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ABSTRACT Assessing comprehension difficulties requires the ability to assess cognitive load. Changes
in cognitive load induced by comprehension difficulties could be detected with an adequate time reso-
lution using different biofeedback measures (e.g., changes in the pupil diameter). However, identifying
the Spatio-temporal sources of content comprehension difficulties (i.e., when, and where exactly the
difficulty occurs in content regions) with a fine granularity is a big challenge that has not been explicitly
addressed in the state-of-the-art. This paper proposes and evaluates an innovative approach named Intelligent
BiofeedbackAugmented Content Comprehension (TellBack) to explicitly address this challenge. The goal
is to autonomously identify regions of digital content that cause user’s comprehension difficulty, opening the
possibility to provide real-time comprehension support to users. TellBack is based on assessing the cognitive
load associated with content comprehension through non-intrusive cheap biofeedback devices that acquire
measures such as pupil response or Heart Rate Variability (HRV). To identify when exactly the difficulty in
comprehension occurs, physiological manifestations of the Autonomic Nervous System (ANS) such as the
pupil diameter variability and the modulation of HRV are exploited, whereas the fine spatial resolution (i.e.,
the region of content where the user is looking at) is provided by eye-tracking. The evaluation results of this
approach show an accuracy of 83.00% =+ 0.75 in classifying regions of content as difficult or not difficult
using Support Vector Machine (SVM), and precision, recall, and micro Fl-score of 0.89, 0.79, and 0.83,
respectively. Results obtained with 4 other classifiers, namely Random Forest, k-nearest neighbor, Decision
Tree, and Gaussian Naive Bayes, showed a slightly lower precision. TellBack outperforms the state-of-the-art
in precision & recall by 23% and 17% respectively.

INDEX TERMS Biomedical measurement, cognitive load, content comprehension, eye-tracking, heart rate

variability, machine learning.

I. INTRODUCTION

Imagine a software technology that augments your ability to
comprehend complex concepts and ideas. You are reading a
sentence in a technical document and the software installed
in your tablet, laptop, or smartphone automatically detects
specific passages or words in a paragraph that make the
entire paragraph cumbersome for you and promptly displays
an explanation, shows an example, or provides you with a
definition that will make you understand the whole idea.
We call this approach InTelligent BiofeedBack Augmented
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Content Comprehension (TellBack), and the present paper
proposes the idea and evaluates the accuracy of TellBack
in the identification of specific content regions (e.g., line,
expression, etc.) that are considered difficult to understand
by the user. The accurate identification of content locations
that cause user’s comprehension difficulties is a crucial step
to show the feasibility of the proposed approach.

TellBack uses cognitive load as a key element to identify
specific parts of digital content that cause comprehension
difficulty. The goal is to predict that the user is needing
support in understanding the content element/passage that
is causing comprehension difficulties while reading digital
content.
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Digitized reading resources are immensely growing. Due
to the popularity of handheld portable devices, such as
e-readers and tablets, reading is becoming more on-screen
than on printed material. However, various studies, such
as [1], showed that on-screen reading is associated with short
attention and poor comprehension. Comprehension of digital
resources deserves more research attention, especially with
the ever-growing reliance on digital resources comprehen-
sion in learning, training, and industry. For instance, in the
software industry, code review is one of the essential tasks
in software engineering to ensure the quality of the delivered
service. Code review requires full code comprehension by the
reviewer. The code and its description are generally digitized
resources that require the reviewer to immensely read and
comprehend.

Digital resources comprehension requires the ability of
users or learners to integrate and evaluate information across
different types of representations. The integration and evalua-
tion are often mentally demanding tasks, which impose extra
cognitive load on learners.

Comprehension, in general, is a higher cognitive process
that imposes a cognitive load and involves different cog-
nitive states, which we hypothesize in TellBack that these
states can be accurately captured by non-intrusive biofeed-
back devices through physiological manifestations of the
Autonomous Nervous Systems (ANS). In the context of this
paper, biofeedback is defined as the process of providing
task-relevant feedback to the user based on her/his cognitive
state (captured through physiological ANS reactions) using
commercially available wearables such as bracelets, watches,
and rings.

Our main contributions in this work can be summarized by
the following points:

o The paper introduces a new technique to detect the cog-
nitive load and thereby the comprehension difficulties at
elemental parts of the content (e.g., lines, expressions,
etc.) and not a global assessment of cognitive load as
investigated in the state-of-the-art.

« The use of eye-tracking is not to assess the cognitive load
as it is generally used in the state-of-the-art (which has
the disadvantage of a slow response time) but to provide
an accurate spatial resolution where the user is looking
at when the HRV and pupillometry biomarkers indicate
peaks in the cognitive load.

o The evaluation of the improvements in precision and
recall achieved with TellBack, when compared with a
very recent related study in [12], shows 23% better
precision and 17% better recall.

o This work addresses the limitations of a single modal-
ity using data fusion of non-intrusive biosensors and
real-time biomarkers from HRV and pupillometry.
Unlike other recent studies [2], [3], [12] that exploit the
multimodality of biosensors, we used simple features (in
terms of computation), but discriminant enough to detect
the increase of the user’s cognitive load/mental effort in
real-time.
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o The use of machine learning and Al techniques to opti-
mize the prediction of “when and where” the user is
encountering difficulty on screen.

The final goal of Tellback is to augment the user’s ability to
comprehend complex concepts and ideas through a new type
of intelligent interface that seems to guess when and where
the user is making an unusual effort to grasp the meaning and
to provide the user with accurate contextual help. This would
simplify the life of readers, learners, trainees, and many
others, and would potentially accelerate the learning curve
of intellectual skills. Providing such functionality involves
building an intelligent predictive model that can take human
biomarkers as input, process those biomarkers, and provide a
Spatio-temporal indicator of comprehension difficulty as an
output.

Biofeedback devices have been extensively used in
research to study the cognitive process involved in various
activities such as software development (e.g., see a recent
survey on measuring the cognitive load of software develop-
ers [9]). Recent work in the context of programmer’s errors
in software development [4], [5], [6] showed that the inte-
gration of HRV, pupillometry, and eye-tracking allows the
identification of the code lines that correspond to an increase
of cognitive load of individual programmers. Although the
goal of the research published in [4], [5], [6] is the annotation
of source code for the prediction of programmers’ errors,
it shows that it is possible to associate programmers’ mental
load in real-time to specific lines of code or lexical tokens [6].
This has motivated us to explore the same concept in the
much broader context of general content comprehension and
intelligent user interfaces, as proposed in TellBack.

The evaluation presented in this paper is intended to pro-
vide a first answer to the following question: How accurate
and precise are biomarkers extracted from HRY, pupil-
lometry, and eye-tracking in detecting, in real-time, where
exactly the content comprehension difficulties occur on
screen?

Detecting cognitive load in real-time using multimodal
sources of biosensors has recently emerged as one of
the promising approaches in adaptive and cognition-aware
e-learning [2], [3], [12], [13]. Those very recent studies
were mainly focusing on providing feedback on learners’
engagement and cognitive load changes. However, the idea of
TellBack is to localize the content (either in learning context
or other real-life contexts) to be able to provide contextual
help promptly.

The structure of this paper is as follows: the second section
discusses the background concepts and the related work. The
third section introduces the proposed approach and the meth-
ods that were applied. The fourth section addresses the dataset
and the experimental protocol that was followed. Results
and discussions are explored in the fifth section. Whereas
the sixth section discusses the limitations and threats to the
validity of this approach. Finally, the conclusion and the
future directions are presented in the seventh section of this

paper.
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Il. BACKGROUND AND RELATED WORK

This section provides background information related to the
biometric measures that were exploited in this work and
provides an overview of the related work. Section II-A briefly
introduces HRV and its use in cognitive load detection and
assessment. Section II-B concisely presents pupillography
and eye-tracking and their use in cognitive load assessment.
Section II-C discusses the related work.

A. HEART RATE VARIABILITY (HRV)

Changes in the cognitive load influence the way the ANS
regulates the cardiovascular system and causes detectable
variations of the heart rate known as HRV (Heart Rate Vari-
ability). HRV is modulated by the two components of the
ANS (i.e., the sympathetic and the parasympathetic nervous
systems) and it is based on calculating the changes of periods
between consecutive cardiac cycles. HRV can be assessed in
both the time and the frequency domain. In the frequency
domain, for example, the Low Frequency (LF) variability of
the heart rate is associated with the blood pressure control
(i.e., sympathetic), whereas High Frequency (HF) of the heart
rate variability is associated with respiratory sinus arrhythmia
(i.e., parasympathetic).

The idea of using HRV to detect changes in the cognitive
load is not new [21], [29]. However, as indicated in [22],
the within-subject measurements of HRV are still uncertain
because each subject exhibits distinct HRV rhythms. Thus,
non-linear methods of HRV analysis would be prominent
in unveiling the complexity of the HRV rhythms. HRV is
also shown to be sensitive to many factors such as gender,
circadian rhythm, age, prior activities of the subjects, and
breathing conditions. Although these factors may change
from individual to individual, this is not a problem for the use
of HRV in TellBack. We use LF/HF ratio means and spikes
to detect peaks in the cognitive load of specific individuals,
and thus between-subject measurements are not relevant for
TellBack.

B. PUPILLOGRAPHY AND EYE-TRACKING

Eye pupil response has been recognized as an indica-
tor of cognitive and attentional efforts. Various research
attempts such as [23], [24] established the evident relation-
ship between pupil activity and attentional cognitive efforts.
Beatty described in [23] that when a person recalls some-
thing from memory or attempts to parse sentences, the pupil
dilates slightly and returns to its normal size after the task is
done. This reaction was called task-evoked pupillary response
(TEPR) [25]. The spectral analysis of the pupil diameter (PD)
is considered a good index for both the mental efforts and
fatigue state.

Eye-tracking devices have also been used in research to
study the eye gaze during distinct mental tasks such as code
comprehension [4], [5], [6]. In principle, eye-tracking is the
process of tracking the eye movement and determining where
the user is looking at or the absolute point of gaze (POG),
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which refers to the point in the visual scene at which the user’s
gaze is focused on. Some technologies like in [7] and [8]
used eye gaze to pinpoint difficulties in content. For example,
the iDict technology which is described in [8] employs the eye
gaze features to assist nonnative English users who encounter
difficulties in interpreting English words. The assistive appli-
cation accordingly translates that word based on the eye
movements. In TellBack the eye-tracker is used to localize the
regional/elemental parts of content that might have caused the
comprehension difficulties.

C. RELATED WORK

Table 1 below includes a related work comparison. How-
ever, very few research attempts have been conducted to
address the problem of prediction of specific passages in
texts that could be difficult to comprehend by users. An early
attempt was made by Sibert and Jacob [7]. These authors
developed a gaze movements-based assistant that delivers
visual and auditory prompting controls to help recognition
and pronunciation of words for remedial reading instruction
whenever a disabled reader encounters a difficulty. Later,
Hyrskykari introduced iDict [8] which analyzes eye gaze to
predict difficulties in English words for nonnative speak-
ers and accordingly translate or pronounce difficult words.
Those related works [7], [8] lack the use of the information
sources multimodality (i.e., including different biomarkers).
Moreover, they lack the use of machine learning techniques
to predict the difficulty. Due to the non-linearity of cog-
nitive load measurements, the use of statistical analysis is
not enough. In TellBack, we utilize different Al techniques
such as feature-level fusion, ensemble decisions, and various
classification models.

Table 1 (below) presents state-of-the-art works that used
multimodal biosensors in assessing cognitive load. Some of
these works were mentioned in a mapping study [9] that
provided a thematic analysis of measuring the cognitive load
of software developers while performing mental tasks. The
study included 33 articles from 11 search engines.

The authors in [9] showed that 55% of the studies used
EEG in monitoring the cognitive load, 36% used a combina-
tion of sensors, 6% used eye-tracking, and 3% used fMRIL
The recent works started to investigate the multimodality of
the input sources in different scopes. Table 1 (above) summa-
rizes those studies and other studies to show the biomarkers
that were used to assess the cognitive load, the methodology,
the results achieved, and the limitations.

Since the idea of TellBack is new, it was not easy to perform
a meaningful comparison between TellBack and the previous
studies. Nevertheless, Table 1 briefly discusses the limitations
of the previous works in a possible utilization scenario of
identification of user’s content comprehension difficulties.
As noticed, most of the studies that used multimodal input
sensors address software development, code comprehension,
and e-learning scenarios. There are very few studies that
addressed other scopes and other types of content with the
limitation of a single modality to assess the cognitive load.
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TABLE 1. Related studies comparison.

Studies Biomarkers Scope & Methodology Results Limitations
artifacts
Mills (2020) [12]  Electrodermal  English texts This study aimed at detecting The chosen model had a This study did not assess the real-time
Activity mind-wandering status while  weighted precision of 72.2%  cognitive load but detected the moments
(EDA), eye- reading digital resources using and a weighted recall of when the reader wanders. Nonetheless,
tracking EDA and eye-tracking. 67.4%. this work is considered the most related to

the TellBack in terms of using lightweight
multimodal biosensors in reading digital
content. Thus, a performance comparison

was performed.

Sharma (2020) eye-tracking, Textual This work attempted to estimate ~ Overall precision, recall, and  This study was limited to assess the
[13] EEG, Questions, the leamers’ efforts through Fl-score are 0.89, 0.84, and mental efforts of learners when answering
wristband, learning physiological signals analysis.  0.90, respectively questions and did not explore other stimuli
facial It used k-means to cluster and mental tasks.
expression students’ behavior, and then
traditional classifiers.
Fritz (2014) [14]  EEG, EDA Software The authors classified code Classifiers could predict task  This study did not use the eye-tracker to
Eye-tracker development comprehension difficulty by difficulty for a new localize the difficult regions or elemental
assessing psychophysiological — programmer with 64.99% parts of code. It used an eye-tracker to
measures of programmers. precision and 64.58% recall assess the mental workload which could
and a new task with 84.38%  give an accurate estimate of cognitive load
precision and 69.79% recall. but might not be a timely manner.
Nourbakhsh Eyeblink, Arithmetic In this study, eyeblinks, and Achieved an accuracy of 75%  The scope of artifacts was limited to
(2014) [15] EDA tasks EDA were used to discriminate  in binary classification and of  arithmetic tasks which hardly motivates to
workload levels using different  50% in four-level  extrapolate to other types of stimuli.
arithmetic operations. classification.
Muller (2016) Heart Rate, Software The authors focused on the The biometric classifier could  They segmented the code elements based on
[10] Skin development online prediction of code correctly (38.6%) code  an assumption that the developer is affected
conductance quality concerns using  elements with quality by the code lines he just selected or edited.
biometric measures. concerns on method level and  This method could be inaccurate because
(40%) on class level. The selecting or editing code might not answer
precision was not high with  whether the developer is attempting to
13.0%, and 22.0%, understand that line or just doing a random
respectively. selection.
Lee (2018) [17] EEG, Eye- Software Authors used EEG and eye- Predicted task difficulty and  This study relied on EEG which could not
tracking development tracking to  predict the programmer level of expertise be practical in a software development
programmer’s expertise and with 64.9% and 97.7% environment due to its intrusiveness.
task difficulty in software precision and 68.6% and  Furthermore, the precision and the recall of
development. 96.4% recall, respectively. the task difficulty are considered relatively
low.
TellBack HRV, Open scope In our study, we aimed at Tellback achieved an accuracy — TellBack could outperform the recent
Pupillography  of content detecting the moment and the  of 83.00% =+ 0.75 in predicting  related study in [12] with 23% better

Eye-tracking

regional parts of digital content
that caused the difficulty in
understanding

using  simple

real-time features.

the difficulty, and 89%, 79%,
and 83% precision, recall, and

F1-score, respectively.

precision and 17% better recall. However,
limitations are discussed further in section

VL
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For example, [10] used EEG to assess the cognitive load of
users while interpreting different representations of data visu-
alizations (i.e., data distributions). Another example, pupil
dilation was used in [11] as a metric to assess linguistics
representations comprehension.

In summary, the studies that have introduced the idea
of detecting the Spatio-temporal sources of comprehension
difficulty in digital content lack the fusion from multimodal
biosensor as well as the generality of content being addressed
in comprehension difficulty. The relevant study in [12] used
the multimodal sources of information to detect the mind
wandering moments of readers and not their comprehension
difficulties. The studies that used the multimodality model
of sensors such as [13], [14], [15], [17] were in general sup-
porting software development and narrow specific domains.
Even in other domains, there was no such ability to localize
the content that caused the comprehension difficulty at a very
fine granularity level.

Another evident aspect is that the use of advanced Al
techniques is not commonly used in such proposals. For
example, and back to the mapping study in [9], 40% of the
studies that assessed the cognitive load of software developers
do not use any sort of machine learning techniques, whereas
the rest are limited by using only classification techniques for
different sets of biosensing features. Most used classification
techniques are (according to [9]) Support Vector Machine
(SVM) 15%, Naive Bayes 15%; Multi-algorithms for clas-
sification 9%; K-means 3%; Decision Tree 3%; Logistic
Regression 3%; Neural Network 3%; Random Forest 3%;
Linear Regression 3%, and Relevance Vector 3%.

To measure the cognitive load associated with mental
efforts (e.g., content comprehension), we must distinguish
between the objectivity (subjective vs objective) methods
and the causality (direct vs indirect) methods. In our evalu-
ation experiments, the subjective perception of the cognitive
load was assessed using self-reporting through the NASA-
TLX [18] questionnaire, whereas objective measurement was
obtained using peripheral physiological responses driven by
the autonomic nervous system (ANS) captured by biofeed-
back low-intrusive sensors.

In TellBack we propose using HRV and eye-tracking
(including pupillography) since there are multiple low- intru-
sive solutions to implement these sensors. A total of 83% of
the explored studies used eye-tracker and eye-related features
(e.g., blink), 66% used skin conductance or EDA measures,
and 50% included EEG. The comparison with TellBack was
not easy because the ideas presented were not similar. How-
ever, we used [12] as a good example of a related recent study
to compare TellBack with. The precision and Recall were the
valid measures to perform the comparison which is shown
in Tablel.

lll. METHODOLOGY

As described earlier, TellBack is a new idea to automati-
cally identify a user’s difficulties in comprehending specific
passages/elements during the reading of contents on tablets,
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laptops, or smartphones. Our vision for TellBack is a future
intelligent and attentive user-interface [16] for enhancing
comprehension using, for example, pop-ups containing rel-
evant information on the topic extracted from the web could.
People could indeed stop reading when encountering a com-
prehension difficulty and could google the meaning of the
obscure elements in the content. However, in practice, this
rarely happens, due to the rush of the moment or due to the
interaction limitations of small devices such as smartphones,
which is the de facto computational platform in both the
developed and developing world. Therefore, the key message
is often lost because of these unsolved difficulties, which hin-
ders proper decision making and leads to all sorts of mistakes,
drastically disturbing the learning process and having a huge
negative impact on society.

Figure 1 below shows a schematic representation of Tell-
Back main components. This representation can be divided
into three distinct phases: bio-signals acquisition, signal pro-
cessing, machine learning models, and content annotation
based on comprehension difficulty classification.

Recent results appeared in [6] in the context of assessing
cognitive state (mainly high cognitive load and distraction
states) of software programmers show that it is possible to
associate such cognitive information, in real-time, to specific
lines of code or lexical tokens, to identify such code lines
as being more susceptible of having software bugs. In the
work reported herein, we will expand such preliminary results
obtained in the specific context of prevention of software
bugs, to a much broader context of general content compre-
hension. The approach followed in TellBack can be summa-
rized in the following components as shown in Figure 1:

1) Real-time ANS biomarkers measurements (HRYV,
Pupillography).

2) Features extraction and selection to assess cognitive
load spikes and patterns.

3) Machine learning techniques to improve detection of
high mental effort/cognitive load from the extracted
features.

4) Eye-tracker to localize content regions that are associ-
ated with high mental effort.

ANS signals are captured from subjects while performing
content comprehension on screen. The signals used to assess
the cognitive load are sampled with timestamps allowing
the identification of the moments when the user is perform-
ing the comprehension task. The signals obtained are fed
into the feature extraction and selection module. In this mod-
ule, the domain knowledge is used to choose the most rele-
vant biomarkers out of the signals. Using those discriminant
features extracted from the collected pupillography and HRV
synchronized with eye-tracker (that will be illustrated in the
next section), elemental digital contents associated with such
features are classified into two main binary classes, i.e., “Dif-
ficult” and “Not Difficult”. Those classes are considered the
comprehension difficulty state as shown in Figure 1.
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FIGURE 1. A schematic representation of TellBack.

The eye-tracker is employed as the information source
to provide gaze geometrical information (i.e., spatial infor-
mation) related to elements classified with comprehension
“difficulty”.

In the classification module, a set of classifiers are sug-
gested to obtain the best results in terms of accuracy, preci-
sion, and recall. To ensure the interpretability of the decision,
we included the use of the Decision Tree classifier among
other classifiers, regardless of its known low accuracy in
some problems.

It is well known that isolated ANS manifestations are non-
specific, i.e., multiple stimulus and physiological processes
might induce similar ANS modulation of a specific ANS
physiological manifestation such as HRV or pupil diameter
variability. To reduce this non-specificity, we propose to
combine distinct ANS manifestations using a data fusion
approach to exploit specific patterns of activation.

In this sense, the evaluation presented in this paper rep-
resents a less rich scenario that only uses HRYV, pupillometry,
and eye-tracking, which suggests that our first results provide
a conservative view on the accuracy, precision, and recall of
TellBack.

IV. DATASET, PROTOCOL AND METHOD

This section describes the dataset that was used to prove the
concept of TellBack and discusses the experimental protocol
and the methods used to analyze the resulting data.

A. DATASET

The dataset that was used for this study is an already existing
publicly available dataset, which was originated from the
BASE project mentioned in [4], [5], [6]. The dataset was
developed in one of the project’s studies to monitor physio-
logic reactions and mental effort that are associated with code
comprehension in different complexities using non-intrusive
biosensors. The biosensors that were used in the experiment
are the ECG and Eye-tracking with Pupillography. The con-
trolled experiment involved 30 subjects experienced in Java.
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The subjects experimented in the same room with the same
conditions while being equipped with mentioned wearable
non-intrusive sensors. The experiment protocol of the BASE
study included the following steps:

1) Baseline activity to let the subjects look at an empty
grey screen with a black cross in the center for
30 seconds to detach participants from any activity.

2) Reference Activity that comprises a screen with a
Natural Language text for 60 seconds.

3) Baseline activity to let the subjects look at an empty
grey screen with a black cross in the center for
30 seconds to detach participants from any activity.

4) Code comprehension comprises three code programs
with different complexities (c1, c2, c3).

5) Baseline activity to let subjects look at an empty grey
screen with a black cross in the center for 30 seconds
to detach participants from any activity.

6) Survey using NASA-TLX to assess the subjects’ men-
tal efforts while comprehending the code.

7) Control questions to check if the subject understood
the codes correctly.

This experiment yielded 90 datasets corresponding to the
30 volunteers with 3 tasks (i.e., c1, c2, ¢3). In this experiment,
the changes in HRV and Pupil Diameter (PD) biomarkers
were analyzed during code comprehension tasks to detect
moments that correspond to the high mental effort of the
programmer. Usually, those moments correspond to HRV
and pupil spikes (i.e., peaks). These moments were mapped
to corresponding spatial coordinates of code locations using
eye-tracking information.

B. PROTOCOL AND METHOD

The main goal of the BASE project was to assess the cognitive
load of programmers and annotate the code lines that are
more prone to have software bugs. The annotation of those
potentially problematic code lines would alert the program-
mers online to revise those code lines. However, in our study,
TellBack uses the same technique (i.e., using biofeedback
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wearables to assess cognitive load), but with a different pur-
pose and scope. The main goal of TellBack is to predict
content comprehension difficulty based on assessing the user
cognitive load in real-time and to use the eye-tracker syn-
chronously to localize the content elemental parts that caused
the comprehension difficulty.

Since the protocol used to produce the dataset available
from the BASE study was not designed for the identifica-
tion of user’s comprehension difficulties while reading the
code (the goal in the BASE project was programmer’s errors
and bugs), we established a specific protocol (adding a new
layer to the initial protocol) that utilizes the dataset already
available and enhances such dataset with additional data to
evaluate the accuracy of our new approach. More specifically,
the additional data consists of the identification of the code
regions that are considered easy/difficult to understand by the
subjects. Our specific protocol assumes the following, which

takes the form of a data-gathering interview:
1) The same subjects of the BASE study were invited to a

remote data gathering interview.

2) The selection of the subjects was narrowed down to
those who have most likely the same experience in Java
programming compared with the experiment time (i.e.,
they have not gained additional experience in Java).

3) The selected subjects were asked to fill a form indi-
cating their current position, personal evaluation of the
gained experience in programming languages since the
time of the BASE study, and the current programming
languages that they have been practicing for the time.

4) The same code snippets (cl, c2, c¢3) that were used in
the BASE study were presented to the subjects. These
snippets represent codes of different complexity levels
ranging from Vg = 3 for c1 to Vg = 14 for c3 based on
McCabe metric.

5) The main task was asking the subjects to read and
comprehend the code snippets again with the same
amount of time given in the original study.

6) An additional layer of the original protocol was added
by asking the subjects to manually label the code lines
with three colors: red for most difficult, orange for
difficult, and green for easy. Highlighting the code lines
was based on the subjectively perceived difficulty level.

7) The same control questions were presented to the sub-
jects to check their code comprehension.

8) The data analysis was initially performed by extracting
the pupillography and HRYV signals that are associated
with the time window of each annotated region in point
6 based on the gaze information.

9) By repeating those steps for each selected subject,
a new dataset was developed, which comprises the
pupillography and HRV features that correspond to
different code lines and regions labeled by the subjects
according to the difficulty.

For simplicity in the analysis phase, we considered orange
and red colors indicated in point 6 above as ‘““Difficult”,
whereas green was considered as ““Not Difficult”.
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We hypothesize that if the subject in the new data-gathering
interview highlighted a certain segment as “Difficult™, then
it would have been difficult at the time of the experiment for
him or her to comprehend that segment of code, and thus
this would enable us to compare between the code segments
highlighted “difficult” and the HRV and pupilometer signals
acquired at the original study time. Likewise, labeled code
segments with “Not Difficult” are also compared with the
corresponding HRV and pupillography signals. This would
lead us to prove whether HRV and pupillography features
could be used to identify with adequate time resolution dif-
ferent content pieces where users are encountering compre-
hension difficulties. The new layer of protocol mentioned in
point 6 above would enable us to observe to which extent the
eye-tracker was able to identify the regions/lines of code that
correspond to high mental effort.

The data-gathering interview took place through Zoom
due to the Covid-19 outbreak. A total of 11 subjects were
interviewed, as shown in Table 2, and 30 different samples
were obtained. Only one of the subjects was excluded because
there was no corresponding sufficient information from the
original study. Table 2 shows the subjects’ information pro-
file. The average time of interviews was 60 minutes. At first,
subjects were oriented to the task that is required from them
through an explanatory video. After that, they were provided
with the codes (i.e., cl, c¢2, and c3) to read and comprehend
them separately. A stopwatch timer was used in each step.
The subjects were constantly asked to highlight the code lines
whenever they feel that these code lines needed more mental
efforts to grasp.

TABLE 2. Subjects information profile.

Participant | Current Rated Progr Iy Availabl
D position experience  languages of diagrams
experience
D4 Java High Java Codel
programmer
D9 Software Moderate Robby, Codel, 2
Engineer Angular]S,
HTMLS, C#
ID11 Nokia, High Python Code2
Software
engineering
ID14 Master's Moderate Python, Shell Codel
researcher script,
JavaScript
ID17 Software High NET, C# Codel, 2
engineering
D20 Master High Java for Codel
student - Android, Java
developer
1D21 Consultant Moderate Java, Python Codel, 3
D23 Medical Moderate Java and Codel, 3
Apps AngularJS
programmer
1D29 Assistant Moderate Python, Java Codel, 2
Professor
ID30 Backend Nothing Python Code2
developer -
python
28399
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The subjects were asked about the current programming
languages that they have been working on since the time of
the original study. We were conservative about those who
acquired excessive experience in Java (i.e., the language of
the code snippets) because they may not experience the same
difficulty that they encountered at the time of the original
experiment.

After gathering the needed information, the analysis of
the results was carried out as follows and as illustrated in
pseudo-code 1:

1) Extracting the time instants of pupillography and HRV
singles for each labeled code line or region by the
subject.

2) Calculating the following features (number of HRV
LF/HF ratio spikes which represents the ratio between
the low and the high frequency of the HRV signal,
the number of pupillography LF/HF spikes, mean of
LF/HF spikes values of pupillography, mean of LF/HF
spikes values of HRV).

3) Labeling those features with a binary difficulty level
(Difficult, not Difficult) as annotated by the subjects in
the data-gathering session.

4) Performing unpaired t-test to examine if there is a
significant statistical difference between the two diffi-
culty states according to the given features in point 2
(assuming a normal distribution).

5) Applying Grid Search to find the optimum hyperpa-
rameters.

6) Using leave-one-out cross-validation to evaluate the
resulted model.

7) Using K-Fold cross-validation to compare with point 6.

Pseudo-Code 1 Mapping Extracted Features with Regional
Parts of Content on Screen
Input: local_maxima(signal): signal € {HRYV, pupil}, S,

S =(sl, s2,..,sn)
S. time: instant time of S vector
EyeGazeTime = Time_instant(signal) signal € {eye

tracker}, eye gaze time instants — time instants of subjects
looking at screen.
Output: eye_gaze_coordinates associated with S

1: For each s € S do

2: T(s)« S. time

3: For each s € S do

4. EGT(T(s)) < EyeGazeTime

5: Find samples n where

6: EGT(T(s))<= T(s)+8§ AND EGT(T(s))
>="T(s)- 6);

§ is the sample range where T(s) spans.

7: For each sample range n ¢ EGT(T(s)) do

8: Find eye_gaze_coordinates(n) where subjects were

looking at that time instant (when spikes occur).

9: Return (eye_gaze_coordinates(n))
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8) Identifying the signals patterns (i.e., HRV and pupil-
lography) that are associated with the difficulty in
understanding using different classifiers (SVM both the
linear and the radial basis function, Random Forest,
KNN, Na’ive Bayes, Decision Tree).

9) Running the model 50 times and calculating the accu-
racy mean and the accuracy standard deviation.

10) Calculating the precision, recall, micro Fl-score,
macro Fl1-score.

The following Pseudo-Code represents steps 1-3 in detail.

V. RESULTS AND DISCUSSION

As previous studies have shown that pupillography and HRV
are timely manner indicators for the cognitive load (and are
non-intrusive), TellBack started with those measures to assess
the cognitive load associated with the understanding diffi-
culty. However, those measures are insufficient to annotate
the elemental parts of content that caused the comprehension
difficulty. Therefore, eye-tracking was introduced to tell us
where the user is looking whenever the pupil or HRV signal
spikes above the threshold, indicating an abrupt increase in
the user’s cognitive load.

After performing the analysis, the preliminary results
showed that most of the code regions that were difficult for
the subjects to understand were also mentally demanding
at the time of the interview (shown by self-annotations).
Figure 2 (above) shows an example of one of the subjects.
In this Figure, we can see that the mentally demanding code
regions (Figure 2-D) correspond in general to high gaze den-
sity (Figure 2-B and C). Similarly, the pupil and HRV spikes
tended to increase above a certain threshold (Figure 2-E)
when the task is considered difficult or most difficult. The
threshold was determined based on data observations.

Likewise, the pupil and HRV spikes were defined based on
empiric data observation and analysis for different subjects.
Using gaze and saccades to infer the user’s cognitive load
requires the integration in time, which means that the pre-
cision in the time domain is poor. On the contrary, pupil, and
HRV features provided an accurate assessment of cognitive
load in the time domain (moments when the spikes occur).

As observed in Figure 2, the code lines annotated as dif-
ficult or most difficult (orange and red color respectively)
by the subject in our data-gathering interviews correspond
to a high number of HRV and pupillography spikes (orange
appears in this example). That means the higher number of
HRYV and pupil spikes as seen in (Figure 2-E) within a specific
time window, the more potential evidence of high cogni-
tive load induced on the subject by understanding efforts.
Note that to identify the point in the code that corresponds
to an HRV or pupil spike (i.e., the screen area where the
user was looking at when the spike occurred) we needed to
find the gaze region in part B of Figure 2 that is vertically
aligned with the spike, and then to go to the right and find
the code lines (part C and D of the figure) that represent
the eye-tracking information and the self-labeling of code
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FIGURE 2. Pupil and HRV signals of the subject no 9 in comparison with his self-labeling: A) Eye gaze density corresponding to the y-axis of the
code. B) Clusters over time and gaze velocity; b) the pupillography and HRV extract LH features extracted. C) The red dots that represent the eye
gaze geometrical distribution superimposed on the code. D) The additional layer of the original protocol shows labeled code lines by subjects.

E) The corresponding pupillography and HRV signals and spikes.

regions, respectively. Before applying the empirical analysis,
we could see from Figure 2 (C and D) that there is a clear
mapping between what eye-tracker tells us about the mental
effort in specific lines/regions of code and the labeled code
lines/regions by subjects as appeared in part D of the same
Figure. To evaluate the biomarkers that correspond to each
region, the following features were analyzed: the number
of HRV LF/HF spikes, the number of pupillography LF/HF
spikes, the mean of LF/HF ratio spikes values of pupillog-
raphy, mean of LF/HF ratio spikes values of HRV based
on the time instants window of the subjects’ gaze that is
corresponding to the annotated code regions.

An unpaired t-test with a confidence interval of 95% was
performed to examine if there is a statistically significant
difference between the number of pupillography LF/HF ratio
spikes in the two difficulty groups (i.e., difficult, not difficult).
The unpaired t-test with p — value = 0.0095 shows that
the means are statistically different. In the “difficult” group
M = 9.5, SD = 6.5), whereas in the “not difficult”
group (M = 3.055556, SD = 6.5). Likewise, the unpaired
t-test shows that the means of the number of HRV LF/HF
ratio spikes with p — value = 0.0002975 are statistically
different in the two difficulty states., The same test shows
also that there is a statistically significant difference between
the means of pupillography LF/HF ratio spikes values in the
two difficulty groups with (M = 5.10200, SD = 2.88)
in the “difficult” group, and with M = 4.07444, SD =
2.86) in the “not difficult” group with p-value = 0.3733.
Therefore, the alternative hypothesis is true which assumes
the statistically significant differences. The features corre-
lation shown in Figure 3 above shows clear discrimination
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between the “Difficulty”” and “No difficulty” behavior. The
correlation scores between the biomarkers such as HRV and
Pupil spikes number and the difficulty perceived behavior of
subjects shown by their self-annotations of the code regions
indicate a strong correlation as shown in Figure 3.

Likewise, the box plot in Figure 4 shows selected features
distributions against the difficulty groups of regions of codes
as perceived by subjects. Figure 4a shows that the higher
the number of pupil spikes within a code region, the higher
the difficulty perceived by the subject. Similarly, Figure 4b
indicates that the increasing number of HRV spikes is propor-
tional to the difficulty state in comprehending regions of code.
From this Figure, we can see the differences in the means,
medians, and minimum values of the two different groups.
The relatively high spread of HRV data from the center can
be explained in terms of the high sensitivity of the

HRV signal to different cognitive states such as anxi-
ety, stress, and fatigue. Those biomarkers (i.e., features)
were fed into 5 different classifiers namely, Support Vec-
tor Machine (SVM) with both a linear kernel and a Radial
Basis Function kernel, Random Forest, K-Nearest Neighbor
(KNN), Decision Tree, and Gaussian Na‘1ve Bayes. Due to
the limited dataset, and to avoid any sort of data overfitting,
this work used the leave-one-out cross-validation (LOOCYV)
method [19]. The LOOCYV uses one sample of the training
data for validation and uses the rest of the data for training
until it covers all the data records. However, for making
further comparisons with other methods of cross-validation,
K-fold cross-validation [26] was also examined.

All classifiers were run 50 times to calculate the mean
and the standard deviation of the accuracies as shown
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in Table 3 along with the precision, recall, Fl-score
(Macro and Micro).

As shown in the table above, we can notice that including
the HRV features only could achieve the best results in terms
of accuracy, precision, recall, and F1-score with SVM using
the RBF.

HRYV alone could explain the perceived difficulty behav-
ior in understanding at the code line level as annotated by
the subjects. Likewise, we can see the SVM with the RBF
kernel performed the best when we fused the pupil and the
HRYV data, whereas the worst results were achieved by using
pupillography measurement only. When we applied the 5-
fold cross-validation, the performance of the HRV is still
giving good results. However, the fused features of both HRV
and Pupillography using k-nearest neighbors have given the
best performance results in these settings.

Classification parameters were achieved through hyperpa-
rameter Grid Search fine-tuning (Table 4). Despite the best
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results achieved using HRV only, the feature fusion is con-
sidered a more robust approach to avoid the non-specificity
of the HRV signals. As can be observed from the results,
the model is performing well in terms of accuracy, precision,
and recall. This gives us an overall evaluation of our approach
that it is valid and well-performing although with a limited
number of samples. In our approach evaluation, we can show
that pupillography and HRV features set including only the
number of HRV LF/HF ratio spikes, the number of pupillog-
raphy LF/HF ratio spikes, the mean of LF/HF ratio spikes
values of pupillography, the mean of LF/HF ratio spikes
values of HRV could provide us with an assessment of the
difficulty experienced by subjects in understanding code at
the code line level and on time.

The reported results have been verified three times from
three different machines running the code. It is worth men-
tioning that Grid Search was applied to turn the hyperparam-
eters of each classifier to achieve the best accuracy as shown
in Table 4 below.

Those values were used in each model presented
in Table 3 along with the different cross-validation techniques
to build the initial model of TellBack. As we can observe
from the results reported herein, that TellBack shows a very
good performance in predicting the difficulty encountered in
comprehension using non-intrusive biosensors coupled with
the use of machine learning techniques. The results reported
herein can be used to build the initial model of TellBack intel-
ligent tool that responds to the variations in the biomarkers to
predict the comprehension difficulty promptly.

VI. LIMITATIONS AND THREATS TO VALIDITY
Although this first evaluation of the Tellback approach shows
very promising results, there are still limitations that should
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TABLE 3. Tellback performance evaluation.

Measurement Classifier Accuracy Precision ‘ Recall ‘ F1-score (macro) F1-score (micro)
Leave-One-Out Cross-validation
SVM — RBF 83.00% +0.75 0.89 0.79 0.80 0.83
SVM-Linear 80.00% +0.81 0.82 0.76 0.77 0.80
Random Forest 77.00% +0.85 0.84 0.76 0.78 0.80
HRY K-nearest neighbor k=9 82.00% +0.76 0.88 0.78 0.80 0.82
Decision Tree 80.50% +1.8 0.82 0.76 0.77 0.80
Naive Bayes 76.00% +0.89 0.76 0.73 0.74 0.76
SVM — RBF 71.10% +0.90 0.73 0.62 0.73 0.76
SVM-Linear 75.00% +0.87 0.76 0.67 0.68 0.75
Pupillography Random Forest 73.00% +0.88 0.73 0.75 0.70 0.75
K-nearest neighbor k=9 70.00% £0.92 0.74 0.64 0.63 0.7
Decision Tree 67.00% +0.94 0.70 0.71 0.69 0.7
Naive Bayes 73.00% +0.88 0.73 0.69 0.7 0.73
SVM - RBF 80.00%+3.2 0.82 0.76 0.77 0.80
SVM-Linear 69.16%+8.9 0.65 0.64 0.64 0.66
HRY & Pupillography Random Forest 77.00% +0.85 0.72 0.71 0.71 0.73
K-nearest neighbor k=9 78.33%+5.9 0.89 0.79 0.80 0.83
Decision Tree 67.13%+10 0.65 0.65 0.65 0.66
Naive Bayes 76.00% +0.85 0.77 0.74 0.74 0.76
K-Fold Cross-validation, Splits =5
SVM — RBF 83.33% £6.6 0.82 0.76 0.77 0.80
SVM-Linear 73.33% +0.81 0.77 0.73 0.71 0.73
Random Forest 76.6% £6.66 0.73 0.69 0.70 0.73
HRY K-nearest neighbor k=9 80.00% £3.33 0.89 0.79 0.80 0.83
Decision Tree 73.50% +3.23 0.72 0.70 0.71 0.71
Naive Bayes 76.66% +£8.16 0.76 0.73 0.74 0.76
SVM — RBF 76.66% +8.1 0.70 0.65 0.65 0.70
SVM-Linear 70.00% +2.24 0.79 0.72 0.73 0.76
Pupillography Random Forest 76.6% £.66 0.65 0.63 0.64 0.66
K-nearest neighbor k=9 73.33% +8.35 0.77 0.68 0.68 0.73
Decision Tree 60.0% £2.4 0.54 0.54 0.55 0.56
Naive Bayes 70.66% £9.16 0.69 0.66 0.67 0.70
SVM — RBF 80.00%+6.67 0.82 0.76 0.77 0.80
SVM-Linear 63.16%+11.9 0.62 0.62 0.62 0.63
HRYV & Pupillography Random Forest 73.00% +1.24 0.72 0.70 0.71 0.71
K-nearest neighbor k=9 83.33% £10.6 0.89 0.79 0.80 0.83
Decision Tree 83.11% £12.13 0.89 0.79 0.80 0.83
Naive Bayes 76.44% +11.23 0.68 0.68 0.68 0.70

be considered and discussed as the main threats to validity of
the present study.

First, the dataset used was acquired in a controlled exper-
imental environment and has the classic limitations regard-
ing the made-up setup. The content used for the different

VOLUME 9, 2021

comprehension tasks (software source code) might not be
perfectly realistic or representative of real-world software,
as the three programs used to represent tasks with different
complexities are all of them relatively small programs when
compared to real software.
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TABLE 4. Tuned parameters using grid search.

Classifier Hyperparameter

SVM {'C': 1, 'gamma": 0.001, 'kernel': 'tbf'}
Random {'criterion": 'gini', 'max_depth": 4, 'max_features":
Forest 'auto’, 'n_estimators': 200}

KNN {'n_neighbors": 9, 'weights'" 'uniform'}
Decision Tree max_leaf nodes=2, random _state=42

Naturally, a controlled experiment cannot use very large
code samples as the duration of the task would be pro-
hibitively long. In any case, the most complex code used in
the experiment has a McCabe cyclomatic complexity of 14,
which is already quite complex and truly representative of
complex software units.

A second aspect to be considered is the fact that we had
to specify the second protocol to define the second round
of sessions with the participants. The goal was to collect the
necessary additional information to use the available dataset
for the evaluation of content (i.e., code) comprehension.
These two steps (i.e., the initial experiments that produced the
dataset and the second round of sessions with the participants)
were separated by around 12 months. In any case, the second
protocol was designed to consider the possible evolutions of
the participants in terms of improved skills in Java program-
ming. In practice, the possible deviation introduced by these
two steps experimental approach is in the direction of leading
to conservative evaluation results. The reason is that more
mature participants (i.e., the same participant with additional
12 months of general programming experience) will tend to
mark as difficult to understand code snippets that for sure
were difficult for him in the first round. In other words, if Tell-
Back classifies code lines as being difficult to understand, for
sure the participant considers that code as difficult. A third
limitation concerns the number of participants in the study.
The big impact of needing a second step to ask participants
to identify code lines that they consider difficult to understand
had the side effect that only 11 participants (with 30 samples)
from the original group of 30 participants were recruited so
far for the second round of sessions. We are aware of this
limitation and we are still contacting additional participants
to increase the number of participants a bit more. In any case,
the standard deviation observed is relatively contained, which
is a good sign.

VIi. CONCLUSION AND FUTURE DIRECTIONS

Biofeedback signals have shown a very good potential to
assess the cognitive load in different mentally demanding
tasks including content comprehension. In this paper, we pro-
posed the TellBack approach that uses biofeedback measures
such as pupillography and HRV to assess changes in cognitive
load in a timely manner and uses such abrupt changes in the
cognitive load to identify user’s difficulties in understanding
content. Spatial resolution was achieved using the eye-tracker
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to pinpoint exactly where the user was looking at when the
peaks of cognitive load are detected. The combination of
eye-tracker and cognitive load assessment enabled adequate
Spatio-temporal resolution to identify the elemental part of
the content that hindered the comprehension process.

This experimental evaluation of the accuracy of TellBack
in a code understanding scenario showed quite promising
results, reaching an accuracy of 83.00% = 0.75 in the identi-
fication of code lines that have been classified by experiment
participants as difficult to comprehend. These quite positive
results show that our TellBack concept is valid and proved
to be accurate enough to consider future developments in the
form of a prototype.

As a future direction, we believe that fusing the multimodal
information sources applied with additional complemen-
tary information sources such as the Electrodermal Activ-
ity (EDA) could enhance even more the precision and recall
of the approach. Furthermore, there are additional discrim-
inant features that might be extracted from the information
source applied in this study that potentially can discriminate
between distinct levels of comprehension difficulty when
the user is trying to understand the content. For instance,
eye gaze features (e.g., saccades, regression, blinks, and
fixation duration/count) might be employed in combination
with our first proven measures for assessing the cognitive
load. On the other hand, we believe that the integration of
context information such as the profile of the user (e.g., user’s
background knowledge, expertise, and reading pattern) might
further enhance the approach and minimize false positives.
We assume that after further stages of development, we would
achieve a technology that provides popup supportive mes-
sages, translations, or even retrieve relevant web content
whenever it assesses the risk that the person is encountering
difficulty at some point (temporal and spatial). This would
make the difficult content closer and more organized to the
user in real-time. Therefore, capturing users’ preferences
and fields of interest is necessary to improve the difficulty
prediction of TellBack. For instance, TellBack would predict
that the most preferred topics to users would be the least
expected to exhibit comprehension difficulties and vice versa.
Thus, at that stage, an automatic tool is required to guess the
topic that is presented in front of the user. This tool would
be an intelligent text mining technique such as the proposed
in [27]. The work in [27] is a two-stage framework for topic
extraction from the scientific literature. Alternatively, Tell-
Back would use efficient supervised clustering techniques
for general text classification such as the work presented
in [28].

We argue that there is a wide spectrum of usages to this
technology that can be exploited in many realms such as ana-
lyzing the comprehension behavior of people with neurolog-
ical disorders like Autism or Alzheimer’s Disease. Moreover,
this technology can be used to create a scoring system for
employees or trainees about their reading and understanding
of distinctive degrees of certain task documents or critical
reports.
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