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ABSTRACT With the development of computer technology, computational-intensive and delay-sensitive
applications are emerging endlessly, and they are limited by the computing power and battery life of Smart
Mobile Devices (SMDs). Mobile edge computing (MEC) is a computation model with great potential to
meet application requirements and alleviate burdens on SMDs through computation offloading. However,
devicemobility and server status variability in themulti-server andmulti-task scenario bring challenges to the
computation offloading. To cope with these challenges, we first propose a parallel task offloading model and
a small area-based edge offloading scheme in MEC. Then, we formulate the optimization problem to mini-
mize the completion time of all tasks, and transform the problem into a deep reinforcement learning-based
offloading scheme by Markov decision approach. Furthermore, we present a deep deterministic policy
gradient (DDPG) approach for obtaining the offloading strategy. Experimental results demonstrate that the
DDPG- based offloading approach improves long-term performance by at least 19% in ultra-low latency,
efficient usage of servers, and frequent mobility of SMDs over traditional strategies.

INDEX TERMS Mobile edge computing, computation offloading, multi-server, multi-task, deep reinforce-
ment learning, deep deterministic policy gradient.

I. INTRODUCTION
In recent years, the widespread use of Smart Mobile
Devices (SMDs) is accelerating the massive growth of
computation-intensive and delay-sensitive mobile applica-
tions, such as online videos, virtual reality (VR), and aug-
mented reality (AR). SMDs refer to wearable devices, mobile
terminals, and intelligent vehicle terminals, which have the
characteristics of mobility. Although SMDs have larger stor-
ages and stronger computing capabilities, it is still hard
to keep up with the ever-growing demand for these com-
plicated applications [1], [2]. Task offloading provides a
promising solution to migrate computation-intensive tasks to
powerful remote computing platforms (e.g., cloud servers),
it reduces the response delay and energy consumption for
local resources constraining.

The associate editor coordinating the review of this manuscript and
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Mobile cloud computing (MCC) is a successful computing
paradigm of implementing task offloading. However, due to
the arrival of the era of the Internet of Everything, the cen-
tralized processing mode of cloud computing data center has
its problems, for example, the linear growth of centralized
analysis and processing power in cloud computing data cen-
ters cannot match the explosive growth of massive amounts
of data. Compared to MCC, Mobile Edge Computing (MEC)
is regarded as a promising technology to offload tasks with
stringent delay requirements [3]. In MEC systems, tasks can
be offloaded from SMDs to the mobile network edge infras-
tructures, such as small cell base stations (BSs) with compu-
tation and storage resources, which can significantly extend
SMDs’ computing capabilities. The objective of MEC is to
leverage physical proximity to SMDs, reduce latency, ensure
effective network operation, and finally offer an enhanced
user experience [4]. However, offloading tasks to BSs can
incur extra communication latency overhead in the aspects of
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delay and energy consumption [5]. Therefore, the offloading
decision becomes a vital issue, and some research results have
been obtained in recent researches.

The existing research on the problem of offloading
mainly focuses on themulti-serverMEC environment [6]–[8]
and multi-user multi-task environment [9]–[11]. In the
multi-server MEC environment, considered the task offload-
ing and the resource allocation, the authors of [6] proposed
an innovative heuristic algorithm to address the optimization
problem jointly which seeks to maximize the task offloading
gains. The authors of [7] proposed a reinforcement learn-
ing offloading scheme with a long-term utility, in order to
achieve an efficient distributed offloading of multiple edge
nodes under, which each mobile user can maximize the
number of central processor unit cycles. The authors of [8]
proposed an effective distributed algorithm to address the
joint optimization problem of the computation offloading
with non-orthogonal multiple access, in order to minimize
the total energy consumption of Internet of Things devices
with the required time limit. In the multi-user and multi-task
scenarios, the authors of [9] proposed a computing offloading
algorithm to reduce the energy consumption through the joint
optimization of user association and computation offloading
in consideration of transmission power allocation and com-
putation resource allocation. The authors of [10] proposed
a high-performance offloading management scheme in the
small-cell-networks MEC system to minimize the energy
consumption of all user devices through jointly optimizing
computation offloading and computation resource alloca-
tion (i.e., spectrum, power, and computation resource). The
authors of [11] proposed an efficient online resource alloca-
tion scheme to minimize the total energy consumption of the
MEC system within a limited time constraint, while taking
into account the actual situation with temporary task status
information and channel status information.

However, since mobility is a typical feature of SMDs,
mobility will cause dynamic communication environments
and overloaded edge servers of hot areas in the MEC system
with the MEC system. Therefore, minimizing delay-time
in a multi-server, multi-SMD and multi-task computation
offloading problem in mobile edge computing still imposes
two key challenges.

1) Inefficient usage of MEC servers: Computing capacities
of edge servers are limited, which leads to long complete
time and poor user experience, when many SMDs offload
tasks to the same edge server simultaneously. How to balance
tasks between multiple edge servers and the cloud-like server
reasonably is a problem to be solved in the task offloading.

2) Frequent mobility of SMDs: Smart mobile devices are
on-the-move, which causes a dynamic communication envi-
ronment and affects the upload delay in tasks offloading.

To address these challenges, we design a Deep Deter-
ministic Policy Gradient-based task offloading approach that
can achieve the efficient use of edge servers and satisfy the
frequent mobility of SMDs in a multi-server multi-SMD
and multi-task MEC environment. First, we first propose

a parallel offloading model, where each task generated by
the SMDs can be divided into two parts, which can be
offloaded to the corresponding servers for parallel execution.
The parallel offloading model prevents the server from being
overloaded and address inefficient usage of edge servers.
For example, the task request for offloading to the edge
server in hot spot areas can be divided into a smaller task
scale, and the task request for offloading to the edge server
in light spot areas can be divided into a more extensive
task scale. Next, a small areas-based offloading scheme is
designed in the MEC model, in which the signal coverage
area is divided into many small areas. Since the offloading
strategy depends on small area rather than SMD, the par-
allel offloading model address the frequent mobility prob-
lem. Then, we formulate an optimization problem of task
offloading, which minimizes the completion time of all com-
putation tasks in the multi-server multi-SMD and multi-task
MEC scenario. After that, we transform this problem into
an offloading scheme based on deep reinforcement learning
through the Markov decision approach. We incorporate the
dynamic communication environment and the variable server
status information over continuous time slots into the prob-
lem transformation process and solve the offloading scheme
through a Deep Deterministic Policy Gradient-based offload-
ing approach. Finally, the experimental results show that our
approach has a stable ultra-low delay when offloading tasks
under continuous movement conditions.

The main contributions are as follows.
1) A parallel offloading model in the in a multi-server

multi-SMD and multi-task MEC environment is presented,
which makes effectively use of all MEC servers and ensures
the completion of tasks with ultra-low latency.

2) A small area-based offloading scheme is designed,
which fully takes the frequent mobility of SMDs into con-
sideration and makes the completion time of tasks generated
by SMDs under continuous movement conditions stable.

3) A Deep Deterministic Policy Gradient-based is pre-
sented, which is feasible for task offloading in ultra-low
latency in multi-server multi-SMD and multi-task MEC and
improves long-term performance by at least 19% in ultra-low
latency.

The rest of this paper is organized as follows. Section II
reviews related work. TheMEC systemmodel and the forma-
tion of an optimization problem is introduced in Section III.
In Section IV, the Markov decision process is used to trans-
form the optimization problem and present the Deep Deter-
ministic Policy Gradient-based approach. The performance
evaluation is presented in Section V. Finally, we summarize
this article in Section VI.

II. RELATED WORK
In the era of Internet of Everything, computing offloading in
mobile edge computing has attracted the considerable atten-
tion of researchers. The current research can be discussed
from two aspects: computation offloading framework, and
deep learning-based optimization method.
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A. COMPUTATION OFFLOADING FRAMEWORK
To achieve the computation offloading, the works [13]–[16]
mainly studies how to minimize the delay or energy con-
sumption in the binary offloading mode. In order to min-
imize the execution cost expressed by the execution time
delay and task failure rate, the authors of [15] propose a
dynamic MEC offloading algorithm based on the Lyapunov
optimization, which comprehensively considers the offload-
ing strategy, the frequencies of central processor unit cycle,
and the transmit power for computation offloading. In order
to maximize the (weighted) sum computation rate of all the
wireless devices in the binary computation offloading mode,
the authors of [16] propose a joint optimization method with
the aid of the alternating direction method of multipliers
decomposition technique, which effectively solves the diffi-
culty of strong coupling between transmission time allocation
and multi-user offloading mode selection.

While comparing with the binary offloading, the partial
offloading mode [17], [18] has more advantages in MEC
due to the characteristic of parallelism [19]. To address the
problem of optimal resource allocation, the authors of [17]
propose a sub-optimal resource allocation algorithm, which
minimizes the weighted sum energy consumption while
meeting the constraint of computation latency. To minimize
the weighted sum of terminal energy consumption in the par-
tial computation offloadingmode, the authors of [18] propose
an optimization algorithm, which comprehensively consid-
ers the optimization of terminal execution policy, wireless
communication resource allocation, and MEC computation
resource allocation.

The MEC system is also a pivotal point to the computation
offloading framework. Compared with the single-user MEC
system [20], [21], the researches on the multi-user system
are more in line with the actual situation. In terms of the
multi-user MEC system [5], [22]–[25], the authors of [24]
propose a modified genetic algorithm, which addresses a con-
strained multi-objective optimization to balance between task
latency and the system energy consumption, thus satisfying
the user needs of a variety of Internet of Things applications.
The authors of [5] design an evolutionary algorithm to solve
the constrained multi-objective optimization problem in the
task offloading model, which minimizes both the mobile
devices’ energy consumption and task execution latency. The
authors of [25] design centralized and distributed Greedy
Maximal Scheduling algorithm, which can obtain the task
offloading strategy under multi-user multi-task green mobile
edge cloud system, and the energy harvesting strategy with
the aid of Lyaponuv Optimization Approach is innovative in
green MEC system.

The above researches have made outstanding contribu-
tions to computation offloading in MEC. Learning from the
above research, the partial offloading mode and resource
allocation under multi-user system are considered in our
paper. However, balancing edge servers to efficient usage
of servers has not been considered in detail either in
binary or partial offloading modes, and the frequent mobility

of multiple users should be considered in a multi-user
MEC system.

B. DEEP LEARNING-BASED METHOD
Recently, deep learning technology has been widely used
to solve optimization problems in the edge computing
paradigm. The authors of [26] propose a robust mobile
crowd sensing (RMCS) architecture that creatively combines
deep learning method and edge computing, which provide
robust data validation and local data processing. The authors
of [27] propose a multi-agent deep reinforcement learn-
ing algorithm under the edge computing paradigm, which
effectively encourages mobile users to participate in sens-
ing activities and contribute high-quality data. The authors
of [28] design a deep reinforcement learning based mobile
offloading scheme for mobile devices, which supports deep
learning to choose the offloading policy without being aware
of the task generation model, the edge computing model and
jamming/interference model. The authors of [29] propose a
new Deep Reinforcement Learning algorithm, which obtains
an optimal computation offloading and resource allocation
strategy for minimizing system energy consumption. The
authors of [30] leverage Lyapunov optimization technique to
transform the stochastic computation offloading and resource
allocation problem into a deterministic per-time slot problem,
and design an Asynchronous Actor-Critic algorithm to find
the optimal stochastic computation offloading policy in a
new paradigm Digital Twin Networks. The above research
inspired us to solve the problem of computation offloading
optimization in aMEC system. Learning from them, we com-
bine the deep reinforcement learning technology with the
proposed MEC system to obtain the offloading strategy.

In this paper, we propose a parallel offloading model in
multi-server multi-SMD and multi-task MEC system, which
can solve the challenges of inefficient usage of MEC servers
and frequent mobility of SMDs. Furthermore, we formu-
late a multi-constraint optimization problem to minimize the
completion time of all tasks, and transform problem into
a deep reinforcement learning-based offloading scheme by
Markov decision approach. Finally, we present a deep deter-
ministic policy gradient approach for obtaining the offloading
strategy.

III. SYSTEM MODEL
In this section, the scenario of MEC computation offloading
is first introduced and then modeled.

MEC is widely used in 5G network environment, espe-
cially in mobile scenarios, such as AR, unmanned aerial vehi-
cle (UAV) coordination, autonomous driving, and real-time
video analysis. For example, a MEC system is deployed in
a larger community, as shown FIGURE 1, AR applications
can help pedestrians identify landmarks to reach their des-
tinations quickly. However, on some special occasions with
dense mobile personnel, such as football fields and hospi-
tals, AR applications have the problem of service response
to excessive delay and even failure. Therefore, our work is
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FIGURE 1. The scenario with multiple mobile devices in mobile edge
computing.

to design a MEC offloading strategy for computation tasks
generated by real-time SMDs to minimize the completion
time of all tasks. Then we formulate the system model to
simplify this scenario, i.e., theMEC systemwith multi-server
multi-SMD and multi-task. In the end, the communication
model and the computation model are introduced in detail.

Then we formulate the system model to simplify this sce-
nario, i.e., the MEC system with multi-server multi-SMD
and multi-task. In the end, the communication model and the
computation model are introduced in detail.

A. MOBILE EDGE COMPUTING SYSTEM WITH
MULTI-SERVER MULTI-SMD AND MULTI-TASK
We propose a mobile edge computing system consisting
of one Macro Base Station (MBS) and m Small Base Sta-
tions (SBSs). In this system, base stations (BSs) configured
with the corresponding MEC servers can provide computing
offloading services for resource-constrained SMDs, as shown
in FIGURE 2. It is considered that the capacity of the MBS
server is much higher than SBS servers. Within the signal
coverage of MBS, there are densely distributed SBSs and
randomly distributed SMDS. Each SMD communicates with
the MBS and one SBS associated with it simultaneously. The
tasks can be computed by theMBS server and one SBS server
at the same time. We assume that each MEC server has a
task queue, and the tasks arriving at the MEC server are first
cached in the queue, and then served on a first-come-first-
served basis.

FIGURE 2. The mobile edge computing system with multiple mobile
devices.

The MBS coverage area is divided into E small areas on
average, and SMDs in a small area have the same distance to
the base station. The division of small areas has no apparent
relationship with the deployment of SBS. At the same time,
because the range of each small area is smaller than the
coverage range of the SBS, at most one base station can
be deployed in each small area. The control center plays a
scheduling role according to the offloading strategy, and it
obtains the location information, task information of each
SMD, and the status information of each server. Each task
has a corresponding offloading pattern (offloading object
and offloading bits), the same type of tasks generated in
the same small area have the same offloading pattern, and
the offloading strategy consists of the offloading patterns of
multiple types of tasks in E small areas.

We use serve0 to represent the MBS server, and
serve 1, serve 2, . . . , serve m to represent the SBS servers.
We assume that there areG types of tasks. A task is described
as a two-tuple ki = (di, ci) , i ∈ G, where di represents the
data size (bits) of the task ki and ci represents the number of
CPU cycles required by one bit of the task ki. Each task gener-
ated by the SMDwill be divided into two parts of any size for
parallel offloading. In the computation offloading scenario,
different SMDs in the same small area have the same offload-
ing pattern. Then, we design the parallel task offloading
model for task ki, as shown in FIGURE 3. The small area
index of SMD j ∈ {1, 2, . . . ,N } is ej ∈ {1, 2, . . . ,E}, and the
task ki generated in this area can be divided into two parts and
transmitted to two servers (MBS server and one SBS server)
for parallel execution. The data size offloaded to the MBS
server is di,ej,0. The complete time of the data offloaded to
the MBS server is ti,ej,0. The data size offloaded to the SBS
server bs is di,ej,bs. The complete time of the data offloaded to
the SBS server bs is ti,ej,bs. In this model, to ensure that task
ki generated by SMD j is fully offloaded to the edge server,
a task constraint is defined as di = di,ej =

∑m
bs=1 di,ej,b s +

di,ej,0. Due to the parallelism, the complete time of the task
ki is t totali,ej = max

(
ti,ej,0, ti,ej,b s

)
. The notations used in this

paper are listed in Table 1.

FIGURE 3. The parallel task offloading model.

B. COMMUNICATION MODEL
In the MEC system with multi-server and multi-SMD,
the technology of orthogonal frequency division multiple
access is adopted for communication between SMDs and
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TABLE 1. Notations.

BSs. We suppose that the SMDs associated with the same
BS are assigned orthogonal frequency spectrum, and the
spectrum between SBSs and theMBS is also orthogonal [31].
Subsequently, we solely think about the inter-cell interference
between SBSs [32].

In the analysis of the communication model, we only con-
sider the uplink communication process, during which the
tasks generated by the SMDs are offloaded to MEC servers.
We assume that all SMDs have a fixed transmission power in
different communication modes, for example, the power PM
in the SMDs and MBS communication mode and the power
PS in the SMDs and SBSs communication mode.
If the SMD j communicates with the MBS, the signal-to-

interference-plus-noise-ratio (SINR) in the uplink communi-
cation process will be defined as,

rj,0 =
PMGr

L0dαj,0PW
, (1)

where Gr is the antenna gain at MBS, L0 is the path loss
per reference unit distance, α is the path loss exponent, and
PW is the power of additive white Gaussian noise. Since
the bandwidth of MBS is equally allocated to its associated
SMDs, the uplink data rate when SMD j communicates with
MBS is denoted as,

Rj,0 =
WMBS

N0
log2

(
1+ rj,0

)
, (2)

0 < N0 ≤ Nmax,0, (3)

where WMBS denotes the bandwidth of MBS and (3) means
that the number N0 of SMDs associated with MBS cannot
exceed its maximum capacity Nmax,0.
Similarly, if the SMD j is associated with SBS bs ∈
{1, 2, . . . ,m}, the SINR is given by,

rj,bs =

PS
L0dαj,bs

PW +
∑N

j′=1,j6=j
∑m

sbs′=1,bs′ 6=bs
PS

L0dαj′,bs′

, (4)

where
∑N

j′=1,j6=j
∑

sbs′=1,bs′ 6=bs
PS

L0dαj′,bs′
is the inter-cell inter-

ference among SBSs. The achievable rate of the SMD j
associated with the SBS bs will then be,

Rj,bs =
WSBS

Nbs
log2

(
1+ rj,bs

)
, (5)

0 ≤ Nbs ≤ Nmax,bs, (6)

where WSBS denotes the bandwidth of MBS and (6) means
that the number Nbs of SMDs associated with SBS bs cannot
exceed its maximum capacity Nmax,bs.

C. COMPUTATION MODEL
In this subsection, we discuss the computation cost of task
k on the basis of upload time, wait time in the MEC server
and task processing time. Here, we take the first-come-first-
served working mechanism of servers into account, which
results in the waiting time of tasks on the server. Similarly,
s0, s1, . . . , sm denote the required computation (CPU cycles)
of the tasks queuing in serve 0, serve 1, serve 2, . . . , serve m.
Let {w0,w1, . . . ,wm} denote the computing capacity (HZ) of
these servers, respectively.

1) OFFLOADING TO SBS
As shown in FIGURE 3, the SMD j in the small area ej
offloads the di,ej,bs−bit task ki to SBS edge server bs for
execution. Thus, in this process, the completion time can be
written as,

ti,ej,bs =
di,ej,bs
Rj,bs

+
sbs
wbs
+
di,ej,bsci
wbs

, (7)

where the first term is the upload time, the second term is the
wait time and the third term is the execution time in the SBS
server bs.

2) OFFLOADING TO MBS
In this case, the completion time ti,ej,0 can be defined as,

ti,ej,0 =
di,ej,0
Rj,0
+

s0
w0
+
di,ej,0ci
w0

,

di,ej,0 = di −
m∑

bs=1

di,ej,bs, (8)

m∑
bs=1

di,ej,bs∣∣di,ej,bs∣∣ = 1, (9)

where (9) indicates that each SMD selects only one SBS for
task offloading.

Since each task can be processed at the MBS server and
the SBS server concurrently. Thus, the completion time of
the task ki in the small area ej can be written as,

t totali,ej

= max

(
m∑

bs=1

ti,ej,bs, ti,ej,0

)
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= max

(
m∑

bs=1

(
di,ej,bs
Rj,bs

+
sbs
wbs
+
di,ej,bsci
wbs

)
,

di −
∑m

bs=1 di,θ,bs
Rj,0

+
s0
w0
+

(
di −

∑m
bs=1 di,ej,bs

)
ci

w0

)
.

(10)

In the small area-based edge offloading of multi-server
multi-SMD and multi-task, we formulate a multi-constraint
offloading optimization problem that minimizes the comple-
tion time of all tasks. The time-based optimization problem
can be defined as,

min{
di,ej,bs

}
G∑
i=1

N∑
j=1

t totali,ej (11)

s.t.
m∑

bs=1

di,ej,bs∣∣di,ej,bs∣∣ = 1, (11.a)

di = di,ej =
m∑

bs=1

di,ej,bs + di,ej,0, (11.b)

0 ≤ di,ej,bs ≤ di, (11.c)
G∑
i=1

N∑
j=1

di,ej,k ≤ Dmax,k , (11.d)

0 ≤ Nk ≤ Nmax,k , (11.e)

∀i ∈ G, k ∈ {0, 1, 2, . . . ,m},

j ∈ {1, 2, . . . ,N }, bs ∈ {1, 2, . . . ,m}.

As for the constraints in the optimization problem,
we explain them as follows: constraint (11.a) is essentially
an association constraint, that is, which one SBS should the
SMDcommunicate with; constraints (11.a), (11.b), and (11.c)
imply that each computation task can be divided into two
parts for execution, with one part being offloaded to one
SBS server and the other part being offloaded to the MBS
server; constraint (11.d) ensures that the task size received by
each edge server cannot exceed its maximum storage limit;
constraint (11.e) means that the number of SMDs associated
with the base station during communication cannot exceed its
maximum capacity.

IV. DEEP LEARNING-BASED OPTIMAL OFFLOADING
SCHEME
It is quite challenging to optimally address the optimiza-
tion problem due to the multi-constraints, which essentially
implies an association constraint and is usually NP-hard [33].
To make the optimization problem more realistic, we should
also consider some dynamic factors in mobile edge comput-
ing offloading, such as the changeable state of edge servers
and the communication environment in continuous time.
Since the above two points, we transform the optimization
problem into a deep reinforcement learning-based offloading
scheme by the Markov decision approach and design a Deep
Deterministic Policy Gradient-based offloading approach to
achieve computation offloading.

A. MARKOV DECISION APPROACH
We discrete time into time slots and assume that there will be
a batch of task requests within each time slot that can arrive at
the corresponding edge servers based on offloading strategy.
The length of each time slot is ϑ . Since each edge server has a
task waiting queue, the status of the service queue in the pre-
vious time slot will affect the completion time of the arrived
task in the current time slot. In detail, the task offloading
strategy of time period l depends on the server queue status
of time period l − 1 and the communication status of the
SMDs in time slot l. Thus, we can transform the time-based
optimization problem to the Markov decision process and try
to use the Markov decision approach to solve it.

The status of the MEC system with multi-server multi-
SMD and multi-task at the beginning of time slot l is rep-
resented as S l = {sl0, s

l
1, . . . , s

l
m}. The action taken by the

control center at the time slot l is denoted as al = {d li,e,bs}(i ∈
G, e ∈ {1, 2, . . . ,E}, bs ∈ {1, 2, . . . ,m}), where d li,e,bs is the
data size of the task i offloaded to the SBS server bs in the
small area e. We introduce the variable ζ lbs to analyze the
effects caused by the actions to theMEC system states, which
represents the amount of computation by SBS server bs in
time slot l. The variable is defined as,

ζ lbs = min

slbs + G∑
i=1

N∑
j=1

di,ej,bsci, ϑwbs

 . (12)

The state of time slot l + 1 affected by the above variable
and the system state of time slot l is defined as,

S l+1 =

slk +
G∑
i=1

N∑
j=1

d li,ej,kci − ζ
l
k

 ,
k ∈ {0, 1, . . . ,m}, (13)

where ζ lk=0 = min
(
sl0 +

∑G
i=1

∑N
j=1 d

l
i,ej,0

ci, τw0

)
is the

amount of computation by MBS server 0 in time slot l and
d li,ej,k=0 = di −

∑m
bs=1 d

l
i,ej,bs is the data size of the task i

offloaded to the MBS server 0 in the small area ej.
When action al is taken in state S l , the gained reward in

time slot l is,

U l
=

N∑
j=1

G∑
i=1

−t totali,ej,l, (14)

t totali,ej,l = max

(
m∑

bs=1

d li,ej
bs

Rj,bs
+

d li,ej,bsci

wbs
+

slbs
wbs

,

di −
∑m

bs=1 d
l
i,ej,bs

Rj,0

+

(
di −

∑m
bs=1 d

l
i,ej,bs

)
ci

w0
+

sl0
w0

)
. (15)

We assume that there will be a batch of task requests
arriving at the MEC server in each time slot, then the utility
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of the offloading system in lmax time slots can be expressed
as,

max
ψ∗

U =
lmax∑
l=1

N∑
j=1

G∑
i=1

−t totali,ej,l . (16)

In the optimization problem, we maximize the utility U of
the MEC system by obtaining an optimal strategy 9∗ com-
posed of offloading patterns for G types of tasks in different
small areas.

B. DEEP DETERMINISTIC POLICY GRADIENT-BASED
OFFLOADING APPROACH
To obtain the optimal strategy, we start with deep reinforce-
ment learning technology [34].

Algorithm 1DeepDeterministic PolicyGradient-Based Task
Offloading
Initialization:

Initialize mobile edge computing environment, including
the location of base station equipped with edge server,
SMDs movement trajectory based on small area and task
information generated by SMDs;
Randomly initial Critic network Q

(
S l, al;w

)
and Actor

µθ
(
S l
)
with weights w and θ ;

Initialize target network Q′
(
S l, al;w′

)
and µ′

θ ′

(
S l
)
with

weights w′Q
′

← wQ and θ ′µ
′

← θµ;
Initialize replay memory pool R;

Iteration:
1: for each round t = 1 to T do
2: Accept initial MEC system state S0;
3: Initialize a random process N for action exploration;
4: for time slots l = 0, . . . , lmax do
5: Select action al = µθ

(
S l
)
+ N l according to the

current MEC system state and exploration noise;
6: Combined with mobile edge computing environ-

ment, perform action al to obtain rewardU l and new
MEC system state S l+1;

7: Store state transition
(
S l, al,U l, S l+1

)
in pool R;

8: Randomly select a minibatch of N transitions(
S i, ai,U i, S i+1

)
from R as a sample set;

9: Set yi = U i
+ γQ′

(
S i+1, µ′

θ ′

(
S i+1

)
;w′

)
;

10: Update the Critic network via minimizing the loss:
L = 1

N

∑
i
(
yi − Q

(
S i, ai;w

))2;
11: Update the Actor network using the sampled policy

gradient:
∇θµJ ≈ 1

N∑
al Q

(
S l, al;w

)∣∣
S l=S i,al=µθ(S i)

∇θµµθ
(
S l
)∣∣∣
S l=S i

12: Update the target network:
θ ′µ
′

= τθµ + (1− τ )θ ′µ
′

,

w′Q
′

= τwQ + (1− τ )w′Q
′

;

13: end for
14: end for

The random strategy π can be expressed as,

5 : S l × al → U l, (17)

which means that action al is selected from multiple actions
under state S l to execute and get the reward U l .

The deterministic strategy π can be expressed as,

5 : S l → al, (18)

which means that only one deterministic action al is executed
in state S l .

We first approximate the strategy as a continuous function
with parameter θ to solve the optimal strategy using the
continuous function optimization method.

The random strategy is changed to

πθ

(
al | S l

)
= P

(
al | S l; θ

)
, (19)

which means that the output action obeys a probability distri-
bution in the given the state and parameters.

The deterministic strategy is changed to

al = µθ
(
S l
)
, (20)

which means that the output action is deterministic in the
given the state and parameters.

The gradient ascent method is used to solve the optimal
strategy, and the calculation formula obtained for the random
strategy is,

∇θJ (πθ )= ES l∼ρπ ,al∼πθ

[
Vθ logπθ

(
al | S l

)
Qπ

(
S l, al

)]
.

(21)

And the calculation formula obtained for the deterministic
strategy is,

∇θJ (µθ ) =ES l∼ρµ
[
∇θµθ

(
S l
)
∇aQµ

(
S l, al

)∣∣∣
al=µθ(S l)

]
.

(22)

Since the action of the offloading system belongs to the high
dimensional continuous value, we hope to obtain a determin-
istic optimization strategy µ∗, ψ∗ = µ∗.
In the Deterministic Policy Gradient (DPG) algorithm,

the Actor network uses the approximate deterministic strat-
egy µθ to obtain deterministic action al according to state
S l and gets reward U l as well as the new state S l+1,
the Critic network uses the approximate action-value func-
tion Q

(
S l, al;w

)
to evaluate the performance of the Actor

network and guide the Actor network.
Then, θ of the Actor network is updating according to

θ l+1 = θ l + αθ∇θµθ

(
S l
)
∇αQw

(
S l, al

)∣∣∣
al=µθ(sl)

,

(23)

w of the Critic network is updating according to

δl = U l
+ γQw

(
S l+1, µθ

(
S l+1

))
− Qw

(
S l, al

)
,

(24)
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wl+1 = wl + αwδl∇wQw
(
S l, al

)
, (25)

where γ is the attenuation factor.
The Deep Deterministic Policy Gradient (DDPG)

algorithm adds experience pool and target network to DPG
algorithm, which breaks the correlation between data and
increase the stability of the algorithm.

In the target Actor network µ′
θ ′

(
S l
)
, θ ′ is updated accord-

ing to

θ ′µ
′

= τθµ + (1− τ )θ ′µ
′

, (26)

where τ is the soft update factor. In the target Critic network
Q′
(
S l, al;w′

)
, w′ is updated according to

w′Q
′

= τwQ + (1− τ )w′Q
′

. (27)

Next, the experience replay technology stores the past
system state transition experience in the replay memory pool,
and randomly samples from the pool for training during
the learning process to improve learning performance. The
system state transition experience in the replay memory
pool is composed of observed state transitions and gained
reward caused by actions in each time slot. The system state
transition experience obtained at time slot l is denoted as(
S l, al,U l, S l+1

)
. In order to train the Critic network param-

eters, a batch of stored experience is randomly selected from
the replay memory pool as samples. The purpose of the
training is to minimize the difference between Q

(
S l, al;w

)
and Q′

(
S l, al;w′

)
. To represent the difference, we define a

loss function L, which is,

L =
1
N

∑
i

(
yi − Q

(
S i, ai;w

))2
, (28)

yi = U i
+ γQ′

(
S i+1, µ′θ ′

(
S i+1

)
;w′

)
, (29)

where N is the number of samples drawn from the experi-
ence pool. The Offload-DDPG consists of Actor network,
Critic network, target Actor network, target Critic network
and repay memory pool in MEC environment, as shown in
FIGURE 4. The Actor network is responsible for iteratively
updating the network parameters θ , choosing the current
action according to the current state, and interacting with the
MEC environment to generate the next state and reward. The
target Actor network is responsible for selecting the optimal
next action based on the next state sampled in the experiential
playback pool. The Critic network is responsible for itera-
tively updating parameterw, and calculating the current value
Q
(
S l, al;w

)
. The target Critic network is mainly responsi-

ble for calculating the value Q′
(
S l, al;w′

)
. The proposed

Deep Deterministic Policy Gradient-based task offloading
(Offload-DDPG) approach is shown in Algorithm 1.

We combine constraint conditions (11.d), (11.e) and selec-
tion probability to determine the offloading object in the
DDPG algorithm code. As shown in FIGURE 5, under the
condition of satisfying the constraints, we select the service
object of each task in each small region according to the state
of the server. In the Actor network, the task i in small region

FIGURE 4. The structure of offload-DDPG in MEC environment.

FIGURE 5. The offloading bits and objects in the Actor network.

e only selects one SBS service object BS, which satisfies
constraint (11.a). And We add constraints to the output value
of the Actor network to satisfy the constraint (11.b), (11.c).

V. PERFORMANCE EVOLUTION
In this section, we verify the performance of the proposed task
offloading approach based on real trajectory data [35]–[37] in
a mobile edge network topology. We design three groups of
experiments, the first group is for verifying the training effi-
ciency with different learning parameters on Offload-DDPG,
the second is for the optimization performance with different
strategies in multi-server multi-SMD andmulti-task scenario,
and the third is for observe the optimization performance of
individual SMD with different strategies.

A. SIMULATION SETTINGS
We consider a scenario that, a network topology of 10 km×
10 km consists of one Macro Base Station (MBS), 100 Small
Base stations (SBSs) and trajectories of SMDs. SBSs are
uniformly deployed in the MBS signal coverage area located
at the center of the MEC network. The area is divided into
10,000 small areas (100 m× 100 m) on average.
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The simulation parameters are defined in Table 2. The
parameters of Deep Deterministic Policy Gradient-Based
Task Offloading approach (Offload-DDPG) are given
in Table 3.

TABLE 2. Simulation Parameters.

TABLE 3. The Parameters of Offload-DDPG.

B. SIMULATION ANALYSIS
1) TRAINING EFFICIENCY WITH DIFFERENT LEARNING
PARAMETERS ON OFFLOAD-DDPG
In this subsection, we verify the training efficiency of the pro-
posed Offload-DDPG approach with various learning param-
eters. We take the offloading time-cost (|U |) as the evaluation
criterion, which is the sum of the completion time of tasks
generated by 182 SMDs in 500 time slots.

FIGURE 6 plots the convergence effect of the proposed
Offload-DDPG with different learning rates. Specifically, δa
is the learning rate of the Actor network in the Offload-DDPG
approach and δc is the learning rate of the Critic network
in the Offload-DDPG approach. We find that for different
learning rates, they all have a fast convergence rate and
generally converge within 50 iterations. We find that when
δa = 0.001 and δc = 0.002, the proposed Offload-DDPG has
a relatively small fluctuation range in the convergence stage,
which is more suitable for the quality of service of all SMDs.

FIGURE 7 plots the convergence effect of the proposed
Offload-DDPG with different soft update factor τ . It is clear
that the Offload-DDPG has a relatively longer convergence

FIGURE 6. The convergence effect with different learning rates (δa, δc ).

FIGURE 7. The convergence effect with different soft update factor τ .

iteration when τ = 0.001. In the convergence stage, the soft
update factor of τ = 0.01 has a relatively smaller fluctuation
range than τ = 0.1. Therefore, Offload-DDPG is cost efficient
in terms of computation offloading.

We can observe that the offloading time-cost increase and
later decline in FIGURE 6 and FIGURE 7. The offloading
strategy determines the offloading time-cost. Through the
offloading strategy

{
di,e,bs

}
, i ∈ G, bs ∈ {1, 2, . . . ,m},

we can get the offloading object bs and offloading bitsdi,e,bs
of task ki in small area e. Thus, the choice of offload-
ing object and the determination of offloading bits of tasks
together affect the time-cost. In the training of the proposed
DDPG-offloading algorithm, the offloading bits of actions
al =

{
d li,e,bs

}
, i ∈ G, bs ∈ {1, 2, . . . ,m} is determined

mainly through the Actor network. However, the selection
of offloading object of actions is based on the probability
determined by the task queue state of the edge servers at
the time slot l, as shown in FIGURE 5. At the beginning of
an iteration, a low offloading bits of Actor network affects
the server state in the next time slot, resulting in a defi-
cient offloading object, thus increasing the offloading time-
cost. Similarly, when the offloading bits of Offload-DDOG
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FIGURE 8. The convergence effect with different small areas.

algorithm is better, the selection of offloading objects will be
better, so the offloading time-cost decline.

FIGURE 8 plots the convergence effect of the proposed
Offload-DDPG with different small areas. The actions of
different small areas have conflict interests with the MEC
system utility. We randomly select four small areas to eval-
uate the proposed DDPG-based offloading method. Taking
the total time cost of all tasks generated in each small area
as the evaluation criterion, we find that the Offload-DDPG
reaches convergence within 50 iterations and different small
areas have different offloading time costs. The reason for
the different time cost is that the total scale of tasks occurs
in each small area in 500 time slots is different. Therefore,
the proposed Offload-DDPGmethod is feasible with multiple
small areas.

2) OPTIMIZATION PERFORMANCE WITH DIFFERENT
STRATEGIES IN MULTI-SERVER MULTI-SMD AND MULTI-TASK
SCENARIO:
For evaluating the optimization performance of the proposed
Offload-DDPG approach, We compare it with the following
traditional strategies.
Offload-MBS: During each time slot, the tasks generated

by the SMDs in the trajectory information are offloaded to
the MBS server for execution.
Offload-Nearby:During each time slot, the tasks generated

by the SMDs in the trajectory information are offloaded to the
edge servers closest to the corresponding SMD.
Offload-Local: During each time slot, the tasks generated

by the SMDs in the trajectory information are executed on
local SMDs without resorting to the edge servers.

We assume that there will be a batch of task requests
arriving at the MEC servers in each time slot and each
mobile device will generate a task request in each time slot.
We compare the performance of different strategies with the
offloading time-cost (|U |) in each time slot. The offloading
time-cost represents the sum of time spent by all devices to
complete their respective tasks in a time slot.

FIGURE 9. The Offloading Time-Cost with different strategies.

FIGURE 9 shows that the offloading time-cost and
the offloading time-cost fluctuation range using the
Offload-DDPG approach was lower than the other three
strategies for most of the time slots. The Offload-DDPG
approach adopts the parallel task offloading model to ensure
the completion of tasks with ultra-low latency. This approach
considers the status information of the edge servers and
ensures that the edge server is fully utilized to reduce the
waiting time for tasks on the server. Moreover, this approach
adopts the small-area based offloading scheme which is more
suitable for the mobile characteristics of the devices.

We observe that the time-cost of the Offload-MBS strategy
is increasing fromFIGURE9. TheMBSgenerates an iterative
process, in which the MBS server obtains a batch of new task
requests before it has not finished processing the tasks in the
previous time slot. This iterative process leads to a continuous
increase in the waiting time of each batch of tasks on theMBS
server, which in turn leads to a continuous increasing in the
time-cost.

In order to explain the experimental phenomenon more
clearly, we define a Cumulative Process and the continuous
increase of task processing time caused by this process is
called the Cumulative Phenomenon. The Cumulative Process
refers to the iterative process in which the server has not
finished processing the tasks in the previous time slot, and
will obtain a batch of new task requests in the next time slot.

We observe that the Offload-Local strategy’s time-cost is
increasing from FIGURE 9, which is due to the Cumulative
Process of SMDs.

We calculate the sum of time-cost in FIGURE 9 and
conclude that Offload-DDPG improves the long-term perfor-
mance by at least 19% compared to other traditional strate-
gies. Therefore, the proposed Offload-DDPG approach has
better performance in ultra-low latency and efficient usage of
servers than traditional strategies.

3) OPTIMIZATION PERFORMANCE OF INDIVIDUAL SMART
MOBILE DEVICES WITH DIFFERENT TRAJECTORIES
We select three individual smart mobile devices from all
SMDs to compare the impact of different Trajectories on the
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FIGURE 10. Diagram of individual user trajectory.

FIGURE 11. The offloading time-cost of user 1 with different strategies.

offloading time-cost. FIGURE 10 shows the diagram of three
individual user trajectories.
Across-SBSs: The SMD moves across in the cellulars of

SBSs, i.e., user 1.
In-MBS: The SMD moves in the cellular of the MBS,

i.e., user2.
In-SBS: The SMD moves in the cellular of one SBS,

i.e., user 3.
FIGURE 11, FIGURE 12 and FIGURE 13 show that the

offloading time-cost of using theOffload-MBS strategy or the
Offload-Local strategy is increasing under different moving
trajectories, that is, Cumulative Phenomenon. The reason for
this phenomenon is that the MBS server under Offload-MBS
and SMDs under Offload-Local have the Cumulative Process
in 500-time slots. Therefore, the Offload-MBS strategy and
the Offload-Local strategy cannot satisfy the user experience
in the multi-SMD scenario.

It can be seen from FIGURE 11, FIGURE 12 and
FIGURE 13, the offloading time-cost of the Offload-DDPG
approach has the smallest fluctuation range and is always
less than 50ms under different moving trajectories. The
Offload-DDPG strategy adopts the small area-based offload-
ing scheme in the parallel offloading model to ensure

FIGURE 12. The offloading time-cost of user 2 with different strategies.

FIGURE 13. The offloading time-cost of user 3 with different strategies.

ultra-low latency, and avoids the impact of a dynamic offload-
ing environment on the time-cost. Therefore, the Offload-
DDPG approach can bemore adapted to the frequent mobility
of SMDs and satisfy the user experience in the multi-SMD
scenario.

The moving trajectory affects the offloading time-cost
of the Offload-Nearby strategy, as shown in FIGURE 11,
FIGURE 12 and FIGURE 13, so this strategy cannot satisfy
the user experience in the multi-SMD scenario. The detail is
as follows,
Across-SBSs: FIGURE 11 shows the offloading time-cost

of user 1 in 500 time slots.
When the Offload-Nearby strategy is adopted, we can

find that the task completion time generated by user 1 in
0-100 time slots and 200-500 time slots is increasing. The
SMDs distributed near the nearest base station of user 1
are more densely during these time slots, which causes the
nearest server selected by user 1 to be in the Cumulative
Process. In 100-300 time slots, the nearest server selected
by user 1 has a smaller task request scale and no Cumulative
Process. Therefore, in 100-300 time slots, the task completion
time is lower and balanced.
In-MBS: FIGURE 12 shows that the offloading time-cost

of user 2 in 500 time slots.
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When the Offload-Nearby strategy is adopted, the task
completion time is the lowest. Because the nearest edge server
selected by user 2 only receives task requests from user 2
within 500 time slots, there is no waiting delay.
In-SBS: FIGURE 13 shows the offloading time-cost of

user 3 in 500 time slots.
When the Offload-Nearby strategy is adopted, user 3 has a

Cumulative Phenomenon in the 150-300 slots. The nearest
server selected by user 3 received too many task requests
during these time slots, and a Cumulative Process occurs, that
is, the previous task of user 3 has not been processed yet, and
the next task arrives at the nearest server.

The above simulation results prove that the Offload-DDPG
approach can better adapt to multi-server multi-SMD and
multi-task scenarios, which achieve the ultra-low latency of
tasks and the efficient usage of servers, and also can meet
the frequent mobility of SMDs. Therefore, the proposed
Offload-DDPG approach has better performance in ultra-low
latency, efficient usage of servers, and frequent mobility of
SMDs than traditional Strategies.

VI. CONCLUSION
This paper focuses on researching the task offloading in
a dense distributed cellular network with multiple MEC
servers, multiple SMDs, andmultiple tasks. Considering both
MEC servers and SMDs mobility, we propose the small
area-based parallel task offloadingmodel to achieve ultra-low
latency requirements. In this model, we formulate the task
offloading optimization problem for minimizing the comple-
tion time of all computation tasks. To solve this problem,
we transform the optimization problem into a computation
offloading scheme based on deep reinforcement learning
through the Markov decision approach and propose a Deep
Deterministic Policy Gradient-based offloading (Offload-
DDPG) approach to solve this optimization problem. The
dynamic communication environment and the variable server
status information over continuous time slots are considered
in the process of solving the problem. We can get the offload-
ing object and offloading bits of tasks in each small area
through the offloading strategy. Simulation results prove that
our proposed Offload-DDPG approach improves long-term
performance by at least 19% in ultra-low latency.

In the future, our work will focus on the collaboration
between SBS in order to further make full use ofMEC servers
in task offloading. Besides, the deployment of services on
MEC servers should also be considered in task offloading.
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