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ABSTRACT With the popularization of machine learning (ML) techniques and the increased chipset’s
performance, the application of ML to pedestrian localization systems has received significant attention
in the last years. Several survey papers have attempted to provide a state-of-the-art overview, but they
usually limit their scope to a particular type of positioning system or technology. In addition, they are
written from the point of view of ML techniques and their practice, not from the point of view of the
localization system and the specific problems that ML techniques can help to solve. This article is intended
to offer a comprehensive state-of-the-art survey of the ML techniques that have been adopted over the last
ten years to improve the performance of pedestrian localization systems, addressing the applicability of
ML techniques in this domain, along with the main localization strategies. It concludes by indicating the
underlying open issues and challenges associated with the existing systems, and possible future directions
in which ML techniques could improve the performance of pedestrian localization systems. Among other
open issues, most previous authors have focused their attention on position estimation accuracy, whichwastes
the potential of ML techniques to improve other performance parameters (e.g., response time, computational
complexity, robustness, scalability or energy efficiency). This study shows that there is a strong trend towards
the application of supervised learning. Consequently, there are many potential research opportunities in the
use of other learning types, such as unsupervised and reinforcement learning, to improve the performance
of pedestrian localization systems.

INDEX TERMS Localization system taxonomy, machine learning, machine learning taxonomy, pedestrian
localization systems, reinforcement learning, scene analysis, supervised learning, unsupervised learning.

I. INTRODUCTION
There is currently a high demand for pedestrian localization
systems in various application areas, and which are expected
to work in diverse scenarios with a reasonable accuracy.
Many of these systems are integrated in safety-of-life ser-
vices and mission-critical communication systems, such as
disaster management for search and rescue personnel. On a
daily basis, many firefighters find that they are in trouble
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because they become disoriented in forest fires or large build-
ings on fire, among others. Pedestrian localization systems
are not only restricted to the professional market but their
demand is also widespread for all kinds of location-based
services (LBSs), such as guidance in airports, hospitals or
shopping malls. Such LBSs have particular requirements and
they demand specific attention, not only with respect to the
accuracy but also to many other system performance param-
eters (e.g., precision, time response, computational complex-
ity, robustness, scalability or energy efficiency). Depending
on the purpose of the LBS, the algorithms addressing the
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pedestrian localization systems will follow different strate-
gies, which could have a direct impact on those system per-
formance parameters [1], [2].

Due to the explosion in the availability of data and com-
putational power, machine learning (ML) techniques have
improved significantly in recent years and their use has
become extremely popular in many fields, including in pedes-
trian localization systems. Fig. 1 shows the number of papers
published in Scopus in the last ten years that have featured
ML application in localization. ML can be used for many
different purposes, such as classification, prediction, opti-
mization, clustering or data dimensionality reduction, among
others. Thus, ML techniques allow a pedestrian localization
system to scrutinize the raw data and to obtain new knowl-
edge, which can be used to improve the location estimation.
For example, it is common to find localization systems that
incorporate ML techniques for tasks such as estimating step
length, recognizing different types of movement, or detecting
and then mitigating certain environmental conditions that
may interfere with location estimation.

Due to the growing interest in the application of ML
in localization systems, several studies have examined the
use of ML in localization. However, these works tend to
limit their scope to only one type of technology (radio fre-
quency [3], [4]), or to exclusively only one type of local-
ization technique (e.g., scene analysis [5], simultaneous
localization and mapping (SLAM) [6], device-free localiza-
tion [7]), or to only one type of ML techniques (e.g., deep
learning (DL), [5], [6], [8]). In general, works that present
the use of ML in localization systems do so from the point
of view of ML techniques and their practice, not from the
point of view of localization systems and the benefit that they
obtain [9].

This paper aims to provide a comprehensive state-of-the-
art study on the use of ML techniques in localization systems,
from the following points of view: considering the different
localization system typologies, focusing on the specific pro-
cesses that benefit from the use of ML, the diversity of ways
to quantify the performance of localization systems, and the
obtained improvements.

To make this study more tractable, the scope has been
narrowed to indoor pedestrian positioning systems. The target
users, pedestrians, have been chosen given the fact that more
than half of the works addressing localization systems focus
on pedestrian localization [10]. The target systems, indoor
positioning systems, have been chosen given the fact that
pedestrians spend more than 90% of their time in indoor sce-
narios [11]. For the contrary, outdoor environments, Global
Navigation Satellite System (GNSS) is a mature technology
that can be considered to be a de facto standard. The main
reason for this choice is that GNSS is widespread and is able
to provide robust solutions for many applications in a wide
range of performance/price ratios, while there are several
different indoor positioning solutions, each one specialized
for a given scenario and generally expensive, making the
survey a more useful tool [12].

FIGURE 1. Number of papers published on Scopus using ‘‘machine
learning’’ and ‘‘localization’’ as keywords.

This survey shows the trends in the application of ML in
pedestrian localization systems in the last 10 years. The main
contributions follow:
• A systematic literature review on the application of ML
techniques in pedestrian localization systems, focusing
on the specific localization stage or process in which the
ML technique is applied.

• Identification of the underlying open issues and chal-
lenges associated with the existing systems, and possible
future directions in which the ML techniques might
improve the performance of pedestrian localization sys-
tems.

The rest of this survey is structured as follows. Section II
presents related papers with the main topic of this survey,
and the definition of taxonomies used for papers classifi-
cation. Section III presents the applied method in the sys-
tematic literature review, highlighting the main aspects of
the methodology and its application. Section IV presents the
compendious of the ML applications in pedestrian local-
ization systems, identifying the point in the location esti-
mation chain where the ML technique intervenes. Finally,
section V summarizes the lessons learned during the survey
construction, including the open research opportunities and
the challenges.

II. BACKGROUND AND SUPPORTING TAXONOMIES
This section presents the important papers that allow us to
build the state-of-the-art of both localization systems and
the use of ML techniques. The constraints, weak points,
and obtained improvements from the application of ML in
pedestrian localization systems are also highlighted in this
section.

A. PEDESTRIAN LOCALIZATION BACKGROUND
There are two general approaches in the study of pedestrian
localization systems to estimate the location of a pedestrian.
The first is based on information from satellites, where the
GNSS uses mature technologies that are able to provide
robust solutions for a wide range of outdoor applications.
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The second, and the focus of this survey, is the use of
different technologies applied in indoor scenarios, where
the use of satellite signals cannot be considered [12]. In an
effort to complement or to find alternative solutions to the
GNSS, many researchers have defined and proposed tech-
niques using a range of technologies to estimate the pedes-
trian’s localization. The authors of the surveys in [13]–[18]
introduce localization techniques, including multiangulation,
multilateration, scene analysis, proximity, and dead reck-
oning (DR), among others. These surveys also present the
most common metrics that are used as input information by
the localization techniques. Metrics such as time of arrival
(ToA), time difference of arrival (TDoA), roundtrip time
of flight (RToF), received signal strength (RSS), angle of
arrival (AoA) and the phase of arrival (PoA) are commonly
used to estimate the distance and/or relative angle between
a fix node and a mobile device. Meanwhile, metrics such as
accelerations, angular rates and magnetic field strength are
commonly used to estimate the displacement of a moving
object.

From these surveys, a basic general taxonomy of local-
ization systems has been defined (see Fig. 2), which will
be used to classify the papers reviewed in this paper from
the perspective of pedestrian localization systems. In this
taxonomy, there are two main families of localization tech-
niques: position fixing and DR. In position fixing, the signals
collected from the scenario are used to estimate the location
of a pedestrian by applying geometric or scene analysis local-
ization techniques. The geometrical localization approach is
based on using ranging or bearing information obtained from
the signal metrics and then applying localization techniques,
such asmultiangulation ormultilateration. The scene analysis
localization technique, which is also known as fingerprinting,
requires a reference localization map to be created using fea-
tures related to the signals available in the scenario. Received
power is the most commonly used signal feature because it is
relatively easy to obtain and allows getting an acceptable per-
formance. The other main family of localization techniques
(i.e., DR) is based on the knowledge of a previous position,
which is continuously updated by integrating consecutive dis-
placements. Inertial measurement units (IMU) are the most
common technology for its implementation. Two main types
of DR techniques have been differentiated in this survey: iner-
tial navigation systems (INS) and pedestrian dead reckoning
(PDR). INS is a self-contained localization and navigation
technique that tracks changes in the orientation, velocity and
position of an object by using the measurements provided by
accelerometers and gyroscopes mounted on it. PDR makes
use of the fact that a human moves by taking steps, so it
updates a known position by integrating step lengths and
orientations. Position fixing and DR methods have comple-
mentary pros and cons, so it is common to merge them to
compensate their limitations with their advantages; as shown
in Fig. 2. Commonly, the fusion process uses Bayesian filter-
ing, which estimates a state of a dynamic system from noisy
observations. In the most basic form of location estimation,

FIGURE 2. Taxonomy of pedestrian localization system techniques.

the state of interest is the localization of a pedestrian using
signals or information provided by sensors that are either
placed in the scenario or carried by a pedestrians.

When different localization systems are compared,
the position accuracy is the most common performance
parameter. However, there are other parameters that are also
important, such as the precision, the computational complex-
ity, the robustness, the scalability, the computational cost or
the energy consumption [13], [14], [16]. The lack of standard
evaluation methodologies has been one of the biggest barriers
in the adoption of non-GNSS pedestrian localization systems
by the mass market. Recent works, such as the ISO/IEC
18305 standard, try to deal with this problem [19] but they
should be extended to also include good practices related
to the evaluation and comparison of pedestrian localization
systems that make use of ML techniques.

B. EXISTING SURVEYS ON MACHINE LEARNING AND
LOCALIZATION
Keeping in mind the aim of improving the performance of
localization systems, many researchers have considered the
application of ML as a powerful alternative to solve some
of the complex problems related to the localization process.
ML approaches are more effective than traditional mathe-
matical tools when used to solve the complex non-linear
problems that are usually too complicated for classical meth-
ods. The literature includes some surveys of ML application
in pedestrian localization; for example, in [4], where the
authors perform their study from the point of view of ML, its
features, the associated methods, the used datasets, the avail-
ability of the datasets and the application of ML in pedestrian
localization systems based on wireless signals, specifically
radio frequency signals. The authors in [8] focus on the ML
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application in LBS supported by radio frequency signals.
The authors consider that transfer learning (TL) and DL are
the best ML approaches to LBS, due to the complexity and
diversity of the positioning environment, so they concentrate
their efforts only on these ML techniques and the challenges
of their application. DL is a special learning architecture that
is applied in ML applications, which offers an alternative
to improve a specific performance parameter in pedestrian
localization systems because DL provides better results with
unstructured data.

The authors in [3] present a review of positioning using
radio frequency technologies and they dedicate a subsection
to study the ML approaches. The authors describe the main
ML approaches applied in localization processes, and they
list the specific ML algorithms used in procedures related to
classification, clustering and matching.

Some studies have focused on particular cases of localiza-
tion. For example, the authors in [7] study the state-of-the-art
of device-free localization, including a review of the main
training-based algorithms that are used in device-free local-
ization, such as extreme learning machine (ELM), hidden
Markov models (HMM), conditional random fields (CRF)
or DL.

The authors in [5] present a specific review of the appli-
cation of DL in localization systems that are based on fin-
gerprinting, describing the use of DL according to the raw
data used to create the fingerprint, identifying the benefits and
highlighting the improvement on its performance, mainly by
handling large amounts of data to obtain an accurate estimate
of the location of a pedestrian. The authors in [6] focus on
how DL is applied in SLAM. Meanwhile, the authors in [9]
study ML applications in indoor localization and navigation,
focusing especially on robots. Table 1 summarizes a com-
parison between the referenced surveys and this survey to
highlight the common topics and the differences.

Based on referenced surveys, a basic taxonomy of ML
techniques is defined to support this review. There are three
main learning approaches in ML: supervised learning, unsu-
pervised learning, and reinforcement learning. In supervised
learning, the algorithm is trained using a set of labeled mea-
surements or data to infer a function or model that maps
the input data into the output label. This type of learning
is commonly used in problems that are viewed as a clas-
sification or regression. In contrast, unsupervised learning
explores the hidden features of measurements or data to iden-
tify patterns in unlabeled data. Typically, the problems solved
by unsupervised learning could be seen as clustering and
dimensionality reduction. Reinforcement learning is another
type of learning, in which the algorithm is trained by trial and
error through interaction with the environment to learn how
to make decisions. Semi-supervised learning exists between
supervised and unsupervised learning, meaning that only one
part of the training data is labeled. Thus, the problems that are
handled are of classification or clustering. There are several
alternative learning methods, such as TL, which is used to
reduce the time of learning in a new end-device or node in a

TABLE 1. Comparisons among the surveys on machine learning and
localization.

FIGURE 3. Taxonomy of types of learning in ML.

localization system because of the transfer of the knowledge
previously acquired; and federated learning (FL), in which
the process of learning is performed in a distributed manner
from different devices. Considering the types of learning in
the existing surveys, a ML taxonomy has been defined as
shown in Fig. 3, which includes the typical ML purpose that
was developed in each type of learning.
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Depending on the number of layers that are used to extract
the input features from the obtained data, two main archi-
tectures can be used for ML implementation: shallow learn-
ing (SL) and DL. SL is used in simple problems where
the system learns from predefined data features using a few
layers, while in DL the system automatically extracts features
from the data using several layers [20].

Considering that the related surveys of ML applications
in pedestrian localization are focused on the ML techniques
and their application in the localization of robots and general
targets, this survey focuses on the pedestrian localization
systems, the localization techniques, and learning techniques
in ML.

III. METHODS
It is necessary to study recent research and scientific con-
tributions on the use, benefits, limitations, and applications
of using ML in pedestrian localization systems if we wish to
establish its potential application, open issues and challenges.
The construction of this survey and its literature review are
based on the Kitchenham methodology [21], [22]. The main
elements of the scientific literature review are specified in this
section.

A. RESEARCH QUESTIONS
This study aims to understand why and for what purpose
ML techniques are applied in localization systems, and what
benefits are obtained from them. It is important to identify the
most commonly applied techniques, their drawbacks, their
opportunities and the achieved performance. Consequently,
we have developed the following research questions:

• Research Question 1 (RQ1): What is ML used for in
localization systems? That is, for which sub-blocks of
localization systems is ML used? Does it differ accord-
ing to the type of localization system?

• RQ2: What are the benefits of the application of ML
in pedestrian localization systems? That is, which per-
formance parameters are improved by the use of ML
techniques?

• RQ3: What type of ML is applied in pedestrian local-
ization? That is, what learning approaches (supervised,
unsupervised, reinforcement, etc.) and learning architec-
tures (shallow or deep) are used?

• RQ4: What are the challenges and opportunities in the
application of ML for pedestrian localization?

B. SEARCH RESULTS
Considering these research questions, the following chain of
keywords was used during the scientific literature search:
(machine OR reinforcement OR supervised OR unsupervised
OR semi-supervised OR transfer OR federated) AND (learn-
ing) AND (pedestrian) AND (positioning OR localization),
focusing on the title, abstract, and keywords. The following
databases were considered: IEEEXplore, Elsevier, ACM, and
MDPI. Fig. 4 shows the process that we used in the systematic

FIGURE 4. Selection process.

literature search. The initial search brought 457 documents in
the last 10 years. Selection criteria were defined to filter and
to identify the appropriate papers according to the research
interests. The main criteria applied in the scientific literature
review were: the paper uses ML for pedestrian localization,
the paper describes how ML improves some performance
metrics, and the paper brings complete information about
the research study. Likewise, several exclusion criteria were
considered, such as papers that focus on GNSS and papers
that only do pedestrian detection. Taking into account these
selection and exclusion criteria, 130 papers were selected to
be considered in this survey.

The 130 papers were classified considering the defined
ML and pedestrian localization taxonomies. In the classifi-
cation process, discrete and general terms were defined to
obtain comparison figures and analytical results. For instance,
the classification did not consider a specific technology of
radio frequency, such as WiFi, Bluetooth, or other related
technologies. Instead, the technologies were classified as
‘‘radio frequency technologies’’. In addition, the raw data
were classified by taking the general technology into account.
For example, in inertial systems, we do not distinguish
between the different forces monitored in a sensor; instead,
these types of inertial raw data were considered as ‘‘inertial
signals’’.

IV. MACHINE LEARNING APPLICATIONS IN PEDESTRIAN
LOCALIZATION
In the last decade, the use of ML techniques in pedestrian
localization has been growing. As shown in Fig. 5, the main
application of ML in localization is in scene analysis-based
systems, in which their use is obvious and straightforward.
They have also been applied in other types of pedestrian
localization systems. Consequently, it is necessary to iden-
tify which problems of the localization processes can be
addressed with ML techniques and how ML improves the
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TABLE 2. Machine learning application in scene analysis.

FIGURE 5. Distribution of ML applications in pedestrian localization
techniques.

performance of pedestrian localization systems, due to its
application in different techniques.

Considering the ML and localization taxonomies that were
explained in Section II, Fig. 6 shows a clear tendency towards
the application of supervised learning and a low use or explo-
ration of the other types of learning. This happens because
supervised learning and scene analysis provide high accuracy,
which is the most commonly used performance parameter
evaluated in the found papers. Similarly, classification and
regression are the most commonML purposes. It is important
to note here that the SL architecture is used in many of the
considered papers, due to the relatively easy implementation
and training, but the use of the DL architecture has been
growing in the last years, as shown in Fig. 7, due to the
processing capacity improvements in new devices.

In Fig. 6, it is possible to note that techniques such as
unsupervised learning and reinforcement learning are lit-
tle explored in pedestrian localization. Therefore, there are
opportunities to look for their application to analyze their
advantages and disadvantages. For the techniques of local-
ization, there are few papers related to the application of
ML in the fusion technique, which offers another avenue for
research. In the remainder of this section, the application of
ML in several localization techniques is discussed.

A. MACHINE LEARNING IN SCENE ANALYSIS
Scene analysis is the most commonly used technique in
pedestrian localization, due to the relatively easy imple-
mentation and acceptable performance. In addition, scene

analysis is the localization technique that is more common
in the use of ML because this type of pedestrian localiza-
tion systems considers the localization problem as a clas-
sification or regression problem. This type of pedestrian
localization systems offers a high degree of flexibility in
relation to the type of signals used from the environment
in the location estimation process. It is possible to create a
fingerprint using radio frequency signals, magnetic fields,
visible light, sound, and images, among others. In addi-
tion, scene analysis localization could be implemented by
signals measured from the environment using technologies
such as WiFi, Bluetooth, cellular networks, ultra wide band
(UWB), frequency modulated (FM) radio, radio frequency
identification (RFID), among others. Although, in general,
the pedestrian localization systems based on scene analysis
require a device associated with the pedestrian, there are
some device-free approaches that use ML to improve their
performance. Table 2 lists the works in which ML techniques
are applied on pedestrian localization systems based on scene
analysis, which are classified according to the type of learning
and objective of the ML technique, and the type of data used
as input.

Radar diagrams are used in the following sections to show
the use of the different types of learning and their applica-
tion purposes, respectively. The value of each corner cor-
responds to the proportion of papers using a given type of
learning (blue curve) and the ML purpose (orange curve)
with respect to the total searched papers. In scene analysis,
Fig. 8 shows a clear tendency in the application of super-
vised learning, with 88% of the papers using this type of
learning, and 12% distributed among unsupervised learning,
reinforcement learning, and semi-supervised learning. Addi-
tionally, Fig. 8 shows that most of the papers use ML for
classification and regression because the main application
of ML in scene analysis is direct location prediction. This
is due to the good performance obtained by using labeled
datasets, despite the effort required to collect the labeled data
and the high computational cost required for training. Addi-
tionally, Fig. 8 shows that a small proportion of papers applied
other types of learning, such as semi-supervised, unsuper-
vised, reinforcement, and transfer, which can also be see
in Table 2.
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FIGURE 6. ML application in pedestrian localization techniques. The value shown corresponds to a percentage that is calculated based on the 130 papers
considered in the systematic literature review.

FIGURE 7. Trend in the use of ML architectures in the found papers.

In the application of ML in scene analysis, the use of
the classical SL architecture and supervised learning have
been the most common approaches during the last decade.
Typically, localization has been seen as a regression process,
as can be seen in the first row of Table 2, in which the
authors in [23], [29]–[32], [40], [41], [47], [52], and [46]
use classical methods as Gaussian process (GP), k-nearest
neighbors (KNN), and support vector machine (SVM) to esti-
mate the location of a pedestrian. Most of these authors focus
on improving the pedestrian localization accuracy. Note that
accuracy in scene analysis refers to the Euclidean distance
between the estimated location and the ground truth. The
authors in [47] use magnetic fields to create a fingerprint.
Using the KNN method, they are able to achieve a response
time that is 30 times faster than conventional pedestrian local-
ization systems. In a different implementation, the authors
in [31] use GP to keep the accuracy and reduce the recovery
time from a random failure, and remark on the additional
benefits that can be obtained from the use of ML.

Seeking to improve the accuracy of pedestrian localization
in less time, the ELM technique has increased in popularity

FIGURE 8. ML application in scene analysis. The values represents the
proportion of papers reviewed using a given type of learning (blue curve)
and the ML purpose (orange curve) with respect to the total searched
papers.

because it is a fast and robust type of feed-forward neural
network. ELMprovides a fast response due to its non-iterative
learning mechanism, in which the parameters of the hidden
layers are set randomly and do not need to be tuned. In addi-
tion, ELM allows the system to learn the output weights
analytically from fixed or variable-size data [93]–[95]. The
authors in [25], [28], [34], [35], [39], [42], [43] use ELM to
improve the accuracy in the localization, achieving a major
improvement in [42] where the accuracy with respect to a
localization system that does not useML is improved by 55%.

An interesting SL approach can be found in [33], in which
the authors combine RSS and images to infer a localiza-
tion model by the training of a regression random Fourier
features algorithm. For localization, the system uses the
inferred model and only the RSS measurements, achieving
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an improvement in accuracy of 27% considering the Kalman
filter (KF) as a reference. Similarly, the authors in [37] com-
pare KNN, random forest (RF), gradient boost, and decision
tree (DT) in pedestrian localization, concluding that KNN and
RF provide the best performance in scene analysis.

With the increased computational capability of new
devices, DL architecture has become a viable alternative
to improve the performance of pedestrian localization sys-
tems. The authors in [52] compare the shallow and deep
architectures. They consider shallow neural network (SNN),
convolutional neural networks (CNN), and Long Short
Term Memory (LSTM) to reduce the estimation time and
improve the accuracy, getting the best results with the deep
approaches.

In the DL approaches, the most commonly used tech-
niques are CNN and recurrent neural network (RNN). CNN
is a feed-forward neural network that reduces the number
of parameters in each convolution step. In contrast, RNN
uses memory to save previous reusable output to predict
the next outputs, with LSTM being the most widely used
RNN algorithm. Both techniques are widely used thanks to
their high accuracy and relatively low processing cost. For
instance, the authors in [24], [26], [27], [44], [49], and [51]
use CNN and RNN to estimate the pedestrian localization,
improving the fingerprint creation process, using different
data-training, and reducing the noise effects. The best result
shows an improvement on accuracy by 75% when com-
pared to the pedestrian localization system without the use
of ML. In [36], the authors use a CNN to estimate the
relative vertical positioning of a pedestrian, and provide a
three-dimensional pedestrian localization with an accuracy
of up to 94%, without requiring antenna rotation like other
approaches. The authors in [45] use RNN to estimate the
orientation and velocity of the pedestrian, and estimate the
movement model to track the pedestrian. They then imple-
ment a fingerprint update with a conditional generative adver-
sarial network (CGAN) model, which adapts the fingerprint
features according to the hour of the day. The authors con-
clude that the use of multi-connected RNN improves the
accuracy by 37% compared to a single RNN.

Other authors assume that the localization problem in
scene analysis is a classification problem. Classical ML tech-
niques such as KNN, SVM, DT, RF GP, logistical regression
and support vector regression (SVR) and näive Bayes (NB),
have been used in [55], [57], [60], [63]–[65], [72], [74], [76],
[78], [80], and [81], to improve location accuracy by reducing
the continuous problem into a discrete problem, in some cases
as an area reduction to estimate the pedestrian localization
with a simpler technique. For instance, the authors in [60]
apply the DT to reduce the continuous localization area to
obtain a small area that corresponds to the location of a pedes-
trian. In some cases, ML is used for classification purposes
to reduce the localization area and other techniques are used
to accurately estimate the location. For example, in [57] the
authors use ML in the two stages of fingerprinting technique:
they apply SVR to classify RSSI data in the offline stage

and in the online stage they apply a regression with SVR to
estimate the location of a pedestrian, improving the accuracy
by 55%with respect to a KNN application. An interestingML
application can be found in [72], where the authors propose
a pedestrian localization system for fifth generation (5G)
cellular systems based on scene analysis. They use RF to
estimate the localization of pedestrians, and conclude that
their proposal obtains an accuracy similar to that obtained
with a global positioning system (GPS).

Some researchers have evaluated different types of ML
techniques to find the ML technique that provides the best
performance. The authors in [70], [73], and [77] compare
KNN, DT, NB, Bayesian network, sequential minimal opti-
mization (SMO), AdaBoost, gradient boost, SVM, RF and
logistic regression. In the tests, the best performance was
obtained with KNN, SVM, NB and RF. The most important
result is that the use of KNN reduces the computation time by
33%, and RF reduces it by 70%, concerning pedestrian local-
ization systems without ML. Similarly, the authors in [80]
propose a pedestrian localization system using exclusively
magnetic fields and test several ML techniques such as SVM,
KNN, RF and NB to create a fingerprint and estimate whether
the pedestrian is in an indoor or outdoor environment.

ELM is used also for classification purpose in [58], [66]
and [86]. The latter makes an interesting proposal in which
they use the k-means algorithm to divide the area into small
subareas. They then use ELM to identify the subarea and
pedestrian localization, improving accuracy by 12% over the
system without area subdivision.

A different and interesting proposal is presented in [54],
in which the authors propose two algorithms: large margin
nearest neighbors and neighborhood component analysis,
to find out the best metric to improve the accuracy of a
pedestrian localization system and its adaptability. The basic
concept of this study is to select the metric that brings best
performance in a KNN based localization system without
overloading the system.

In DL architectures for pedestrian localization, classifi-
cation techniques could be used to improve the accuracy
through a previous site detection or feature classification in
the fingerprint. The authors in [56], [61], [67], [69] and [83]
use CNN to improve the pedestrian localization system per-
formance. The authors in [69] use continuous wavelet trans-
forms as features to construct the fingerprint. Then, they use
CNN to estimate the room and the location of a pedestrian.
In [67], the authors present a novel system in which they
use WiFi dual band fingerprint. They use SVM to line of
sight (LOS) and non-LOS (NLOS) detection, and to select
the work band. Then, they use a CNN variation called capsule
neural network for pedestrian localization, which reduces the
computational cost and improves the accuracy of the local-
ization system. In [56], the authors use CNN in two stages:
first, to recognize the scenario; and second, to estimate the
pedestrian location in the identified scenario. This proposal,
improves the accuracy and reduces the computational cost of
pedestrian localization, achieving 80 times faster pedestrian
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localization estimation than a pedestrian localization system
based on a weighted KNN. Another interesting proposal is
presented in [48], in which the authors combine CNN and
LSTM to improve the accuracy in an infrastructure-free local-
ization system. The authors of [62] use a RNN to predict the
trajectory in a multi-person localization and tracking system,
improving accuracy by 8% with respect to localization with-
out the use of ML. The authors in [82] propose a pedestrian
localization system by applying a combination of deep neural
networks on video images to then predict themovement of the
pedestrians.

Although it is more common in scene analysis for the
existence of a device on the pedestrian to be localized,
some researchers, such as in [43], [50], [68], [71], [75],
[78], [79], are interested in device-free localization. An inter-
esting proposal for device-free localization is presented
in [75], in which the authors use RF to classify the error
caused by environment changes and correct the fingerprint
errors. In [71], the authors create the fingerprint using mag-
netic fields and signal strength, and they apply CNN to
achieve independence with smartphone pose, due to the
fact that the training data fuse the multiple poses of the
smartphone into two general poses. In a novel proposal pre-
sented in [43], the authors use ELM for pedestrian local-
ization by detecting propagation perturbations caused by
the presence of the pedestrian in the scenario. The authors
in [68] use a Gaussian mixture model for pedestrian local-
ization and KNN-HMM to track the movement of the
pedestrian. The ML application cause an accuracy improve-
ment of 14% with less computational cost when compared
to the state-of-the-art of device-free pedestrian localization
system.

The ensemble approaches are another alternative to
improve the performance of pedestrian localization systems,
where the system combines multiple learning techniques to
build a better predictive model. The authors in [50] and [66]
use an ensemble ELM improving the accuracy by around 10%
respect the use of a singe ELM. In [53], the authors propose
the use of an ensemble HMM (eHMM) in a multi-layer local-
ization system, improving the zone prediction to posterior
pedestrian localization using fusion of localization informa-
tion. The authors in [59] test the ensemble of multiple ML
techniques, such as SVM, KNN and Bayes network, and
conclude that weighted ensemble approaches improve the
performance of pedestrian localization systems without an
ensemble approach.

In scene analysis-based pedestrian localization systems,
fingerprint calibration requires a lot of effort and time
investment by the installers. Thus, researchers have imple-
ment semi-supervised learning to improve the efficiency
of the system’s implementation. The authors in [84] use
semi-supervised with deep ELM, keeping the accuracy
respect to SVM based pedestrian localization system, but
reducing the calibration effort and the response time. The
authors in [85] use semi-supervised with a time-series Lapla-
cian SVM to generate a pseudolabel data for the training

process. Their most important result is the high accuracy
achieved with a small amount of labeled data.

Unsupervised learning is another alternative to bring to
pedestrian localization systems real self-learning because in
unsupervised learning the data is unlabeled and the machines
learn about the data relation without human intervention,
which allows the use of crowd-sourced data but sacrific-
ing the accuracy of the system. This is the case of [86],
in which the authors use, in a first stage, k-means algorithm
to cluster the raw data, identifying the area division, and
then they use ELM for pedestrian localization in a particular
area. The authors in [88] use HMM to reduce the raw data
dimension to construct a fingerprinting based on magnetic
field measurements. In [87], the authors use HMM to learn
about the pedestrian presence perturbation in the radio fre-
quency links in a sensor network. The localization process
then detects the crossing or no crossing link condition.

Reinforcement learning is another alternative to bring real
self-learning to these machines, in which the learning is done
as a function of the experience or benefit achieved with past
decisions. They then make decisions in future situations. The
authors in [89] use Q-Network in a deep reinforcement learn-
ing structure to estimate the location of a pedestrian device,
with an improvement in the accuracy of 37% in comparison
to the unsupervised multilateration localization. The authors
in [96] propose a method to learn about the movement of peo-
ple. They define a maximum entropy deep inverse reinforce-
ment learning (MEDIRL) approach to predict the pedestrian
trajectories. They found that the predicted trajectories have
an accuracy that is similar to the LSTM-based localization
system. The authors in [90] propose a semi-supervised deep
reinforcement learning for distance estimation in a pedes-
trian’s localization. The accuracy of the system improves by
23% with respect to supervised learning. TL is another ML
technique to speed up learning. It reuses the previous knowl-
edge to reduce the learning time or improve the learning of
a related process. In [91] and [92], the authors use TL in
pedestrian localization systems. The authors in [92] use deep
CNN to pedestrian localization and a TL strategy, reducing
the training time by 50% and saving up to 45% of the training
data.

Table 3 summarizes the advantages and disadvantages of
applying ML to scene analysis-based localization.

B. MACHINE LEARNING IN GEOMETRICAL LOCALIZATION
Geometrical techniques are more general than scene analysis,
due to the fact that they are not linked to the data obtained
from a specific environment. Instead, geometrical techniques
obtain a model of the effect of the relative position between
two nodes on properties or metrics of the signals transmitted
between these nodes. The most commonly used metrics to
estimate the distance between the nodes and the orientation
are the RSS and the propagation time. The most accurate
models are associated with free space and LOS conditions.
Thus, multipath or NLOS conditions adversely affect the
range and bearing estimation, and therefore the pedestrian
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TABLE 3. Advantages and disadvantages of the type of learning used in
scene analysis.

localization. The basic stages in geometrical localization are:
to obtain the metric, to detect the scenario conditions, to use a
model to estimate the distance or bearing, and to combine the
obtained data from multiple nodes to estimate the pedestrian
localization.

ML could be used in any of these stages to improve the
performance of the pedestrian localization system. There
are two types of learning applied to geometrical pedestri-
ans localization: supervised (which is the most popular) and
reinforcement learning. As shown in Fig. 9, 81% of papers
are focused on supervised learning, distributed among clas-
sification and regression; as can also be seen in Table 4.
Fig. 9 shows that, considering the purpose of ML application
in geometrical localization, 50% of papers use classification
and 31% regression, stating that the geometrical localization
problem could be considered in both orientations. In addition,
the radar chart in Fig. 9 shows the rise of unsupervised
learning and reinforcement learning in pedestrian localization
systems, with 13% and 6%, respectively.

In geometrical localization, ML has been applied most
often to define a data-driven model to improve the rang-
ing or bearing estimation, due to the estimation requiring

FIGURE 9. ML applications in geometrical localization. The values
represents the proportion of papers reviewed using a given type of
learning (blue curve) and the ML purpose (orange curve) with respect to
the total searched papers.

TABLE 4. Machine learning applications in geometrical localization.

calibration by propagation conditions, even in LOS condi-
tions. Supervised learning in shallow architecture is widely
used in geometrical pedestrian localization. For example,
in [109] and [110] the authors combine a wireless local area
network (WLAN) and a wireless sensor network (WSN) to
estimate the location of sensors placed on the body of a
pedestrian and infer the location of a pedestrian without the
use of inertial sensors. The authors use a linear regression to
estimate the ranging and logistic regression to estimate the
heading of the pedestrian. In [110], the authors use an ANN
for ranging classification and speed classification, improving
the accuracy by 25% related to the pedestrian localization
system without ML. It is necessary to clarify here that in the
geometrical localization systems, the accuracy corresponds
with the Euclidean distance between the ground truth and the
estimated location. The authors in [105] use a DT to improve
the estimation of the direction of pedestrians in a PDR system,
improving the accuracy of localization by 80%, respect to the
conventional PDR.

The distance estimation has a high dependency on the prop-
agation conditions. Consequently, in geometrical localiza-
tion, the researchers study propagation conditions detection,
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TABLE 5. Advantages and disadvantages of the type of learning used in
geometrical localization.

such as NLOS or multipath, which makes the distance esti-
mation difficult. The authors in [104] and [108] propose the
NLOS detection using ML in shallow architecture, in [104]
the authors use multilayer perceptron (MLP) and boosted
DT to NLOS detection, improving accuracy by 11%, taking
as reference the localization without NLOS detection. The
authors in [108] use an SVM to improve the accuracy of
the pedestrian localization system by at least 20%. Similarly,
the authors in [107] test SVM, RF and MLP to identify LOS,
NLOS and multipath conditions achieving better accuracy
with the RF technique.

ML has been used to detect NLOS conditions and mitigate
the adverse effect. For example, the authors in [106] and [98]
use ML techniques such as GP, KNN, DT, and SVM to
identify the NLOS conditions and mitigate the errors that are
caused. In the tests, they achieve an improvement in the local-
ization accuracy in the order of 20% to 40%, while reducing
the computational cost. In a similar study, the authors in [99]
use ANN to predict the error caused by multipath conditions
and correct the ranging estimation.

The authors in [97] use ML regression techniques as ANN,
GP, and SVM to predict the error caused for anomaly channel
conditions without detection of NLOS or multipath. In con-
trast, the authors study the bad conditions present in NLOS
and LOS. The tests of these works achieve an improvement
of 25% in the accuracy, related to the systems without error
mitigation.

To improve the AoA estimation, in [101] the authors use
GP, NN, and regression tree, achieving the best performance
with GP, which improves the accuracy by 20%, related to the
conventional pedestrian localization systems.

In [103] and [102], the authors use physical feature, prin-
cipal component analysis and Laplacian eigenmap in the
generative models, which are applied in the dimension reduc-
tion of the training data set to reduce the data processing
time and improve the accuracy of the system. In addition,

FIGURE 10. ML application in PDR. The values represents the proportion
of papers reviewed using a given type of learning (blue curve) and the ML
purpose (orange curve) with respect to the total searched papers.

the authors propose a novel localization technique called
soft range information (SRI) localization, which uses ML
to estimate a localization model with SRI and fusion. These
achieve accuracy improvement of around 40%, in relation to
the conventional geometrical localization systems.

Supervised learning in a DL architecture has been used
to mitigate the error without multipath detection, such as
in [100], where the authors use ANN for ranging error predic-
tion to correct ranging estimation, achieving an improvement
of accuracy of 90% compared to localization without the use
of ML. The authors in [111] apply reinforcement learning
to the estimation of RSS variations of the visible light local-
ization system and mitigate the possible errors. In this work,
ML improves the accuracy by 70%with respect to supervised
learning models.

Table 5 describes the advantages and disadvantages of
the application of ML in geometrical pedestrian localization
systems.

C. MACHINE LEARNING IN PEDESTRIAN DEAD
RECKONING
In PDR, the localization or tracking of a pedestrian requires
some parameters to be obtained, such as pedestrian motion,
step occurrence, step length or pedestrian heading, among
others, whose correct prediction can improve the accuracy of
the localization system with the use of ML. The radar chart
in Fig. 10 shows that around the 94% of the found papers
use supervised learning, and the remainder 6% is distributed
between unsupervised and reinforcement learning. Addition-
ally, Fig. 10 shows that the purposes of the application of
ML in PDR are classification (68%) and regression (26%).
In PDR, accuracy is usually defined as the distance between
the last position estimated and the last actual position, with
respect to the total distance traveled.
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TABLE 6. Machine learning applications in PDR.

The papers have been classified in Table 6 according to the
type of learning, application of ML and type of signal used
by the PDR system.

In PDR localization systems, the ML application has a
clear tendency to use supervised learning in a shallow archi-
tecture with the purpose of classification, as shown in Fig. 6.
Consequently, some researchers use DT in [121], [122]
and [123] to classify the type of movement or activity that the
pedestrian is doing. This classification improves the accuracy
of the system by at least 50% in comparison to a system
without motion recognition. Other proposals of supervised
learning applied to motion detection can be found in [118]
and [124], in which the authors use the AdaBoost and SVM,
respectively, to recognize the activity of a person, evidencing
the importance of motion recognition to improve the accuracy
of PDR based localization. The localization accuracy of the
system is increased by 2% in comparison to systems that do
not use motion recognition.

In PDR systems based on smartphones, the pose affects
the performance of the localization system. Consequently,
supervised learning has been used for smartphone pose detec-
tion to improve the accuracy of the system. In [125], [126],
[128], [129] and [132], the authors use classical ML models
such as SVM, DT, gradient boost and ANN. They get a
good performance in the localization and navigation, with an
accuracy between 95% and 97% related to the real distance
traveled. An interesting study can be found in [127], in which
the authors propose a double use of DT in smartphone pose
classification and later for corner detection. The authors clas-
sify multiple smartphone poses into two specific poses: fixed
or unfixed. They achieve an improvement of 20% in the
localization accuracy with respect to the PDR system without
pose classification.

Other studies use supervised learning to step length esti-
mation, such as [133] and [134], which propose the use of
gradient boost trees for step length estimation, and to estimate
the activity and location of a pedestrian. The authors in [105]
use a MLP model to identify the magnetic disturbances and
they exclude this measurement to avoid errors in heading
estimation, which produced an accuracy improvement of 79%
in comparison to conventional PDR systems.

The step length and heading estimation are often seen
as regression problems. For example, the authors in [115]

show the use of inertial signal and magnetic field to train
an online sequential ELM to estimate the heading and step
length, achieving an accuracy of 97% with respect to the real
trajectory. The authors in [114] estimate the vertical position
of a pedestrian using linear regression. With this proposal,
the accuracy of the system can be improved in all scenarios,
including those with stairs. In [117], the authors use the
magnetic field to estimate the heading of a pedestrian and
they compare the performance obtained by SVM, logistic
regression, NB, DT and MLP in the estimation. Logistic
regression provided the best results, improving accuracy by
80% tin comparison to the systems PDR without heading
estimation based on ML.

The authors in [112] explore the features of an electromyo-
graphycal signal for pedestrian navigation, using KNN for
velocity estimation and pedestrian localization. Although
their proposal achieves low accuracy, it is another alternative
to using inertial sensors for PDR and could be explored
further.

Some authors studied how to handle the problems in PDR
localization using DL architectures. The authors in [119]
and [120] apply a CNN and LSTM to estimate the pedes-
trian motion and heading, which improves the accuracy of
localization and navigation systems by giving correct motion
recognition.

Other authors study the use of DL architectures to step
length estimation in [113], [116] and [131]. In [131] the
authors use a combination of LSTM and RNN and in [113],
the authors use a deep neural network; specifically, they use
a stacked autoencoder for step length estimation by adapting
the system to different smartphone positions. The accuracy
achieved in these papers is up to 97% with a low response
time, but it depends on the number of neurons in the neural
network. The authors in [116] use a combination of CNN and
LSTM, which is called a StepNet architecture, to identify the
location of a smartphone and to estimate the step length. The
tests got an accuracy of up to 97% in comparison to the real
pedestrian trajectory length.

In [130], the authors test shallow and DL for heading and
turning point estimation. In particular, they apply RF, linear
regression, quadratic discriminant analysis, and ANN, and
conclude that quadratic discriminant and ANN have the best
response, the accuracy is improved by at least 37% respect
the conventional PDR systems.

Other researchers have explored a range of alternatives to
improve the performance of the PDR system. For example,
in [135], the authors use an ANN to learn about the response
of an IMU placed on the foot from an IMU placed in pocket.
With this learned model, the system could correct the errors
caused by an eventual failure.

Some studies have explored the use of unsupervised learn-
ing. For example, in [136], the authors use it to extend the
types of motion identified, applying the k-means algorithm to
context recognition to identify walking patterns of pedestri-
ans in a marketplace, improving the accuracy by 8%, in com-
parison to conventional PDR systems.
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TABLE 7. Advantages and disadvantages of the type of learning used in
pedestrian dead reckoning.

TABLE 8. Machine learning applications in INS.

In [137], the authors use reinforcement learning in a deep
Q-network (DQN) model to direction calibration in heading
estimation. The authors define a policy for moving direction,
such that the localization accuracy improves by 72% in com-
parison to localization systems based on WiFi and particle
filter (PF).

Table 7 summarizes the main advantages and disadvan-
tages in the application of ML in pedestrian localization
systems based on PDR.

D. MACHINE LEARNING IN INERTIAL NAVIGATION
SYSTEMS
In INS, the localization process uses inertial sensors, which
are generally mounted on the foot, to obtain information
about the person’s displacement or movement to estimate
the location or trajectory. Meanwhile, ML techniques have
been applied to stages such as motion recognition, activity
recognition or zero velocity update (ZUPT), among others.
Supervised learning in shallow and deep architecture is a
unique type of learning applied in INS, probably because of
the high accuracy that they can provide. Table 8 shows a paper
classification considering the ML purpose.

Considering the use of ML in shallow architecture,
the authors in [144]–[146] implement SVM formotion recog-
nition, achieving an accuracy between 85% to 99%. The
authors in [152] use RF to classify the motion of a pedestrian
using inertial information and images. The system error in
the trajectory length has a reduction of 14%. This accuracy
in INS is defined as the distance between the last position
estimated and the last actual position, with respect to the
total distance traveled. A similar application can be found

in [153], in which the authors used RF and gradient boost
to develop an adaptable solution to ZUPT. They improved
the accuracy and computational cost in comparison to the DL
method. Similarly, in [147], the authors use SVM to improve
the ZUPT estimation, and the accuracy of localization and
tracking. They obtained an accuracy improvement of 6% in
comparison to the classic INS.

The authors in [149] propose the use of a CNN to identify
door transitions in a pedestrian trajectory, although the accu-
racy that they achieved is lower than conventional pedestrian
localization systems.

In INS systems, errors frequently accumulate over time.
Consequently, it is necessary to adjust of the system. In [151],
the authors use RF to calibrate the raw data obtained from
sensors and improve the estimation of the localization param-
eters, such as attitude and velocity.

In some studies the authors use DL architecture to improve
the accuracy of the INS. The ML techniques used are CNN,
RNN and ANN, but the localization stages in which ML has
been applied is diverse. For instance, the authors in [150]
propose motion recognition using classification with ANN
in a rescue application. The first prototype is able to achieve
an accuracy similar to other traditional localization systems.
In addition, the authors in [148] use LSTM to ZUPT detec-
tion, and obtain an accuracy of up to 90%.

A recent and promising application of ML is for track-
ing or displacement estimation by regression. For example,
the authors in [138] use a deep RNN-LSTM to estimate
a smartphone location and to track it. They use multiple
previous estimations obtained only from the inertial data to
make the localization prediction. This proposal achieves an
improvement of 50% in comparison to the system without
the use of ML. The authors in [139] and [140] use deep RNN
for localization estimation, employing odometry data. They
generate public datasets for the training process and then use
them to test different RNN configurations to improve the
accuracy and reduce the computational cost. They achieve
an improvement in the accuracy of at least of 50% and the
processing is 10 times faster than conventional PDR systems.
The authors in [141] use a combination of CNN with Binary
LSTM for a hybrid estimation of the pedestrian’s velocity,
obtaining an accuracy greater than similar works and with
lower computational cost. They train the Binary SLTM with
two IMUs and implement the localizationwith only one IMU.
The authors in [142] use RNN-LSTM to learn about the infor-
mation obtained from a micro-IMU (MIMU) to construct a
virtual-IMU (VIMU), and with this they can then estimate
the zero velocity moments. The accuracy achieved in this
proposal was improved by 2% in comparison to the pedestrian
localization system that uses one MIMU.

In [143], the authors use an ANN to update the extended
Kalman filter (EKF) by regression. They get a complete
localization parameters as position, velocity and orientation,
with lower drift and only one IMU. Table 9 describes the
advantages and disadvantages of the application of ML in
INS.
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TABLE 9. Advantages and disadvantages of the type of learning used in
inertial navigation systems.

TABLE 10. Machine learning applications in fusion frameworks.

E. MACHINE LEARNING IN FUSION FRAMEWORKS
In fusion localization, because Bayesian filters are the most
commonly used in localization systems, ML is applied in two
stages: the first stage is to define the dynamic localization
model to update the estimation, and the second stage is
estimation correction using available observations from any
source. In Table 10, the papers are classified by the type of
learning and the raw data used; note that some of these papers
use positioning data bases without specifying the type of raw
data.

In the application of ML, many researchers think that
DL architectures are better for fusion approaches than shal-
low architectures. For example, considering the observation
model, the authors in [155] use a RNN to construct an adapt-
able PF where the weight of particles is updated by a CNN.
They achieve an improvement in the accuracy of 21% in
comparison to the conventional PF, seeing the accuracy as
the difference among ground truth and the estimated location.
Another application of the observation model can be found
in [82], in which the authors use CNN for the observation
model and reinforcement learning in a deep CNN to estimate
the dynamic model of the movement, reducing the number
of the process and improving the accuracy by 35% over
approaches without ML application.

Some studies have focused on estimation correction using
classification techniques. For example, in [156] and [157],
the authors use RNN for pedestrian localization in topological
digital maps. They adapt a LSTM neural network, which is
used in language translation, to the pedestrian localization
process. To this end, they use the estimation of the angle
between the possible trajectories in a digital map without the
need for initial positioning and direction in a sensor network.
The pedestrian localization and tracking trajectory achieves
an accuracy of up to 95%.

Shallow architectures have been used to improve the per-
formance of the pedestrian localization systems employing

TABLE 11. Advantages and disadvantages of the type of learning used in
fusion.

ML in any stage of the PF implementation. The authors
in [53] use Q-learning in the resample stage of PF to improve
the robustness of the system and reduce the convergence time.
Similarly, in [154], the authors use the kernel model, in a
shallow architecture, to infer the probability of the test sce-
nario and, together with a PF, they reduce the computational
cost and improve the accuracy by 33% in comparison to the
classical approaches, such as KNN. Table 11 summarizes the
advantages and disadvantages of the application of ML in
pedestrian localization systems based on fusion methods.

V. OPEN ISSUES AND CHALLENGES
The application of ML techniques to pedestrian localization
systems has opened up a diverse set of performance improve-
ments, as seen through the survey, and there is a considerable
amount of research interest in this field. However, the poten-
tial that ML techniques can offer to this field is far wider than
the current state-of-the art and much of it is still unexplored.
Indeed, in this review we encountered many open issues.

A. OPEN ISSUES IN THE TYPE OF LEARNING
Supervised learning has been the most commonly applied
learning type in pedestrian localization in the last 10 years,
due to the high accuracy it provides; such as shown in Fig. 11.
However, other types of learning could provide a range of
advantages; for example, semi-supervised learning could be
used to reduce training time and to enable faster response;
unsupervised learning and reinforcement learning could be
used to improve the time response or calibrate the time of
pedestrian localization systems, thanks to the increasing pro-
cessing power of modern chipsets; and, TL and FL could
provide faster learning.

In methods using neural networks, there is currently grow-
ing popularity in the use of ELM in pedestrian localization
systems thanks to its fast response, low computational cost,
and high accuracy.

Many different ML techniques have been proposed for
most pedestrian localization system problems, but it is not yet
clear what the standard is for any of them. Thus, ensemble
learning for pedestrian localization (i.e., a combination of
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FIGURE 11. Type of learning trends.

multiple ML algorithms) may be an alternative to facilitate
the generation of new approaches in pedestrian localization
systems and improve accuracy or robustness.

In DR there is no standard of types of motion detected by
ML to improve the performance of pedestrian localization.
Each researcher establishes the type of motion that they want
to identify with the use of ML, and they then analyze the
benefit achieved. Therefore, the definition of which type of
movements are relevant to DR-based pedestrian localization
systems is another research opportunity.

The application of ML in fusion-based pedestrian local-
ization has been less explored. However, the application
of supervised learning and reinforcement learning in fusion
techniques has been shown to provide good results. There-
fore, the use of the heterogeneity of ML techniques to
improve the performance of fusion-based pedestrian localiza-
tion systems is an open field of research.

B. OPEN ISSUES IN ML APPLICATION
Given that adverse scenario conditions negatively affect the
performance of pedestrian localization systems, ML can be
employed in the detection of these anomalies; for exam-
ple, NLOS for geometric pedestrian localization systems,
the presence of multipath in radio frequency based systems,
disturbances in magnetic field based systems. In addition,
ML can be used for the correction of the caused detrimental
effects.

C. OPEN ISSUES IN ML ARCHITECTURE
There is a clear growing trend towards the use of DL architec-
tures in any type of pedestrian localization system and sub-
block. However, DL requires large amounts of training data,
which is usually not easy to obtain. Most authors in the liter-
ature review build their own datasets for their investigations.
However, they do not publish the resulting datasets, which
makes comparison between different proposals very difficult.
Thus, standardization of the size or format of these datasets
is necessary.

D. OPEN ISSUES IN STANDARDIZATION
There are no standard parameters to evaluate the application
of ML in pedestrian localization. Therefore, it is necessary to

define common practices and evaluation parameters to ease
the comparison of results among different proposals.

E. OTHER OPEN ISSUES
Accuracy is the most commonly used performance parameter
that is evaluated in the literature. However, it is possible
to explore other performance parameters to be considered
by ML, such as response time, computational complexity,
training time, and robustness, among others, which are of
paramount importance in many pedestrian LBS applications.

VI. CONCLUSION
In summary, the ML techniques that have been adopted in the
last 10 years to improve pedestrian localization performance
have been reviewed. Several applications of ML techniques
on pedestrian localization systems have been identified, from
different types of learning approaches. In addition, the devel-
opment trends of ML techniques that have been applied
and a variety of representative scenarios have been high-
lighted. A case by case description of numerous compelling
applications relying on ML techniques in pedestrian local-
ization systems has also been provided. In comparison to
other state-of-the-art survey articles, this survey focuses on
the localization stage or process in which the ML technique
has been applied. Finally, our review has shown that powerful
ML techniques are poised to occupy an important position in
addressing scenarios and applications in pedestrian localiza-
tion systems in the future.
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