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ABSTRACT Smart grids have been gradually replacing the traditional power grids since the last decade. Such
transformation is linked to adding a large number of smart meters and other sources of information extraction
units. This provides various opportunities associated with the collected big data. Hence, the triumph of the
smart grid energy paradigm depends on the factor of big data analytics. This includes the effective acquisition,
transmission, processing, visualization, interpretation, and utilization of big data. The paper provides deep
insights into various big data technologies and discusses big data analytics in the context of the smart grid.
The paper also presents the challenges and opportunities brought by the advent of machine learning and big

data from smart grids.

INDEX TERMS Big data, data analytics, smart grid, big data management, machine learning.

I. INTRODUCTION

The electrical power system has recently witnessed massive
developments. Technical developments have been witnessed
not only in the power generation side but also in the transmis-
sion and distribution sides. Furthermore, the new technology
is expected to revolutionize the end-user side by adopting
various demand management programs and techniques. The
renewable energy sources, such as solar and wind sources, are
not just added to the generation side by the utility companies,
but also by the end consumers and microgrids. Also, vehicle
to grid technology has provided opportunities for power flow
management and the management of its flow from vehicles
to the grid.

Once the electricity from renewable sources is increased
to a large quantity, it would bring variability in the electrical
system. This variability requires that innovative flexibility
measures are considered to balance the demand and sup-
ply all the time. Novel approaches are required to improve
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the flexibility of the energy system ranging from supply to
demand side. The concept of a smart grid and the use of big
data analytics will help to manage the power systems better
and also to increase resilience.

There has been and will be more massive installation of
smart meters at the customer premises. These meters monitor
the near real-time usage of energy while also collecting and
communicating the data to electric utilities. The emergence
of the power system deregulation on the delivery side and
the moving away from the business model of vertically inte-
grated utility have contributed to the development of the smart
grids. The principle of smart grids solves the power demand
problems by providing two-way power and information flow
between consumers and utility [1]. Smart meters have been
installed all across the world in the past years along with the
transformation of the traditional power grids into the smart
grid. The development of a smart grid is fully associated with
the big data flow. There are various prospective applications
of big data analytics on smart grid data such as real-time
and automatic processing of the electrical consumers’ energy
consumption, automatic billing, intelligent energy planning
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and pricing analysis, detection of outages due to faults and
anomalies, load and generation forecast under high unpre-
dictability, load management with demand response, and
asset management [2]. A high volume of data obtained from
various smart grid sources satisfies the characteristics of big
data. The grid data not only displays the Volume, Velocity,
and Variety characteristics but also the *V’ characteristics
such as Veracity, Visibility, and Value [3]. These character-
istics are the challenges when dealing with big data analytics
along with other major concerns such as security, privacy,
etc. [4].

The smart grid allows for the two-way energy and infor-
mation flow between consumers and utilities [5]. However,
managing the real-time data for making business-valued deci-
sions is still a persisting challenge [6], [7]. Currently, many
utilities are working on installing a large number of smart
meters and utilizing this data for effective demand response
and resource management. For example, a company named
Iberdrola has installed more than 11 million smart meters in
Spain, generating 240 million registers every day [8]. Big data
techniques, over an estimated volume of 90 billion registers
per year, are being used to improve revenue collection and
to optimize energy use. In the smart grid, the number of
smart sensors is much higher, and the generated data are
significantly much larger.

More data utilization helps in improving grid reliability
and performance and ensures better decisions by the utility
provider, thereby allowing for effective demand-side manage-
ment and demand response [9]. However, the high volume
of raw data is not directly comprehensible or useful without
a dependable and consistent ability to process, analyze, and
understand the information contained within such a huge
amount of data. Therefore, the data should be transformed
into useful information before action can be taken based
on the data. Such transformation is a complicated process
as beneficial information is not obvious from the data. The
factors that contribute to the complications are visualization,
high data dimensionality, and the application. A part of the
information needs to be used by the automated systems while
other information needs to be visualized and presented to
users. Also, the time scales for various applications are dif-
ferent, ranging from milliseconds to days. The challenges
involved with the use of smart grid data for analytics can be
categorized as 1) decisions on mapping the data collection
infrastructure to the desired applications, 2) application of
new architecture and tools to manage grid data as streams in
real-time, 3) transforming processes throughout the utilities
to support the big data infrastructure, 4) managing the humon-
gous amounts of data to make decisions that allow the benefits
from the information obtained from smart grids’ data.

A. CONTRIBUTION AND ORGANIZATION

This paper presents the big data technologies that can be uti-
lized with smart grids’ data. It also proposes a viable platform
for the real-time stream processing of big data in smart grids.
The contributions of this review are the following:
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1) conducting an extensive literature review of the big data
sources and types of data in the smart grid.

2) presenting the big data technologies that can be
employed on smart grids’ big data, and reviewing the
latest developments, especially in the last decade.

3) presenting the overview of the big data process,
the stages, and various techniques available for big data
analytics.

4) providing the well-designed commercial solutions of
big data for smart grids implemented by different cor-
porations and utilities across the world.

5) discussing the potential application areas in smart grids
that can benefit from the untapped potential of big data.

This paper is structured as follows. Section II details

the data flow in the smart grid while Section III provides
a comprehensive review of the big data analytics process.
In Section IV, the technologies used for the big data within
the setting of the smart grid in the literature are discussed.
Section IV presents the proposed potential technologies that
aim to overcome the challenges involved in the processing of
smart grid data. Applied solutions used for big data analytics
in smart grids are detailed in section V. Finally, in Section VI,
the potential application areas which can avail from the big
data analytics in a smart grid are reviewed.

Il. SMART GRID DATA FLOW

A smart grid is formed by the integration of information
and communications technology, electrical networks, and
automation. The smart grid as an enabling engine is depicted
in Figure 1. The electrical networks in the smart grid require
the deployment of smart meters, sensors, devices, and con-
trol strategies. These have evolved due to the integration
of renewable energy sources that are normally considered
variable and unreliable sources of energy and are completely
clean to the environment [10]. The smart grid aims to incor-
porate all the energy sources to match not only the baseline
load but also the intermediate and peak loads.

In the smart grid, there is a lot of scope with big data analyt-
ics apart from creating intelligence and obtaining information
from the raw data [11]. The scope of big data analytics has
been illustrated in Figure 2. It is required that the big data
architecture provides the potential to perform different types
of analytics on the voluminous data to interpret it and derive
business-valued applications. The different application areas
for big data analytics in a smart grid will be discussed in
Section VI.

A. BIG DATA SOURCES

Data from the smart grids are generated in real-time at a very
high rate and volume [12]. The extraction of information from
smart grid data is required for grid applications and calls for
deep insight into the data sources. The data in smart grids can
be classified into consumer, distribution, transmission, and
generation data. These data are acquired from the sensors,
smart meters, grid devices, detectors, Supervisory Control
And Data Acquisition (SCADA), etc. The collected signals
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relate to power utilization habits of consumers, phasor mea- of sensors, information obtained from those sensors, and
surement, energy consumption, energy pricing and bidding, other sources of information in a smart grid are described in

operation or financials for running the utility, etc. Types Table 1 [13], [14].
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TABLE 1. Sources of data or information in smart grids.

Sources

Quantity being measured

Information extracted and applications

Advanced Metering Infrastructure (AMI)

Distributed Generation Sensors

Digital Fault Recorder (DFR)

Electrical Measurement Sensors (EMS)

Fibre Bragg Grating sensor (FBG)

Geographical Information System (GIS)
Hall Effect sensor

High Voltage Line Temperature

and Weather Condition Sensors
Intelligent electronic device (IED)

Line Fault detectors

Magnetoresistive sensors

Phasor Measurement Unit (PMU)

Remote Terminal Unit (RTU)
Smart Capacitor control

Sagometer

Smart Sensors for Outage Detection

SCADA

Smart Sensors for Transformer Monitoring
Smart Voltage Sensors

Wide area monitoring system (WAMS)

E, Cumulative energy usage, peak load, load curve,

phase, failure counts & logs, P.F., tamper factor,

last interval demand

V,PE

Power swing, load variation, transient phase angle changes,
frequency fluctuations, also records power system events like
time of fault, power disturbance

V,LE, Vsag, PE, Qreac, electric & magnetic fields

wavelength shift under changes in strain & temperature

GIS data

V and magnetic field

T, record weather conditions

Records status changes in substation and outgoing feeders
V, I, P, harmonics, phase angle
Current, power, total energy, frequency, modulation

V, I, P, harmonics, phase angle

Transmits telemetry data and controllable by micro-processor
V, I, VAR and harmonic monitoring

T

T, 1

V,LLE,PE

V, I, T, load tap changer values, partial discharge, dissolve gas data
v

Deals with incoming data from PMUs

Market pricing, real-time on demand,
remote meter configuration, demand-side
management, electric usage, power quality
monitoring, and local control

Load balancing

Faults classification

Revenue

Prediction of overheating, sag,
vibration, galloping

Asset management & map the location of outages

Current sensing, proximity switching,
positioning, speed detection

Preventive maintenance

Relay protection
Transmission or Distribution faults

Transient Magnetic Field, EMI in substation

Time synchronized measurements with phase angles,

electrical waves measurement of power grid
system operation status

Monitoring & control of capacitor banks remotely
Line Sagging

Outage detection

Automatic control, protection, system
monitoring, event processing and alarm

Preventive maintenance
Voltage Regulation

Dynamic stability of the grid

V = Voltage, I = Current, P = Power,

Also, large datasets, not directly related to the grid, such

E = Energy, Vsqg = Voltage sag, P.F. = Power factor,

T = temperature

o Structured data: Structured data is the data that com-

as weather data, GIS data, etc. should be used for situ-
ational awareness and decision making. Owing to secu-
rity and privacy concerns, the electric utilities do not share
the smart meter data publicly and this poses a challenge
to the research community. There are several benchmark
and publicly-accessible data that have been anonymized or
semi-anonymized and that the researchers can use to validate
the performance of their proposed modeling and data analyt-
ics methodologies. The summarization of the list of public
data sources is given in Table 2.

B. DATA STRUCTURES

Contrary to traditional data analysis, big data analysis deals
with semi-structured, quasi-structured, and unstructured data
in addition to structured data [25], [26].
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prises clearly defined data types, structure, and format
whose patterns make the data easily searchable. Few
examples include data that can be stored in spreadsheets,
Comma-separated Values (CSV) file, a traditional Rela-
tional Database Management System (RDBMS), data
cubes in Online Analytical Processing (OLAP), rela-
tional tables containing customer information, electrical
consumption data in numbers and strings, etc. Meters’
data, distribution management data, equipment param-
eters, load control data, marketing system data in rela-
tional format, etc. are examples of structured data in
smart grids.

Semi-structured data: Semi-structured data is textual
data that contains perceptible data patterns and enables
parsing. For example, the XML and JSON data files are
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TABLE 2. Publicly-accessible data sources.

Data Source Name

Data Description

Ausgrid network [15]
Commission for Energy Regulation (CER) smart metering project [16]

Cornell campus smart grid [17]

The Ecole polytechnique fédérale de Lausanne (EPFL) smart grid data (Switzerland) [18]

Electric Reliability Council of Texas (ERCOT) data [19]
North American SynchroPhasor Initiative (NASPI) data [20]
Pecan Street project [21]

Pennsylvania-New Jersey-Maryland (PJM) market data [22]

Residential or commercial data [23]

University of California (UC) Berkeley campus smart grid [24]

Load profile data at the substation level.
Smart meter data from Ireland.

Smart meter data.

PMU data.

Market data.

PMU data.

Smart meter data.

Market data.

Consumption, electric vehicles, power quality, PV generation, re-
liability, weather, wind-based generation, and general energy data.

Smart meter and building consumption data.
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FIGURE 3. High-level view of the flow of data into the utility [27].

self-describing and defined by its schema. Web service
data, load monitoring, power quality data, etc. are exam-
ples of semi-structured data in smart grids.

e Quasi-structured data: Quasi-structure data is tex-
tual data that contains erratic data formats but can be
properly formatted with tools after time and effort.
The only difference between the semi-structured and
quasi-structured data is that semi-structured data has
metadata associated with them and the metadata can
be easily used to structure or format the data. Whereas
the quasi-structured data requires intelligence-aware
approaches to structure or format them. For example,
web click-stream that contains erratic formats and data
values, web scrapping data, search engine results, etc.
are quasi-structured data.

o Unstructured data: Unstructured data is data that has
no pre-defined models or schema. Examples include
publicly collected census and text, social media streams
and tweets, audio, video, photographs, etc. Meteorologi-
cal information, customer service data, economy data of
distribution regions, etc. are examples of unstructured
data in smart grids.

The high-level view of the data flow into the utility is
illustrated in Figure 3 [27]. The first step is the data collection
in which the major classes of data are collected from vari-
ous sources, eg. the customer data is collected using smart
meters, grid data is measured on distribution and transmission
lines using PMUs and synchrophasors, etc. Other important
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data, that are collected, include SCADA data, market data,
weather data, and customer feedback in the form of tweets,
text, videos, audio, and pictures. The complex and hetero-
geneous data from multiple sources are then transmitted
through various communication networks and stored in the
relational database, data warehouse, file servers, application
servers, Hadoop clusters, etc. This comes under the phase
of data management where the data undergoes extraction,
cleaning, aggregation, and encoding. Finally, the data are
loaded into any in-memory distributed databases for fur-
ther analytics. The third phase is analytics where the actual
information stored in data is extracted to represent business
value. The data analytics is performed using approaches such
as time series analysis, feature selection, feature extraction,
machine learning modeling, deep learning modeling, cluster-
ing, incremental learning, adaptive learning, reinforcement
learning, etc. with an aim to enhance applications for enter-
prise intelligence, grid operations, and customer insight. The
applications may include the following but are not limited
to: load profiling, load forecasting, demand response, pro-
gram marketing, outage management, bad data detection, etc
[28]. Finally, the information should enable action in the
form of automation, external communication, and monitoring
through visualization and dashboards.

Ill. BIG DATA ANALYTICS PROCESS
Big Data analytics requires pre-defined strategies because
of the high volume of data. Also, the velocity and variety
of data pose challenges in the data analytics process. It is
very crucial that the data from the smart grid are processed
in real-time because significant patterns can be recognized
from the data to make better decisions. Data analytics deals
with the extraction of actionable knowledge and patterns from
the available data [29]. The big data analytics process is
illustrated in Figure 4.

There are four major types of big data analytics [30]. These
are described as follows:
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FIGURE 4. Big data analytics process.

a: DESCRIPTIVE ANALYTICS

Descriptive analytics illustrates what happened in the past
using the historical data available and shows the data in
an easily understandable form or visualization. In general,
the data is illustrated using graphs, bar diagrams, pie dia-
grams, maps, scatter plots, etc. In short, descriptive analytics
is performed to understand or illustrate the patterns in the
data.

b: PREDICTIVE ANALYTICS

It extrapolates from the data available to predict what can
happen in the future. The tools that are used for predictive
analytics are time-series analysis using statistical methods
and other data mining algorithms. Predictive analytics is
usually performed to predict which events can happen in the
future.

¢: EXPLORATORY ANALYTICS

It finds hidden correlations or relationships between features
in the data. This helps us to estimate values for a dependent
feature when information is available for the independent fea-
tures. Exploratory analytics is basically performed to deter-
mine the cause behind the events that have happened in the
past.

d: PRESCRIPTIVE ANALYTICS

It is used to discover the best outcome of past events when
the features of the data and operating parameters of a system
are given. It helps to develop strategies for future events
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under similar conditions. The techniques involve simulation
tools and these simulate the operating conditions or features
to finally come up with the best outcome. The simulation
techniques strategize how to plan for similar events in the
future. Prescriptive analytics is basically performed to know
how preferable events can be made to happen in the future.
Example: power flow analysis, etc.

Data analytics starts with the acquisition of data following
which the data is processed to reveal information.

A. DATA ACQUISITION

The first step in any of the data analytics process is the
collection of data. The data in the smart grid are collected
from various sources as mentioned in the earlier section.
With the data collection already in place, the other sub-tasks
in data acquisition are data communication and data pre-
processing. The raw data need to be transmitted either to a
real-time stream processing system or to a storage system
from where the data can be sent to the offline batch processing
system for further analysis. Since the data have been collected
from diverse and multiple sources, the data aggregation and
cleaning are the foremost and crucial steps. Data aggregation
services should be in place to integrate the data from varied
sources and furnish a unified view of the available data.
In data pre-processing, the inconsistent and missing data are
to be filled or one among the records, and the features are to
be removed to improve the data quality [31]. It is crucial to
refine the features in the extracted data as there are noise and
redundancy in the collected raw data. Refining the features
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involve either feature selection or feature extraction. If the
data contain highly correlated features, then the machine
learning algorithms, in general, perform poorly. Regulariza-
tion techniques are used to overcome the issues of overfitting
whereas underfitting would require the acquisition of more
data and that is not an issue in the case of big data [32].

B. DATA PROCESSING

The data collected and transmitted should be stored in storage
infrastructure for further processing. The stage, at which the
data is processed, classifies data processing into the following

types:

1) BATCH PROCESSING

Batch analytics is fundamentally the analysis of data in
batches. It involves the workflow on offline data where all the
data are available, pre-extracted, and ingested using scripts
and a huge group of data is analyzed in a single execution.
Distributed file systems (DFS) provides for the fault-tolerant
scalable storage of data across commodity hardware where
the storage nodes do not share memory but are connected
virtually through networking [33]. MapReduce and Hadoop
framework provides such a DFS framework. In MapReduce,
a huge amount of data is processed by dividing the job into
a set of sub-jobs and each sub-job handles a small portion
of data and all the sub-jobs operate in parallel to obtain the
intermediate outcomes. The final result is then obtained by
the aggregation of the intermediate outcomes. The advantage
of the MapReduce paradigm with respect to batch processing
is the data locality principle. In this principle, the algorithm
or the user code is moved close to data rather than moving
the data to the algorithm. This requires the movement of
computational resources to where the data is located and thus,
prevents overhead from the data transmission. The disadvan-
tage of batch processing is that it cannot provide analytics
results in real-time. An example of batch processing in smart
grids includes the training of data-driven models using offline
data for applications of topology identification, predictive
maintenance, energy forecasting, etc. These models would
require re-training if new data become available and need to
be included in the modeling performance. There is no specific
time interval defined to term processing as batch analytics.
However, it is usually considered that if the processing is
scheduled to happen with an interval equal to or greater than
20 minutes, then it is batch processing.

2) STREAM PROCESSING

Stream processing is primarily the processing of each new
data instance as soon as it is available instead of waiting for
batches of offline data. The idea behind the stream processing
is that the potential worth of information from data relies on
the freshness of data [34]. Hence, it is crucial that the stream
processing model processes the data as soon as the data
instance is available to obtain approximation results. If the
data are continuously available in huge streams, a portion of
the data can be stored in memory until it is processed.
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In the subsequent sections, we will focus on the technolo-
gies that possess the capability of processing big data in real-
time. They provide a huge advantage of handling data with
high-velocity requirements. In our platform, the Hadoop File
system is used as a storage system and spark streaming pro-
vides the real-time processing solution along with tools such
as Spark Structured Query Language (SQL), Spark Machine
Learning Library (MLIib), GraphX, etc. Examples of stream
processing in a smart grid include stateless conversion, state-
less filtering, aggregation, pre-processing, wavelet transfor-
mations, etc. of the data. The time interval for data processing
to be termed as stream processing is typically seconds or
milliseconds.

3) ITERATIVE PROCESSING
There are a few big data problems that require the processing
of data iteratively and demand more number of read and
write operations than batch processing and stream processing.
These involve a high number of Input-Output transfers and
are time-consuming.

For big data analytics on smart grids’ data, we focus on the
batch and stream processing and the comparison of these is
given in Table 3.

TABLE 3. Batch v/s stream processing.

Batch Processing
Chunks of data

Stream Processing
Streams of data

Input form

Input data size ~ Known & finite Unknown & infinite

Is data stored? Yes Data is not stored (or) small
streams stored in memory

Hardware used ~ Multiple Central Pro-
cessing Units (CPU)

Restricted memory

& memory
Processing Multiple rounds Single round processing
Time Longer time Seconds or milliseconds
Applications Widely adopted Sensor networks, web min-

ing, etc.

C. DATA ANALYTICS TECHNIQUES

Multiple machine learning algorithms are used as data ana-
lytics techniques. These techniques are used to map the rela-
tionship between the features in the data and the prediction
label usually. If the labels exist, the techniques employed are
named as supervised techniques. Whereas the data may not
explicitly consist of labels and it is up to the algorithm to
recognize the patterns in the data. These techniques that work
on data without labels are termed as unsupervised techniques.
The summarization of the different classes of machine learn-
ing techniques, that have been previously applied in smart
grids, is presented in Table 4, Table 5, and Table 6.

IV. TECHNOLOGIES FOR BIG DATA ANALYTICS
In this section, we present the hierarchical architecture of
state-of-the-art core components of big data analysis for
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TABLE 4. Dimensionality reduction algorithms.

Algorithm

Description

Principle Component Analysis (PCA) [35]

Linear Discriminant Analysis (LDA) [36]

Kernel Discriminant Analysis (KDA) [37]

t-distributed stochastic neighbor embed-
ding (t-SNE) [38]

Most widely used unsupervised technique; heuristic approach to extract variance structure from
high-dimensional data; involves 1) feature scaling & mean normalization, 2) calculation of
covariance matrix and 3) sorting the eigenvectors that represent components.

Supervised technique; projection of data from higher dimensional space to lower one so that it
maximizes between-class & minimizes within-class distances.

Obtains linear separation by non-linear mapping of input space to high-dimensional feature space.

Converts high-dimensional data into a matrix of pair-wise similarities using conditional probabili-
ties, and variation of stochastic neighbor embedding.

TABLE 5. Supervised algorithms.

Algorithm

Description

Linear Regression (LR) [39]

Polynomial Regression [40]

Logistic Regression [41]

Neural Networks (NN) [42], [43]

Support Vector Machines (SVM) [44]

Naive Bayes [45]

k-Nearest Neighbor (kNN) [46]

Decision Tree (DT) [47]

Random Forest (RF) [48]

Curve fitting regression technique for linear functions; the hypothesis function is linear.

Curve fitting regression technique for non-linear functions; the hypothesis is a linear model of basis
functions (linear, polynomial, Gaussian Radial Basis Function (RBF), sigmoid, etc.)

Classification technique to identify decision boundary; the hypothesis function is sigmoid.

Performs classification & regression; capable of modeling highly non-linear relationships with large
feature space; parametric model; can represent complex logic operations & comprises input, hidden
& output layers with activation functions (threshold, logistic, arctan, gaussian & relu); and types:
convolutional, and recurrent.

Large margin classifier; classifies non-linear data by introducing slack variables; SVM is found by
minimization formulation under constraints that are overcome by the use of a Lagrangian multiplier.
types: linear, and kernel.

The parametric approach for likelihood estimation assumes that the data features are independent.

Non-parametric approach for likelihood estimation; classifies a data point to the majority class among
k Neighbors;

Recursive, partition-based tree model that predicts a class based on split points; the algorithm takes
leaf size and purity threshold as inputs; the process stops when leaf size or purity threshold is reached.

Collection of low-bias, high-variance trees; and outputs mode of the classes or mean prediction.

TABLE 6. Unsupervised algorithms.

Algorithm

Description

K-Means Clustering [49]

Expectation Maximization Clustering [50]

Gaussian Mixture Clustering [51]
Hierarchical Clustering [49]
Density-based Spatial Clustering of Appli-
cations with Noise (DBSCAN) [52]

Association Rules [53]

Collaborative Filtering [54]

The representative-based technique includes steps of initializing cluster centroids, grouping data points
to nearest centroids, updating centroids, and uses euclidean distances & variables are to be quantitative.

The representative-based technique includes steps of initializing cluster mean, calculating posterior
probability, and re-estimating means, covariance & priors.

Fits k-Gaussians to cluster the data. The result is the weighted average of K-gaussian distributions.

Involves creating a sequence of nested partitions that can be visualized by a tree or hierarchy of
clusters.

Density-based clustering that computes neighborhood to classify data points into core, border & noise
points while also using a threshold called minimum points (minpts).

Usually applied in market basket analysis, text mining, web usage mining, linguistics mining, etc. to
determine the co-occurrence relationships or associations between all items in the database.

Generally employed in recommender systems where preferences of a target user are predicted based
on the user searches where users are similar to the target & mining on their preferences.

smart grids using Hadoop as shown in Figure 5a and using
Storm as shown in Figure 5b. We also discuss the proposed
platform and technologies for big data analytics for smart
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grids using Spark (shown in Figure 5c) [55], [56]. The
major components perform the collection, storage, process-
ing, visualization, and querying of data. There are a variety
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FIGURE 5. Architecture for big data analytics platform.

of workloads present in the scenario of massive-scale data
analytics. A combination of these workloads will present a
potentially effective solution for the business goals in the
scenario of smart grids.

A. EVOLUTION OF BIG DATA TECHNOLOGIES

When dealing with massive-scaled data, the framework
was initially developed for the processing of offline large
datasets. Apache Hadoop and MapReduce models provide
open-source software frameworks for the distributed pro-
cessing of offline data spread across data nodes or clusters
using simple programming paradigms of the map and reduce
functions. MapReduce abstracts from distributed program-
ming but it still requires programming to a certain level.
Moreover, MapReduce is efficient for batch tasks and not for
ad-hoc queries or iterative processing. If the offline analysis
or background task of indexing websites is required, then
MapReduce is a suitable option. Hence, the combination of
a distributed file system and MapReduce is suitable for write
once and read many, or sequential data access, but not for
random read or write access applications [57]. Yet, random
read/access is required for the online analysis of data or the
ad-hoc querying.

As a solution to the ad-hoc querying issue, Not only
SQL (NoSQL) databases can be used. NoSQL Databases
are of two types [58]. These are mentioned in the following:

o Column databases: A column-oriented database is a

database that stores data in columns rather than rows.
Furthermore, it is very effortless to add columns and
these columns can be added row by row as well. The
databases offer great flexibility, performance, and effi-
ciency. Also, the performance of the column databases
can be significantly enhanced by compression, late
materialization, and batch processing.
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Examples of column databases include BigTable, HBase
in Amazon Dynamo, Google Bigtable, Apache HBase,
etc.

« Key-value stores: These are distributed data structures
that provide key-based access to data and are also called
Distributed Hash Tables.

An example is Apache Cassandra.

NoSQL Databases are very efficient when dealing with
massive-scale data even if the data type is unstructured or
semi-structured. However, the only disadvantage is that these
do not offer SQL-like querying. To make querying SQL-like,
many NoSQL databases have been evolved with the SQL-like
interface (Contextual Query Language (CQL) of Cassandra,
Hive, Pig, etc.). There are developments in the form of SQL
interfaces that can directly connect to the NoSQL databases
(such as PrestoDB, etc.). The SQL-like interfaced NoSQL
databases are termed as NewSQL and these possess the inher-
ent capability of organizing massive-scaled data and sorting
to enable efficient offline analyses (H-Store, Google Spanner,
etc.) [59].

There has been a massive growth in the availability of
digital data and the data are available in continuous streams.
Therefore, NoSQL databases have been evolved to cater to
the stream-processing solution with the fault-tolerant dis-
tributed data ingest systems such as Apache Kafka, Flume,
etc. [60]. Examples of stream processing solutions are
Apache Storm and Samsa. Also, there are standalone stream
processing frameworks that are faster. Additionally, there
have been solutions developed to employ OLAP-like pro-
cessing in the big data landscape. Built on top of data struc-
tures, there are now libraries available for machine learning
and big data analytics for real-time analytics processing. For
example, there is an Apache Spark framework that contains
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FIGURE 6. Apache Hadoop ecosystem [63].

machine learning libraries and can be used for massive-scale
data analytics.

B. APACHE HADOOP AND MapReduce
1) HADOOP FRAMEWORK
Heterogeneity, volume, performance, scaling, cost, and secu-
rity concerns of big data hinder the process of data analytics
at every stage [61]. Apache Hadoop is an open-source frame-
work that provides the distributed storage and processing
of big data. It consists of the core (for storage part) called
the Hadoop Distributed File System (HDFS), the process-
ing component that is the MapReduce programming model
and resource scheduler called Hadoop YARN (Yet Another
Resource Negotiator) [62].

Following is the list of modules in the Apache Hadoop
Ecosystem (as shown in Figure 6 [63]):

1) Hadoop core: Hadoop core contains a pre-defined col-
lection of utilities and libraries that can be used by
other modules within the Hadoop ecosystem [63]. For
instance, if the data access module such as HBase,
Hive, etc. needs to access the file storage system
in Hadoop, then these are required to build Java
Archive (JAR) files stored in the Hadoop core.

2) HDFS: The default distributed storage system in
Apache Hadoop is the HDFS. The huge datasets
are dumped in the HDFS and when required, access
to the data is provided to other Hadoop modules
using utilities [64]. HDFS component provides reli-
able and quick access to the data by creating several
copies of the data block and these copies are dis-
tributed across multiple clusters. HDFS works on the
master-slave architecture model and comprises three
components namely NameNode, DataNode, and Sec-
ondary NameNode [65].

3) Hadoop YARN: YARN is the dynamic resource man-
agement component that lets the user run multiple
Hadoop applications without having to worry about the
aggravating workloads. YARN provides for improved
cluster utilization. Key components of YARN are
Resource Manager, Application Master, Node Man-
ager, and containers.

4) Hadoop MapReduce: This is a framework for parallel
computations of massive data sets.

2) MapReduce PROGRAMMING MODEL
MapReduce model is employed for the parallel computation
and interpretation of massive-scale data and has three stages:
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map, shuffle, and reduce [66]. All the jobs are written in
a functional programming style to create map and reduce
tasks. Dynamic systems for the MapReduce model are com-
monly clusters that perform tasks such as data partitioning,
scheduling of jobs, and communication between the clus-
ter nodes and hence, are more suitable when dealing with
massive-scale data. In the map phase, the data are read from
the DFS and partitioned into clustered systems where the
input is processed to compute the intermediary results which
are then stored on the local node of the cluster where the map
phase has run and waits for all the map functions to generate
output in key-value pairs. The output in key-value pairs is
then given as input to the reduce function to generate the final
result. The advantage of the MapReduce model is that it takes
processing to where the data resides and hence, decreases
the transmission of data and improves efficiency. Therefore,
the MapReduce model is more apt for the distributed com-
puting of massive-scale data. The summary of the Hadoop
module is illustrated in Table 7 [67].

TABLE 7. Summary of Hadoop module.

Function

Data acquisition from varied
sources to a centralized location
Sqoop Data Import & Export between
centralized location & Hadoop

Stage Software
Flume

Data Acquisition

HDFS Distributed File System
HBase Non-relational key-value based
columnar data store

Data Storage

Computation MapReduce A parallel computation program-
ming model
Queryin Pig Procedural Data Flow platform
Tymg Hive SQL like language for querying
Analysis Mahout Machine Learning Library
Zookeeper  Centralized service to maintain
Process Management Lo .
configuration information & syn-
chronization.
Chukwa System Monitoring

Hadoop has provided for storing and analyzing data at
massive scales. However, data analytics technology cannot be
applied to real-time systems [68]. The advent of the Internet-
of-Things, smart meters, and devices has led to the possibility
of real-time analysis of data for the benefits of business
and many other advantages such as smart grid stability, and
management. The real-time handling of data falls under one
of the categories: Stream processing or Iterative processing.
The stream processing framework would work efficiently for
big data analytics in the smart grid for real-time decisions
about generation, control, etc.

C. APACHE STORM

It is a scalable and distributed framework for reliable com-
putation and processing of streams of real-time data with
processing latencies in the order of milliseconds. Apache
Storm can ingest the data from multiple sources using Kafka
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or Kinesis. A storm cluster is very alike to the data cluster
in Apache Hadoop [69]. In Hadoop, MapReduce jobs are
executed while topologies are executed in Apache Storm.
Topologies are very similar to jobs, but topologies process
messages or data forever until these are killed.

In a Storm cluster, there are two types of nodes, namely
master node and worker nodes [70]. A background process
called Nimbus runs on the master node and this is analogous
to Hadoop’s job-tracker. Nimbus process distributes the code
in the cluster i.e. assigns tasks to the machines and moni-
tors for any failures. On the machines other than the master
node, the process called Supervisor runs and it listens for
the work assigned to its machine by the Nimbus daemon.
It starts and stops the worker node process depending upon
the task assigned to the machine. Every worker process runs
a subset of topologies. That means the execution of topol-
ogy requires multiple worker processes that are assigned to
different machines across the cluster. It requires coordination
between Nimbus daemon and Supervisor processes and this is
taken care of by Zookeeper which is the coordinating service
in the distributed environment [71]. Zookeeper takes care of
naming, configuration, synchronization, etc. The important
point to note is that all daemons in the Apache Storm are
stateless and fail-fast and these come back up even if these
are killed by issuing manual commands. This provides for
the stable and reliable real-time analysis of big data.

D. APACHE SPARK

Apache Spark is an open-source cluster computing frame-
work for analyzing massive-scaled data. It was originally
developed by Matei Zaharia at UC Berkeley AMPLab [72].
Spark has the capability for stream processing of big data and
has many advantages over Hadoop MapReduce and Storm.
In Apache Spark, data analytics is more stream processing
than batch processing and hence, it avoids the reprocessing
of the data [73]. This provides the stream processing model
of Apache Spark to be dynamic and it becomes more crucial
during the real-time processing of huge volumes of data
collected from different sources. Even for iterative process-
ing, the leading framework currently is Apache Spark as it
possesses the capability of processing and holding the data in
the memory nodes across the cluster.

1) CHARACTERISTICS OF APACHE SPARK

o Speed: Spark extends the MapReduce model to exe-
cute computations of stream processing and interactive
querying. In literature, it is proven to be 10 times faster
than the Hadoop MapReduce model.

« Ease of Use: Applications written in any language such
as Java, python, scala, etc. are compatible with Apache
Spark.

o Advanced Analytics: Spark supports the MapReduce
model of Hadoop, SQL-like querying, streaming data,
machine learning algorithms, and graph algorithms as
well.

59574

o Iterative and Interactive Applications: Spark is
designed to execute both in-memory and on-disk.
It holds the intermediary results in memory rather than
writing to disk to avoid reprocessing the data if required
again. Spark operators perform external operations on
the data if it does not fit into memory.

o In-memory Computation: The data is stored in mem-
ory rather than written on disk. Hence, Spark reduces the
response time to a great extent when the data is queried.

o Directed Acyclic Graph (DAG): DAG in Apache
Spark is a set of vertices and edges where the ver-
tices are the representations of the Resilient Distributed
Datasets (RDDs) while edges represent the operations to
be performed on the RDDs. DAGs in Spark can contain
any number of stages. Even the MapReduce model of
Hadoop is a DAG of two stages - Map and Reduce. This
allows for simple jobs to be completed in one stage and
more complex jobs to be completed in one run of many
stages unlike multiple jobs in the MapReduce model.
Thus, jobs in Spark execute faster than they would in
the MapReduce paradigm.

2) SPARK FRAMEWORK
Other than core Spark, there are multiple components

in the Spark ecosystem. These components as shown in
Figure 7 [74].

Machine
D Spark Learnin,
Coreand SparkSQL . P2 Arming G raphX
RDD Streaming  Library

(MLib)

Apache Spark
FIGURE 7. Apache spark [74].

Spark Core is the base of all the Spark projects and
it allows basic input/output operations, distributed task dis-
patching, and scheduling through an Application Program-
ming Interface (API) centered on RDD abstraction. RDD is
a read-only collection of objects partitioned across a set of
machines and it can be rebuilt if any of the partitions are
lost [75]. RDDs are fault-tolerant, can be cached in-memory
across machines, and can be reused in MapReduce-like
simultaneous computations.

Spark SQL: Spark SQL is the Apache Spark module that
is commonly worked with structured data. It lies on top of
Spark core and is used to execute SQL queries. It intro-
duces the schema RDD which can be manipulated. Users can
interact with the SQL interface using the command line or
over Open Database Connectivity (ODBC), Java Database
Connectivity (JDBC) server, etc.

Spark Streaming: It is the component of the spark
that enables the processing of live streams of data. Spark
streaming gives a programming interface for processing data
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FIGURE 8. Stream processing using Apache spark.

streams. It resembles the Spark core’s RDD API, pushes
data in small chunks, and does RDD transformations on the
batches of data.

MLib: Apache Spark comprises a library with common
machine learning functionality and this library is called
MLib. It processes data faster when compared to Hadoop’s
disk-based machine learning library called Mahout.

GraphX: The GraphX API provides for users to view
data in graphical format and to view RDDs without data
movement or duplication. It uses the fundamental operators
such as subgraphs, joinVertices, aggregateMessages, etc.

The summary of the proposed module of Spark on top of
Hadoop is illustrated in Table 8.

TABLE 8. Summary of Apache spark module.

Stage Software Function
- Flume Data collection from sources to a
Data Acquisition . .
centralized location
S Data import and export between
qo0p centralized location & HDFS
Data Storace HDFS Storage of data across nodes with
& high bandwidth across the cluster
HBase Column-oriented key-value data
store to store spark data sets
Processing Spark Computation framework
Streaming
Querying SQL SQL-like language for querying
Analysis MLib Machine learning libraries
Visualization GraphX Visualizations

E. APACHE DRILL

It is an open-source software framework that provides for
data-driven distributed applications requiring interactive pro-
cessing of massive-scaled data. Apache Drill is the first and
only distributed SQL engine that does not require schemas.
Drill automatically understands the data when data are pro-
vided. This saves a lot of time and effort in defining schemas,
transforming data, and maintaining those schemas. It is
designed to handle Petabytes (PBs) of data spread across
thousands of clusters and it responds to ad-hoc queries with
high performance and low latency.

It is a query layer that functions even when multiple data
sources are present. It primarily scans the full tables instead of
maintaining indices. The workers in Apache Drill are named
Drillbits and run on each of the data nodes in the cluster. The
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coordination between the drillbits, optimization, scheduling,
and execution is performed in a distributed way.

The architecture of Apache Drill contains the following
components:

User interface: It provides an interface for the user
or application-driven interaction. For example, interface
through a command line, Representational state transfer
(REST), JDBC, ODBC, etc.

Processing layer: It comprises SQL Parses, Optimizer,
Execution Engine, and Storage Engine.

Data Sources: The data in the pluggable data sources may
be spread across thousands of nodes (in-cluster) or they can
be local.

The comparison of the different frameworks can be
summed up as shown in Table 9.

V. APPLIED SOLUTIONS FOR BIG DATA ANALYTICS IN
SMART GRIDS

As mentioned before, there are few works that have been
reported in the literature for big data analytics specifically
in the smart grids. In particular, there are only a few com-
mercial solutions available in the market. One of the ear-
lier practical works on big data analytics was based on the
Naive Bayes classification method using the MapReduce
paradigm for novel transient power quality assessment [76].
In [77], the authors proposed a cloud-based architecture using
Hadoop, Cassandra, and Hive for big data analytics in a smart
grid using the data on power usage patterns of customers,
historical weather data, supply and demand data.

In [78], Munshi et al. presented an implementation of
cloud-based Lambda architecture for smart grid big data
analytics using Hadoop data lake. The Lambda architecture
is aimed to provide a trade-off between latency throughput
and fault tolerance while providing the batch and stream
processing capabilities for parallel computation of arbitrary
functions on distributed data. The Lambda architecture is
based on three layers aptly named as a batch layer, speed
layer, and serving layer [79]. The batch layer is required to
perform two tasks including the storage of data in a dis-
tributed manner and the computation of batch views for the
distributed data for low latency. The speed layer utilizes an
online technique to store and update the real-time views of
the recent data which have not been considered by the batch
layer. The serving layer is a specialized distributed database
that integrates the data views provided by the batch and speed
layers with an aim for real-time and online big data analytics
in smart grids. The authors have integrated the capabilities
of tools such as Hadoop, Spark SQL, Hive, Impala, etc., and
depicted generalized, low latent, scalable, and robust results
for smart grid big data analytics.

In [80], several challenges faced at each stage of perform-
ing big data analytics are presented. These challenges can be
classified into three categories: data acquisition and handling,
data processing, and system issues [81], [82].

In data acquisition and handling, the challenges are related
to the competent presentation of heterogeneous data to reflect
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TABLE 9. Comparison between different frameworks for big data analytics.

Features Hadoop Storm Spark Drill
Source Code Open Open Open Open
Complexity Simple Simple Simple Complex
Type of Processing Batch Processing ~ Real-time Stream Processing Real-time Stream Processing Interactive Ad-hoc Querying
Latency High Low Low Low
the diversity, hierarchy, and granularity of data. Also, the raw
datasets.often contain re@undagcy that nee.:ds t.o be re(.luced i Grid Control Planning
along with data compression without deteriorating the infor-

mation in the data. Data life cycle management is of utmost
importance because of the availability of huge amounts of
data and the current storage systems cannot store the mas-
sive data available at an unprecedented rate. Therefore, there
needs to be a practical system where the data is analyzed on
the go and for that, the stream processing framework using
HDEFS and Apache Spark has been proposed in this paper.
The system challenges for analytics are faced with massive
storage and high-speed processing. Furthermore, there are
concerns about privacy and security since the data might
contain personal information.

In data analytics, the challenges posed are that of huge
data and the requirement of real-time processing. One of the
solutions to these challenges could be approximate analytics
providing approximate but real-time results. Mining on social
media and customer feedback could present challenges as the
data is generally unstructured.

Solving these challenges requires the use of large-scale
parallel systems that further brings additional challenges such
as energy management, scalability, and real-time collabora-
tion. The energy usage of the large-scale parallel systems
has been alarming due to massive data volume and analytics
demand. Hence, system-wide energy management techniques
should be utilized in big data system solutions.

In the smart grid discipline, a cloud-based platform project
has been presented in [12] where the University of South
California microgrid was deployed as a testbed to transform
the electrical utility into a smart grid in the future.

The challenges and solutions to handle big data from smart
grid units have been researched in academics and indus-
trial centers. Solutions have also been implemented at the
commercial level by a few utility companies. These utili-
ties always strive to meet the goals of moving to a smarter
grid to support distributed generation, distribution automa-
tion devices, providing new products and services, improving
operational efficiency, and finally enhancing the system reli-
ability. Some of the prominent industry efforts are described
in the following:

A. ACCENTURE SOLUTION

Accenture proposed a system that uses grid observability to
drive performance (Fig. 9) and to govern five distinct smart
grid data classes such as operational data, non-operational
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data, meter usage data, event message data, and meta-
data [83]. All the classes of data should be treated and
managed differently owing to their inherent characteristics
and different sources. The architecture was aimed to over-
come the challenges of corresponding the data collection
infrastructure to the desired outcome, application of tools to
manage massive-scaled data, and analysis of master data to
benefit from smart grid potential. The commercial solution is
proposed to discover the information through the components
as shown in Figure 9.

The provided solution explains the analytical aspects of the
proposed architecture, however, it does not provide detailed
information on the data treatment, management, and storage
processes.

The Accenture architecture named Intelligent Network
Data Enterprise (INDE) has the following components:

o The software layer in the architecture acts as a layer
between the grid data sources and the current utility
enterprise IT platforms. It aims to integrate the data
from various sources to enhance the utility business
operations and customer operations.

« The integration layer is prevalent to provide a unifying
platform to the smart grid ecosystem products such as
smart meters, communication lines, sensors, and other
electrical network components.

o The visualization layer is provided to observe and mon-
itor the different components in the grid. It also aims
to recognize patterns in the raw data to correlate with
different events and metadata.

The implemented solutions by Accenture at their clients’
sites indicate their emphasis on the following five major
application areas for smart meter data [84]:

« Enhancing outage management: The main goal of
smart meter analytics has always been to enhance outage
management. Outage management can be enhanced if
the disturbances in the electric network are accurately
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predicted, localized, and restored by integrating the out-
age notifications, sectionalizing, and reclosing systems.

o Power quality assessment: The smart meter data can
be used to monitor the quality of power at every point
in the electrical distribution network. The fluctuations in
the frequency and voltage can cause damage or failure to
the electric equipment. The remote assessment of power
quality can help utilities to investigate legitimate claims
of customers saving field effort and time.

o Protect customers and detect losses: The system
should protect the interests of all customers by detecting
different losses including technical and non-technical
losses in the electrical network. The non-technical losses
occur when the customers tamper with electrical meter
readings to reduce their bills. The integration of data
from feeder meters and smart meters into the work man-
agement system will help utilities to identify electricity
theft and investigate claims easily.

o Renewable energy forecasting: The generation of
renewable energy is increasing in the grids. This calls
for the proper management on part of the grid operator.
Renewable energy is less predictable. However, accurate
forecasting should be in place by integrating the data
from smart meters and weather stations. This would help
in the operational and investment decisions of utilities.
With accurate forecasting, the grid operators can sta-
bilize the supply and quality of power throughout the
electrical distribution network.

o Future market developments: Long-term planning is
required for balancing generation and load demand, flex-
ible energy tariff planning, etc.

B. IBERDROLA
Big Data techniques are used to yield knowledge manage-
ment solutions to control high turnover environments and
to minimize the impact on call centers. Iberdrola has a part
of its ambitious Digital Transformation Program [85] in the
use of big data techniques. The company group targets to
invest 4.8 billion euros in the digital transformation between
2019 and 2022 to boost the performance and conservation
of its assets using data analytics and artificial intelligence.
Digital analytics provides for creating an analytical environ-
ment to inspire knowledge that aids to maintain the three lines
of business: Networks, Renewables, and Customers. Some
examples of these applications are:
¢ Detection of non-technical losses and design of opti-
mal time-of-use tariffs with the use of customer load
curves to improve energy utilization [8]. The company
has installed more than 11 million smart meters in
Spain, generating 240 million registers every day. Big
data techniques over an estimated volume of 90 billion
registers per year are being used to improve revenue
collection and to optimize energy use.
« Improvement of the operation and maintenance of the
utility’s assets expanding the availability of its gen-
eration plants. For example, in the U.S., Iberdrola is
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saving $3 million monthly by feeding wind turbine
power generation data across multiple wind farms to
develop curtailment optimization plans [86]. Iberdrola
is leading a five-year project called Romeo, €16 mil-
lion EU Horizon 2020 project, aiming at the reduction
of the preservation cost of wind turbines using predic-
tive machine learning algorithms, artificial intelligence,
and cloud computing [87]. Utility’s relationship with
the customers can be transformed by the development
of applications such as managing electricity consump-
tion from mobile phones or scheduling electric vehicle
charging [85]. Big Data techniques are also used to
provide knowledge management solutions to command
high turnover environments and prune the impact on call
centers.

C. ITRON-TERADATA SOLUTION

Itron-Teradata architecture is established on active smart grid
analytics (ASA) as depicted in Figure 10. As per the solu-
tion, the data warehouse actively provides strategies for the
parallel ingestion of massive-scale data from varied sources
and executes complex analytics for applications such as
energy diversion detection, power quality, demand response,
transformer load management, load forecast, customer pro-
filing, etc. The data arrive triggering actions and activating
workflows [88]-[90].

ASA is based upon the comprehensive Utility Logical Data
Model (ULDM) of smart grids’ data. The ASA solution helps
the customers through self-service with insight on how to
convert their usage to green energy, to make savings in energy
and billing, etc. The solution assists the utilities to develop
communication channels for customer-utility interaction and
to invest in assets that boost customer experience. Also,
the regulatory agencies benefit from the ASA solution with
insights on the efficiency standards of operations, the per-
centage of energy from alternative sources, the fair pricing
of energy, etc.

D. INTERNATIONAL BUSINESS MACHINES (IBM)
SOLUTION FOR E.ON

Since 2013, IBM has worked on the smart metering infras-
tructure on the private cloud for E.ON with an aim to enhance
the deployment and management of smart meters and to help
incorporate renewable energy sources easily into the current
grid [92]. The platform addresses the challenges of high data
storage, low speed of report generation and analytics, etc.
With the platform, customers have better control of the energy
usage with information on their usage profile, on electricity
tariff for the time of use, and on changes in consumption
patterns when compared to their historical data. IBM intends
the platform to be scalable with low startup and operational
costs in order to provide for future growth. The platform has a
high emphasis on ensuring the privacy of sensitive customer
data, however, the data would be retained for a longer time to
help with the emerging regulatory requirements in the future.
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FIGURE 10. Service-oriented architecture of Itron-Teradata solution [91].

E. USA EXELON

Since 2014, Baltimore Gas and Electric (BGE) and Exelon
have been working on a project by employing C3’s
cloud-based data processing platform to control the working
of millions of smart meters installed in the regions of Chicago
and Philadelphia Electric Company (PECO) utilities [93].
They have been successfully tapping the data from the smart
meters with an aim to locate and avert energy theft. They
employ machine learning algorithms to encode every rule
of meter tampering and unbilled power delivery as these
change over time. The algorithms also integrate various types
of data from systems in place for the management of data
from meters, outage prevention, user profiling, billing, and
asset management. These applications led to the program of
Business Intelligence Data Analytics (BIDA) and the solution
of Data Analytics Platform (DAP). The solution supports the
domains of business support, customer service, smart energy
services, grid management, and AMI with a vision to assist
future utilities, energy regulators, and customers.

F. KOREA ELECTRICAL POWER CORPORATION (KEPCO)

KEPCO launched two projects to use big data analytics on
smart grids’ data to improve demand management, and load
forecasting and has been achieving considerable success in
its goals ever since [94]. The first project helps customers to
save electricity by comparing similar customers energy con-
sumption data and allows KEPCO to prevent brownouts and
manage load demand. The second project involves analyzing
the business risks of blackouts, user complaints, weather
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changes, climate change statistics with the aid of social net-
working data, internet data, and complaints.

The companies do not explicitly describe their commercial
solutions and do not release the information of the compo-
nents of data management architecture in detail. However,
noticing the potential of big data analytics to manage the
demand-side response and user service, the utilities have
now and again been cooperating with IT companies to tap
the potential. This paper has also presented our proposed
architecture aiming for the streams data processing to provide
real-time information and visual analytics.

VI. APPLICATIONS OF BIG DATA ANALYTICS IN

SMART GRID

This section discusses a few of the potential application areas
which would avail from the big data analytics in the smart
grid. It also details the previous application-based works and
their proposed methodologies.

A. FAULT CLASSIFICATION AND IDENTIFICATION

The invention of the smart grid was driven by the need
for clean and alternative forms of energy. The utilization of
distributed energy sources in distribution grids brings the
integration of renewable energy sources to reality. The micro-
grids allow for energy generation closer to load and hence,
assist the improvement of power delivery and reduction in the
power transmission losses. Furthermore, the microgrids can
be used in islanded mode, and consequently, the loads can be

VOLUME 9, 2021



D. Syed et al.: Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications

IEEE Access

protected from the damages resulting due to fluctuations in
voltage and frequency [95].

The fluctuations of the energy produced by renewable
energy sources bring uncertainty in the energy generation
from distribution grids. Usually, Inverted Integrated Distri-
bution Grids (IIDG) are used to improve the power quality in
microgrids. However, these IIDGs have low inertia and hence
if the faults caused in microgrids are not detected and cleared
in short times, this is a huge threat to the microgrids. The
classical approaches to fault identification and clearing [96]
are based on the measurement of overcurrent and negative
sequences of current. These approaches are not suited to
microgrids due to their low current capacity. The statistical
features are extracted using the wavelet transforms on the
current measurements in the branches sampled by protective
relays. The deep learning model is developed with the train-
ing data available on the statistical features to detect faults,
classify them, and localize the faults in [97].

B. PREVENTIVE MAINTENANCE

The pieces of equipment of the power grid are vulnerable
to failures and a robust plan for preventive maintenance of
equipment, devices, etc. in the power grid can play a crucial
part in reducing the probability of occurrence of failures in
the power grid. Preventive maintenance can signal for and
provide maintenance for equipment before these fail and
hence, will avert major events and disruption of power supply
for long periods. The integration of renewable energy sources
at the distribution level of grids through microgrids supply
clean energy. Nevertheless, the uncertainty of supply and
fluctuations of frequency and voltage increase vulnerability
to failure. It is required that the occurrence of failures is
detected before failure and the clearance time is averted
using preventive maintenance. Preventive maintenance is cat-
egorized into two types - time-based and condition-based.
In time-based maintenance, the components are subjected to
maintenance at periodic intervals of time irrespective of their
condition. This approach does not utilize the service life of the
components efficiently. Condition-based maintenance mon-
itors the health of the components and draws a correlation
between the current status and future faults of the components
so that the future maintenance plans are scheduled [98]. One
of the approaches to prognostic maintenance is the design of
a proposed integrated fault detection system developed after
analysis of the data from SCADA and Pole Mounted Auto
Reclosers (PMARs) [99]. PMAR is a breaker that trips for
intermittent fault currents and closes automatically to supply
the power after a short duration of time nonetheless, it stays
open for a permanent fault.

A reinforcement learning-based framework is proposed
in [100]. The framework monitors the health of the equip-
ment, models the degradation, and computes the remaining
useful life of the grid components. The framework tested
on a case study on the power grid performs with good
approximation capability by using an ANN ensemble model.
All of the data or subset of data from grid operations data,
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weather information, diagnostics data of the relay protection
systems, galloping of power lines, fault tolerance current, and
voltage signals have been used for the design of data-driven
models for preventive maintenance in the power grids. Dif-
ferent machine learning models such as SVM [101], extreme
learning machines [102], Long Short Term Memory (LSTM)
[103], hybrid ensemble models [104], etc. are used to build
data-driven models. The correlation between the actual faults
that have occurred in the past and the features extracted
from the data has been studied. These analyses models and
studies are required to have high learning without iterative
computations to converge faster, predict with higher accuracy
and earliness. This would be an ideal solution for big data
analysis for predictive maintenance.

C. TRANSIENT STABILITY ANALYSIS

Transient stability analysis (TSA) is performed to study the
safe operation of the power grid. However, the challenges
to the TSA these days are the integration of intermittent
renewable energy sources at the distribution level, fluctuating
demand of load, and deregulated energy market. The efficient
approaches that extract information and patterns in the highly
redundant records of big data are required for TSA. The
techniques for TSA can be classified into automatic learn-
ing approaches, direct techniques, and time-domain tech-
niques. Automatic learning approaches have edge over direct
and time-domain techniques for real-world applications. The
direct techniques [105] have demerits in the construction
of energy functions for large-scale power systems whereas
time-domain techniques are computationally inefficient for
real-time applications [106].

Steady-state variables are used as features for TSA in [107]
thus avoiding the use of time-domain simulation. The
approach takes into account the size of the electrical network,
the topology, the location of a fault, and operating status.

In [97], Yu et al. used time-series synchrophasor measure-
ment data under different simulation contingency models to
train the deep learning model of LSTM for online-assessment
of transient stability status post-contingencies. Although the
training of the TSA LSTM model was computationally
expensive and time-consuming, the time adaptive nature
and self-learning of temporal dependency by the LSTM
model achieve better test accuracy and highly responsive
time. Moreover, to reduce the training time, simpler mod-
els such as Extreme Learning Machines (ELMs) that are
single-layer neural networks are used [108]. To address the
uneven class distribution of power systems’ data with a higher
number of data points representing stability and a lower
number of data points representing contingency condition,
Baltas et al. proposed a response-based ensemble model of
diverse ELM [109].

Rahmatian ef al. worked on the implementation of transient
stability assessment in real-time using characteristic features
of voltage and current phasors from PMU data, Classification
and Regression Trees (CART), and Multiregression Adap-
tive Regression Splines (MARS) models [110]. The models
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predict if a situation is stable or unstable using CART and
applies MARS along with online TSA to indicate the level of
severity of a contingency and instability of the system with
high accuracy.

D. HEALTH MONITORING

Failure in crucial components of the power grid such as
transformers, etc. will lead to brownouts or blackouts in the
electrical grid network. It is crucial that the health of the
electrical components in the grid is monitored. Classically,
the monitoring system is based on a threshold mechanism that
monitors different parameters and readings for different grid
components.

The uncertainty and intermittent nature of renewable
energy sources at the distribution level bring uncertainty
in the life estimation of crucial components such as power
transformers, etc. In [111], Aizpurua et al. proposed a prob-
abilistic health monitoring framework for power transform-
ers by using a probabilistic forecasting approach along with
Monte Carlo-based Kalman-filtering techniques. The lifetime
estimation of transformers in these models is adaptive as the
dynamics of smart grids is propagated to the power transform-
ers to determine the probabilistic thermal model and lifetime
model.

There are different artificial intelligence-based approaches
used for health monitoring using big data in smart grids.
These include artificial neural networks [112], deep learning
models [113], expert systems [114], fuzzy logic [115], [116],
genetic algorithm [117], etc.

Mileta et al. analyzed the Mamdani model and
Sugeno-model in the fuzzy expert system to compute the
probability of occurrence of faults in the future and to deter-
mine the urgency of intervention or maintenance on the trans-
formers based on their current condition [114]. The models
utilized the online and offline data on historical and current
conditions of transformers’ age, lower oil level, frequency
response analysis, oil temperature, insulation temperature,
insulation degradation, polarization index, etc.

Hybrid models are utilized to overcome the shortcomings
of single models. For instance, a health monitoring system
was developed by Allen et al. for the health diagnostics
of building automation systems and variable air valve units
using a fuzzy logic model [118]. The fuzzy logic model
detected anomalies in the operating conditions and generated
fault signatures. The neural network-based model was used
to classify the fault signatures into different faults. The mon-
itoring of the health of the components at lower granularity
ensures that the energy consumption observed at higher levels
is reduced and finally helps for energy savings, and efficient
monitoring.

E. POWER QUALITY MONITORING

When the frequency, magnitude, and waveforms of current
and voltage are steady and within the prescribed limits, it is
defined as power with high quality. Power quality also defines
the performance and health of the smart grid components
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and the accuracy of utility metering. With the integration
of non-linear sources of energy and power electronics-based
devices, the harmonics appear in the voltage or current waves
and it is essential that the power quality of the supply is
maintained for the health of the devices, sensors, and appli-
ances connected to the electric network. The power quality
issues are currently addressed using dynamic voltage regu-
lator, inverter, power quality monitoring, static synchronous
compensator, unified power quality conditioner, etc.

Power quality monitoring is performed using conven-
tional approaches through the integration of SCADA, AMI,
etc., or by using artificial intelligence-based approaches.
Multiple machine learning modeling such as Support
Vector Machines [119], decision trees [120], Bayesian
networks [121], k-Nearest neighbors [122], etc. have been
employed for monitoring power quality disturbances.

Wang et al. employed deep learning in each of the stages of
power quality classification i.e. signal analysis, feature selec-
tion, and classification [123]. They used a deep convolutional
neural network consisting of the 1-D convolutional layer
along with pooling and batch normalization layers for the
automatic extraction of features from disturbance samples.
They presented evidence in terms of accuracy and training
time cost that deep Convolutional Neural Networks (CNN5s)
performs better for applications of automatic power qual-
ity classification when compared to other deep learning
models such as gated recurrent networks, long short-term
memory, ResNet50, and stacked auto-encoders. To overcome
the non-distributed computing and feature extraction-based
power quality classification, Chen et al. presented an inte-
grated solution based on deep belief networks for real-time
and distributed power quality disturbance analysis [124]. The
developed models proved to have higher accuracy and more
robustness on distributed platforms, however, the training
time is also very high.

F. TOPOLOGY IDENTIFICATION
The topology identification problem in the smart grid
includes the identification of the structure of power distribu-
tion network, identification of customer phase connectivity,
and associating a customer with a transformer at the distribu-
tion level. The identification of phase connectivity is crucial
to the analysis of distribution system including distributed
network estimation, power flow analysis, optimal power
flow, distribution network reconfiguration and restoration,
load balancing, etc. Topology identification could be possi-
ble using specialized sensors such as micro-synchrophasors,
phase meters, etc. However, using a special sensor for each
customer is impractical and expensive. There are many
approaches developed to identify topology using the data
made available by the current infrastructure such as AMI,
SCADA, GIS, Outage Management System (OMS), and
besides machine learning approaches have been developed
using training data on field validated phase connectivity.
Voltage time series data have been utilized to extract
feature vectors after the application of principal component
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analysis and the authors have suggested that the voltage data
are predictive of the phase connectivity [125]. Afterward,
the k-means clustering approach has been applied to cluster
the different customers into the three different phases for
phase connectivity identification. The innovative model was
tested on a real distribution feeder and the test accuracy was
about 90%.

G. ENERGY THEFT

Energy theft is defined as the act of changing the electric-
ity consumption reading in order to reduce the bill through
physical approaches such as bypassing the smart meter, tam-
pering with meters, cyber approaches such as hacking into
a smart meter to change the energy consumption values,
etc. Data-driven approaches are currently applied to identify
energy theft and these approaches are classified into different
types depending on the type of available data. When the
smart meter data were not available, machine learning models
such as fuzzy clustering [126], SVM [127], etc. have been
applied to the annual energy consumption, and credit scores
were determined to identify theft detection. When the smart
meter data and theft cases data are available, then supervised
machine learning models such as neural networks [128], deep
learning models [129], etc. can be applied. Usually, energy
theft cases are not available or disclosed for research. In such
cases, the energy theft identification can be performed using
smart meter data, and network topology information can be
determined using state-estimation based approaches [130],
and other anomaly detection techniques [131].

H. RENEWABLE ENERGY FORECASTING

The renewable energy (RE) sources are environment-friendly,
clean, and unlimited replenishable sources of energy. Never-
theless, the uncertain and intermittent behavior of the supply
poses many challenges in the generation of power using
renewable energy sources. The reliable and accurate RE
forecasting helps in the grid operations, load management,
planning of capacity, scheduling of generation, regulation
of energy, etc. Multiple approaches including physical mod-
els, statistical models, machine learning approach, hybrid
models, etc. have been used to date for renewable energy
forecasting.

Physical models include the simulation of geographic char-
acteristics of an area. These models utilize weather forecast-
ing, geographical information, meteorological information,
etc. Physical methods require huge computational resources,
are less accurate and also, are not suitable for short-term fore-
casting. Statistical models apply mathematical modeling to
recognize the patterns in time-series data of renewable energy
sources. The methods such as Auto-Regressive Moving Aver-
age [132], Kalman Filters [133], Markov models [134], etc.
have been applied previously. With the widespread popularity
of machine learning models, these have been applied reliably
on renewable energy forecasting. The machine learning algo-
rithms include models such as linear regression [135], deci-
sion trees regression [136], multi-layer perceptrons [137],
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support vector machines [138], etc. Owing to the inherent
intermittent and non-linear nature of renewable energy sup-
ply, deep learning models have been found to be extremely
efficient and effective [139]-[141]. Deep learning models
such as deep belief networks, autoencoders, convolutional
neural networks, long short-term memory, deep learning
ensemble models, etc. have been applied to predict renew-
able energy from sources. The patterns of temporal changes
in renewable energy are captured in the parameters of the
deep layers. The high accuracy of renewable energy forecast
will help in the planning, and development of reliable, and
resilient integration of the sources in the distribution grids
through microgrids.

VIl. CONCLUSION

The review paper presents a comprehensive study of
technologies and techniques for big data processing. These
technologies are also applicable when dealing with data from
smart grids.

Apache Hadoop is the most suitable platform for big data
analytics when time is not a crucial consideration and when
batch processing of large datasets of offline data is required.
Apache Storm is best suited for real-time stream processing
of real-time data. Apache Spark is suitable for both batch
processing and stream processing. Whereas Apache Drill
is suited for data-intensive applications requiring interactive
processing of massive-scaled data. It can be concluded that
there is a need for a big data analytics platform that uti-
lizes different types of technologies for real-time solutions
in smart grids and also a middle-ware software is required to
integrate all of the technologies with reliability and stability.
Enterprises dealing with big data are required to address the
challenges of security, privacy, data handling, etc. Before
any big data techniques are employed in the smart grid, it is
always necessary to consider steps such as data acquisition,
data management, analytics, and visualization along with the
requirement of the real-time processing of data. This paper
has suggested the big data analytics technologies for the smart
grid to make the real-time processing of data a reality.

The paper presents that Apache Spark is more suitable for
both batch and real-time processing in smart grids. However,
Apache Spark does not provide its own distributed storage
system and hence, it requires a storage system provided by
a third party. Hence, the paper advises the installation of
Apache Spark on top of Hadoop so that the advanced analytic
applications provided by Spark can be used along with the
parallel distributed storage system of HDFS. The big data
analytics on the smart grids’ data will achieve proper man-
agement of renewable energy sources in the generation and
the distribution side.
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