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ABSTRACT Non-Gaussian noise is common in industrial applications, and it is a severe challenge to
existing state estimators. In this paper, a novel robustmaximum correntropy finite impulse response (MCFIR)
filter is proposed to deal with the state estimation problem in the linear state-space system corrupted
by outliers. The filter operates as a finite memory form, and thus it obtains superior immunity to noise
statistics and process uncertainties than existing Kalman-like robust filters. Gaussian correntropy is adopted
to generate a new cost function, which improves the filter robustness to outlier interference. We derive an
unbiased MCFIR filter that ignores noise statistics and propose an improvement bias-constrained MCFIR
filter to achieve better estimate accuracy. To improve the filtering performance degradation caused by
improper kernel size, an adaptive kernel size algorithm is further proposed, which adjusts the bandwidth
within a specific range adaptively and achieves significant improvement in the MCFIR filter. An illustrative
example based on moving target tracking is presented to evaluate the performance of the proposed filter, and
simulation results confirmed that the MCFIR filter obtained superior immunity to outliers than the existing
robust filters.

INDEX TERMS Kalman filter, finite impulse response, maximum correntropy criterion, state estimation.

I. INTRODUCTION
The estimation problem has been one of the essential sub-
jects from industrial applications to research areas, including
signal processing, navigation, target tracking, etc. A Kalman
filter (KF) is one of the most popular filters for the linear
Gaussian state-space model due to its simple structure and
excellent performance. It is optimal for the minimum mean
square error (MMSE) under the ideal conditions [1]. To solve
the filtering problem in a nonlinear system, researchers
have made many improvements based on the KF’s structure:
ExtendedKF (EKF) based on Taylor transform [2], unscented
KF (UKF), and Cubature KF (CKF) based on sigma point
transform [3], [4], particle filters (PF) based on a Monte
Carlo sample, and other variants of Kalman filters [5] have
been applied into nonlinear systems and achieve excellent
performances.

The preconditions for the reliable operation of a KF are
accurately defined noise covariance matrix and initial values,
and a Gaussian distribution assumption is necessary to keep
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the KF optimal. Once the dynamic processes are disturbed
by non-Gaussian noise like outliers, the KF cannot maintain
optimal estimation. A Student-t distribution-based KF (STF)
is an effective cope method for non-Gaussian noise or impul-
sive noise [6], [7]. However, an STF suffers from high-order
statistics loss due to moment matching and improper statisti-
cal parameters [8], [9]. In addition to the STF, robust filters
based on m-estimate theory have been researched extensively
over the years [10]. One of themost widely usedm-estimators
based on the Huber loss function combines the minimum
`1 and `2 -norm. The Huber loss function has been applied
in many applications and has high reliability [11]. Com-
bining the covariance matrix rescaled operation, the Huber
KF (HKF) derived in prior work [12], [13] can be taken as
a generalized maximum likelihood estimator, eliminating the
outliers effectively after the measurement update. Similarly,
this method can also be applied in nonlinear systems after
deformation [14], [15]. Recently, correntropy based filters
have introduced the concept of information entropy as a
local similarity measure, which is robust to non-Gaussian
noise. The correntropy contains the high-order statistic
characteristics, which can obtain significant performance
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improvement than other m-estimators. For deterministic sys-
tems, correntropy has been applied in state-space recursive
least squares [16]. Regarding state-space systems with pro-
cess noise, the maximum correntropy KF (MCKF) was pro-
posed [17] and obtains better performance thanmany existing
robust KFs. Because the analytical solutions of correntropy
filters are difficult to find, the optimal solution needs to
be obtained by an iterative method like fixed-point itera-
tion [17], Gauss-Newton method in [18] and half-quadratic
minimization method in [19], the convergence condition of
the fixed-point iteration was further analyzed [20]. Several
variants of MCKF have also been developed for nonlinear
systems as [18], [19], [21] and practical applications like
INS/GNSS navigation systems in [22]. Because the estima-
tion accuracy of the MCKF is primarily related to the kernel
parameters, an improper kernel size may even cause filter-
ing divergence. Therefore, an adaptive filter with variable
kernel size in [23], and MCKF with adaptive kernel size
in [24] were proposed to solve the problem. The concept of
mixture correntropy was recently proposed in [25], and an
outlier-robust KF with mixture correntropy derived in [26]
further improve the kernel size adaptive problem. Although
MCKF has achieved significant improvement on robustness
to non-Gaussian noise, the filter cannot avoid being limited
by the Kalman filter structure, incorrect initial state or model
uncertainties, and other unfavorable factors are likely to cor-
rupt the stability of MCKF.

From the view of Bayesian estimation, KF can be taken
as an infinite impulse filter (IIR) filter, which utilizes all
measurements on the infinite interval to obtain the current
estimation [27]. In addition to the IIR filters, finite impulse
response (FIR) filters for state-space systems have been
developed extensively over the years. The FIR filters have
several inherent properties, such as bounded input/output
(BIBO) stability and excellent robustness to temporary pro-
cess uncertainties and noise statistics [28]. In practical
applications, such as research working in statistical signal
processing and control, FIR filters might own better practical
performance than KF. The FIR filters can be divided into var-
ious forms according to their characteristics. Among these,
the unbiased FIR (UFIR) filter that ignores statistics and
initial conditions [29], the optimal FIR filter with an unbiased
constraint [30], and the MLFIR filter based on maximum
likelihood estimate with Gaussian noise assumption are sev-
eral representative FIR filters that have been proposed [31].
Like STF, a robust student-t distribution FIR filter was also
proposed to deal with the heavy-tailed noise filtering prob-
lem [32]. For FIR filters, the horizon length determines the
filtering performance, which needs to be appropriately preset
or adjusted adaptively [33], [34]. Compared with typical
IIR filters like Kalman filter, FIR filters avoid the error accu-
mulation and own better robust inherent properties to process
uncertainties and noise statistics. However, the implemen-
tation of FIR filters depends on reliable measurement vec-
tors, for measurement contaminated by non-Gaussian noise,

a convenient robust FIR filter remains rarely studied, which
motivates the present work.

This work’s main contributions can be summarized as
follows: 1) We propose a novel robust maximum corren-
tropy FIR filter, called the MCFIR filter. The filter operates
as a finite memory form and takes the correntropy as the
local similarity measure to attenuate outliers’ interference.
2) This paper further modifies the unbiased MCFIR filter
into a bias-constrained form, which improves the unbiased
MCFIR filter’s performance by compensating process bias
error accumulation. 3) By combining the unique processing
mode of the MCFIR filter, we propose an adaptive kernel
bandwidth algorithm to prevent filtering performance degra-
dation caused by improper kernel bandwidth parameters.

The rest of the paper is organized as follows: In Section 2,
we briefly introduce the concept of correntropy and an
unbiased FIR filter. In Section 3, we derive the batch
form and iterative form of the unbiased MCFIR filter.
Moreover, an adaptive kernel bandwidth method is pro-
posed. In Section 4, we modify the unbiased MCFIR filter
into a bias-constrained MCFIR filter. Simulation results in
Section 5 demonstrate the performance of the MCFIR filter.
Finally, conclusions are drawn in Section 6.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. CONCEPT OF CORRENTROPY
The correntropy is a useful local similarity measure tool
for state estimate in heavy-tailed noise conditions. Given
two random variables X ,Y ∈ R with joint distribution
function FXY (x, y), correntropy can be defined by

V (X ,Y ) = E[κ(x, y)] =
∫
κ(x, y)dFXY (x, y), (1)

where κ(x, y) is a shift-invariant Mercer Kernel. In this work,
the general Gaussian kernel function is given by

κ(x, y) = Gσ (e) = exp(−
e2

2σ 2 ), (2)

where e = x − y, and σ> 0 denotes the kernel bandwidth,
the correntropy function with Gaussian kernel is insensitive
to large errors and hence can be used as a robust cost function
in estimation problems.

Taking the Taylor series expansion of the Gaussian kernel
yields

V (X ,Y ) =
∑∞

n=0

(−1)n

2nσ 2nn!
E
[
(X − Y )2n

]
, (3)

the correntropy is a reweighted sum of all even ordermoments
of the error variable X − Y , the kernel bandwidth appears
as a parameter to weight the second-order and higher-order
moments. With a large kernel bandwidth (compared to the
dynamic range of the data), the correntropy (3) dominated by
the second-order moment.
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For a sequence of error data e, we can estimate the corren-
tropy using a sample mean estimator as

V̂ (X ,Y ) =
1
N

∑N

i=1
Gσ (e(i)), (4)

where e(i) = x(i)− y(i), x and y represent two vectors with
N samples. The robust correntropy cost function could be
established based on (4), which could effectively eliminate
the adverse effects of noise outliers during filtering.

B. EXTENDED STATE SPACE MODEL AND UNBIASED
FIR FILTER
Consider the standard linear state-space system equations as

xk = Akxk−1 + wk , (5)

yk = Ckxk + vk , (6)

where k is a discrete time index, xk∈Rn is the system state
vector at discrete-time index k , Ak ∈ Rn×n is the state
transition matrix, yk∈Rm is the measurement vector, and
Ck ∈ Rm×n is the measurement matrix. The process noise
vectorswk ∈ Rn and the measurement noise vectors vk ∈ Rm

are zero mean with covariance matrixQk andRk . Assume the
noise vectors wk and vk are uncorrelated at each step.

The FIR filters take N neighbor measurements to update
the state estimation x̂k , therefore, an extended state-space
model implemented on the horizon ranging [s, k], which
includes N discrete steps from s = k − N + 1 to k , can be
formulated as

Xk,s = Ak,sxs + Bk,sWk,s, (7)

Yk,s = Ck,sxs +Hk,sWk,s + Vk,s, (8)

where Xk,s = [xTk x
T
k−1. . .x

T
s ]
T , Yk,s = [yTk y

T
k−1. . .y

T
s ]
T ,

Wk,s = [wT
k w

T
k−1. . .w

T
s ]
T ,Vk,s = [vTk v

T
k−1. . .v

T
s ]
T , the

extended state and measurement vectors Xk,s∈RnN×1,

Yk,s∈RmN×1, and Wk,s∈RnN×1, Vk,s∈RmN×1, and the
extended state-space matrix follows as

Ak,s = [AT
k,sA

T
k−1,s· · ·A

T
s+1I]

T , (9)

Bk,s =


I Ak · · · Ak,s+1 Ak,s
0 I · · · Ak−1,s+1 Ak−1,s
...
...
. . .

...
...

0 0 · · · I As+1
0 0 · · · 0 I

 , (10)

Ck,s = C̄k,sAk,s, (11)

then C̄k,s = diag(CkCk−1· · ·Cs), Hk,s = C̄k,sBk,s, and
Aj,i = AjAj−1. . .Ai+1, where Ak,s∈RnN×n,Bk,s∈RnN×nN ,

Ck,s∈RmN×n, C̄k,s ∈ RmN×nN .
On horizon [s, k], the FIR filter using N past neighboring

measurement points can be described as

x̂k = Kk,sYk,s, (12)

where x̂k is the estimation of xk determined by measurements
from s to k, and Kk,s is the FIR filter gain given by the
estimate principle.

According to [29], the estimation of the unbiased
FIR filter (12) retains the unbiased constraint as

E[x̂k ] = E[xk ], (13)

where E[xk ] represent the expectation of xk . By substitut-
ing (12) into (13), then

E[Kk,sYk,s] = E[xk ], (14)

and the unbiased constrained Kk,sC̃k,s = I needs to be
satisfied to ensure unbiasedness characteristic of x̂k , which
defines a extended measurement matrix C̃k,s as

C̃k,s = C̄k,s[IA−Tk · · ·A
−T
k,s+1A

−T
k,s ]

T , (15)

By multiplying the identity matrix (C̃T
k,sC̃k,s)−1C̃T

k,sC̃k,s on
both sides of the unbiased constraint (14), we can derive an
unbiased gain as

Kk,s=(C̃T
k,sC̃k,s)−1C̃T

k,s, (16)

where Gk,s=(C̃T
k,sC̃k,s)−1 represents the generalized noise

power gain (NPG), and Gk,s represents the ratio of the filter
output noise variance to the input noise variance. Therefore,
the unbiased estimation of xk can be written in batch form as

x̂k=(C̃T
k,sC̃k,s)−1C̃T

k,sYk,s. (17)

The unbiased FIR filter is a type of one parameter filter that
only horizon length N is used to adjust the filter properties.
Different from the recursive ordinary least squares method
derived for deterministic systems, the horizon length of the
unbiased FIR filters cannot be infinitely increased due to
process bias accumulation, which needs to be limited within
an appropriate range to ensure reliable estimation of xk . The
optimal horizon size can be determined by minimizing the
trace of the mean square error matrix as summarized in [30].
The unbiased FIR filter ignores the statistics of noise and

only obtains the unbiased estimate. It has been proved in
prior work [27]–[29] that unbiased FIR filter owns robust
properties to model uncertainties and noise statistics, due to
its FIR structure avoid error accumulation. However, as the
operation of the UFIR filter is similar to the ordinary least
squares (OLS), without considering the effect of process
noise, we can approximate that finite measurement sam-
ples assigned with equal weights, and unbiased FIR filter
is susceptible to abnormal measurement noise interference
especially outliers.
Therefore, the problems can be formulated as follow.

We want to provide a feasible method to introduce the max-
imum correntropy method into unbiased FIR filter to further
improve the filtering robustness to abnormal noises. Mean-
while, consider the bias accumulation problem in the unbi-
ased FIR filter, we then solve the problem by modifying the
unbiased MCFIR filter into a bias constrained form. Finally,
just as the prior work [17] summarized, the kernel size is
a key parameter in the correntropy function, which remains
an unsolved problem to be set properly. We further work to
explore an adaptive kernel size method to solve the problem.
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III. UNBIASED MAXIMUM CORRENTROPY FIR FILTER
A. BATCH SOLUTION OF THE UNBIASED MCFIR FILTER
Considering the extended state-space model (7), xk can be
expressed by xs as

xk = Ak,sxs + B̄k,sWk,s. (18)

where B̄k,s is the first vector row in Bk,s, the unbiased FIR
filter ignores the noise vectors and assumes that xk ≈ Ak,sxs
within the estimate window; therefore, the unbiased solution
obtained by (17) can be regarded as a typical solution of
a linear regression problem derived on the quadratic loss
function

x̂k = argmin
k

(
∥∥∥Yk,s − C̃k,sxk

∥∥∥). (19)

Therefore, the unbiased FIR filter is susceptible to measure-
ment outliers, and, to improve the robustness of unbiased FIR
filter to outliers, a new cost function with respect to xk based
on the Gaussian correntropy function can be reformulated as

JMCC (xk) =
∑k

i=s
Gσ

(
e(1)i
)
+ · · ·+Gσ

(
e(m)i

)
, (20)

where ei = R−1/2i

(
yi − C̃k,ixk

)
, e(m)i is the mth element of

ei, nominal measurement noise covariance matrix Ri is used
to normalized the residual error sequence.

The optimal solution of x̂k is obtained by maximize the
object function JMCC(xk ) as

∂JMCC (xk)
/
∂xk =

∑k

i=s

∑m

j=1

[
Gσ (e

(j)
i )C̃(j)k,ie

(j)
i

]
= 0,

(21)

it follows easily that a robust solution of (19) is

x̂k=(C̃T
k,s�k,sC̃k,s)−1C̃T

k,s�k,sYk,s. (22)

Here, �k,s = 2k,sdiag[ImθIm· · ·θN−2ImθN−1Im], where
2k,s denote the correntropy coefficients correspond to [s, k]
measurement vectors as

2k,s = diag[Gσ (ek) ;Gσ (ek−1) ; · · · ;Gσ (es)]. (23)

Defining the forgetting factor as θ ≤ 1, for the non-
deterministic systems, the bias error accumulation degrades
the accuracy of the correntropy coefficients and the unbiased
FIR filter’s filtering performance. Adding an appropriate for-
getting factor may improve filtering performance. Therefore,
the robust unbiased gain of (22) can be rewritten as

K̃k,s=(C̃T
k,s�k,sC̃k,s)−1C̃T

k,s�k,s. (24)

Because (22) operates as a batch processing form, it may
bring an excessive calculation burden. According to [29],
appropriate deformations can be made to obtain a faster
iterative Kalman-like unbiased MCFIR filter.

B. ITERATIVE SOLUTION OF THE UNBIASED MCFIR FILTER
Consider the batch form unbiased estimate gain, in which
�k,s is a diagonal matrix represents the product of the forget
factor matrix and the correntropy coefficient matrix.

To recursively obtain the correntropy function factor at
each step, a backward recursion can be adopted. By setting
an intermediate variable ξ , we have ξ k = x̂k|k−1 and ξ i−1 =
A−1i ξ i with i ∈ [s, k], and we can obtain

�i = θ
k−idiag[Gσk (ei)], (25)

where intermediate variable ξ i is used to update �i by recur-
sion.

According to [29], the iterative solution of the unbiased
MCFIR filter can be formulated as a Kalman-like filter as
follows:

x̃i = x̃−i +Ki(yi − Cix̃−i ), (26)

where the filter gain Ki is defined as

Ki = G̃iCT
i �i. (27)

The noise power gain factor G̃i can be calculated iteratively
as

G̃i=(CT
i �iCi+(AiG̃i−1AT

i )
−1)−1. (28)

The detailed derivation can be referred to in Appendix A.
By taking x̂k = x̃i as the output if i = k , the initial iteration

noise power gain G̃m is

G̃m=(C̃T
m,s�m,sC̃m,s)−1, (29)

and the initial state x̃m is calculated by

x̃m = K̃m,sYm,s, (30)

which can be calculated by small-batch form.
It should be noted that only x̃k is taken as the output,

and the intermediate estimation x̃i is ignored. The estimate
results of the iterative form and batch form are equivalent. The
iterative form unbiased MCFIR filter operates as a flexible
Kalman-like form, making it much easier to make various
extensions than the batch solution. The iterative solution may
lower the computational burden than the batch form because
it avoids high-dimensional matrix calculation that requires
more computational memory to obtain the result.

C. ADAPTIVE KERNEL BANDWIDTH ALGORITHM
The kernel bandwidth σ is an essential parameter for the
proposed filter, which determines the correntropy function’s
performance to the outliers. It is difficult to preset an optimal
kernel bandwidth for each step [23]. Nevertheless, for the
unbiased MCFIR filter proposed in this paper, an adaptive
kernel size within the appropriate range is available.

In this work, the problem is further analyzed, and a feasi-
ble adjustment method is proposed. Considering the filter’s
unique FIR processing method, we design an adaptive kernel
bandwidth algorithm that realizes the adaptive adjustment of
the kernel size during filtering.
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In the estimate window [k−N+1,k], the normalized resid-
ual sequence ek,s within the estimate window is analyzed.∣∣ek,s∣∣ = [|ek |T |ek−1|T · · ·|ek−N+1|T ]

T
. (31)

A new parameter γ is defined as

γ = |emed − emin|
/
|ek − emin|, (32)

where |·| represents the absolute value operation and
γ ∈ (0,+∞), |emin| and |emed| respectively represent taking
the minimum and median selection operation in the esti-
mate window, and ek is the residual vector at step k and
|ek | > |emin|.
Given the upper limit of the bandwidth σmax and the adjust-

ment coefficient kσ , once γ ≥ σmax
/
kσ , then

σk = σmax. (33)

If there are existing distinct outliers in the measurement
vector at step k , then γ < σmax

/
kσ , and σk can be defined as

σk = kσγ, (34)

where kσ represents the adaptive adjustment coefficient of σk .
Due to the operation of taking the minimum and median

remove the impulsive noise interference, |emin| and |emed|

always maintained within a stable range, and thus γ reduces
significantly only at the |ek | interference by the outliers.
Therefore, in most cases, an appropriate kσ can be deter-
mined to realize the adaptation of the kernel size to ensure
the MCFIR filter’s accuracy. As too small kernel bandwidth
might cause filtering divergence, a minimum kernel band-
width σmin might need to be set to ensure filtering stability.

With the above derivations, we summarize the proposed
MCFIR filter as follows:

IV. BIAS CONSTRAINED MCFIR FILTER
The unbiased MCFIR filter ignores the noise statistics,
limiting the filtering accuracy due to process bias error accu-
mulation. Appropriate forgetting factors may improve the
unbiased MCFIR filter’s performance in certain conditions,
but the forgetting factor is set manually and cannot be guar-
anteed to be optimal.

In this section, we modify the unbiased MCFIR into a
bias-constrained form, which considers the noise covariance
Qk and Rk to compensate bias error accumulation within
estimate window, and further improve the performance of the
unbiased MCFIR filter.

A. BATCH SOLUTION OF THE BIAS CONSTRAINED
MCFIR FILTER
Consider the extended state space model (7) and
equation (18), xs can be expressed by xk as

xs = A−1k,s(xk − B̄k,sWk,s), (35)

where both process and measurement noise interference are
considered. Then,

Yk,s − C̃k,sxk = Nk,s, (36)

Algorithm 1 Robust Unbiased MCFIR Filter
Inputσmax, kσ and θ , N , and Yk,s
x̂k|k−1 = Ak x̂k−1
A. Batch form solution
C̃k,s = C̄k,s[IA−Tk · · ·A

−T
k,s+1A

−T
k,s ]

T

ek = R−1/2k,s (Yk,s − C̃k,sx̂k|k−1)
Calculate σk using (31)-(34)
2k,s= diag[Gσ (ek) ;Gσ (ek−1) ; · · · ;Gσ (es) ]
�k,s = 2k,sdiag[Im;θIm; · · · ;θN−2Im;θN−1Im]
x̂k=(C̃T

k,s�k,sC̃k,s)−1C̃T
k,s�k,sYk,s

B. Iterative form solution
ξ k = x̂k|k−1
Backward for i:k → s
ei = R−1/2i (yi − Ciξ i)
ξ i−1 = A−1i ξ i
end for
Calculate G̃m, x̃m using (29)-(30)

for i:m+1→k
x̃−i = Aix̃i−1
Calculate σk using (31)-(34)
�i = θ

k−idiag[Gσ (ei)]
G̃i=(CT

i �iCi+(AiG̃i−1AT
i )
−1)−1

x̃i = x̃−i + G̃iC
T
i �i(yi − Cix̃−i )

end for
Output x̂k = x̃k

which represents the measurement vector Yk,s derived by xk .
According to (35), (36), and (8), within the estimate window,
the nominal measurement noise Nk,s can be expressed as

Nk,s=(Hk,s − C̃k,sB̄k,s)Wk,s + Vk,s. (37)

Here, (37) contains the bias accumulation and measurement
noise vectors.

Taking
∑

k,s represent the expectation E[Nk,sNT
k,s] as

follows∑
k,s
= E[Nk,sNT

k,s]

= (Hk,s − C̃k,sB̄k,s)Qk,s(Hk,s − C̃k,sB̄k,s)T + Rk,s.

(38)

withQk,s = diag[QkQk−1. . .Qs],Rk,s = diag[RkRk−1. . .Rs].
Then, a new correntropy based object function weighted

by the residual covariance matrix
∑

k,s is derived as follows:

JMCC (xk) =
k∑
i=s

Gσ

(∥∥∥yi − C̃k,ixk
∥∥∥∑

−1
i

)
. (39)

Here, ‖·‖∑−1
i

denotes the
∑
−1
i -weighted two-norm of a vec-

tor.
By taking the derivation of (39) with respect to xk , and

equating it to zero, the robust solution x̂k is obtained as

x̂k=(C̃T
k,s

∑̃−1

k,s
C̃k,s)−1C̃T

k,s

∑̃−1

k,s
Yk,s. (40)
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Because the finite memory filters are robust to process uncer-
tainties, it can be approximated that only Rk needs to be
rescaled to attenuate the measurement outliers, therefore,
the residual covariance matrix with rescaled measurement
noise covariance R̃k,s = R1/2

k,s2
−1
k,sR

T/2
k,s , and the reweighted

matrix
∑̃

k,s can be formulated as∑̃
k,s
=(Hk,s − C̃k,sB̄k,s)Qk,s(Hk,s − C̃k,sB̄k,s)T + R̃k,s.

(41)

The robust solution (40) is the batch form solution of the bias-
constrained MCFIR filter, which is formulated as a weighted
least-square form. The unbiasedMCFIR filter can be taken as
a special case of (40) with

∑
−1
k,s = �k,s, where the process

noise accumulation is ignored within the estimate window
and ensures only an unbiased estimate result.

B. ITERATIVE SOLUTION OF THE BIAS CONSTRAINED
MCFIR FILTER
The batch form bias-constrained MCFIR filter’s operation
brings an additional calculation burden than original unbiased
MCFIR filter due to complex matrix operations, which might
make implementation difficult in practical applications.

The nominal measurement residual covariance matrix 6k
needs to be obtained in advance to implement the iterative
form solution. Taking the process andmeasurement noise into
consideration, the nominal measurement residual covariance
of the [s, k] interval can be expressed as

6k,s = C̄k,sDk,sQk,sDT
k,sC̄

T
k,s + Rk,s, (42)

where

Dk,s = Bk,s−[IA−Tk · · ·A
−T
k,s+1A

−T
k,s ]

T B̄k,s. (43)

Taking8k,s = Dk,sQk,sDT
k,s to represent the error covariance

of predict state vector in [s, k]. An approximate covariance
matrix 8i = DiQiDT

i can be adopted for simplicity, and the
corresponding nominal measurement noise covariance can be
obtained by6i = Ci8iCT

i +Ri, which can be determined by
a backward recursion, and then

Gσ (ei) = Gσ (S−1i (yi − Ciξ i)), (44)

where 6i=SiSTi . The rescaled measurement noise covari-

ance calculation is completed by R̃i = R1/2
i 2−1i R

T/2
i ,

where 2i = diag[Gσ (ei)]. After simplification, the pro-
posed filter only rescaled the measured noise covariance
matrix, while the rest of the formulas remained the original
structure. As the iterative solution of the bias-constrained
MCFIR filter is not unique, one of the representative Kalman-
like methods is formulated as (43)-(45) proposed in prior
work [30].

The remaining computation can be operated as following
iterative Kalman-like formula as

x̃i = Aix̃i−1 + Li(yi − CiAix̃i−1), (45)

where filter gain Li = 1i + 1̄i can be decomposed by two
parts as

1i = PiCT
i (CiPiCT

i + R̃i)−1, (46)

1̄i = (I−1iCi)GiZiJi, (47)

where Ji = GT
i C

T
i (CiPiCT

i + R̃i)
−1 is defined for simplicity.

The iteration parameters Pi, Gi, Zi are formulated as

Pi = AiPi−1AT
i +Qi − Ai1i−1Ci−1Pi−1AT

i , (48)

Gi = Ai (I−1i−1Ci−1)Gi−1, (49)

Zi = (Z−1i−1 +GiCiJi)−1. (50)

Assuming that the iteration starts at m, the initial values
of Pi, Gi, Zi are given by

Pm = B̄m,sQm,sB̄Tm,s − Amγm−1

∏−1

m−1,s
γ Tm−1A

T
m, (51)

Gm = Am,s − Amγm−1,s

∏−1

m−1,s
Cm−1,s, (52)

Zm = (CT
m,s

∏−1

m,s
Cm,s)−1. (53)

To simplify the computational complexity, covariance matrix∏
m,s, γm−1 can be formulated as

∏
m,s = Hm,sQm,sHT

m,s +

R̃m,s, γm−1 = B̄m−1,sQm−1,sCT
m−1,s, which can be calculated

offline in time invariant systems.
The increase of N makes the FIR filters converge to the

optimal IIR filter and lose the characteristics of the finite
memory filter. If the selected horizon length N is small,
the modified MCFIR filter is dominated by unbiasedness,
which is almost equivalent to an unbiased MCFIR filter.
The iterative solution of the bias-constrained MCFIR filter
requires more iterations than batch form methods. As for
systems that do not require updating the filter parameters at
each step, offline calculation saves much of the calculation
amount.

V. SIMULATION RESULTS
In this section, we illustrate the performance of the pro-
posed algorithms (the unbiased MCFIR filter is denoted as
MCFIR-1, and the biased-constrained MCFIR filter is
denoted as MCFIR-2) after applying them to a moving tar-
get tracking system. In addition to the classical KF, UFIR
filter of [29], several latest robust filters, HKF [14] based
on Huber m-estimator, a novel robust student-t Kalman fil-
ter (RSTKF) [9] derived for the heavy-tailed process, and
MCKF [17] based on maximum correntropy criterion, and
optimal Kalman filter (OKF) with exact instantaneous noise
covariance simulated as benchmarks for comparisons. All
filtering algorithms are coded with MATLAB and executed
on a laptop with Intel Core i5-7300HQ CPU @2.5 GHz.

We considered a constant turn-rate motion target tracking
system specified by (1) and (2) with

A =


1 sin(αT )

/
α 0 −(1− cos(αT ))

/
α

0 cos(αT ) 0 − sin(αT )
0 −(1− cos(αT ))

/
α 1 sin(αT )/α

0 sin(αT ) 0 cos(αT )

, (54)
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Algorithm 2 Robust Bias Constrained MCFIR Filter
Input σmax, kσ , N , and Yk,s
x̂k|k−1 = Ak x̂k−1
A. Batch form solution
Calculate C̃k,s,

∑
k,s using (15) and (38)

ek = S−1k,s(Yk,s − C̃k,sx̂k|k−1)
Calculate σk using (31)-(34)
2k,s = diag[Gσ (ek) ;Gσ (ek−1) ; · · · ;Gσ (es)]
Calculate

∑̃
k,s using (41)

x̂k=(C̃T
k,s
∑̃−1

k,sC̃k,s)−1C̃T
k,s
∑̃−1

k,sYk,s
B. Iterative form solution
Backward for i:k → s
8i = DiQiDT

i
6i = Ci8iCT

i + Ri

ei = S−1i (yi − Ciξ i)
ξ i−1 = A−1i ξ i

end for
Calculate

∑̃
m,s and x̃m using (41), (40)

for i:m+1→k
x̃−i = Aix̃i−1
Calculate σk using (31)-(34)
R̃i = R1/2

i 2−1i R
T/2
i

Calculate Pi,Gi and Zi using (48)-(50) and obtain
1i and 1̄i
Li = 1i + 1̄i
x̃i = x̃−i + Li(yi − Cix̃−i )

end for
Output x̂k = x̃k

0 =


0.5T 2 0
T 0
0 0.5T 2

T 0

 , (55)

C =
[
1 0 0 0
0 0 1 0

]
. (56)

Here, T = 0.2 and α = 0.1, 0 represents the pro-
cess noise transfer matrix, and set Q = diag[0.050.1] and
R = diag[1010]. The state vector xk = [xẋyẏ]T , in which
x, y, ẋ, ẏ, denotes the cartesian coordinates and correspond-
ing velocities, and the initial state x0 = [1111]T . It is assumed
that x̂0 = 04×1 as the filtering initial state.

The process and measurement noise vectors were gen-
erated from vk ∼ 0.95N(0,R)+ 0.05N(0, 100R), wk ∼

0.95N(0,Q)+ 0.05N(0, 100Q) respectively.
The horizon length of the MCFIR filters N = 35,

r = 1.345 for the Huber loss function, and σ = 5 for the
kernel bandwidth of correntropy function. For MCFIR-1, the
forget factor θ = 0.99. For RSTKF, the degrees of freedom
parameter, tuning parameter, were set as w = v = 5,τ = 5.
For robust Kalman filters, the iteration times n = 10. The
σmax = 9, and kσ = 15 as the kernel size adaptive tuning
factor for the proposed filters.

To evaluate the estimate performance, taking

RMSEpos ,

√
1
M

∑M

i=1
((xik − x̂ik )

2+(yik − ŷ
i
k )

2), (57)

ARMSEpos ,

√√√√ 1
MK

K∑
k=1

∑M

i=1
((xik − x̂ik )

2+(yik − ŷ
i
k )

2),

(58)

represent the estimate errors of different filters, where
(xik , y

i
k ) and (x̂ik , ŷ

i
k ) were the true and estimated positions

at k th step of the ith Monte Carlo run, M = 500, and
K = 500. Like the root mean square error (RMSE) and
average root mean square error (ARMSE) of the position,
we define the RMSE and ARMSE of velocity by the cor-
responding estimated states. The RMSE of the position and
velocity of existing robust filter algorithms and the proposed
filters are shown in Fig. 5. TheMCFIR filters proposed in this
paper had no output until the N th step, and we evaluated the
performance of the filters after the N th step.

1) In Fig. 1, we made a preliminary comparison of the tra-
jectories generated by different robust filters within a typical
moving trajectory. The proposed filters achieved better track-
ing performance than the existing robust filters, which could
eliminate the filter failure caused by measurement outliers.
Moreover, as the target’s motion state changed, the proposed
MCFIR filters showed strong tracking performance, and the
estimation trajectories were closer to the real trajectory.

FIGURE 1. Tracking trajectories of different algorithms.

In Table 1 and Table 2, we explore the performance of the
MCFIR filters with a distinct kernel bandwidth. An improper
σ causes the filter accuracy to degrade. The kernel bandwidth
adaptive adjustment method proposed in this work ensures
that the MCFIR filters operate at a relatively optimal status.

As shown in Table 3 and Fig. 2, theMCFIR filters obtained
lower errors than the existing robust filter, while the process
and measurement noise were corrupted by a certain percent-
age of outliers. Moreover, MCFIR-1 and MCFIR-2 retained
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TABLE 1. ARMSE of MCFIR-1 with distinct kernel size.

TABLE 2. ARMSE of MCFIR-2 with distinct kernel size.

TABLE 3. ARMSE of different filters.

similar performance while confirming that the MCFIR-1 and
MCFIR-2 filter is nearly equivalent as the bias accumulation
is not apparent.

The standard unbiased FIR filter, is severely corrupted by
measurement outliers and cannot ensure reliable estimations,
which implies that the standard unbiased FIR filter cannot
retain robustness in excessive measurement outliers. By com-
paring the unbiased FIR filter with the proposed MCFIR
filters, it can be found that the proposed filters obtain superior
performance, which confirms that the MCFIR filter is an
effective FIR filter to cope with state estimate problem in
dynamic process corrupted by non-Gaussian noises.

2) The RMSEs of different filters corresponding to differ-
ent outlier percentages are shown in Fig. 2. The ARMSE of
different filters growth with outlier density, and the proposed
filters always obtained a lower ARMSE than the other exist-
ing filters.

3) To verify the robustness of FIR filters to model uncer-
tain errors, an additional interference [0.1; 0.3sin(kT ); 0.3;
−0.2cos(kT )] was added into the system transform matrix in
[240,260]. As shown in Fig. 4, the MCFIR filters recovered
to normal status within fewer steps, which indicates that
the MCFIR filters had better robustness to model uncertain
interference than other robust Kalman filters.

4) The horizon length N is one of the most impor-
tant parameters that determine the characteristics of FIR
filters. To compensate the bias accumulation caused by a
longer N on MCFIR-1, Fig. 5 shows that an appropriate
forget factor might improve this problem to some extent.

FIGURE 2. RMSE of the existing filters and the proposed filters.

FIGURE 3. ARMSE of filters with different outlier percentage.

FIGURE 4. RMSE of different filters with temporary uncertainties.

Nevertheless, the MCFIR-2 avoids filtering divergence
caused by the excessive bias accumulation, which is a signif-
icant advantage compared with MCFIR-1. To further explore
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the adaptive kernel method proposed in this work, we plotted
the ARMSE-N curves of the MCFIR filters with σ = 5 and
adaptive σ in Fig. 5. The σ adaptive MCFIR filters always
kept a lower ARMSE than filters with a fixed σ .

FIGURE 5. ARMSE of MCFIR filter varies with N .

Computational time is another essential characteristic of
the filters, and the average total computational time of dif-
ferent filters is evaluated. Table 4 shows that the standard
Kalman filter (0.009s) is the fastest, and the robust Kalman
filters: HKF (0.175s), MCKF (0.220s), and RSTKF (0.207s)
requires more computation time than Kalman filter. Then,
the batch form (0.243s) and iterative form (0.292s) UFIR
filter are the fastest among the FIR filters, and MCFIR-1
filter with batch (0.245s) and iterative (0.351s) form need a
little additional computational time, which consumes extra
time for correntropy function related calculations. As for
the bias-constrained MCFIR-2 filters with batch (0.271s)
and iterative (0.981s) form, complex matrix operations bring
more computational burdens. As the matrix operations are
optimized in simulation programs, and the iterative FIR filters
have higher complexity and loop times, making the iterative
FIR filters consume a longer running time. Owing to the
FIR filter structure, there are many factors that might affect
its computational speed, such as horizon length, data pre-
processing method and so on. In practical applications, the

TABLE 4. Average computational time of different filters.

TABLE 5. ARMSE of different filters.

computational complexity can be simplified by the adap-
tive horizon and offline computation to improve filtering
efficiency.

5) For the 2-D constant turn-rate model used in the above
cases, which was applied to generate the basic trajectory
in the horizontal plane, we made relevant deformations and
obtained a 3-D coordinated turn (3DCT) model including the
nine-dimensional state vector with the position, velocity, and
acceleration elements to further verify the applicability of
the proposed filters [35]. If the target performs a mixture of
horizontal and vertical turn maneuvers, the 3DCT model has
higher tracking accuracy.

The sate transform matrix for the 3DNCT model can be
reformulated as

A3DCT =

 1 sin(αT )/α (1− cos(αT ))/α2

0 cos(αT ) sin(αT )/α
0 − sin(αT )/α cos(αT )

 , (59)

A = diag[A3DCTA3DCTA3DCT], (60)

0 =

 T 3/6 T 2/2 T 0 0 0 0 0 0
0 0 0 T 3/6 T 2/2 T 0 0 0
0 0 0 0 0 0 T 3/6 T 2/2 T

T
(61)

Q = diag[0.05, 0.1, 0.1] and R = diag[101010], The state
vector xk = [xẋẍyẏÿzżz̈]T denotes the Cartesian coordi-
nates, velocities, and corresponding accelerations, and the
initial state x0 = [00 0.10 00.100 0.1]T . It was assumed
that x̂0 sampled form x0 with a covariance 0Q0T in each
simulation.

The process and measurement noise vectors are
generated from vk ∼ 0.95N(0,R)+ 0.05N(0, 100R) and
wk ∼ 0.95N(0,Q)+ 0.05N(0, 100Q) respectively.

To maintain the consistency with above cases, each filter
takes the same parameters as the above examples for com-
parison. In this condition, the RSTKF appears divergence
caused by mathematical problems, and it’s not included in
the comparison.

The simulation results confirmed again that the proposed
MCFIR filters significantly outperformed the existing robust
filters, while the system process and measurement were
severely disturbed by non-Gaussian noises. Moreover, this
example confirmed that the proposed filters’ tuning parame-
ters had excellent compatibility, and it is not always necessary
to search for new optimal tuning parameters for the proposed
filter.
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VI. CONCLUSION
A novel robust MCFIR filter was proposed in this paper,
the filter operates as a finite memory form. It takes advan-
tage of the robust characteristic of maximum correntropy
method to attenuate the interference of non-Gaussian noise.
An adaptive kernel size algorithm applied for the MCFIR
filter was also proposed to ensure the filter operates with
the appropriate kernel size. Simulation results confirmed that
the proposed MCFIR filter obtain superior characteristics to
existing robust filters in linear state-space systems corrupted
with non-Gaussian noise.

APPENDIX A
DERIAVATION OF ITERATIVE UNBIASED MCFIR
Representing the inverse of the modified GNPG as
G̃−1k = C̃T

k,s�k,sC̃k,s which can be decomposed into the sum
of several small matrices in the past N steps

G̃−1k =
∑k

i=s
A−Tk,i C

T
i �iCiA−1k,i , (A.1)

as i = k , then A−Tk,s C
T
k �kCkA−1k,s = CT

k �kCk and

G̃−1k = CT
k �kCk +6

k−1
i=s A

−T
k,i C

T
i �iCiA−1k,i , (A.2)

since G̃−1k−1 = 6k−1
i=s A

−T
k−1,iC

T
i �iCiA−1k−1,i, combine the

above equations then

G̃k =

(
CT
k �kCk+(AkG̃k−1AT

k )
−1
)−1

, (A.3)

Similarly, we rewrite C̃T
k,s�k,sYk,s as

C̃T
k,s�k,sYk,s = CT

k �kyk + A−Tk C̃T
k−1,s�k−1,sYk−1,s,

(A.4)

then

x̃k = G̃k (CT
k �kyk + A−Tk C̃T

k−1,s�k−1,sYk−1,s), (A.5)

take step at k − 1, C̃T
k−1,s�k−1,sYk−1,s = G̃−1k−1x̃k−1

x̃k = G̃k (CT
k �kyk + A−Tk G̃−1k−1x̃k−1), (A.6)

substitute G̃k−1 of (27) to the (30) equation, we could obtain
the final recursive Kalman like form as follow

x̃k = Ak x̃k−1 + G̃kCT
k �k (yk − CkAk x̃k−1). (A.7)
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