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ABSTRACT With each passing year, the consumption of electric energy in Brazil and the world increases,
making it necessary to adopt measures such as the construction of new plants and the installation of power
distribution structures. Monitoring for construction management in companies is still done in person and
manually, resulting in expenses that could be avoided. That said, there are opportunities to automate such
processes using artificial intelligence and, therefore, the main objective of this work is the development of
an automated constructions management system, whose goal is to increase the management and monitoring
of substation constructions with the remote monitoring. The system incorporates resources of deep learning
to classify the components in bays, comparing the data generated in this recognition with the engineering
projects to verify the progress of the installation of these components and generating indicators of conformity
and evolution of the construction. To achieve the main objective, a comparison was made among four con-
volutional neural network architectures: DenseNet, Inception, ResNet, and SqueezeNet, in the classification
task. The models were trained with thousands of images extracted from photos of different bays captured
in the field and, additionally, data augmentation techniques were applied. The models were trained using
transfer learning and fine tuning starting from pre-trained weights in the ImageNet data set. All models
obtained results close to 100% in the images of the test set, hence it is possible to conclude that, for the
proposed problem, there was no significant difference between the assertiveness of the architectures. The
chosen model was part of the final application that monitors the construction management of the bays
in the electricity substations.

INDEX TERMS Computer vision, computerized monitoring, construction management, image
classification, machine learning.

I. INTRODUCTION
It is believed that in the coming decades the world will
consume much more energy than today, after all, whenever
there is access and availability of reliable energy, people will
increasingly enjoy this good that today has become indis-
pensable. Unfortunately, there is a huge portion of the world
population that still does not have access to basic energy
services. Also, the climate changes that have been occurring
in recent years contribute directly to the development of
alternative renewable energy solutions, which generates an
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increasing demand for new ventures in the electricity sector
[1]. All this need gave rise to the demand to present tech-
nological innovations that help and contribute efficiently to
supply the human needs related to the electric energy sector
and, in parallel, contribute in some way to a better use of
environmental resources.

The aid of technology for automation and optimization of
problems in the industry has now become indispensable. One
of the possible tools that can be used to solve these problems
is machine learning methods, which are algorithms that ana-
lyze data, learn from it, and apply what they have learned to
make decisions autonomously [2]. Machine learning can be
found in several applications in the most varied areas, such
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as medicine, agriculture, engineering, in the electric power
sector, telecommunications, among others [3]–[5].

The large volume of projects carried out by energy compa-
nies in Brazil increasingly demand human resources to mon-
itor construction sites. For instance, in one company1 each
year the engineering team manages more than 85 construc-
tions, of which approximately 20% (around 15 constructions)
are for installing 15kV bays, which has an average cost of
US$ 60,000 per construction. The bays are sets of elements
with specific functions in the electrical system, which allow
the composition of the substation in modules.

Due to the standardization of projects, the activities carried
out become recurrent and procedural, creating opportunities
for the use of technological resources for the automation of
the management process, and, therefore, productivity gains
for the employed human resources.

The development of projects in this sense makes possible a
series of socio-environmental contributions, impacting on the
safety and quality of life of the community, since the control
of assets can prevent the interruption of power supply through
the identification of possible system failures, or invasions that
can cause damage to the structure, through data analysis [6],
[7]. They enable greater agility in the construction of substa-
tions, facilitating the monitoring of managers to monitor the
progress of the constructions, in addition to enabling simul-
taneous management of multiple constructions. This brings
about an increase in the number of constructions being done
in parallel, directly reflecting in the increase in the number of
jobs offered.

Contributions and economic impacts can also be achieved,
such as the gain resulting from changes in the company’s
administrative processes, in the costs of internal labor, mate-
rials, displacements, inputs, and time of execution of activi-
ties. The possibility of improving the management of assets,
from the monitoring of the constructions through images to
preventing the erroneous installation facilities during the exe-
cution of the construction. The need to increase the number
of constructions in substations can be a bottleneck, since the
number of people available and trained to accompaniment
does not grow in the same proportion, hence it is necessary
to create solutions for the accompaniment of constructions
facilitating management [8]–[10].

That said, the main objective of this work is the devel-
opment of an automated system for construction sites man-
agement, whose proposal is to increase the management and
monitoring of constructions in electric power substationswith
remote monitoring. The system incorporates the resources of
deep learning for the classification of components in bays,
comparing the data generated in this recognition with the
engineering projects, aiming to verify the progress of the
installation of these components and generating indicators
of conformity and evolution of the construction. To achieve
the main objective, a comparison was made among different

1Internal data from CPFL Energy, Brazil. CPFL stands for Companhia
Paulista de Força e Luz.

convolutional neural network architectures, implementing
machine learning models that are capable of classifying the
main elements that make up the bays in substations, aiming,
from this model trained with a new data set, to classify such
elements through a system that will serve to optimize the
constructions management activities in substations.

The rest of the work is organized as follows: Section II
presents the problem of interest addressed in the research,
highlighting the difficulties of managers incorrectly mon-
itoring the construction of bays in electrical substations.
Section III addresses the theoretical framework, bringing
the fundamental concepts to understand the research and
related works. The methodology is presented in Section IV,
showing each of the steps followed in the development of
the research. Section V presents the results achieved by the
proposed system. Finally, conclusions and future work are
provided in Section VI.

II. PROBLEM OF INTEREST
Currently, the monitoring of activities of the constructions in
the distribution substations has been carried out in person and
manually, being susceptible to technical errors or even the bad
faith of the employee. Regularly, in short periods defined by
the company, those responsible must travel to each substation
to carry out the process of monitoring and advancing the
constructions.

In times of pandemic caused by COVID-19, themonitoring
by managers who carry out construction management activ-
ities was completely out of date. The public authorities of
each municipality regulate through sanitary barriers every-
one who enters and leaves the city, causing a considerable
delay in the managers’ travel time. Also, given the impor-
tance of social isolation and the need to not have contact
with other people, the employee responsible for carrying out
this monitoring may be contributing to the spread of Sars-
CoV-2, given this frequent displacement between different
municipalities.

The main components of a substation bay are: panel, cur-
rent transformers, power transformers, disconnect switches,
and isolators. These bays are essential for the supply of
electricity to society and, as the demand for energy grows,
it becomes necessary to install more of this equipment. As the
number of construction sites to be monitored increases, and
considering the distance between them, it is more difficult for
managers to track the progress of several projects at the same
time. Fig. 1 shows two examples of bays.

It is possible to observe in Fig. 1 the disposition of each
component in the implantation of a bay, which always occurs
in an already defined sequence: first, the concrete support
for the panel is built, installing the panel immediately on it.
Subsequently, current transformers (C.T.’s) are added, with
one pair for each phase. The next component to be installed
are the power transformers (P.T.’s), which coupled to them
there is a protection grid, popularly called ‘‘anti birds’’, also
counting one for each phase. Then, the rest of the structure is
assembled.
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FIGURE 1. Example of two bays.

Due to this standardization of projects, it is possible to
develop a system that can assist in the management of con-
structions in electric power substations. Fig. 2 presents an
overview of how the system is designed.

To enable the use of computer vision in the recognition and
classification of objects with the characteristics of the com-
ponents of a bay in a substation, the adoption of technology
of artificial neural networks with deep learning is adequate.
This technology makes intensive use of processing capacity
to achieve the right degree of assertiveness. To improve the
relationship between assertiveness and processing capacity,
one of the intervention variables is the architecture of the
convolutional neural network used, which was one of the
specific objectives of the development of the system.

The developed platform aims to automate constructions
of bays in substations and can be used and/or expanded to

other energy companies that carry out constructions, so that
they are able to increase the number of constructions in
progress simultaneously guaranteeing the quality of the exe-
cution of the constructions, in addition, to improve activity
management and schedule control.

III. THEORETICAL REFERENCE
A. DEEP LEARNING
Deep learning involves a class ofmachine learning algorithms
whose main objective is to extract resources so that the com-
puter can learn from examples and, later, make decisions for
a given problem [11], [12].

In deep learning, a model learns to perform image, text,
or sound classification tasks. Such deep learning models can
often achieve very accurate results, sometimes exceeding the
performance of human beings themselves.

Although deep learning was theorized in the 1980s [13],
it has only been disseminated in recent years for two reasons:
a large amount of data currently available and the advance-
ment of research in the hardware area, increasing existing
computational resources [14], [15].

Computer vision and deep learning can be used in various
tasks, such as image and video recognition, image analy-
sis and classification, visual media recreation, among other
things [16]. Advances in computer vision [17], [18] and deep
learning have evolved, mainly through Convolutional Neural
Networks (CNNs).

B. CONVOLUTIONAL NEURAL NETWORKS
A convolutional neural network, also called ConvNet, is a
machine learning algorithm that receives an image as input
and, from it, can extract resources by assigning importance
(weights and biases learned) to various aspects, thus being
able to differentiate objects contained there [19], [20]. The
structure of CNN was inspired by the organization of the

FIGURE 2. Overview of the functioning of the proposed system.
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visual cortex of human beings. Individual neurons respond
to stimuli that correspond to a specific restricted region of
the visual field, known as the receptive field. The grouping
of these fields overlaps, being able to cover the entire visual
area [21].

Unlike conventional digital image processing techniques
that use previously established filters, CNNs can automati-
cally learn the best parameters of resource extractors. With
this, they can obtain an extremely satisfactory performance in
tasks of classification, detection, and segmentation of objects,
surpassing the precision achieved by conventional techniques
of digital image processing.

A CNN architecture is made up of convolution layers,
pooling layers, and fully connected layers. Each convolu-
tion layer has a number of filters of certain sizes, which
are responsible for extracting the high-level features from
the input image. The pooling layers have the function of
reducing the spatial size of the features involved, implying
a reduction in the dimensionality of the data and conse-
quently reducing the computational resource used for pro-
cessing. Finally, the fully connected layers learn the nonlinear
combinations of the features, making it possible, through
an activation function at the end of the network, to classify
objects [22].

There is a multitude of possibilities for the layering of the
layers that make up a CNN. The deeper the architecture of a
CNN, the greater the computational processing cost used, that
is, the defined architecture varies according to the problem.
Currently, some CNN architectures are available that have
been pre-trained on large sets of images and have achieved
quite satisfactory performance. Some of these well-known
CNN architectures are DenseNet, Inception, ResNet, and
SqueezeNet.

1) DENSENET
The densely connected CNN emerged from the work of [23],
in which a network was proposed that, besides being deep,
is also precise and efficient. The authors believed that if the
connections between the layers were shorter, the training
of the network would be better adjusted. Thus, the imple-
mentation of the architecture was defined with the premise
that for each layer, with the feature maps obtained by the
previous layers, these would also be used as input for all other
subsequent layers.

The DenseNet architecture has some advantages over
competing architectures: (1) the network can minimize the
problem of gradient leakage, (2) it strengthens the propaga-
tion of features obtained through convolution operators, (3) it
reuses such features, and (4) substantially reduces the number
of network parameters. As presented by [23], the DenseNet
architecture was evaluated in four object classification bench-
mark tasks (CIFAR10, CIFAR-100, SVHN, and ImageNet),
obtaining significant improvements on the state of the art in
large part of them, requiring less memory and computational
performance.

2) INCEPTION
The CNN Inception architecture was first presented in the
work of [24]. The authors agreed that the deeper the net-
work and the greater the computational processing power,
the greater the precision gains in the vast majority of tasks.
However, they argued that computational efficiency and the
limited number of parameters are still configurations that
could be adjusted and improved, especially when working
with a large data set and with digital image processing
techniques.

That said, in the architecture proposed by [24], a means
of using computational features in the most efficient way
possible was explored, through appropriately factored con-
volutions and aggressive regularization. The CNN Inception
architecture was tested in the ILSVRC 2012 classification
challenge, obtaining a 21.2% error in the competition’s top-1,
surpassing the state of the art at the time.

3) RESNET
The residual neural network proposed in the work of [25]
presents a CNN architecture structured on residual learning,
facilitating the training of deep networks. The authors explic-
itly reformulated the learning layers using residual functions
at the input of the layers, instead of using disconnected acti-
vation functions. With that, it was possible to show that the
CNN ResNet architecture is easier to be optimized and can
obtain high precision even with a considerably greater depth.

ResNet was evaluated in the ImageNet data set, obtaining
an error of 3.57% in the test set, winning the first place
ILSVRC 2015 for the object classification task. Currently,
it is considered one of the main architectures of CNNs, being
used in problems of classification and detection of objects,
both in images and in videos.

4) SQUEEZENET
The vast majority of proposed CNN architectures focus on
mainly improving accuracy. That said, in the work of [26] a
CNN architecture was proposed that is much less deep than
the competitors, called SqueezeNet. With equivalent accu-
racy, SqueezeNet offers at least three advantages over other
architectures: (1) smaller networks require less communica-
tion between servers during training using distributed pro-
cessing; (2) lean networks require less bandwidth to export
the model trained in applications that require this feature;
(3) smaller networks are more feasible to be used in appli-
cations that operate on embedded devices and hardware that
have little memory.

The CNN SqueezeNet architecture achieves precision with
a value close to that achieved by competing architectures
in the set of ImageNet images and, in parallel, it still has
about 50× fewer parameters than AlexNet, another CNN
architecture. Also, with the techniques used to compress
the model, SqueezeNet can be compressed so that it occu-
pies only 0.5MB of disk space, about 510× less than
AlexNet.
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C. RELATED WORKS
No research was found that used deep learning and CNN
to specifically solve the monitoring problem for manag-
ing constructions in electric power substations. Some works
apply deep learning to detect faults in substations in general,
and some others that classify objects present in given civil
construction.

In the research developed by [27], it was argued that the
substantial increase in infrared images in the electrical sys-
tem of substations presents a new challenge, exemplifying
how the assessment of the status of devices is traditionally
done. To overcome this problem, the work of [27] proposes
a method of automatic analysis of infrared images. The
algorithm implemented first segments images into superpix-
els and then adopts CNN to classify objects. Good results
have been achieved compared to other unsupervised training
methods tested.

The use of deep learning and the Yolo object detector can
be found in the research by [28], in which the authors applied
the method for intelligent detection and recognition of high
voltage distribution frames. The proposed system aims to
perform some tasks, such as identifying the placement of a
key, as well as recognizing and determining its state.

In the work of [29] a new approach to state recognition
based on CNN of commutators in substations was proposed.
Transfer learning was used in the model, in which the authors
used the set of images ILSVRC2012, retraining the model
with their images of the studied substation. In their experi-
ments, they obtained quite satisfactory results and concluded
that the proposed approach can be applied to the analyzed
substation, which may reduce the cost of operation if the
industry decides to implement the system.

The use of personal protective equipment (PPE) and collec-
tive protective equipment (CPE) is an important safety mea-
sure that aims to protect employees in the work environment.
Unfortunately, due to lack of responsibility, there are still
workers who persist in not using such equipment subjecting
themselves to a greater risk of fatal accidents. To automate the
process of detecting such employees, in the article of [30] the
fastest R-CNN object detector was applied, to detect workers
who do not have PPE. The experimental results showed that
the method obtained high precision in detecting people who
are going against the company’s security policies.

For the proper management of constructions and the revi-
sions of the plan during construction, it is necessary to under-
stand the status of the construction in real-time. Aiming to
assist in the development of solutions for civil construction,
[31] proposes a deep learning method that aims to accurately
recognize construction equipment. Due to the lack of avail-
able images of the objects covered, transfer learning was
used, which classifies five classes: dump truck, excavator,
loader, concrete mixer truck, and road roller. The results
reached a value of 96.33% for the mean average precision
(mAP). The proposed method can be used to infer the context
of civil construction operations, generating data such as the
progress of the work, productivity, and safety.

Similarly, [32] developed a system for monitoring
construction management in civil construction, performing
automatic detection of workers and excavators at a given
construction site. The fastest R-CNNmethodwas used, which
obtained very satisfactory results, detecting the presence of
workers and excavators with a high level of precision (91%
and 95%). According to the authors, the accuracy of the pro-
posed deep learning method exceeds that of current methods
in detecting objects at construction sites.

In [33], deep learning was used for the detection of con-
struction equipment, starting from a vacant subdivision until
the work was completed. The analysis of the results con-
firms the superior performance in real-time of the proposed
solution with an accuracy rate above 90%. The present
study validates the practicality of object detection solutions
based on deep learning for construction scenarios. Also,
the solution can be used for various purposes, such as secu-
rity monitoring, productivity assessments, and management
decisions.

Part of Industry 4.0 applications is focused on develop-
ing autonomous smart substations. Among these, several
methods of automatic meter reading were proposed with
the invention of inspection robots. However, most solutions
have difficulty in capturing quality meter images. In [34],
a system based on deep learning and computer vision was
proposed to obtain images of meters in acceptable conditions
for future analysis. For this, the object detection method
based on regions (Faster R-CNN) was used to find the exact
position of the meter and then, the system adjusts the camera.
The experimental results verify the stability and accuracy
of recognition system which is proved to work well under
different conditions.

In the work of [35], it was stated that the increase in the
internal temperature of electrical instruments in power sub-
stations can cause unusual disturbances and damage to equip-
ment. Therefore, as preventive measures for the problem
mentioned, the authors proposed a new approach for the anal-
ysis of defects in this equipment, using infrared images and
deep learning. The images were captured and their character-
istics were extracted using a pre-trained CNNAlexNet. Then,
the Random Forest and Support Vector Machine algorithms
were used to classify whether the equipment had a defect
or not. In an experimental analysis, the authors obtained an
accuracy of 96% which, according to them, surpassed all
other comparative approaches that used deep learning and
others that used alternative technologies.

In recent years, several solutions have emerged for the
monitoring of electric power substations, most of them based
on computer vision and digital image processing algorithms.
In the article by [36], the authors presented a proposal for
the classification of ceramic and glass insulators by means of
images. The Speeded-Up Robust Features (SURF) method
was used to describe the image resources, and then the
k-Nearest Neighbors (KNN) algorithm was applied to clas-
sify the obtained resources. The authors conducted experi-
ments on insulators to verify the superiority of the technique.
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The proposed method can be used in security, surveillance,
and inspection system.

As previouslymentioned, there are no studies in the current
literature that use deep learning techniques in the classifica-
tion of components in substation bays. The current research
is about the development of an automated construction man-
agement system, in which a comparative study was made
for different CNN architectures in a set of real images,
collected in the field. The study carried out as part of the
application that will assist the management of automated
constructions for the construction of bays in electric power
substations.

IV. METHODOLOGY
Each step of the execution of this work can be observed in a
general way below.

1) Collection of images in the field.
2) Preparing the image set.
3) Division of images in training, validation, and testing,

randomly varying into five different sets.
4) Application of data augmentation techniques to

images.
5) Implementation of classifiers: DenseNet, Inception,

ResNet, and SqueezeNet.
6) Conducting experiments to define the best CNN

architecture.
7) Analysis of results and choice of the classifier.
8) Application and testing with the proposed system.

A. DATA COLLECTION AND PREPARATION
For the development of this research, the authors moved to
different substations of the company CPFL Energia and col-
lected, using a camera, 32 photos from different bays. Also,
thinking of a set of images as variable as possible, the authors
took care to capture the images at different times of the day,
so that the dataset had images of bays with variation in the
position of the sun reflecting the object, besides to different
lighting conditions and climate. Subsequently, each of the
components that are part of a bay was cut manually, obtaining
a total of 23 images of the base class, and for the grid,
panel, and C.T. objects, 29, 32, and 32 images, respectively.
With that in mind, considering the model’s generalization
capacity, five different sets of images were generated, and, for
each set, the 32 images were randomly divided into training,
validation, and test set. The random division was performed
as follows: out of a total of 100% of the amount for each of
the elements, approximately 75% went to the training set and
approximately 25% to the test set. Of the 100% of the training
set after the first division, 80% remained and the other 20%
went to the validation set. An example of this division is
shown in Table 1, for the set of images that was part of the
first experiment.

Table 1 exemplifies the randomness imposed in the divi-
sion of training, validation, and test data, for the first set of
images generated. The same randomness was also applied
to the other four sets created. The separation of the original

TABLE 1. Example of Randomness of the Set of Images.

images, previously performed before applying the data aug-
mentation operations, is justified by the fact that the mod-
els should not be allowed to be overfit during the training
stage, because, if this occurs, the model may not be able to
generalize well to the test set.

To increase the data, two operations were considered: cut-
ting and horizontal inversion. It is important to note that such
data augmentation operations were applied to all images, with
the aim of having a sufficient number of images that can
evaluate each of the trained models. However, as previously
mentioned, before the application of these operations, each of
the elements was properly separated into training, validation,
and test sets, before the application of the augmentation
operations. Thus, care was taken for the same element not
to participate in the training stage of the model and also in
the validation stage.

Manually, for each of the 32 captured photos, 20 images
were generated for each of the four classes of objects,
using randomly sized cutouts, but always keeping the object
belonging to a particular class in question on the inside of the
cut. Also, for each of the 20 cutouts, the horizontal inversion
operation was used in each copy of the cut, having at the
end of the application of the data augmentation 40 images
of each object from each of the original 32 images, totaling
32× 40× 4 = 5120 images. Fig. 3 illustrates how each cut
was manually selected in each of the 32 photos captured in
the field, so that subsequently these objects form part of the
set of images for CNN training.

The yellow rectangles contained in Fig. 3 demonstrate the
position in which a new image containing the grid class object
was extracted. The green, red and blue rectangles represent
the cuts for the C.T., panel, and base classes, respectively.
Fig. 3 shows two photos taken in the field, the same procedure
was performed for the other 30 images.

It is possible to see in Table 1 that the base class has
23 images, and the grid, panel, and C.T. classes have 29, 32,
and 32 images, respectively. This was because in some photos
captured in the field it was not possible to generate the cuts
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FIGURE 3. Selection of objects for CNN training.

FIGURE 4. Example images contained in the dataset.

for all four classes in the referenced image. For the panel and
C.T. classes, in which both objects are centered in the bay,
they are present in the 32 photos captured.

Fig. 4 illustrates examples of images with the application
of data augmentation that were used in the experiments of this
study, aiming to find the best CNN architecture to be part of
the proposed system.

TABLE 2. Number of Images Contained in Each of the Five Data Sets.

There are four classes of objects covered: base, panel,
current transformer (C.T.), and power transformer (P.T.). The
class ‘‘p.t.’’ was called ‘‘grid’’ in this work because the object
that can be seen in the image is a grid, and not the ‘‘p.t.’’ in
question. In practice, the grid installed in the bay serves to
protect the P.T. from birds that may damage the system. Fig. 4
presents two examples of objects for each of the four classes:
base, panel, C.T. and P.T. (grid), in that order. Finally, Table 2
shows the number of images per class for each of the five
training, validation, and test sets.

B. IMPLEMENTATION OF CNN ARCHITECTURES
After the stage of preparing the five data sets to be used
in the experiments, the implementation of the chosen CNN
architectures was carried out. The environment used for cod-
ing the methods was Google Colab, which is a cloud service
for the development of machine learning algorithms in the
Python [37] programming language. Google Colab has some
limitations in its free version, making it impossible to run a
larger number of experiments and use a more robust set of
images. Despite this, its choice is justified by the fact that it
supports GPU.

For the implementation of the CNN architectures, ImageAI
was used, which is a library for the Python programming lan-
guage that was developed to enable developers, researchers,
and students to create applications and systems with indepen-
dent resources for deep learning and computer vision [38].
It supports a list of machine learning algorithms for classify-
ing and detecting objects in images, including those used in
this work: DenseNet, Inception, ResNet, and SqueezeNet.

The justification for choosing these CNN architectures was
based on the work of [39], which discusses the impacts of
deep learning and its ability to solve tasks in the area of
computer vision. The authors state that a large part of this
success in the image classification task is due to the use of
convolutional architectures, in which CNNs showed a high
classification performance in data sets such as ImageNet,
COCO among others. In the same vein, in [40], an analysis of
CNN architectures thatmake up the state of the art was carried
out. There are numerous CNN architectures available, and it
is not feasible to test all of them for the problem addressed.
That said, we tried to select those that obtained satisfactory
results in similar tasks, to compare them specifically for our
problem. These networks achieved good results in a number
of studies that aimed to carry out a comparative study among
CNN architectures [41]–[47]

With the available materials, the CNN architectures were
implemented respecting their topology as described in the
literature, regarding the disposition of neurons in the con-
volution layers and their respective hyperparameter values,
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TABLE 3. Architecture DenseNet-121.

TABLE 4. Architecture Inception-v3.

obeying the disposition of the network elements, in addition
to the adjustment in the feature extraction step.

For all implemented architectures, the image size for the
input layer was defined as 224 × 224. As presented in the
work by [23], the DenseNet-121 architecture was chosen for
the dense convolutional neural network, as shown in Table 3.

Unlike the other architectures that in their original for-
mat already expect a 224 × 224 image in the input layer,
Inception-v3 has a 300× 300 size in the input layer, therefore,
to maintain the same input proportions as other architec-
tures in this work, Inception-v3 was adapted, according to
the work of [24]. Table 4 presents the architecture of the
Inception-v3 network used.

For the convolutional neural network that uses a residual
learning structure, the ResNet-50 architecture was defined,
as shown in Table 5.

Finally, the last CNN implemented was SqueezeNet, and
its architecture can be seen in Table 6.

C. EXPERIMENTS
The architectures of CNNs were implemented and for a fair
comparison among them, some hyper-parameters were fixed

TABLE 5. Architecture ResNet-50.

TABLE 6. Architecture SqueezeNet.

during training in each model for each experiment. In all
cases, transfer learning from pre-trained weights in the Ima-
geNet data set was used, the number of epochs was 100 and
the batch size was 32.

Transfer learning can be defined as the practice of using the
knowledge acquired when solving a certain problem, apply-
ing it to a different problem. In the experiments carried out,
transfer learning was adopted through a pre-trained model in
the ImageNet data set, different for each CNN architecture,
since each of them has its topology. The advantage of using
this type of learning is that the weights of each neuron do
not start randomly, reducing the training time. Therefore,
each of the architectures has been completely retrained in its
entirety, without the freezing of any layer that makes up the
network.

The number of epochs is a hyper-parameter that defines
the number of times that the learning algorithm will
work throughout the training data set. The batch size
is a hyper-parameter that defines the number of sam-
ples (images) to be analyzed before updating the model’s
internal parameters.

At the end of each training period, the accuracy obtained
is evaluated in the validation set, and then the first epoch
model is saved. If the accuracy value is higher than that
found in the previous epoch, the model is again saved con-
taining the new parameters obtained in the training of that
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FIGURE 5. Free span, having built only the base.

particular epoch. This process is repeated until the previously
established number of epochs is completed.

Finally, the test is performed with the latest model, except
for images never seen during training, which had previously
been separated in the random division between the training,
validation, and test sets. The importance of dividing the data
into three different sets is the fact that, when using this
methodology, it is possible to evaluate with greater precision
the capacity that the model has correctly classifying new
images from the real world.

In summary, in the first experiment with the first set of
data that was randomly divided, each of the four models was
trained, validated, and tested. Then, the same process was
repeated using the other four sets of images, each ofwhich has
a different division for the training, validation, and test sets.
With that, it becomes possible to evaluate the generalization
for each of the CNN architectures.

D. APPLICATION
Having carried out the experiments with the chosen CNN
architectures, it was defined that one that had an attractive
value considering the assertiveness and the classification time
in the tests performed so that it would be part of the proposed
final application.

Whenever the construction of a new bay in a substation
begins, support is positioned at a fixed distance of six meters
with a networked camera in front of the construction site,
as shown in Fig. 5.

Once a day and always at the end of the work shift of
the employees responsible for building the bay, an image
is captured by the camera attached to the support, which is
later sent to the server containing the developed application.

With this, the image obtained is processed and analyzed by
the chosen CNN model, finding the progress of the work.

To assess the applicability of the proposed system,
an experiment was carried out with an image captured by
the camera attached to the support at the location where the
elements for a new bay will be installed. Fig. 5 exemplifies
this image, being a free span, having been built until the
moment of capturing the image, only the base.

Before the image is submitted to the CNN architecture
and classified, it is pre-processed. Through the OpenCV
[48] Computer Vision library, fixed candidate regions are
proposed that possibly contain the objects to be classified.
As all sizes of each object are known, ten candidate regions
are proposed for each of them, varying the size to locate
the object in the image, even if there is variation between
models of the same object. Also, considering the robustness
of the application, if the employee installs the support with
the camera not exactly six meters away from the free span,
the proposals for regions can also encompass the object.

Having defined the ten proposals for regions for each
object in the image obtained, they are cropped, resulting in
a total of 40 images. It is known exactly which object each of
the 40 proposed regions should belong to. With this, the ten
proposals of regions that should contain the ‘‘base’’ object are
first evaluated. If the majority of the ten images are classified
as ‘‘base’’ with a probability of confidence of the model
greater than 80%, the object was constructed properly.

Under the condition of classification of the ‘‘base’’ object,
the classification of the objects ‘‘panel’’, ‘‘c.t.’’ and ‘‘grid’’
is made, respectively. If an object in this respective order
is not classified as expected, the other proposals of regions
cut out from the original image are not evaluated, since,
in the construction of the bay, it is not possible to install
a P.T., without having previously installed the panel, for
example.

Following such procedures, a daily log is generated with
all the information obtained, which can be accessed at any
time by the managers who are responsible for monitoring the
constructions, about the construction of bays in electrical sub-
stations, which by chance have the proposed system installed.
Also, it is possible to configure e-mails for the automatic
receipt of these logs, at the determined frequency.

V. RESULTS AND DISCUSSION
A. CNN ARCHITECTURE CHOICE
The results presented are based on two premises: (1) the
model saved at the time when it converged and obtained
the highest accuracy value before the validation set; (2) the
number of correct answers for each of the classes in the
images contained in the test set. For each of the five different
data sets, care was taken that the test set had 120 images of
the base class, 200, 280, and 280 for the grid, panel, and c.t.
classes, respectively.

In general, it was noticed that the training time of the CNN
SqueezeNet architecture was much shorter than the others,
which is justified by having a leaner architecture, aiming at
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TABLE 7. Average Results Obtained in the Experiments Carried Out.

applications that have a lower hardware capacity, such as
embedded devices, for example.

Because of transfer learning, since it was decided to use
pre-trained models in the ImageNet data set, the number
of iterations (epochs) to converge the models (regardless of
architectures) was low, especially for DensetNet and Incep-
tion, which aremore robust CNN architectures. If the network
weights had been initialized randomly, it is believed that the
number of iterations for converging the models would have
been much higher.

In the number of hits, regardless of the random division of
the training, validation, and test sets, both CNN architectures
behaved very well, with an accuracy of almost 100% in the
test images. Also, it was found that for the errors obtained,
the probability of the class with the highest value was, almost
always, approximately 40%, that is, the model obtained two
probabilities (one for the correct class and another for the
class that it missed) very close and low, which caused the
classification error.

Table 7 shows the average results obtained in the five
experiments carried out on each set of different images, for
each of the CNN architectures addressed.

It is possible to observe in Table 7 that the average accu-
racy of all objects was almost 100%, regardless of the CNN
architecture used. The DenseNet classifier had worse per-
formnace in the ‘‘c.t.’’ class, in relation to other competing
architectures.

When specifically analyzing the predicted probabilities
of the images that were incorrectly classified by the CNN
SqueezetNet architecture in the experiments carried out,
it was seen that not all images had the highest probability
predicted in just a certain class, that is, the ‘‘panel’’ object
was not only confused with the ‘‘base’’ object in all errors, for
example. The erroneously classified images had, on average,
a value of approximately 33% for the classified object (which
may be base, grid, or c.t.) and an approximate value for the
panel class.

To statistically compare the results obtained, the Shapiro-
Wilk test was applied to the four distributions and it was
verified that the data follow a normal distribution. Given
this premise, the Analysis of Variance test (ANOVA) was
used and, given a significance level of 0.05, there was
the acceptance of the null hypothesis and rejection of the
alternative hypothesis, suggesting that there is no differ-
ence between the performance in the experiments with each
architecture.

As there was no significant statistical difference between
the results obtained, we chose the CNN SqueezetNet

FIGURE 6. Proposals from candidate regions for each object.

architecture, since its training time was much shorter than
the others, which makes sense knowing that its architecture
is simpler, and yet it achieved high accuracy. In addition,
because of its simplicity, the classification time for new
images is also much shorter.

B. PROPOSED APPLICATION
Fig. 6 presents an image of a free span captured by the camera
attached to the support, which was installed at six meters and
in front of the place where the bay will be built. The colored
rectangles represent the proposals of candidate regions for
each of the four objects covered in the proposed application,
in the image pre-processing stage.

It is expected that the blue rectangles will be able to
capture the base object, while the red, green, and yellow
rectangles, the panel, C.T. and grid objects, respectively.
Regardless of the variation of the models of a given object
and, in case the fixation of the support with the camera is
installed in the non-corresponding location, the variability of
the sizes and positions of the proposals of regions manage to
circumvent these possible problems.

Table 8 (left) shows the average result of the probabilities
obtained by classifying the 10 cutouts of the blue color illus-
trated in Fig. 6. As expected, since there is a base built on
the site, the model was able to classify correctly with a high
precision value.

Knowing that the blue cutouts illustrated in Fig. 6 can only
be of the base class, it is expected that the classifier will be
able to find that same object. As the conditions of most of the
ten images were classified as ‘‘base’’ and with a probability
of confidence of the model greater than 80%, the next object
must be evaluated. Table 8 (right) presents the average result
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TABLE 8. Results Obtained in the Experiment With a Free Span for the
Base and Panel Class.

of the probabilities obtained by the classifications of the
10 cutouts of the red color illustrated in Fig. 6.

It was expected that the images obtained through the
red cutouts would be classified as belonging to the object
‘‘panel’’, however, as the gap is free and a panel has not yet
been installed, the classifier was unable to find it, returning
low probabilities for the classified images. As a result, if the
conditions of most of the ten images are not classified as
‘‘panel’’ and with a model’s probability of greater than 80%,
the system will not try to find the elements of the bay that are
still to be built.

In this way, it becomes possible to provide the managers
responsible for managing the construction of bays in elec-
tric power substations, an automatic method of monitoring,
so that such managers no longer need to move to each con-
struction in each substation, since that it is quite common for
the same company to have facilities in different cities or even
different states.

VI. CONCLUSION
In this work, a systemwas proposed that allows the automatic
monitoring of the management of the constructions in elec-
tric power substation bays. A comparative study was carried
out between four CNN architectures: DenseNet, Inception,
ResNet, and SqueezeNet applied to a classification problem
of four elements that make up bays in substations. From
32 field photos of different bays captured in substations,
thousands of images of each component class were obtained.
Subsequently, data augmentation operations were applied in
order to obtain a larger set for training. Five different sets of
images were randomly generated, each divided into training,
validation, and test sets.

Regardless of the CNN architecture employed, it is con-
cluded that the models obtained during the experiments have
a high assertiveness for the problem in which they were
applied, approaching 100%. It was observed that there is a
difference in relation to the CNN SqueezeNet architecture,
which has a shorter training time and occupies much less disk
space compared to the others and yet managed to obtain a
similar assertiveness in the test images.

Consequently, other CNN architectures can be compared
for the same problem, and, as future work, other more com-
plex classification problems can also be applied and used for
comparison. The current comparative study was a fundamen-
tal piece for the implementation of an object classification
method that uses CNNs to extract features from the input
images and then classifies each object in the image since
it has already been pre-processed by using proposals from
candidate regions.

One of the main problems encountered in the development
of the work was the collection of images. Due to the dan-
gerous nature of electrical substations, any visitor must be
accompanied by a qualified professional, also, all due care
must be taken about the use of personal protective equip-
ment. This situation was a direct obstacle so that there was
no way to obtain a larger number of images from different
bays.

Another obstacle that has been identified is the limitation
of computational resources to train a convolutional neural
network. The training time is quite considerable when pow-
erful hardware is not available. Therefore, it was not possible
to carry out a greater number of experiments.

In addition to covering the comparative study with other
CNN architectures for the classification task, one can
approach the problem as an object detection task, exploring
methods such as YOLO, Faster R-CNN, SSD among others.
With this, it becomes possible to further increase the indepen-
dence regarding the importance of installing the support with
the camera in the correct location in front of the free span,
in addition to being plausible to obtain exact information on
the location of the object in the image.

In addition, as future work, a web application will be devel-
oped with attractive layouts for the manager, so that they can
obtain more detailed information than that contained in the
logs generated by the current proposed application. In a later
system, it is possible, for example, to allow the manager to be
able to assist in real-time the execution of a specific work at
any time, in addition to the implementation of data analysis
methods for the generation of intelligent reports, proposing
alternatives for managers, through the data obtained.

REFERENCES
[1] G. P. J. Verbong and F. W. Geels, ‘‘Exploring sustainability transitions in

the electricity sector with socio-technical pathways,’’ Technol. Forecasting
Social Change, vol. 77, no. 8, pp. 1214–1221, Oct. 2010.

[2] W. Wang and K. Siau, ‘‘Artificial intelligence, machine learning, automa-
tion, robotics, future of work and future of humanity: A review and
research agenda,’’ J. Database Manage., vol. 30, no. 1, pp. 61–79,
Jan. 2019.

[3] P. de Oliveira e Lucas, M. A. Alves, P. C. de Lima e Silva, and
F. G. Guimarães, ‘‘Reference evapotranspiration time series forecasting
with ensemble of convolutional neural networks,’’ Comput. Electron.
Agricult., vol. 177, Oct. 2020, Art. no. 105700.

[4] G. Currie, K. E. Hawk, E. Rohren, A. Vial, and R. Klein, ‘‘Machine
learning and deep learning in medical imaging: Intelligent imag-
ing,’’ J. Med. Imag. Radiat. Sci., vol. 50, no. 4, pp. 477–487,
Dec. 2019.

[5] A. Braun and A. Borrmann, ‘‘Combining inverse photogrammetry and
BIM for automated labeling of construction site images for machine learn-
ing,’’ Autom. Construct., vol. 106, Oct. 2019, Art. no. 102879.

[6] G. T. Heydt, C. C. Liu, A. G. Phadke, and V. Vittal, ‘‘Solution for the
crisis in electric power supply,’’ IEEE Comput. Appl. Power, vol. 14, no. 3,
pp. 22–30, Jul. 2001.

[7] G. Bonnard, ‘‘The problems posed by electrical power supply to indus-
trial installations,’’ IEE Proc. B, Electr. Power Appl., vol. 132, no. 6,
pp. 335–343, Nov. 1985.

[8] J. Furman, J. P. Holdren, C. Muñoz, M. Smith, and J. Zients, ‘‘Artificial
intelligence, automation, and the economy,’’ Executive Office President,
Washington, DC, USA, Tech. Rep., Dec. 2016.

[9] D. Autor and A. Salomons, ‘‘Is automation labor-displacing? Produc-
tivity growth, employment, and the labor share,’’ Nat. Bur. Econ. Res.,
Cambridge, MA, USA, Working Paper 24871, Jul. 2018. [Online]. Avail-
able: http://www.nber.org/papers/w24871, doi: 10.3386/w24871.

VOLUME 9, 2021 19205

http://dx.doi.org/10.3386/w24871


B. A. S. Oliveira et al.: Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning

[10] O. Gomes and S. Pereira, ‘‘On the economic consequences of automa-
tion and robotics,’’ J. Econ. Administ. Sci., vol. 36, no. 2, pp. 134–153,
Jan. 2019.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[12] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural
Netw., vol. 61, pp. 85–117, Jan. 2015.

[13] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[14] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, ‘‘Deep
learning for single image super-resolution: A brief review,’’ IEEE Trans.
Multimedia, vol. 21, no. 12, pp. 3106–3121, Dec. 2019.

[15] L. Deng and D. Yu, ‘‘Deep learning: Methods and applications,’’ Found.
Trends Signal Process., vol. 7, nos. 3–4, pp. 197–387, Jun. 2014.

[16] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, ‘‘Deep
learning for computer vision: A brief review,’’ Comput. Intell. Neurosci.,
vol. 2018, pp. 1–13, Feb. 2018.

[17] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[18] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, vol. 1.
Reading, MA, USA: Addison-Wesley, 1992.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[20] T. N. Sainath, A.-R.Mohamed, B. Kingsbury, and B. Ramabhadran, ‘‘Deep
convolutional neural networks for LVCSR,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2013, pp. 8614–8618.

[21] T. Serre, L.Wolf, and T. Poggio, ‘‘Object recognition with features inspired
by visual cortex,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 2, Jun. 2005, pp. 994–1000.

[22] N. Kriegeskorte, ‘‘Deep neural networks: A new framework for modeling
biological vision and brain information processing,’’ Annu. Rev. Vis. Sci.,
vol. 1, no. 1, pp. 417–446, Nov. 2015.

[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[25] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[26] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and<0.5 MBmodel size,’’ 2016, arXiv:1602.07360. [Online]. Avail-
able: http://arxiv.org/abs/1602.07360

[27] Y. Lin, J. Sun, C. Li, Y. Ma, Y. Geng, and Y. Chen, ‘‘Deep learning
for intelligent substation device infrared fault image analysis,’’ in Proc.
MATEC Web Conf., vol. 55. Les Ulis, France: EDP Sciences, 2016,
p. 03007.

[28] C.-Z. Fu, W.-R. Si, H. Huang, L. Chen, Q.-J. Gao, C.-B. Shi, and C. Wang,
‘‘Research on a detection and recognition algorithm for high-voltage
switch cabinet based on deep learning with an improved YOLOv2 net-
work,’’ in Proc. 11th Int. Conf. Intell. Comput. Technol. Autom. (ICICTA),
Sep. 2018, pp. 346–350.

[29] J. Wang, ‘‘Deep learning based state recognition of substation switches,’’
in Proc. AIP Conf., 2018, vol. 1971, no. 1, Art. no. 040041.

[30] Q. Fang, H. Li, X. Luo, L. Ding, H. Luo, T.M. Rose, andW.An, ‘‘Detecting
non-hardhat-use by a deep learning method from far-field surveillance
videos,’’ Autom. Construct., vol. 85, pp. 1–9, Jan. 2018.

[31] H. Kim, H. Kim, Y. W. Hong, and H. Byun, ‘‘Detecting construc-
tion equipment using a region-based fully convolutional network and
transfer learning,’’ J. Comput. Civil Eng., vol. 32, no. 2, Mar. 2018,
Art. no. 04017082.

[32] W. Fang, L. Ding, B. Zhong, P. E. D. Love, and H. Luo, ‘‘Automated detec-
tion ofworkers and heavy equipment on construction sites: A convolutional
neural network approach,’’ Adv. Eng. Informat., vol. 37, pp. 139–149,
Aug. 2018.

[33] S. Arabi, A. Haghighat, and A. Sharma, ‘‘A deep learning based
solution for construction equipment detection: From development
to deployment,’’ 2019, arXiv:1904.09021. [Online]. Available:
http://arxiv.org/abs/1904.09021

[34] Y. Liu, J. Liu, and Y. Ke, ‘‘A detection and recognition system of pointer
meters in substations based on computer vision,’’ Measurement, vol. 152,
Feb. 2020, Art. no. 107333.

[35] I. Ullah, R. U. Khan, F. Yang, and L. Wuttisittikulkij, ‘‘Deep learning
image-based defect detection in high voltage electrical equipment,’’ Ener-
gies, vol. 13, no. 2, p. 392, Jan. 2020.

[36] A. Jadia and M. Chawla, ‘‘Image classification and detection of
insulators using bag of visual words and speeded up robust fea-
tures,’’ Int. J. Innov. Sci. Modern Eng., vol. 6, pp. 7–13, Sep. 2020.
[Online]. Available: https://www.ijisme.org/wp-content/uploads/papers/
v6i10/J12600961020.pdf

[37] E. Bisong, Building Machine Learning and Deep Learning Models on
Google Cloud Platform. Berlin, Germany: Springer, 2019.

[38] O. J. Moses, ‘‘ImageAI, an open source python library built to empower
developers to build applications and systems with self-contained Com-
puter Vision capabilities,’’ Tech. Rep., Mar. 2018. [Online]. Available:
https://github.com/OlafenwaMoses/ImageAI

[39] L. Jiao and J. Zhao, ‘‘A survey on the new generation of deep learn-
ing in image processing,’’ IEEE Access, vol. 7, pp. 172231–172263,
2019.

[40] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, ‘‘Benchmark analysis
of representative deep neural network architectures,’’ IEEE Access, vol. 6,
pp. 64270–64277, 2018.

[41] N. Ghassemi, H. Mahami, M. Tayarani Darbandi, A. Shoeibi, S. Hussain,
F. Nasirzadeh, R. Alizadehsani, D. Nahavandi, A. Khosravi, and
S. Nahavandi, ‘‘Material recognition for automated progress monitoring
using deep learning methods,’’ 2020, arXiv:2006.16344. [Online].
Available: http://arxiv.org/abs/2006.16344

[42] D. Gil, G. Lee, and K. Jeon, ‘‘Classification of images from construction
sites using a deep-learning algorithm,’’ in Proc. 35th Int. Symp. Autom.
Robot. Construct. (ISARC), Jul. 2018, pp. 1–6.

[43] B. Espejo-Garcia, N. Mylonas, L. Athanasakos, and S. Fountas, ‘‘Improv-
ing weeds identification with a repository of agricultural pre-trained deep
neural networks,’’ Comput. Electron. Agricult., vol. 175, Aug. 2020,
Art. no. 105593.

[44] A. R. Saikia, K. Bora, L. B.Mahanta, and A. K. Das, ‘‘Comparative assess-
ment of CNN architectures for classification of breast FNAC images,’’
Tissue Cell, vol. 57, pp. 8–14, Apr. 2019.

[45] M. H. Saleem, J. Potgieter, and K. M. Arif, ‘‘Plant disease classification:
A comparative evaluation of convolutional neural networks and deep learn-
ing optimizers,’’ Plants, vol. 9, no. 10, p. 1319, Oct. 2020.

[46] Ananda, C. Karabag, A. Ter-Sarkisov, E. Alonso, and
C. C. Reyes-Aldasoro, ‘‘Radiography classification: A comparison
between eleven convolutional neural networks,’’ in Proc. 4th
Int. Conf. Multimedia Comput., Netw. Appl. (MCNA), Oct. 2020,
pp. 119–125.

[47] K. Meshkini, J. Platos, and H. Ghassemain, ‘‘An analysis of convolutional
neural network for fashion images classification (Fashion-MNIST),’’ in
Proc. Int. Conf. Intell. Inf. Technol. Ind.Cham, Switzerland: Springer 2019,
pp. 85–95.

[48] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision With the
OpenCV Library. Newton, MA, USA: O’Reilly Media, 2008.

BRUNO ALBERTO SOARES OLIVEIRA received
the bachelor’s degree in computer engineering
from the Federal Institute of Education, Science,
and Technology of Minas Gerais - Campus Bam-
buí (IFMG), in 2018, and the master’s degree in
electrical engineering the Federal University of
Minas Gerais (UFMG), Belo Horizonte, Brazil,
in 2020, in the line of research in computational
intelligence, where he is currently pursuing the
Ph.D. degree.

He was an Associate Member of the Center for Research in Law, Technol-
ogy, and Innovation (Centro DTIBR). He became a Technician in internet
computing from the Educational Institution of Arcoense (INPA), in 2012.
Since February 2020, he has been a full Developer of intelligent systems
using machine learning and computer vision with SVA Tech - Analytical
Video Solutions. He is a member of the Machine Intelligence and Data
Science Laboratory (MINDS) for computational intelligence research. His
research interests include machine learning algorithms, data science, com-
puter vision, and digital image processing.

19206 VOLUME 9, 2021



B. A. S. Oliveira et al.: Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning

ABÍLIO PEREIRA DE FARIA NETO received the
bachelor’s and master’s degrees in computer sci-
ence from the Federal University of Minas Gerais
(UFMG), Belo Horizonte, Brazil, in 1986 and
1991, respectively.

He was with Fitec, from 2001 to 2014, Lucent
Technologies, from 1999 to 2001, Batik, from
1994 to 1999, Audiolab, from 1988 to 1994, and
Malc Automação, from 1986 to 1988. Since 2015,
he has been a Manager and a Software Developer

with SVA Tech - Soluções em Vídeo Analytical. He has more than 30 years
of experience in software development, with an emphasis on basic software,
embedded software, and communication protocols. More than 20 years of
experience in managing teams and software processes. He has authored par-
ticipated in several international projects with distributed and multicultural
teams. His research interest includes computer vision.

ROBERTO MÁRCIO ARRUDA FERNANDINO
was with Sony da Amazônia with video cameras,
where he was also with the Assembly Line and
Technical Maintenance Department, authorized
network management nationwide, from 1992 to
1998. He was a Founding Partner of Veotex Sis-
temas Tecnológicas SA, where he was the Tech-
nical Director responsible for P&D Management,
from 2003 to 2013. He is currently a Founding
Partner of SVA Tech - CEO of the company,

responsible for the management, technical area, and training of models
using high-performance neural netconstructions. Has experience in computer
science, with emphasis onmethodology and computer techniques. More than
30 years of experience in the field of imaging systems.

ROGÉRIO FERNANDES CARVALHO received
the bachelor’s degree in computer science and
the master’s degree in electrical engineering
from the Pontifical Catholic University of Minas
Gerais, Belo Horizonte, Brazil, in 1998 and 2011,
respectively.

He was a Software Development Specialist for
more than 10 years at Fitec-Inovações Tecnológi-
cas. During this period, he participated in projects
developed in partnership with Alcatel-Lucent’s

Bell Labs, also operating abroad (Phoenix-AZ and Marlboro-MA, USA).
Since 2015, he has been the Director and a Senior Software Developer
with SVA Tech - Soluções em Vídeo Analytical. He participated in the
Research Group in Parallel and Distributed Processing, carrying out research
and development activities (P&D) with the application of high-performance
processing to solve important problems in large areas of knowledge. His
current research interest includes computer vision. He had the opportunity
to participate in multicultural teams around the world developing software
according to the strict quality standards required by Bell Labs.

AMANDA LOPES FERNANDES received the
title of technologist in Foreign Trade from Uni-
versidade Paulista (UNIP) and a Specialist in
supply chain and logistics management from the
Universidade Estadual de Campinas (UNICAMP),
Campinas, Brazil, in 2013 and 2017, respectively.

Since August 2019, she has been a full Ana-
lyst of innovation projects with CPFL Energia.
She manages and participates in research and
development projects through the P&D program

ANEEL whose proponent is CPFL Paulista. She has seven years of expe-
rience in logistics and project management. She worked in computer vision
projects, digital image processing, software development, generation of new
methodologies, and creation of new products.

FREDERICO GADELHA GUIMARÃES (Senior
Member, IEEE) received the B.Eng., M.Sc., and
Ph.D. degrees in electrical engineering from the
Federal University of Minas Gerais (UFMG),
Belo Horizonte, Brazil, in 2003, 2004, and 2008,
respectively.

In 2010, he joined the Department of Electrical
Engineering, UFMG, where he became an Asso-
ciate Professor in 2018. Since 2014, he has been
responsible for the Machine Intelligence and Data

Science Laboratory (MINDS) for computational intelligence research. He
also had a Postdoctoral Fellowship with the Laboratoire Images, Signaux
et Systèmes Intelligents (LiSSi), Université Paris-Est Créteil (UPEC), Paris,
France, from 2017 to 2018. He has published more than 200 articles in
journals, congresses, and chapters of national and international books. He has
experience in electrical engineering and computer engineering, with an
emphasis on optimization, computational intelligence, machine learning,
time series forecasting, genetic algorithms, and evolutionary computation.

Dr. Guimarães is a member of the IEEE Computational Intelligence
Society (CIS) and the IEEE Systems, Man, and Cybernetics Society
(SMCS). He is also an Associate Editor of the journals IEEE ACCESS and
Neurocomputing (Elsevier).

VOLUME 9, 2021 19207


