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ABSTRACT Prevailing research trend is to use Web services for data publishing and sharing among
organizations, but existing works often fall short of service reuse. Developing efficient solutions to achieve
composite services has drawn significant attention in services computing. Services and service process
fragments reuse is critical to improve the efficiency of software development and economize on human and
material resources, meanwhile Reinforcement Learning (RL) is one commonly used approach in services
computing. However, in service composition and service process fragments (SPFs) reusing scenarios,
traditional RL methods cannot guarantee good efficiency for large-scale service processes construction
problems. In this paper, we present a novel SPF reusing framework that combines automatic Hierarchical
Reinforcement Learning (HRL) and extended Cocke-Kasami-Younger (CKY) algorithm. This framework
has the ability to reuse any granularity of SPFs. We firstly get action models and trajectories by means of
analysis on historical service process fragments. Furthermore, the “Causal Analysis” identifies the causal
relationships among the actions in a trajectory, i.e. returning a causally annotated trajectory (CAT). Then,
we utilize the SPF-Hierarchy algorithm to discover a coherent task hierarchy for each service process
fragment. Finally, we map the hierarchy obtained from the previous stage to the HRL-CKY algorithm, which
can fulfill the reuse and retrieval of any granularity of SPFs. The effectiveness and robustness of our approach

are evaluated through a set of experiments.

INDEX TERMS Service reuse, service process fragment, hierarchical reinforcement learning.

I. INTRODUCTION

Service-oriented architectures (SOA) deal with the growing
need for distributed applications, not only support the inte-
gration and collaboration among departments of the same
organization but also enable industrial partnerships across
distinct organizations. Since the capability provided by a
single Web service is limited, Web services usually need
to be composed as workflows (i.e., service processes) to
achieve more complex tasks [1]-[3] or to mash up data from
different data resources by using business process description
languages.

How can we effectively structure a service process which
meets user requirements? That is, for a user request, we do
service composition by some means as soon as possible.
There are a lot of themes about reliably constituting a
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composite service which have been researched and devel-
oped in the services computing field, such as Reinforce-
ment Learning (RL) and service process fragments (SPFs)
reuse.

Reinforcement Learning is an active area of machine learn-
ing approach, which is widely used in the fields of operations
research, decision theory, and control engineering [4]. RL has
been approved to be effective to construct composite service
processes [5], [6]. Most RL algorithms take advantage of
standard methods of stochastic dynamic programming (DP)
so that they can solve problems with large state spaces.
By focusing computational effort along behavioral trajec-
tories and by utilizing function approximation methods for
accumulating value function information, RL algorithms can
do better than standard methods on those problems which
have significant challenges [7]. However, traditional RL algo-
rithms are not immune to the so called ‘“curse of dimen-
sionality”’. More specifically, the number of parameters to be
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learned grows exponentially with the increase of the size of
states’.

To overcome this deficiency, researchers tried principled
ways of exploiting temporal abstraction, where decisions are
not required at each step, but rather invoke the execution of
temporally-extended activities which have their own policies.
All these work leads naturally to Hierarchical Reinforcement
Learning (HRL), and HRL can solve the dimensional disaster
problem of traditional RL [8]. Although there are a lot of
successful studies about HRL, Option [9], HAM [10] (Hier-
archy of Abstract Machine), and MAXQ [11] (MAXQ Value
Function Decomposition) are three typical approaches.

Service process fragments reuse is also a well-explored
subject in service composition. Reusing SPFs can not only
decrease the composition time, but also improve the relia-
bility of the composition process. Therefore, reusing SPFs
can dramatically contribute to service composition. VGI [36]
(Variable Granularity Index) can realize the unified index
on both atomic and composite services and maximize the
reuse of them. SCKY [13] (a service process fragment reusing
method motivated by Cocke-Kasami-Younger algorithm) can
reuse any granularity of service process fragment. How-
ever, the performance of VGI and SCKY both needs to
be improved. Schumm et al. [47] proposed a method for
Web service composition through shared process fragment
libraries. A complete and integrated framework was proposed
in [48], which can reuse and share service compositions over
Web using stimulation workflows. The limitation of the work
in [47] and [48] is that they paid no attention to how to
search or locate the process fragment at all, but rather that
they mainly focus on the complex control logic in the process.
In addition, when the scale of service processes is very large,
the efficiency is decreased significantly.

If we combine Hierarchical Reinforcement Learning with
service process fragments reuse, what will the result be? Can
we build composite services efficiently and reliably? To this
end, in this work, we pay more attention on efficiently discov-
ering and reusing useful service process fragments. Further-
more, we combine the idea of Cocke-Kasami-Younger (CKY,
alternatively called CYK) [12] algorithm with hierarchical
reinforcement learning, which is as a starting point for our
research. The applicability of existing HRL methods requires
a task graph, which can be generated by decomposing a
service process plan into a task hierarchy. For each Web
service of a service process fragment, we standardize its
values of different QoS (Quality of Service) attributes and
map them into the interval [0,1]. After that we can aggregate
the various attributes into a single reward value. Then, for
a user SPF query, our HRL method can receive a certain
amount of reward by executing a specified workflow, which
is equivalent to the cumulative reward of all the executed
services. Finally, the service process fragment which has an
optimal reward value is returned to the user.

A composite service typically runs in a dynamic envi-
ronment, and consequently it is a central concern that a
composition solution must be adaptable. Generally speaking,
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service composition should be able to adapt to those dynamic
and uncertain factors to reach some degree of self-adaptivity.
Service composition can be self-adaptable by means of tra-
ditional RL. However, when facing large-scale service com-
position problems, traditional RL methods cannot guarantee
good efficiency. In this paper, we apply HRL to service
process fragments reuse for doing service composition, where
we can overcome performance deficiency. To the best of
our knowledge, there has been no publication that combines
Hierarchical Reinforcement Learning with service process
fragments reuse.

A. MOTIVATION
For the sake of clarity, we first provide a one-day tour service
process in Fig.1, in which there are 5 atomic services which
can actually run. As shown in Fig. 1, S is a weather service,
and §3 is an attraction searching service. S3 and S4 are bike
renting and car renting service, respectively, but S5 is a travel
agency service. If the input conditions are met, each service
produces corresponding outputs. For example, if date and
city information are given to S, it can bring back exact
weather conditions. Moreover, according to the input and
output, the dependency relations among services can be easily
constructed.

Sy :weather Sy:bikeRent

<date, city> <date>

<weatherCondition> <cost>
=

S,: touristSpot

S5: travelAgency Logout

<transport,
attractions>

Sy:carRent <plan, fee>

Leity> <date>

<attractions> w

FIGURE 1. A service process example.

Generally speaking, if a user proposes a request with the
preferences of date, city and budget, S| can do weather query
by accepting two inputs: date and city. According to whether
it is raining or not, S3 or S4 is chosen for the whole service
process. Finally, S5 takes attractions and transport as its input
parameters, which come from S, S3 or S4 respectively, and
then a detailed plan with fee will be returned to the user. Sy is
naturally chosen for the composite service process if it hits for
user request and matches with the weather condition. How-
ever, if S4 is out of order, the traditional method is to manually
analyze and reconstruct the whole composite process despite
some SPFs of Fig.1 can be reused by replacing S4 with the
other car renting service.

Actually, we can reuse SPF in any granularity [13]. As
shown in Fig.1, we can reuse each atomic service (e.g. S1, S2),
and the fragments (e.g. S — 83, S1 = S4, 51 — S3 — S5).
There are also some new challenges in the SPF reuse scenario:

¢ As a composite service process typically runs in a
dynamic environment, how to improve the adaptability
of the SPF reusing?
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¢ If the service process repository is extremely large, how
to accelerate learning and querying speed?

B. OUR APPROACH

Fig.2 indicates the high-level schema of our approach. After
the system runs over a period of time, there may be a large
number of service process fragments (SPFs) in the service
process repository. Through the analysis on historical frag-
ments, we can get action models and trajectories (action
models and trajectories are detailed in Section 4). Then,
the “Causal Analysis” module makes causal analysis to iden-
tify the causal relationships among the actions in a trajec-
tory, i.e. returning a causally annotated trajectory (CAT). The
CAT, along with the action models, is then provided to the
SPF-Hierarchy algorithm, which discovers a coherent task
hierarchy. It is worth noting that the task hierarchy can mini-
mizes the number of intertask causal links, such that avoiding
the “curse of dimensionality”. Finally, through using the
HRL-CKY algorithm, we can achieve a fast and accurate SPF

query.

Action

Models
Task
Service Hierarchy
Process Causal | CAT SPF-
Analysis Hierarchy %/

Repository
N

R

|—> Trajectory J >

FIGURE 2. The architecture of our system.

We present an illustration for HRL-CKY in Fig.3. Given a
target service process ‘‘s1s52535455°°, which consists of five
atomic services, by the idea of CKY, from bottom to up
and left to right, we can map the above task hierarchy to
the corresponding cells. That is to say, Cell[i, j] denotes a
part of the task hierarchy, which is corresponding to the SPF
that starts from s;41, ends with s;. The leaf nodes of the

S 82 53 Sq Ss

L2 B A S

[0, 13| [0,2] [0,3]

[1,2] [1,3] {1, 4] [1, 5]
Cell[#, j] denotes a part of the
) task hierarchy, which is
=2 corresponding to the SPF that

8 > 9 =
£2, 3] [2,4] (2,5] starts from S;.;, ends with ;.
=3
[3,4N [3,5]
= [4,5]

FIGURE 3. lllustration for HRL-CKY.
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task hierarchy (i.e. the five atomic services, s1, $2, $3, S4,
and s5) relate to Cell[0,1], Cell[1,2], Cell[2,3], Cell[3,4] and
Cell[4,5], respectively. For those nodes of the task hierarchy,
which are on the layer above the leaf nodes, they relate to
Cell[0,2], Cell[1,3], Cell[2,4], and Cell[3,5], respectively. Let
the root of a task hierarchy is the first layer. Then, in the same
way, Cell[0,3], Cell[1,4] and Cell[2,5] relate to the nodes of
the third layer. Cell[0,4] and Cell[1,5] represent the nodes of
the second layer. At last, Cell[0,5] corresponds to the task
hierarchy’s root. As shown in Fig.3, if there is an element
in Cell[1,4], which relates to one node in the task hierarchy.
Using the depth or breadth-first traversal from this node,
we gather all the leaf nodes during the traversal, and we
can get “s2s354”. The above result works for all the cells in
HRL-CKY.

Generally speaking, if we intend to search the target service
process “‘sisas3s4s5”’, we firstly judge whether there is an
element in Cell[0,5]. If Cell[0,5] has a value, we can reuse
service process ‘“‘s152535455°°, and our query is successful.
Similarly, if there are elements in Cell[0,2] and Cell[2,5],
we can reuse “‘sysp” and “‘s3s4s5”°, and the query is still
successful. This can be generalized to other cells. In a word,
we can effectively discover and reuse any granularity of SPFs
in terms of different requirements by means of HRL-CKY.

The remainder of this paper is organized as follows.
In Section II, we discuss the related work relevant to our
research. Then we formalize the used notions in Section III
before we detail our approach in Section IV. We present
the experiments in Section V and conclude this work in
Section VI.

Il. RELATED WORK

In this section, we discuss and analyze existing approaches
for service composition, Reinforcement Learning (RL) issues
in the area of services computing and service process frag-
ments reuse.

A. SERVICE COMPOSITION

Some widely adopted methods for building composite
services have been proposed from different perspectives.
Tree-based method for service composition is one of them.
For example, in [14], the exported behavior of a service was
described in terms of a so-called execution tree, and thus the
authors addressed the issue of automatic service composition.
Petri Net is a tool that is often used in service composi-
tion. Through extending Coloured Petri Net (CPN) formal-
ism, [15] incorporated transactional Web Services properties
for service composition. Scalability is always a goal we
should try our best to achieve for composing a series of
atomic services. To achieve superior scalability and accuracy
with respect to a large variety of composition scenarios, [16]
designed a tool QSynth (QoS Synthesis) to use QoS objec-
tives of service requests as the search directives. Similarly, for
achieving scalability, [17] addressed a workflow orchestra-
tion to enable nested multilevel composition. QoS monitoring
and forecasting are two important research topics in services
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computing [18], [19]. Service selection and classification are
also widely addressed, which can make service composition
more convenient [38], [39].

In this work, we exploit the method of service process
fragments reuse for service composition, which can not only
decrease the composition time, but also improve the reliabil-
ity of the composition process.

B. SERVICE PROCESS FRAGMENTS REUSING

There are many studies about how to split and describe the
process fragments. For example, [20] addressed the potential
impact of using process fragment libraries in cross-enterprise
collaboration and application integration. [21] proposed a
method to decompose model into single-entry-single-exit
(SESE) fragments. In [22], the researchers represented pro-
cess fragments into different fragmentary knowledge in a
formal way, which allows fragment models to be composed.
Meanwhile, some novel methods have been proposed to
contribute to the reuse of process fragment. [23] proposed
a comprehensive framework for the dynamic, incremental,
context-aware composition of process fragments into adapt-
able service-based applications. [24] used indexes to speed
up query evaluation process by means of considering the
semantic similarity between labels. In [25], to help process
designers to adhere to compliance requirements relevant for
their processes, an integrated approach was presented to com-
pliance management. [26] addressed the issue, which can
support users having different perspectives on process models
and related data.

However, most of the above methods mainly focus on the
complex control logic in the process. But when the scale of
service processes is very large, the efficiency is most likely
to decrease. In this work, we pay more attention to efficiently
discovering and reusing any granularity of service process
fragments. Furthermore, we combine the idea of Cocke-
Kasami-Younger algorithm with hierarchical reinforcement
learning, which is as a starting point for our work.

C. REINFORCEMENT LEARNING

Reinforcement Learning (RL) is one of the most active
research areas in artificial intelligence, which is a com-
putational approach to learning whereby an agent tries to
maximize the total amount of reward it receives when inter-
acting with the environment [27]. To overcome the chal-
lenges of learning, planning, and representing knowledge
at multiple levels of temporal abstraction, the authors [9]
addressed those challenges within the mathematical frame-
work of reinforcement learning and Markov decision pro-
cesses (MDPs). RL is widely used in services computing. For
example, [28] presented a multi-agent reinforcement learning
model for Web service composition, which can address the
scalability challenge, especially when the number of potential
candidate services is large. [29] addressed a method CSSC-
MDP, which modeled the constraint-satisfied service compo-
sition (CSSC) problem as a Markov decision process (MDP).
With the development of GPS technology, a new Mobile
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Internet of Things (M-IoT) is emerging. [30] proposed a
Mobile-IoT based multi-modal reinforcement learning ser-
vice framework to deal with large scale and heterogeneous
data. HRL is put forward to solve the curse of dimension-
ality problem of traditional RL and can achieve high effi-
ciency [32]. In [31], the author built a relationship between
HRL and decision making. [9] presented a method based on
options, which makes decisions only when facing subgoal
position and executes predetermined policy of option in other
time. The HAM method can generate hierarchical, tempo-
rally abstract actions, where larger MDPs can be decom-
posed into smaller ones while maintaining a well-defined
relationship between the smaller problem and the larger
problem [10].

Though a lot of work in services computing, RL and HRL
have not been applied to the research topic of service process
fragments reuse. We have successfully attempted this in our
work.

D. HIERARCHICAL CLASSIFICATION AND CLUSTERING
Besides Hierarchical Reinforcement Learning, Hierarchical
Classification and Hierarchical Clustering are also typical
research paradigms in machine learning related research
areas. For example, [40] presented an adaptive resonance
theory-supervised predictive mapping for hierarchical clas-
sification (ARTMAP-HC) network that allows incremental
class learning for raw data regardless of normalization in
advance, where each hierarchically stacked module incor-
porates two fuzzy ARTMAP networks. In [42], to address
the memory problem and incorporating the knowledge of
document structure, the authors proposed a hierarchical struc-
tured self-attention mechanism to create the sentence and
document embeddings, and they defined the summarization
task as a classification problem in which the model computes
the respective probabilities of sentence-summary member-
ship. [43] presented a deep hierarchical network (DHN) based
on convolutional neural network (CNN) to address automatic
modulation classification (AMC) problem. Similarly, Hier-
archical Clustering has been extensively researched by the
academe, and a large number of different methods have also
been created. [41] proposed a novel approach k-Linkage,
which calculates the distance by considering k observations
from two clusters separately and can overcome the spuri-
ous clusters formation problem. By means of grouping a
network into several clusters, a cluster-head being nomi-
nated for each cluster to make caching decision, [44] pre-
sented a two-layer hierarchical cluster-based caching solution
to improve in-network caching efficiency, where the loca-
tion and content popularity for caching both are considered.
[45] addressed the Chameleon algorithm, whose selections
are based on both interconnectivity and closeness, and it
can yield accurate results for those highly variable clusters.
A fuzzy semantic representation (FSR) method for rare words
is presented in [46], which groups rare words together by
means of a hierarchical clustering method and integrates it
into the encoder-decoder framework.
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lIl. PRELIMINARIES

In this section, we detail the notations used in our approach.
For a clear understanding, we make use of the notations
in Table 1.

TABLE 1. Notations.

Symbol Description
S: i™ atomic service
ws a Web service
ws.I and ws.O the sets of input and output of ws respectively
WS; i" task
US.I the set of user’s input
US.F the set of user’s functional requirements
US.Q user’s QoS preferences
spf a service process fragment
a a policy
q., the observed value of the i" attribute of service ws
q" the maximum values of ¢, for all services

min
i

the minimum values of g, for all services

Wy the weight of i QoS attribute
Vi the standardized value of ws’s i QoS attribute
a a time-varying learning-rate parameter
4 a discount factor
O, *) Q-learning value
C™(o, o, @) the expected discounted cumulative reward
V7™ (e, @) the Q-learning annotated value
A. SERVICE

A Web service ws can provide a reusable functionality that
is specified in a service description document. Each atomic
service owns input and output parameters, abbreviated as ws./
and ws. 0. Without the loss of generality, we assume a Web
service ws can be formally described as follows:

Definition 1 (Service). A service ws is a 3-tuple ws =<
ws. I, ws.O, ws.Q>, where I and O are the sets of input and
output respectively. I ={I, I, ..., I, }, and O ={01, O»,
..., Oy }, m and n are the size of I and O, respectively. Q is
the set of QoS(quality of service) attributes. Q (ws):{q1 (ws),
qz(ws), ql (ws)}, where [ is the dimension number and
¢'(ws) refers to the QoS value on i’ dimension of ws.

B. ABSTRACT SERVICE PROCESS FRAGMENT(ASPF)
An ASPF provides a control flow for two or more services,
namely an ASPF is a workflow template, which contains
service tasks instead of actual Web services. A task denotes
an abstract functionality that can be performed by a concrete
service.

Definition 2 (ASPF). ASPF={WS;, WS,, ..., WS,},
where WS;(i =1, 2, ..., n) is a task, and WS; =< WS. I,
WS. 0, WS.Q >.

C. SERVICE PROCESS FRAGMENT QUERY(SPF-QUERY)

If we only consider the QoS, input and output, a user may
present a SPF query with the input and QoS constraints.
Of course, if only the control structure sequence is consid-
ered, a SPF could be simplified as a directed graph, where
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each vertex and edge corresponds to Web service and depen-
dence relationship between connected services, respectively.
So, we can regard SPF-query as the traditional sub-graph
matching problem. In this approach, the search restraint is
just loose. A SPF query can be formally defined as follows.

Definition 3 (SPF-query). SPF-query={US.I, US.F,
US.Q}, where US.I denotes the set of user’s input, US.F is
the set of user’s functional requirements, and US.Q represents
user’s QoS preferences.

D. SEMI-MARKOV DECISION PROCESS (SMDP)
Semi-markov decision process (SMDP) is widely used in
decision systems. During its generalization, the amount of
time between one decision and the next is a random vari-
able, either real- or integer-valued. In a discrete-time SMDP
decisions can be made at integer multiples of an underlying
time step [33]. In our SPF reuse scenario, a service process
fragment may consist of several atomic services, where the
services can take a variable amount of time steps to complete.

Definition 4 (SMDP). A SMDP is a five-tuple, i.e.
SMDP=<TS, SE, SA, P, R >, where

— TS: Time steps.

— SE: The finite set of all possible states of environment.

— SA: The finite set of actions.

— P: The transition probability of the environment. Gener-
ally speaking, when an action is done, the environment may
transit from its current state to a new state with time steps 7S
according to the probability distribution.

— R: when an action is done, the environment makes state
changes, and the agent receives a real-valued reward.

E. SMDP FOR SERVICE PROCESS FRAGMENT(SPF-SMDP)
The build process of a SPF can be regarded as a semi-markov
decision process, where each selected service may take a vari-
able amount of time steps to complete. Moreover, sometimes
for functional requirements, one atomic service may be called
several times.

The SPF-SMDP model is defined as follows:

Definition 5 (SPF-SMDP). A Web Service Process Frag-
ment (SPF) SMDP is a 6-tuple SPF-SMDP: SPF-SMDP=<
SE, seg, SE;, WS, P, R >, where

— SE: The discrete set of environment states.

— seo: The initial state. The SPF starts to execute from this
state.

— SE;: The set of terminal states. The SPF may end running
with one of SE;.

— WS: The set of Web services. Without loss of generality,
a Web service can either be a composed Web service or an
atomic Web service.

— P: The transition probability of the service system. When
a Web service wse WS is called, the service system makes a
transition from its current state se to a resulting state se’ with
a probability P(se’, TS | se, ws).

— R: When a Web service of a SPF is performed, the service
system environment makes state changes, and the service
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user receives an immediate reward r with expected value
R(se’, TS | se, ws).

F. REWARD ASSESSMENT

In this approach, the evolved reinforcement learning applies
to our service process fragment reuse scenario. First and
foremost, we must properly model how to learn and update
the reward, which relates to a SPF. A policy, 7, is a mapping
from states to service actions that tells what service action
ws = m(se) to perform when the service system is in state
se. For simplicity, let all deterministic policies are proper—
that is to say, all deterministic policies have a non-zero
probability of reaching a terminal state when started in an
arbitrary state. Given a user SPF query, each deterministic
policy can uniquely return a service process fragment spf, and
the user can receive a certain amount of reward by executing
a specified SPF, which is equivalent to the cuamulative reward
of all the executed services.

There are two types of QoS attribute: the positive QoS
attribute, i.e. a higher value implying a better performance or
quality of a service; the negative QoS attribute, i.e. a higher
value implying a worse quality [34]. For example, reliability,
reputation degree and availability are all positive, however,
service price and service time both are negative. The positive
and the negative QoS attributes are normalized by formula 1
and formula 2, respectively.

qmax _ qi
) i W'S ifgmex — min 0
o= =g A0
1 ifq;mzx _ q;mn =0
qivs — qlmin - max min
: ———  ifqg"* — ¢ 0
o= Qe g M TR )
1 ifq;nax _ q;_nm =0

where Vi denotes the standardized value of service ws’s i-th
QoS attribute, ¢/, represents the observed value of the i-th
attribute of service ws, ¢"** and qf”"" represent the maximum
and minimum values of g; for all services.

Then, we can calculate the overall quality score for each

service by Eq.3.

k . k
R(ws) = Zizl wi x Vi wi € [0, 1]and Zi:l wi=1 (3)

where k represents the number of QoS attributes, w; rep-
resents the weight of each attribute according to the user
preference.

Q-learning method is widely used in most RL algorithms,
which is usually based on the DP (Dynamic Programming)
backup but with the expected immediate reward and the
expected maximum action-value of the successor state [8].
Q-learning algorithm updates an estimation of the value of
performing action using the following equation:

O(se, sa) < (1 —a) * Q(se, sa) + o * (r
+y * max Q(se’, sa’)) 0
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where « is a time-varying learning-rate parameter, and y is a
discount factor.

However, Eq.4 doesn’t consider the different time steps
that Web services take. In fact, our SPF reuse scenario utilizes
SMDP and also considers the future benefits. So, it is a
good strategy to take the time steps of each Web service into
consideration. We update Q(se, sa) value in our SPF-SMDP
model by Eq.5, where T is the time steps of Web service (or
action) sa.

O(se, sa) < (1 —a) * Q(se, sa) + o * (r
+y 15 &« max Q(se’, sa)) (5)

IV. TECHNICAL APPROACH

In this section, we address how to do SPF-query with auto-
matic HRL and extended Cocke-Kasami-Younger (CKY)
algorithm. Section 4.1 discusses action models of ser-
vices. Task hierarchies and causal analysis are detailed
in Section 4.3 and Section 4.2, respectively. At last,
in Section 4.4, we present our algorithms.

A. ACTION MODELS OF SERVICE

In our SPF reuse approach, we integrate task hierarchies
with extended CKY method. Since task hierarchies rely on
compact and inspectable action models, we first detail how
to construct an action model, which represents the effect
that executing an action has on the state variables. For the
sake of understanding, before diving into the details, we first
illustrate the process using a simple example below.

As shown in Fig.1, assume that a tourist decides to take a
one-day tour. He (or she) must arrange transportation accord-
ing to the weather. If it rains, he has to rent a car. Otherwise,
he prefers a bike. In order to learn about relevant scenic
spots, he may search for nearby attractions, restaurants and
hotels. The states and actions are described in Table 2. The
service state is described through the following variables:
t.I represents the location of tourist 7, £.7 indicates whether the
tourist is empty-handed or having a resource (bike or car), w.s
indicates if it is raining, the binary b, r.c variables indicate
whether there is a bike or car for tourist’s trip, and the binary

TABLE 2. State and action description.

Variable Description
tl the location of tourist
tr tourist’s resource
r.b indicator for bike
r.c indicator for car
q.b quota indicator for bike
q.c quota indicator for car
w.s weather situation
Action Description
GO navigate to a location
RB rent bike
RC rent car
SA | search attractions
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tl tl’

tr tr Decision tree of g.c after RC
w.s w.s
r.b r.b’
r.c rc’
q.b q.b’
g.c g.c’
R R

FIGURE 4. The dynamic bayesian network model for the RC action.

q.b, q.c variables indicate whether the required quota of bike
or car has been met.

The tourist has four actions: GO, causing his location to
change; RB, causing him to ride a bike if it is sunny; RC,
causing him to drive if it is raining; and SA denoting that the
tourist searches attractions. If RB is executed when an empty
tourist # is in the vicinity of a bike-hire company, then this will
change z.r to bike; otherwise, this action will have no effect.
Similarly, a successful RC will change #.r from empty to car.

As we can see from Fig.4, we employ dynamic Bayesian
networks (DBNs) with context-specific independence to
denote the action models. A DBN is a bipartite directed graph,
where each node represents a state variable, and each edge
denotes a direct causal dependence. The first stage (shown
on the left in Fig.4) and the second stage (on the right)
of the graph represent the state variables before and after
the actions are executed, respectively. In the second stage,
the node labeled with R represents the immediate reward
received after the action is executed. On the far right of Fig.4
is a decision tree, it represents the conditional probability
distributions of car quota (g.c”) after RC is executed. The tree
structure represents the fact that it remains unchanged if the
weather does not rain or the tourist does not have a resource
of car. In a nutshell, the decision tree captures the fact that
the probability distribution over g.c’ depends on the context.
Moreover, this is more compact than representing the prob-
ability distribution as a table, where we must enumerate all
possible combinations of values of the parents.

B. CAUSAL ANALYSIS
As shown in Fig.2, we utilize SPF-Hierarchy to produce task
hierarchies. However, a CAT (causal annotated trajectory)
is the input of SPF-Hierarchy. So, in this section, we detail
causal analysis as follows.

The input trajectory is a sequence of actions that achieves
the overall goal in the source problem. For example, a tra-
jectory in our SPF-reuse scenario is a sequence of Go, RB,
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RC, and SA actions that together achieves the requisite quota
of bike or car, and attractions. Generally speaking, before a
trajectory is fed to the SPF-Hierarchy algorithm, it should be
annotated with causal information using the DBN models.
Further speaking, the intent of this annotation is to identify
how executing actions affects the state variables. It’s worth
noting that those state variables may be relevant to future
actions and, ultimately, the goal of the overall task.

Fig.5 is a causally annotated trajectory example of the
service process in Fig.l. As we can see from Fig.5, the
annotation is based on the relevance of variables to actions,
which comes from the DBNs. Specifically, in state se, given
an action sa and a variable v, if the reward and transition
dynamics for sa either check or change v, we affirm v is
relevant to sa. In Fig.5, the variable w.s is always relevant to
RB and RC, because he arranges his transportation according
to the weather.

q.c

t. *
tr tr, w.s tr, w.s r*

Jotl tl tl tl tl tl q.c
Begin " GO SA GO RB GO RC End
r.

r* r* r* r* r*
q.b q.b

FIGURE 5. A causally annotated trajectory example.

C. TASK HIERARCHIES

Our HRL-CKY makes task hierarchies as inputs. So, for
the SPF-reuse effect, it is really important that how we
achieve succinct and efficient task hierarchies. We construct
the automatic hierarchies based on HI-MAT [35] (Hierarchy
Induction through Models and Trajectories). That is to say,
we address the above issue by systematically integrating auto-
matic task decomposition. Given the CAT (causal annotated
trajectory), the DBN model, and the SMDP’s goal as input,
our algorithm SPF-Hierarchy can partition the CAT recur-
sively to discover the hierarchical structure, and every par-
tition corresponds to a candidate subtask (i.e. service process
fragment).

With the aid of task hierarchies, we can arrange plan at
multiple time scales. Concretely, plans at higher levels (larger
temporal scales) can be refined into sub-plans at lower levels
(finer temporal scales). For example, in Fig.1, a traveler plans
to take a one-day tour. He may first do a weather query
before choosing which day to go out, which in turn may be
considered before choosing what kind of transportation to
use.

In this work, our SPF-reuse approach is based on the
MAXQ framework for representing task hierarchies [11],
where each task has a goal or termination condition. The
goal describes what the task is trying to achieve, but the ter-
mination condition indicates under which it can be invoked.
Moreover, each task may have a set of sub-tasks that it can
invoke recursively to achieve its goal and a set of relevant
state variables, i.e. the state abstraction. The root of the task
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hierarchy corresponds to the over-all MDP, while the leaves
correspond to primitive actions. Each MAXQ task hierarchy
has a hierarchical policy, which is a collection of local poli-
cies, one for each task. During execution of a hierarchical
policy, each sub-task follows its local policy until its goal or
termination condition is true. When sub-task returns to the
calling parent task, the reward obtained during its execution
also is brought back to its parent.

The SPF-reuse domain is too complex for a nonhierarchical
solution, because the more the candidate services, the larger
the state space and the larger the number of candidate service
process fragments available for a specific functional require-
ment. For example, in Fig.1, there may be a large number of
car rental services, bike rental services, and weather services.
So, for the one-day tour requirement, we can get many service
processes. For each of those service processes, it consists of
one weather service, one bike rental service or one car rental
service. However, as we can see from Fig.6, the task
hierarchy decomposes the overall problem into simpler
sub-problems. The Root task tries to learn a policy for meet-
ing the overall requirement in the original MDP by solving
and combining the solutions of three subtasks, i.e. Get bike,
Get weather, and Get car. Of course, we can only choose
one between Get bike and Get car, which is on the basis of
the value of Get weather. So, for indicating this dependency
relationship, in Fig.6, we draw a directed edge with dotted
line from Get weather to Get bike and Get car, respectively.

Root

e R

Get bike [ S Get weather ~ -------- » Get car

l

Weather

ue;
Rent bike Ly Rent car

Goto(loc)
FIGURE 6. A task hierarchy for the one-day tour.

We perform the partitioning process based on the goals
of the task. That process works backward from the goals of
the task. By means of combining the goals and the action
models, some appropriate preconditions can be discovered,
and small CAT segments can be separated, which are respon-
sible for achieving the goal. For each literal in the goal
condition, we extract the corresponding segment of the tra-
jectory through the process of finding the set of temporally
contiguous actions in the CAT. CAT scanning is repeated until
all literals are accounted for. During the partitioning process,
if an extracted trajectory segment is equal to the entire CAT,
we can conclude that the segment achieves only the literal
emerging out of the ultimate action. As a result, we can
split the trajectory into two new segments. One contains the
ultimate action, but the other segment contains everything
prior to the ultimate action. When extracting the segment,
the same subtasks are merged, since they have same termi-

VOLUME 9, 2021

nation conditions and subtasks. As presented in [35], we also
simplify the termination predicate. For example, there is a
goal condition ¢.b =1At.r = empty A t.I = home, if the first
literal is true, we don’t need to consider the second and third
ones. Fig.7 is the hierarchy for the one-day tour.

Root

T

Get transport

W—J%

Get weather

Get attractions

%

Search

Rent transport .
P attractions

i P

Weather .
query Get bike Get car
Rent bike BGoto CGoto Rent car

Goto(loc)
FIGURE 7. The hierarchy induced by SPF-hierarchy algorithm for the
one-day tour.

In the graph of SPF-Hierarchy, for one node, let it corre-
sponding to the subtask S7,, and its parent node is task S7;,
then we get the following equation for the value of ST;:

C™ (@, se, sa)
- Z PT(sé/, TS|se, sa)y > Q7 (i, se/, w(se¢'))  (6)
se/\ TS

which is the expected discounted cumulative reward of com-
pleting subtask S7; after invoking the subroutine for subtask
ST, 1n state se.

Then, for subtask ST;, its Q-learning annotated value func-
tion in the form of a Bell equation is as follows:

V7 (i, se) = V™ (wi(se), se)
+ Y PF(se/, TS|se, wi(se))y V7 (i. se’) (7)
se/,\ TS

Based on Eq.6 and Eq.7, we can further get the Q value
function for subtask ST; as follows:

07 (i, se, sa)
= V7 (sa, se)

+ Z P (sé', TS|se, sa)y 507 (i, s¢', w(se')) (8)
se', TS

where se’ is the state after action sa is executed.

As stated before, the partitioning process works backward
from the goals of the task. So, we can get the value function
of root task (equal to the whole task) as the following process
assumptions and real calculations. Assume that the agent
chooses subtask $7s,1 according to the policy of subtask STy,
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then recursively the agent chooses ST, according to the
policy of STg,1 and so on. As a result, Eq.9 indicates the
computing process, where wsy, is a primitive subtask:

VT (wsp, se) = Z P(sé |se, sap,)R(se'|se, sa,)
se’
V70, se) = V™ (wsy, se) + CT (sa, — 1, se, wsy,)
+...4+ C™(0, se, say) )

D. ALGORITHMS

In this section, we detail two algorithms, i.e. SPF-Hierarchy
and HRL-CKY. SPF-Hierarchy benefits the construction of
task hierarchies, which is based on HI-MAT [35]. Moreover,
its output is just the input of HRL-CKY, which is responsible
for computing the value function to solve the SPF-reuse
problem.

In Algorithm 1, the inputs are a causally annotated tra-
jectory (CAT), DBN models and the goal predicate G. The
algorithm discovers the hierarchical structure by recursively
partitioning the CAT and each partition corresponds to a
candidate subtask. As shown in Fig.7, it is the hierarchy
induced by SPF-Hierarchy algorithm for the one-day tour
example presented in Fig.1. The root task terminates when
the requisite traffic tool (q.b=1 or g.c=1) and information
for nearby attractions have been collected. And it can be
separated into two subtasks, i.e. Get transport and Get attrac-
tions. In the same way, Get transport is decomposed into Get
weather and Rent transport. Since a traveler must choose one
means of transportation according to weather condition, there
is a red directed edge from Get weather to Rent transport,
which describes this dependency. The leaf node Goto(loc) is
a primitive action that is not included to the task.

After executing Algorithm 1, we get MAXQ Hierarchies,
which are imported into Algorithm 2. Specifically, MAXQ
Hierarchies are the input of our Reinforcement Learning
method. Through reward values calculation for all the service
process fragments, our method outputs two 2-dimensional
arrays, i.e. Link and Q-value. The former records the links
among its constituent parts of subtasks, but the latter Q-value
stores those values computed by value functions.

As shown in Fig.3, if there is an element (S7, Q) in
Q-value [2], [3], it indicates that ST is a subtask and its
value is Q. ST is mapped to Cell[2, 3], and if we do a depth
traversal from the node of ST, by gathering all the leaves,
we can get a service process fragment, which match services
between s; to s;1;j—1. To reproduce the alternative parts of an
optimal derivation, we use Link to record the links among its
constituent parts. In the hierarchy induced by Algorithm 1,
for all the leaf nodes, their values are computed in lines 3-11.

From line 12 to line 26, the values for all the subtasks are
computed.

E. COMPLEXITY ANALYSIS

Our method mainly consists of two steps, i.e. the auto-
matic hierarchy construction (detailed in Algorithm 1) and
the process of service process fragments reusing (seen in
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Algorithm 1 SPF-Hierarchy
Input: CAT §, DBN models, Goal predicate G
Output: Task T
1. if § contains a single action sa then
2. return task 7 with termination G, state abstraction
based on variables relevant to sa, and child sa

3. else
4.  if actions in § have identical sets of relevance then
5. return task 7" with G, state abstraction based on

§’s relevance, actions in §
6. Extract trajectory segments from § for goal literals and
any literals entering the segments
7. if a segment =§ then
8. Create two segments: one with the ultimate action
and the other with the rest and the ultimate action’s
precondition as its goal
9. Merge all overlapping segments
10. for each CAT segment do
11. Invoke SPF-Hierarchy recursively to discover the sub-
task hierarchy and add it as a chid of T’
12. Set termination for 7 = G
13. Set state abstraction for T based on the relevant vari-
ables from §’s merged DBN
14. Add all primitive actions to 7T that share DBN structure
but are not already included
15. return task T

Algorithm 2). In the second step, we can effectively dis-
cover and reuse any granularity of SPFs in terms of different
requirements by the hierarchy given by stepl. Algorithm 1
has complexity O(|§|), where |§| denotes the number of
subtasks of §. In Algorithm 2, it firstly incurs complexity
O(n) to compute values for all the leaf nodes (lines 3-11).
Next, computing values for all the subtasks has complexity
(] §|2 x n3) (lines 12-26). Thus, we obtain a total complexity
of O(|§|2 x nd). Actually, our method can effectively reduce
the convergence time, which is shown in the experiments.
This is because that our method is based on CATSs, and
we partition each CAT to smaller CAT segments and every
segment corresponds to a deterministic subtask, the hierarchy
generated by Algorithm 1 is unique for each unique CAT.

V. EXPERIMENTS AND RESULTS

In this section, we will use some experiments to eval-
uate our approach. In service process fragment reusing
research area, [36] presented VGI (Variable Granularity
Index) method, which is based on SSM-Tree on service pro-
cesses. VGI can realize the unified index on both atomic
and composite services (i.e. service processes) and max-
imize reuse of them. However, it does not consider QoS
attributes and it is slightly less efficient when it faces a
large-scale dataset. SCKY [13] (a service process frag-
ment reusing method motivated by Cocke-Kasami-Younger
algorithm) can reuse any granularity of service process
fragments, but the performance needs to be improved.
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Algorithm 2 HRL-CKY
Input: MAXQ Hierarchy
Output: a 2-dimensional array Link, a 2-dimensional array
Q-value
1. Q-value[n, n]<« &;
2. Link[n, n]< ®;
3. fori=1ton
4.  if there is a primitive subtask ST in Cell[i-1, {] then
5 compute R_pattern(se, i) and R_QoS(se, i) ; //let
se is the current state
6. r< R_Pattern(se, i)+ R_QoS(se, i);
7. V7 (si, se) < (1 —a)V7 (si, se) + ar;
8. Q-valuel[i, 11« V7 (si, se);
9. Link[i, 1] < (‘ST", 0, ‘s; *);
10. End if;
11. End for;
12 Forj=2ton
13. Fori=1ton-j+1
14. For k = 1toj-1

15. For each elem(ST7) € Q-value [i, k];

16. For each elem(S7,) € Q-value [i + k, j-k];

17. if ST— ST, ST, then // ST and ST, are ST’s

children .

Ol (1—a)C™(i, se,ST1)+ay/ " HWV(ST}  se)

18. 02« (1—)C™(i, se,ST2)+ay/ " FWV7(ST2, se)
0« 01+02

19. Q-value[i, j]<« O;

20. Link[i, j] < (ST, k, STy, ST»);

21. End if;

22. End for;

23. End for;
24. End for;
25.  End for;
26. End for;

Schumm et al. [47] presented a method for Web service com-
position through shared process fragment libraries. In [48],
the authors proposed a complete and integrated framework to
enable reuse and sharing of service compositions over Web
using stimulation workflows. However, [47] and [48] do not
address on how to search or locate the process fragment at all.
Moreover, they mainly focus on the complex control logic in
the process. Especially, when the scale of service processes
is very large, they are likely to lose efficiency. In this work,
we pay more attention to efficiently discover and reuse use-
ful service process fragments. Furthermore, we combine the
idea of Cocke-Kasami-Younger algorithm with hierarchical
reinforcement learning, which is as a starting point for our
research.

A. EXPERIMENT SETUP

Our dataset is constructed by the Web Service Challenge
Testset Generator (CTG). We have invoked CTG many times
since the number of generated processes based on CTG is
limited each time. In this way, we get a large scale process
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(b) The mapping between the hierarchy and HRL-CKY for spf’

FIGURE 8. A SPF reusing example.

repository which consists of about 400 thousand processes
and each service contains 5 to10 input or output parameters.
We extracted throughput and response time values from a
file named Servicelevelagreements which is generated con-
currently.

As presented in [13], several variable parameters are uti-
lized: the amount of process (AP) in the process repository,
the average number of abstract services (AS) and dependency
relationships (AR) among them in each query process. Exper-
imental parameters are set as follows: the discount factor
y of the Q-learner is 0.9, and the learning rate « is set to
0.2. All algorithms are implemented in Java. The hardware
environment is a machine with the Intel(R) Core(TM) i5 CPU
760, 2.80 GHz, and 4 GB RAM running Windows 7 (64-bit).

Fig.8 is an example of SPF reusing induced by the above
approach. We choose one service process fragment spf from
our dataset, which consists of five atomic services (according
to the input and output dependencies, they combine into a ser-
vice process fragment), shorted as wsy, wsy, ..., wss. As we
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FIGURE 9. Efficiency evaluation with variable AP (AS = 5 and AR =4).

can see, Fig.8a is the hierarchy induced by SPF-Hierarchy
algorithm for spf, and Fig.8b is the mapping between the
hierarchy and HRL-CKY for spf. L{ denotes the i layer of the
hierarchy, and it indicates the service process fragment, which
starts from ws;. For example, L21 indicates the service process
fragment “ws;wsywszwss”, but L32 embodies “wsywszwsy”’.
Each leaf node of Fig.8a denotes an atomic service. Actually,
if we do a breadth priority traversal from Lf , and combine all
the atomic services, we can just get the corresponding service
process fragment. As shown in Fig.8a, when it travels from
L33 , it gets through “L‘?Lff” , finally “ws3wsqwss™. As aresult,
we can effectively discover and reuse any granularity of SPFs.

B. EXPERIMENTAL RESULT

In the first set of experiments, we evaluate and compare the
efficiency of our approach with SCKY and VGI. In the origi-
nal work of VGI, it did not consider QoS attributes. So, for the
comparison, we added QoS attributes to VGI method. Given
a query condition with functional requirements and QoS
preferences, we find a SPF from the process repository. All
experiments are conducted independently for 100 times and
the average results are calculated. When AP varies from 100K
to 400K, as shown in Fig.9 and Fig.10, the response time of
VGI, SCKY and HRL-CKY grows. If the query condition
becomes more complicated, i.e. from “AS=5 and AR=4" to
“AS=12 and AR=11", three methods all need more query
time. However, under the two experimental environments,
HRL-CKY is faster than SCKY, especially better than VGI.
This is because that HRL-CKY utilized Hierarchical Rein-
forcement Learning (HRL) technique, which can release the
curse of dimensionality effectively.

In the second set of experiments, we focus on how the
learning rate affects HRL-CKY’s performance. We fix the
amount of process (AP) to 400K, AS=8 and AR=7. We vary
the learning rate from 0.1, 0.2, 0.7 to 0.8. As we can see
from Fig.11, though higher learning rate can accelerate the
learning process, it is easier to trap into local optimal and a
smaller learning rate is helpful to avoid this problem although
its convergence rate is a little slow. Through this set of exper-
iments, we get that a higher learning rate can convergence
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FIGURE 12. Learning speed with variable AP.

faster. But it is not that the faster the convergence, the better
the performance is. Maybe a learning rate around 0.2 is a good
choice.

In the third set of experiments, we try to address the influ-
ence of the number of AP on the learning speed. In Fig.12,
we compare the efficiency of our approach with Manual
HRL [11] and Flat Q [37]. We fix AS=8 and AR=7. Manual
HRL is a hierarchical policy that is coded by hand. When AP
varies from 100K to 400K, as shown in Fig.12, HRL-CKY
converges fastest, and Manual HRL comes second. Actually,
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FIGURE 13. Three methods’ adaptability.
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FIGURE 14. HRL-CKY’s adaptability with different changing percents.

HRL-CKY converges roughly two times as fast than Manual
HRL. In our hand-coded policy, knowledge of contextual
information is used to choose operators. So, Manual HRL
is surely better than Flat Q though inferior than HRL-CKY,
and Flat Q’s convergence time increases polynomially with
the number of service processes variation. It is clear that
the number of alternative service process fragments usually
increase exponentially with the number of AP. However, with
state abstraction, our HRL-CKY can release the curse of
dimensionality effectively and the result looks flat. By means
of state abstraction, subtasks can employ a lower-dimensional
representation for their value functions, and this will speed
learning. Furthermore, in our hierarchical policy, we merge
the same subtasks whose relevances are identical. That is,
they have same termination conditions and subtasks. As a
result, this will further improve the convergence rate.

The purpose of the last set of experiments is to verify the
adaptability of our method. We fix AP=250K, AS=8 and
AR=T7, but we change the QoS attributes of the services
periodically to simulate the changes of the environment.
In Fig.13, we vary 4% of the services’ QoS attributes to
compare the three methods’ adaptability. As we can see from
Fig.13, all the three approaches (HRL-CKY, Manual HRL
and Flat Q) can still converge with delay, but the effective-
ness is not same. It is clear that HRL-CKY performs more
adaptively. In Fig.14, we vary 0%, 4% and 8% respectively
to address the influence that different changing percents have
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on adaptability. From our experimental result, we can get that
the more changes, the longer delay. But the increased delay
is small compared with the whole convergence time. So our
HRL-CKY gains decent adaptability.

C. DISCUSSION AND ANALYSIS

By these experiments conducted on a large scale dataset,
we firstly find that HRL-CKY is much faster than VGI and
SCKY. In HRL-CKY, we use link list to store dependency
relationships of services. Moreover, through state abstrac-
tions, it can greatly reduce the search space. All these factors
contribute to the good efficiency performance of HRL-CKY.
In addition, the abstraction of any task in the task hierarchy
is maximally compact, that is, it does not contain redundant
state variables. For example, in Fig.8a, ws, relates to Li
and Lf, but we only present ws; just once in the hierarchy.
Compactness determines the speed of learning in the SPF
reusing — the more compact the abstraction, the fewer the
number of parameters to be learned, and hence the faster
the learning. Fig.12 evaluated this conclusion. We will omit
the detailed discussion due to the space limitation.

Although our method has many advantages mentioned
above, it still has a lot to be improved upon. First, our
automatic hierarchy is based on the HI-MAT [35], where an
observed successful trajectory is necessary. Second, when
transferring the hierarchy made by a source service process
fragment (SPF) to a target service process fragment, there
maybe limitations. Third, we mainly consider the variation
of non-functional properties for the adaptability, however,
the deterioration of candidate services may happen, or new
functional services join in. In our future work, we will over-
come these drawbacks.

VI. CONCLUSION AND FUTURE WORK
In this paper, we present a novel SPF (Service Process Frag-
ment) reusing framework that combines automatic HRL and
extended Cocke-Kasami-Younger (CKY) algorithm. This
framework has the ability to reuse any granularity of SPFs
through HRL-CKY. Through the analysis on historical frag-
ments, action models and trajectories can be firstly returned.
The “Causal Analysis” identifies the causal relationships
between the actions in the trajectory, i.e. returning a causally
annotated trajectory (CAT). Then, SPF-Hierarchy algorithm
discovers a coherent task hierarchy. It is worth noting that the
task hierarchy can minimize the number of intertask causal
links, such that avoiding the “curse of dimensionality”.
Moreover, by means of state abstractions, our method can
greatly reduce the search space. In addition, the abstraction
of any task in the task hierarchy is maximally compact, that
is, it does not contain redundant state variables. We con-
duct several groups of experiments to evaluate the efficiency
and robustness of our approach, and experiments show that
HRL-CKY performs well in service process fragments reuse.
Our future work is to investigate how to deal with service
processes with more QoS attributes. And, we will focus on
how to better generating a successful trajectory. We will try
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other new automatic HRL mechanisms to overcome those
drawbacks as discussed in Section V.C.
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