equation from
Lagrangian approach, however, finding the optimal general-
ized coordinates is sometimes complicated. Interestingly, this
process can be simplified by defining holonomic constraints
to eliminate redundant generalized coordinates. Specifically,
Lin et al. [75] defined bilateral holonomic constraint to sim-
plify different part of the lower limb as a fixed base during
phase of heel contact, flat foot, and toe contact. It was in the
form of:

Mq̈+ Cq̇+ N + Aλ = Bu+ Bv (2)

whereA is the gradient of the constraint functions, and λ is the
Lagrangian multiplier. From equation (2) different equivalent
constraint dynamics for different contact phase is derived as:

Mλq̈+ Cλq̇+ Nλ = Bλu+ Bλv (3)

The calculation of Mλ, Cλ, Nλ, and Bλ, along with the
calculation of λ in (2) are referred to [76]. Interestingly,
the control input can impose desired dynamics on the plant
to shape the closed loop system as the following form:

M̃λq̈+ C̃λq̇+ Ñλ = B̃λv (4)

In other words, this strategy can reshape the inertia matrix,
Coriolis term, and gravitational vector to a required form.
As a result, the apparent dynamics of the human-machine
system is reshaped with respect to human input v. However,
it cannot be reshaped arbitrarily. For two equations to be
equivalent, a matching condition should be satisfied which
determines what form of closed loop dynamics is achievable.
Readers are referred to [70], [77] for more detail. The mean-
ing of energy shaping is twofold. First, from the perspective
of Euler-Lagrangian equation, the control input shapes the
kinetic and the potential energy and regulates energy vari-
ation. Second, this strategy is closely related to passivity.
The control input can distort the original passive vector field
imposed on the state space to a desired vector field.Moreover,
an energy storage value of the closed loop system is bounded
by the input energy.

D. VIRTUAL CONSTRAINT
1) BRIEF OUTLINE

1) Purpose: perform movement tasks without assuming
any motion ability of human.

2) Concept: use input-output feedback linearization to
track an optimized time-invariant trajectory.

3) Advantages: guarantee stability along the trajectory;
self-balance without crutches.

Virtual constraint was developed in the late 20th cen-
tury for the control of bipedal robots largely thanks to
Byrnes et al. [78]. Impressive results have been achieved
by implementing this control approach to bipedal robots
[79], [80] and prosthesis [81], [82]. LLEs and bipedal robots
share many challenges, e.g. having many underactuated
degree of freedom especially that from the posture of the
floating base, and state variables undergo discrete jumps
when the foot contacts with the ground. A team mainly
fromWandercraft company, Caltech, and university ofMichi-
gan [12], [83], [84] believes that translating the virtual-
constraint-based control from bipedal robotics [85] to LLEs
could lead to a next level of assisted human mobility.

Similar to energy shaping control strategy, an under-
actuated hybrid dynamics model that capture full body
motion is needed. Firstly, assuming that the human and
the machine is rigidly connected, then the Euler-Lagrange
method is used to derive equations of motion (EOM) of the
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human-machine system:

Mq̈+ Cq̇+ G = Bu+ JTstFst (5)

where the interpretation of symbols is similar to that of equa-
tion (1), except that the stance foot contact is in the form of
Jacobian matrix JTst times contact force Fst . Secondly, within
the EOM, the term of contact force JTstFst is calculated using
holonomic constraint like that in energy shaping. Finally, a
hybrid dynamics model will be set up by imposing a switch-
ing surface to the continuous dynamics. When the preimpact
state meets the switching surface, it will be transitioned to the
postimpact state by a precalculated reset map:

6 :

{
ẋ = f (x)+ g (x) u, x /∈ S
x+ = 1

(
x−
)
, x ∈ S

(6)

where 1 is the reset map, and S is the switching surface,
which in the simplest case, can be defined as the ground
clearance of the swing leg equals zero. Virtual constraint was
then imposed on the hybrid dynamics system to attract the
whole system to a zero dynamicsmanifold. Intuitively, virtual
constraint is similar to a physical constraint that restrict the
state in the state space to a certain time-invariant path. But
differently, the power injected into the closed loop system by
the virtual constraint is nonzero. Specifically, it is imposed by
designing a set of outputs as desired trajectories with relative
degree of two and/or desired speed with relative degree of
one. For example, the most frequently used output function
with relative degree of two is in the form of:

y = f (q) (7)

Then an input output feedback linearization controller can
be obtained by driving the output function asymptotically to
zero:

u = u∗ + v (8)

where u∗ is for linearizing ÿ = 0, and v is for asymptotically
driving the output function to zero. For example, the output
dynamics by applying PD controller on v is:

ÿ+ Kd ẏ+ KPy = 0 (9)

In this way, the zero dynamics manifold can be created
with supposing the output function being identically zero.
Additionally, the term partial hybrid zero dynamics (PHZD)
means that the zero dynamics manifold is contact invariant
and is derived by ignoring the output function with relative
degree equals one. It is important to study PHZD because
the stability of the designed trajectory can be examined on
the reduced dimensional internal dynamics [12]. The problem
of how to design a trajectory for walking with exoskeleton
that is both stable and natural is in the domain of trajectory
optimization.

E. OSCILLATOR-BASED CONTROL
1) BRIEF OUTLINE

1) Purpose: synchronize the assistance of LLE with actual
human walking.

2) Concept: adaptively learn the periodic characteristics in
walking.

3) Advantages: allows step-to-step variance; adaptivity of
controller.

Oscillator-based control method features a set of or a single
oscillator(s) that are used to synchronize the phase of the
controller with the periodic-assuming gait phase. Oscillators
are used to generate a limit cycle which synchronizes itself
to the phase of actual walking. When the actual gait deviates
from the prior orbit, the oscillator parameters will be adapted
to maintain the synchronization [86].

The first paper applying the adaptive frequency oscilla-
tor (AFO) to LLE was by Ronsse et al. [87]. Afterwards that
oscillator-based approach was mainly designed for hip joint
exoskeleton [26]. Recently this method was further validated
on single knee [88] or ankle [89] joint actuation and multi-
degree-of-freedom exoskeletons [90]. Because the oscillators
are robust to perturbation and can reduce the dimension of
control input, in addition to assistive robots, it has also been
used for autonomous robot locomotion. In fact, oscillators
are closely related to the notion of central pattern generator
(CPG). CPGs have been widely found in animals to render
rhythmic motion [91], and based on the same principle it
have been created for robotics control [92]. The frequently
used oscillators for LLEs such as Hopf oscillator [93] and
phase oscillator [87] are abstract oscillators which belong to
the three main types of CPG architecture (the other two are
recurrent neural network and half center oscillator) [94].

For example, Ronsse et al. [87] first applied the adaptive
oscillator proposed by Righetti et al. [86] to a single hip
joint exoskeleton. This method utilized a pool of oscillators,
each of which learned the phase, amplitude, and frequency of
each sinusoidal components. In this way the online Fourier
decomposition was performed to estimate the real-time hip
joint angle. This is similar to the notion of ‘‘limit cycle
construction of arbitrary shape’’ described in [95], i.e. to use
the aggregation of adaptive limit cycles to approximate the
periodic joint angle curve. This approximation was further
improved by kernel-based non-linear filter (NLF) adopted
from [96] to output the estimated joint angle trajectory.
Finally, a proportional force field controller was formed by
attracting the current state towards the phase-leading esti-
mated joint trajectory.

While most of the oscillator-based controller is for single
joint actuation, Seo et al. use it to control GEMS exoskeleton
with multi-degree-of-freedom actuation [90]. Firstly, IMUs
and dead-reckoning method was used to obtain the real-time
foot-to-foot distance, which was later sent to the oscillator as
a forced input. Secondly, one of the techniques for improving
the converging performance is to use a particularly shaped
adaptive oscillator (PSAO), whichmeans the basis function of
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FIGURE 4. Categories of sEMG-based control.

the online Fourier decomposition is particularly shaped using
prior information. For example, it was known beforehand
that foot-to-foot distance curve resembles a cosine function,
and thus it was then used to replace the basis function of
the oscillator system. Thirdly, another technique is adding a
coupling term of actual gait frequency detected by FSM to the
equation of frequency learning rate. In this way the oscillator
can benefit from a more accurate frequency signal capture
by the widely used FSM method. Finally, the torque output
was based on the estimated gait phase and the offline trajec-
tory function, which was regulated by environment class and
walking speed.

F. sEMG-BASED CONTROL
1) BRIEF OUTLINE

1) Purpose: control the LLE according to human intent
decoded from surface electromyography (sEMG)
signal.

2) Concept: various control method based on human
intent decoded from electrical activities of muscles.

3) Advantages: direct volitional control; avoid electro-
mechanical delay; wearers with severely impaired
motor abilities can still command the LLE, as long as
sEMG is detectable.

Controllers based on surface electromyography (sEMG)
utilizes the measuring of electrical activities for stimulating
muscles to estimate human intention, and further control the
exoskeleton to provide assistance. There are many advan-
tages of controlling with sEMG. Firstly, the time lag between
the onset of muscle movement and that of the exoskeleton
assistive motion can be drastically reduced because of the
avoidance of electromechanical delay (EMD) [97] which is
in favor of forming a real-time neuro-feedback loop [98], and
further enhance motor learning according to the neuroplas-
ticity [99]. Secondly, for those with muscle weakness (e.g.,
patients with incomplete SCI or hemiparetic stroke), motor
intention can still be read through the residual sEMG signal.
Thirdly, comparing with interaction force, sEMG can be used
to predict voluntary joint torque without overcoming limb’s
inertia and gravity. Fourthly, continuous mapping to joint
torque, joint angle, etc. can be implemented by this type of
neural signal.

However, there are also disadvantages of sEMG-based
control. Firstly, from the perspective of EMG generation, the
redundancy of muscle activation solution induces complexity
of EMG signal decoding. Secondly, extra complexity was
added by confounding factors from different conditions of
capturing the sEMG signal, including electrode shift, limb
position, contraction intensity, muscle fatigue, time varying,
etc. [100], [101]. Thirdly, due to the lack of robustness of
sEMG, to date, exoskeleton controlled by solely sEMG input
is still unsafe for assisting patients with motor weakness in
daily life.

The emergence of human machine interface using sEMG
signal dates back to 1970s [102]. Afterwards, sEMG have
been extensively applied to prosthesis [103], teleopera-
tion [104], rehabilitation robots [105] etc. Over the decades
of development, the sEMG-based control can be divided into
the sEMG signal decoding part and the control part, as shown
in Fig.4.

The simplest approach is On-Off Control, which relies on
pattern recognition to separate human intention into a several
classes [106], [107]. The predefined trajectory is replayed
when a class is detected. Additional to discrete classes, the
decoding process can also map the sEMG signal into contin-
uous output, e.g., human voluntary joint torque. This can be
done by three alternative methods: 1) proportional estimation
that the predicted joint torque is computed by multiplying a
gain to a single channel of filtered sEMG signal [105], [108];
2) non-linear model that used relatively complicated methods
(e.g. machine learning [109] or energy kernel method [110],
etc.) to perform the mapping; 3) musculoskeletal model
proposed by Hill [111] or other modifications [112], [113]
that estimate joint torque upon biological understanding of
internal dynamics of human limb [114], [115]. After the
continuous torque mapping, a wide range of controllers can
be applied to provide assistance. For example, proportional
control is the simplest way that the assistive torque is pro-
portional to the human joint torque [108], [116]. Impedance
or admittance controller takes the estimated human joint
torque as input to reshape the apparent dynamics of the
exoskeleton joint to be assistive [117]. It has been covered
in the Admittance Shaping chapter. Dynamic-model-based
control mainly uses dynamic models adopted from humanoid
robotics [118], [119], on which assistive torque calculation
was based [120]. Other uncommon method including ambu-
lation speed regulation based on sEMG signal [121], synergy-
based control [122], etc.

G. EEG-BASED CONTROL
1) BRIEF OUTLINE

1) Purpose: control the LLE according to human intent
decoded from electroencephalography signal.

2) Concept: various control method based on human
intent decoding from signal of brain activities.

3) Advantages: direct volitional control; wearers with
severe paralysis can still command the LLE; potential
of decoding rich information from EEG.
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EEG-based Control is manipulating the LLE according to
the command from brain-machine-interface (BMI) with elec-
troencephalography (EEG) input. Unlike other brain signal
such as ECoG [123], EEG utilizes non-invasive electrodes
and has a global view of the brain signal. The term BMI is
coined by prof.Miguel Nicolelis, who has led theWalk-Again
project that showcased the EEG-controlled exoskeleton in
the 2014 Brazil World Cup. Similar to EMG, EEG is also
a biological signal generated from human body. The current
EMG-based control can perform direct neural control sup-
ported by prior knowledge on continuous kinematic informa-
tion decoding such as musculoskeletal model. Yet most of the
current EEG-based exoskeleton controller still have to resort
to pattern recognition to decipher the brain signal into discrete
classes. The result is that the exoskeleton controller has to
provide a set of command based on merely the abstraction
of intent. Therefore, how to decode the human intent from
the EEG signal and how to control the exoskeleton based on
the output of the BMI become two major challenges of EEG-
based control strategy.

The general structure of EEG-based controller is shown
in Fig.5. Firstly, the BMI captures brain signal to esti-
mate human intent, which is then output as intent abstrac-
tion. Secondly, motor control algorithms generate command
signals to the exoskeleton to provide assistive torque on
the human limbs. And finally, the sensorimotor feedback
to the human closes the loop by enabling the wearer to
actively regulate the brain signal in order to better receive
assistance.

The signals of the brain are essentially generated from
neurons. Intraparenchymal electrodes can detect local field
potentials deep in the brain. Electrocorticogram (ECoG) cap-
tures signal from under the skull but not penetrating the
brain. It has been reported that a patient with tetraplegia was
able to control a full body exoskeleton up to eight direc-
tions using BCI input from implanted ECoG recorders [123].
While electroencephalogram (EEG) utilized non-invasive

electrodes placed outside the scalp, hence it has a global
view of the brain signal. This review focus on the EEG
because its non-invasion has allowed more extensive usage
on not only exoskeleton [124], but also other assistive
devices [125].

In real-time EEG signal processing, two types of features
are commonly used in BCI. One is endogenous signal that
is spontaneous generated by the user, such as ERD [126].
Another is exogenous signal evoked by external stimulus,
such as steady state visual evoked potentials (SSVEP) [127]
and P300 [128]. Afterwards, decoding algorithms translate
these features into human intent estimation. Except a few
pilot studies that applied continuous decoding [129], [130],
most of the current human intent estimation still utilized
discrete classifiers [124].

Another challenge is how to design a controller which,
based on only the intent abstraction input, can assist
ambulation more naturally or even can be treated as the
substitution for the combination of spinal cord and muscu-
loskeletal system. The most frequently used control strategy
is trajectory tracking with mechanical balance support [123],
[131], [132] or with built-in balance maintaining mech-
anism [133]. Assist-as-needed strategy was reported as
well [126].

Moreover, the sensorimotor feedback is provided to the
wearer simultaneously. Thanks to this feedback, not only
the machine would make adjustments, but also the wearer
would adaptively learn how tomoderate brain signals in order
to maintain the proper dialogue with the exoskeleton. This
was termed as the ‘‘two-learner system’’ by Millán [134].
Because the exoskeleton aims at assisting patients whose
corticospinal connection or descending tracts to the muscles
are cut due to lesion, the future brain-controlled exoskeleton
should function as the substitution for the spinal cord and
the musculoskeletal system, so that the wearers can control
the human-machine system using the same neural signal to
control their intact limb.

FIGURE 5. Structure of EEG-Based Control. When the internal neural pathway is cut due to lesion, the exoskeleton helps to establish an external neural
pathway so that the proprioceptive feedback loop is restored.
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H. CONTROL OF HYBRID EXOSKELETONS
1) BRIEF OUTLINE

1) Purpose: generate walking gait by controlling robotic
actuators and functional electrical stimulation at the
same time.

2) Concept: the require joint torque for walking is con-
tributed by both robotic actuators and muscles.

3) Advantages: improve cardiorespiratory fitness; reani-
mate muscle function significantly; lighter exoskele-
tons are needed due to muscle torque contribution.

Hybrid exoskeleton is a kind of rehabilitation devices that
combines functional electrical stimulation (FES) with robotic
exoskeletons [135]. Control of lower limb hybrid exoskele-
tons requires modulating torque generated by muscle stimu-
lation and by robotic actuation to achieve a desired walking
gait. It was believed to be more beneficial than using FES
or robotic assistance only [136]. For example, weight of the
robotic actuators in LLE can be reduced due to the significant
torque contribution of muscles. Also, regular FES-induced
muscle recruitment will facilitate cardiorespiratory fitness
enhancement.

As a special device that controls both human and robot,
hybrid exoskeletons can be categorized according to whether
the robotic actuation is semi-active or fully active, and
whether the FES is in open-loop or closed-loop control [137].
Semi-active robotic actuation only dissipates or stores kinetic
energy created by muscle stimulation when being con-
trolled [138], [139]. Instead, fully active robotic actua-
tion can compensate or resist muscle torque to perform
a desired motion [140], [141]. Open-loop control of FES
replays a predetermined pattern of stimulation triggered by
FSM [142], [143]. Instead, Closed-loop control of FES relies
on indirect measurement of muscle performance to modulate
the stimulation in real time [144], [145]. In the spectrum
of hybrid exoskeletons, the ones with fully active robotic
actuation and closed-loop FES control have been the focus
of research in recent years. However, three challenges must
be addressed for these devices.

The first challenge is the difficulty of obtaining muscle
performance for controlling FES in closed loop. Mostly,
indirect measurements are applied. For example, Ha et al.
used estimated muscle torque profile in one step – com-
puted by subtracting motor torque from nominal torque –
as semi-closed-loop feedback signal to shape the FES in
the next step [146]. Interaction torque is another frequently
used feedback that some FES controllers sought to minimize
the interaction torque while the motors ensured a certain
reference trajectory was followed [137], [147]. Some other
literature employed FES control scheme that based solely on
joint position feedback [140], [145].

The second challenge is the complex muscle activation
dynamics, including electromechanical delay (EMD), mus-
cle fatigue, nonlinear and time-varying dynamics model,
and parameter uncertainties associated with muscle phys-
iology, etc. [148]. Recent literature has investigated how

to design control based on musculoskeletal modeling with
stability proof [149]–[151]. However, most of these works
were experimented in sitting posture. Generally, activation
dynamics were not explicitly modeled in tasks of assisting
daily life activities. But instead, adaptive control approaches
were employed. For example, iterative learning control has
been used to assist walking [137] and sit-to-stand task [145].
And adaptive synergy combination was used to compensate
the uncertainty of time-varying model in walking [144].

Within the muscle activation dynamics, the quick onset of
muscle fatigue induced by FES also contribute prominently
to its complexity. It is because of the nondiscriminatory
and synchronous stimulation of all muscle fibers, in contrast
with recruiting mainly slow-twitch fibers asynchronously in
daily voluntary activities [152]. Currently, the goal of muscle
fatigue management is to maintain desired muscle torque
output in the presence of fatigue by means of intensifying the
stimulation, instead of aiming to delay fatigue. For example,
del-Ama et al. managed to change muscle stimulation con-
figuration if muscle fatigue is detected – 19% drop of torque-
time integral in one step [137]. And Sharma et al. scaled the
desired muscle activation value by the inverse of normalized
fatigue estimation to maintain the desired output [153].

The third challenge is actuator redundancy in hybrid
exoskeletons. Because at least one flexor, one extensor and
one robotic actuator are needed for an active joint, the number
of control inputs can be several times of the number of
joints. Some literature adopted a muscle-first approach that
most of the kinetic energy was injected from muscle, while
the motors only provided a short burst of assistance [143].
Some designed a control strategy that can allocate torque
contribution between muscles and motors in an arbitrary
ratio. Recently, a bio-inspired control strategy – synergy-
based control was proposed to address this challenge, which
has the advantage of controlling high-dimensional systems by
solving low-dimensional problems [154].

2) SYNERGY-BASED CONTROL
a: BRIEF OUTLINE
1) Purpose: reduce the dimension of control problems.
2) Concept: inspired by a hypothesis of how human con-

trols movement.
3) Advantages: solve the problem of actuator redun-

dancy; reduce the computational complexity of control
problems.

Synergy-based control is inspired by a hypothesis that
the central nervous system controls the overly redundant
musculoskeletal system by linearly combining a small num-
ber of synergies – the coherent activation of a group of
muscles [155]. Despite no solid proof of the existence of
muscle synergy [155], [156], this concept has been used in
many robotic applications. Systemswith redundant actuation,
especially hybrid exoskeletons, can take full advantage of the
synergy-based control [140], [144], [154], [157].
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Typically, the dynamics model of a hybrid exoskeleton is:

Mq̈+ Cq̇+ G+ fpm + 0ext = 0 (10)

where q ∈ Rn is the joint angle vector, 0ext ∈ Rn is
the external torque input and unmodeled disturbances, and
0 ∈ Rn is active joint torque input. 0 can be defined as:

0 = B (q, q̇) · φ (t) · u (t) (11)

whereB ∈ Rn×mmatrixmaps them-dimensional torque input
to n joints, φ ∈ Rm is a diagonal fatigue matrix (note that
the motors never fatigue, hence the corresponding diagonal
elements equal 1), and u ∈ Rm is the control input vector
defined as:

u =
[
um1 um2 · · · umk ur1 ur2 · · · url

]T
(12)

where um1 to umk are k muscle activation inputs, and ur1 to
url are l robotic actuator inputs. According to the muscle-
synergy hypothesis, the desired control input can be formed
by linearly combining synergies with a small error:

ud (t) = W × cd (t)+ uloss (13)

where W ∈ Rm×p consists of p synergies, cd (t) ∈ Rp is the
time profile of the non-negative coefficients of linear com-
bination, and uloss is a small construction error that accounts
for the part where synergies cannot perfectly fit the desired
control input. The number of synergies usually satisfy p < m,
in order to reduce the dimension of the control problem.

III. DISCUSSION
This paper has reviewed the state-of-the-art control strategies
for lower limb rehabilitation exoskeletons. Typical papers
within each of the eight categories are listed in Table 1.
In this section, the control strategies are further discussed
in a macroscopic perspective. This is in attempt to draw a
big picture on the current state of LLE control development,
along with what to expect from the future control design.

A. THE CURRENT STATES OF CONTROL STRATEGIES
Regardless of the purpose of LLEs, three major challenges
persist in the control strategy design: human intention detec-
tion, motion control algorithm, and control optimization.
Solving the first challenge leads to setting up a steady com-
munication pipeline between the LLE and the human. In the
forward direction of the pipeline, the machine is considered
more intelligent by understanding the user better. In the oppo-
site direction, sensorimotor feedback provided to the human
is a foundation of motor learning and rehabilitation. Solving
the second challenge leads to more agile human-machine
movements that supports ADL or facilitates rehabilitation.
And solving the third challenge allows the control strategies
to adapt to different individuals and different tasks. Hereby
the current states of the control strategy design that address
these three challenges are discussed.

1) SENSING TECHNOLOGIES
One of the earliest yet the most widely used approach
to obtain human intention is through ‘‘buttons’’, which is
pressed by wearers or doctors nearby to select walking mode.
The ‘‘buttons’’ can be in various type, such as joystick in
Rex, touch screen in Atalante [12], and joystick plus trig-
ger buttons in Mina V2 [39]. Despite that this human input
approach can only be incorporated with FSM or other high
level trajectory planning unit, its high efficacy has been
proven in Cybathlon that persons with complete lower limb
paraplegia could traverse through complex terrain by this
input approach [41]. But the efficacy on rehabilitation is still
debatable since active lower limb movement intention is not
involved in this control.

Joint angle feedback is virtuallymandatory for exoskeleton
control, especially in regulating the motor current by compar-
ing the commanded and the real joint angle. But in terms of
human intention detection, it is often used as detecting the
extent to which the user’s limb is deviated from the desired
path in an exoskeleton with backdrivable actuator. Thus,
the application includes inferencing interaction torque by
displacement of the series elastic actuator [158], deducing the
virtual field force by joint angle deviation [68], calculating
virtual impedance by the current angular velocity [45], etc.

Interaction torque is another frequently used input espe-
cially for admittance controller, which can generate real-time
trajectory [159] or make trajectory correction according to
it [158]. It is also used to reshape the equivalent constraint
dynamics into a desired form [73]. But this input approach
implies that wearers must first compensate the inertia and
gravity of their own limb to apply force on the LLE. Although
imposing negative impedance on the apparent dynamics of
the exoskeleton is feasible, it has to deal with the stability
issue associated with the positive feedback loop [45].

The utilization of sEMG signal includes replaying trajec-
tory after discrete walking phase recognition and continu-
ous direct volitional control. The latter one exemplifies the
advantages of using sEMG signal: to estimate the voluntary
muscle force produced by human ahead of EMD [116], [160].
This is important because it provides a method to obtain the
human input to the whole human-machine system, instead
of merely the interaction torque input to the exoskeleton
system.

EEG has a great potential in controlling robotic devices.
Yetmost of the current employments of EEG signal still resort
to black box model to classify a short window of EEG signal
for selecting which predefined trajectory to replay. Realizing
the potential of EEG can be expected from the breakthrough
made by Vouge et al. [130] that used continuous regression
to enable a monkey wearing an exoskeleton to track a cursor
on a screen.

Multi-sensor information fusion has a potential to better
decode the human intent. Fusion approach is critical to exploit
this potential. The first choice among these approaches is
machine learning techniques, e.g., RBF neural network for
predicting voluntary joint torque using sEMG and joint
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TABLE 1. Summarization of typical papers within each control strategies.
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TABLE 1. (Continued.) Summarization of typical papers within each control strategies.
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TABLE 1. (Continued.) Summarization of typical papers within each control strategies.
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TABLE 1. (Continued.) Summarization of typical papers within each control strategies.

angle [109], LDA for classifying human intent using sEMG
and EEG [161], and CNN for recognizing gait phase with
plantar pressure and IMU acceleration data [162]. The sec-
ond is on-board musculoskeletal simulator, which was first
proposed in [163] to estimate the wearer’s kinetic gait profile
using sensor data from both human and robot. The third is
to explicitly put multiple sensor inputs into the control law.
For instance, [73] used joint angles and interaction force to
complete the equation of equivalent constrained dynamics,
and ground contact force to switch to dynamics of different
walking phase.

2) MOTION CONTROL ALGORITHMs
Which particular motion control algorithm to be adopted
affects by many factors, such as 1) the actuator is backdriv-
able or not, 2) whether passive trajectory following or active
rehabilitation training is required, and 3) whether involving
dynamicsmodel is necessarily to improve torque output accu-
racy. The following passages discuss which is the optimal
type of motion control algorithm in different scenarios.

Generally, the control based on predefined trajectory is
enough versatile to assist ADL [39]. This type of control
relies on a high-level FSM to select which predefined tra-
jectory is to be replayed. The FSM can take classification
result of EEG or EMG as input, or employ buttons input.
However, numerous parameters should be tuned for each
individual, including different walking phase parameters in
different terrain.

One solution is introducing human intention input that
is less abstract, e.g., gait completion percentage estimated
by oscillator, interaction torque, and human voluntary joint
torque estimated by EMG. These inputs can lead to oscillator-
based control [87], interaction-torque-driven admittance
shaping [45], [59], and EMG-driven admittance shaping [52],
respectively. These are more dexterous in assisting human
locomotion. Furthermore, these control strategies results in
active rehabilitation training. It has been reported that usage
of active training devices such as EMG-driven HAL in
patients with SCI led to muscle hypertrophy, nerve regenera-
tion, and neural system reorganization [164]–[166]. Similar
outcome was shown for stroke patients that rehabilitation
result equivalent to traditional therapy and even bonus effect
for sub-acute patients were reported [167]. Another solu-
tion is replacing the predefined trajectories with optimized
ones, which is covered in discussion topic ‘‘optimization
techniques’’.

Whether the actuator is backdrivable also have a significant
impact on the control algorithm design. For non-backdrivable
motors, especially that with high transmission ratio, usually
the corresponding motion controller is in kinematic control
mode, i.e., regulating the joint angle or joint velocity of
the actuator. The kinematic approach can be in the form
of plain trajectory tracking [168], admittance control [54],
some of the biological- signal-based control [121], and so
on. The controller for executing the kinematic command can
be simple PID [41], or with some sophisticated method such

VOLUME 9, 2021 123053



W.-Z. Li et al.: Review on Control Strategies for Lower Limb Rehabilitation Exoskeletons

as model-based control, which directly regulate torque out-
put by input-output linearization controller in underactuated
model [12], or by feedback linearization controller in fully-
actuated model [50].

If the exoskeleton makes use of backdrivable actuator, e.g.,
pneumatic muscle, SEA, and PMSM with low transmission
ratio, then its association with intelligent control would pro-
vide more flexible human-machine movement. One of the
important features of these motion controllers is to use joint
angle deviation to estimate human intention and to further
make adjustment. This feature leads to, for example, virtual-
field-based control which adjust the exoskeleton torque out-
put bymeasuring joint angle deviation [68], or energy shaping
which reshapes the dynamics equation [74].

Involvement of dynamics model or not is also a key factor
in motion control algorithm design. There are three types of
frequently used dynamics model for LLE: 1) simple one DoF
mass-spring-damper model [169], 2) fully-actuated dynam-
ics model [50], [51], and 3) floating-base hybrid dynamics
model [12], [74]. The first one can be used to characterize
the SEA or describe the machine side of the exoskeleton. For
this manner of modeling, admittance shaping can reshape the
parameters within the model into a desired form. In terms of
fully-actuated model, usually the pelvis is modelled as the
fixed base. And the feedback linearization techniques can
be applied in single support phase to calculate the required
torque output. Regarding the floating base hybrid dynamic
model, two available corresponding controllers are: input-
output feedback linearization controller and energy shaping.
The former requires explicitly defined trajectory (i.e., vir-
tual constraint). While the latter operates without specifying
trajectory and allows for free human-machine movement in
various direction and velocity.

3) OPTIMIZATION TECHNIQUES
Recent years have witnessed increasing application of
optimization techniques in control of LLEs in order to
better meet different control objectives, which can be
1) quick adaptation to different user’ condition or pref-
erence [170]–[172], 2) minimizing human joint torque or
metabolic cost [173], [174], and 3) faster comfortable walk-
ing [175], etc. These techniques have been employed to per-
form parameter optimization [171], [173], [176], trajectory
optimization [12], [172], [174], [175], [177], and control law
optimization (optimal control) [178]–[180].

Parameter optimization is to find the optimal set of param-
eters within the designed control algorithm, instead of heuris-
tically tuning it. However, the fact that usually the cost
function can only be updated after completing a few gait
cycles makes the cost function a black box, whose deriva-
tives are impossible to compute. Therefore, derivative-free
optimization techniques can be applied. For example, the per-
formance of Bayesian Optimization and Evolution Strategy
were evaluated respectively in [173] to find the best set of
energy shaping factors that minimize human joint torque
exerted. Moreover, reinforcement learning technique SARSA

was employed in [176] to adjust the parameters in admittance
controller for the purpose of encouraging patient force input
in active rehabilitation training.

Trajectory optimization is to plan an optimalmotion profile
for the subsequent tracking controller. In the field of LLE,
the complex hybrid and underactuated dynamics makes solv-
ing the optimization problem time-consuming. Thus, often
only offline trajectory optimization is employed. For exam-
ple, direct collocation technique [181] is applied to Atalante
exoskeleton, considering friction cone for no foot slippage,
ZMP for no foot rotation, and proper foot clearance, etc. [12].
This technique has been proven effective and robust, and has
also been applied to other sophisticated robots [182]. In [177],
a Guided trajectory learningmethod was first proposed to suit
the need for low time complexity of online trajectory plan-
ning. Its idea is using deconvolution neural network trained
by the database of trajectory optimization to predict the online
trajectory. Specially, the trajectory optimization also adapts
itself to make sure the neural network is perfectly trained.

Human in the loop is a special approach of trajectory
optimization for LLEs. Tucker er al. has proposed a COSPAR
algorithm in this approach [172], which finds the trajectory
parameters that the user most prefer. Besides, the team led
by Prof. Steve Collins has built an idealized exoskeleton
emulator using offboard actuators to investigate what is the
best control strategy for future LLEs [183]. They found the
best assistive torque profile with minimal metabolic cost
in [174], and that with faster self-selected walking speed
in [175]. Interestingly, they concluded that the benefits of
LLEs originate from the changes in the wearer to adapt to
the new walking pattern.

Optimal control that directly incorporate the optimization
techniques into the feedback control law is still challenging
for LLEs. Promising advances have been made recently. For
example, it was investigated how to perform trajectory track-
ing control using reinforcement learning in simulation [184],
and in human subject test [178], and how to perform assist-
as-needed control [179], etc.

B. FUTURE EXPECTATIONS
The exoskeleton is playing an important role in assistance
and rehabilitation for persons with motor disabilities. How-
ever, before vastly deploying LLEs into daily life, three
requirements should be met: empowerment, embodiment,
and agility.

The first requirement is a basic prerequisite that exoskele-
tons should empower the wearer with motor disabilities to
stand up and walk normally. The future control strategies
should solve the balance maintenance issue rather than pas-
sively strapping the user with paralysis to a cumbersome
exoskeleton which is balanced with large foot. Regarding
hemiparetic patients with partial balancing skill, the future
LLE should have a high bandwidth and response quickly
to the human intention, which is important for the users to
voluntarily command the human -machine system to recover
balance from unexpected impacts.
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In addition to balance, the collective gait should be care-
fully designed, which should be energy economic and con-
forming to medical instructions. Afterwards, tracking the
desired gait (either defined offline or generated in real-time)
may require an accurate dynamics model, in which human-
machine coupling, closed chain dynamics during double leg
support, and rigorous post-impact mapping should be inte-
grated. It is also expected that the future bio-signal to be pre-
cisely decoded for establishing an accurate human-machine
dynamics model.

The second requirement for future LLEs is embodiment.
Whenever human perform a movement, the neural signal
from the brain goes through spinal cord and peripheral nerve
to reach the muscle. While the exoskeleton with decent
human intention detection provides appropriate assistance to
the musculoskeletal system, which produces proprioceptive
feedback to the brain to close the human motion control
loop. The future LLEs should be predictable enough so that
the real proprioceptive feedback accords with the brain’s
pre-estimation. Because of brain plasticity, this predictability
allows the user to assimilate the exoskeleton into their body
schema so that wearers can use it not as a tool, but as part of
their body.

The future exoskeleton should also meet the requirement
of agility. This is for users to swiftly perform complex move-
ments, such as sit/stand transition and stair descending or
ascending. Moreover, the ability to traverse through complex
terrains and to navigate through moving obstacles is also
needed.

IV. CONCLUSION
This paper focuses on the recent developments in the control
strategies of lower limb rehabilitation exoskeleton, which are
categorized according to their similarities. Technical details
within eight different classes are reported. However, the state-
of-the-art control strategies are yet to maximize the poten-
tial of the modern hardware. It is concluded that future
developments of control may benefit from: 1) more precise
human intention decoding, which is the foundation of real-
izing human-robot shared control; 2) smarter core control
algorithms that respect human intention and are compatible
in various tasks; 3) more accurate human-machine dynamics
model; 4) better predictability of the LLE for facilitating
embodiment; 5) more intelligent balance assistance that lean
not on non-backdrivable actuators. Before meeting the ulti-
mate goal of empowerment, embodiment, and agility, there
is still a long way ahead.
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