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ABSTRACT In the vision task of a self-driving system, the use of visible light images to segment an
object often loses its functionality at night or in harsh weather. The far-infrared image shows different pixel
values according to the thermal radiation quantity of the object itself, so it can be adapted to perform well
at night and in harsh weather conditions. However, at the same time, it has insufficient texture features,
blurred object boundaries and temperature inversion, which has a great impact on the segmentation task
of traditional algorithms. In response to the above problems, this article proposes a far-infrared object
segmentation algorithm using deep learning. In the current popular encoding-decoding structure, multi-scale
pooling layers are used to obtain receptive fields of different sizes. This is used to solve the effects caused
by the blurring of infrared objects. The feature enhancement module is designed for the multi-receptive
field feature map, which can filter out the most versatile and highly semantic feature channels to reduce
the effect of temperature inversion on segmentation. The obtained high semantic feature map is guided
into the decoding structure and is fused with the features obtained by the encoder and the decoder. This
allows richer information to be obtained between different feature maps. Finally, we also release a new
low-resolution far-infrared segmentation dataset. Experiments are performed on three datasets, and the
segmentation result of the mIoU(mean Intersection over Union) reaches 70.59%, 30.98% and 60.67%.
A large number of experiments confirm the effectiveness and robustness of the network in far-infrared images
and verify that the dataset released in this article has strong reference significance.

INDEX TERMS Self-driving system, far-infrared image, multi-receptive field, feature enhancement.

I. INTRODUCTION
As the main direction of intelligent development in the global
automotive and transportation field, self-driving technology
with unique advantages plays an essential role in human
travel, showing its infinite value. With the advent of the
intelligent era, the industrial revolution represented by the
self-driving system and assisted driving systems is facing
enormous challenges while developing rapidly. In terms of
ensuring pedestrian safety, the use of computer vision tech-
nology to detect and locate pedestrians has become increas-
ingly mature. However, in recent years, self-driving vehicles
have caused many accidents and have even caused deaths.
These incidents warn us of the importance of producing
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self-driving cars that can find pedestrians or other objects
quickly and effectively, which is currently the most urgent
and practical problem.

Many self-driving cars now use visible light cameras to
classify objects that appear in front of them. At night or in
adverse weather conditions, it is difficult for visible light
cameras to obtain high-quality image data due to the influ-
ence of lighting conditions and other factors. This has a
substantial impact on object discrimination during driving.
Because of the above problems, the use of far-infrared images
can effectively improve the detection accuracy at night and in
harsh environments. The far-infrared camera filters out most
of the other light by adding different polarizers to the lens.
By receiving far-infrared rays from natural objects, sensors
obtain images after processing. The imaging quality depends
on the amount of infrared radiation from the object itself.
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It is not affected by other environmental conditions, such as
lighting conditions, and it can aid in the early identification of
pedestrians and other objects in the driving area. The imaging
quality helps the driver expand the blind field of vision and
increases the trustworthiness of the self-driving system. Far-
infrared technology is popular in this field due to its unique
characteristics. Figure 1 shows the performance of different
camera sensors in the same dark environment.

FIGURE 1. (a) Is the visible light image, (b) is the near-infrared image
and (c) is the far-infrared image.

There has been some work on the object detection of far-
infrared images [1]–[5]. However, object detection can only
provide the bounding box of the object, whereas pixel-level
object segmentation is more important for automatic driv-
ing. It can be used to distinguish the drivable area and
the detailed contour of the object, thereby providing more
rigorous conditions for the judgement and decision of the
self-driving system. Using traditional image processing algo-
rithms to segment objects is very common in visible light
images. It is regrettable that there are few texture feature
details of far-infrared images, and it is easy for the object
temperature to be reversed. At the same time, far-infrared
equipment is expensive, so the collected images tend to have
a low resolution, which brings about the problem of blur.
These problems make traditional methods perform poorly in
far-infrared image segmentation tasks. In recent years, deep
learning technology has been used in the field of visible light
image segmentation. We believe that deep learning method
can also be used for far-infrared images [7], [16]. However,
the current popular semantic segmentation method for deep
learning is not completely suitable for far-infrared images.
We need to optimize the characteristics and difficulties of
far-infrared images. Therefore, our goal is to design a neural
network algorithm with high robustness that can address the
above complex situations that appear in far-infrared images.

In this article, we develop a multi-receptive field and high
semantic guidance far-infrared image object segmentation
network model (FSGNet). The following are the main con-
tributions of this work.

(1) In the current popular encoding-decoding structure,
multi-scale pooling layers are used to obtain receptive fields
of different sizes. It has good adaptability to objects of dif-
ferent sizes and solves the sudden change in size caused by
the blurring of infrared objects. The feature enhancement
module is designed for the multi-receptive field feature map,
and the most versatile and expressive feature channels are
selected to reduce the effect of object temperature reversal
on segmentation. The screened multi-receptive field and high

semantic feature map are guided to the decoding structure and
are then merged with the features obtained by the encoder
and the conventional up-sampling operation. This reduces the
shortcomings caused by the lack of texture features in the far-
infrared image.

(2) We release a new dataset for far-infrared image seg-
mentation. Unlike the other two datasets used in this article,
our dataset uses a low-resolution far-infrared lens, which can
help the algorithm test the robustness under different resolu-
tion conditions and can make the algorithm more applicable.
At present, it consists of 1,000 low-resolution images, and
the initially released dataset has pixel-level annotations for
pedestrians. It also has object detection labels for pedestrians.
To the best of our knowledge, this is the first detection and
segmentation far-infrared dataset made with low-resolution
images. It will be available online for free academic usage.

(3) We test the algorithm in this article on three datasets,
and the segmentation results of mIoU reach 70.59%, 30.98%
and 60.67%.

The rest of this article will be arranged as follows. In the
second section, wewill present and compare the related work.
In the third section, we will introduce the algorithm and
dataset proposed in this article. In the fourth section, we will
show some experimental data and images and analysis the
experimental results. Finally, we will summarize the work of
this article and present the possibilities for future work.

II. RELATED WORK
Semantic segmentation is one of the key problems in the field
of computer vision. From the macro point of view, semantic
segmentation is a high-level task, which realizes the com-
plete understanding of the scene. As a core computer vision
problem, the scene understanding is important because more
and more applications infer knowledge from images. Some
applications include autopilot, human-machine interaction,
virtual reality, and so on. In recent years, many semantic
segmentation problems are being solved by deep structure
with the popularity of deep learning. The most common one
is convolution neural network. It is much more accurate than
other methods.

A. FAR-INFRARED IMAGE SEGMENTATION
In past work, most scholars have used traditional image pro-
cessing algorithms to segment objects in far-infrared images.
Deckers et al. [6] use low-resolution infrared array sensors
to segment pedestrians. In the initial stage, they use sensor
fusion to collect data. After azimuth correction, the posi-
tion difference obtained by different sensors is used as a
condition to judge whether a pedestrian is present. Simulta-
neously, Gaussian fuzzy and conditional random fields are
used to improve the segmentation accuracy of the algorithm.
Brehar et al. [7] performed a lot of image enhancement
techniques on the far infrared data set. And use ERFNet
to segment the processed far-infrared image, and achieve
good segmentation results. However, they only applied the
methods in visible light image segmentation to far-infrared
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images, and did not propose corresponding improvements
for far-infrared images. Liu and Zhuang [8] suggests that it
is difficult to pre-define filters based on prior knowledge,
so they first use fast generalized fuzzy C-means to recon-
struct the image and then analysis the clustering center and
use an adaptive threshold segmentation algorithm to obtain
the final mask image. Wang et al. [9] propose a three-step
method for pedestrian segmentation. First, a pavement hori-
zontal area estimation algorithm is designed to detect possible
locations, and the vertical projection method is also used.
Second, the width of each pedestrian’s bounding box is very
important for the segmentation algorithm. Finally, they use
morphological operations to solve the problem of noise in the
results. Zhou et al. [10] first use a neighborhood-based multi-
projection algorithm to generate possible pedestrian positions
in a global model. Then, they build a local model based on
the pedestrian’s head. Finally, the global model and the head
model are merged to segment pedestrians. Qiao et al. [11]
propose a new pedestrian segmentation method based on
level sets. They use transformed convolution kernels to gen-
erate soft labels, which are used to enhance the edges of
the object. An adaptive weight function is used to adjust
the unevenness of the image. Based on the adaptively
adjusted edges, the model stops shrinking at the boundary.
Olmeda et al. [12] first searches for possible object areas
through the properties of local proportional phase symme-
try. Then, the generated high-probability area is sent to the
classifier for object judgment. This method filters out many
background areas, so the efficiency is higher than that of other
methods. Bai et al. [13] suggests that the symmetric informa-
tion of the object is useful, so the geometric symmetry infor-
mation of the object is generated based on theMarkov random
field theory, and then the pedestrian segmentation is com-
pleted using the fuzzy C-means clustering method. Piniarski
and Pawłowski [14] propose a region expansion algorithm
with double thresholds, which can effectively reduce the
possible object regions, thereby improving the segmentation
accuracy. Jin et al. [15] also suggests that in the case of a loss
of texture features, the object’s contour symmetry informa-
tion is very important, so the ellipse symmetry area is used to
construct the object pixel probability map. With symmetric
information and probability graphs, a new function based on
fuzzy clustering is constructed. At the same time, the local
similarity information based on regions is used to effectively
control the influence of noise and unevenness. He et al. [16]
presents an improved PCNNmodel. Firstly, the weight matrix
of the feeding input field is designed by the anisotropic
Gaussian kernels (ANGKs), in order to suppress the infrared
noise effectively. Secondly, the normalized spectral residual
saliency is introduced as linking coefficient to enhance the
edges and structural characteristics of segmented pedestrians
remarkably. Finally, the improved dynamic threshold based
on the average gray values of the iterative segmentation is
employed to simplify the original PCNNmodel. Experiments
on the infrared pedestrian image database have been built by
their laboratory. However, their algorithm was not verified

on the standard data set, and the segmentation object was
relatively single, and there was no large-scale verification on
multi- object data.

B. SEGMENTATION METHOD COMBINING INFRARED
AND VISIBLE LIGHT IMAGES
Visible light images can provide useful information, so some
scholars fuse visible light images and infrared images to
perform image segmentation. Sun et al. [17] design a neural
network that can extract the features of visible light images
and infrared images. Then, the two features are fused and
decoded. Finally, the object segmentation result is obtained.
Shivakumar et al. [18] propose a quick calibration method
for the alignment of visible light images and far-infrared
images and then design a convolutional neural network to
extract the features of the above two images. It is worth noting
that this network combines infrared images by using visible
light images independently. The method proposed in [19]
generates many spots on two types of images, and the spots
correspond to pedestrians. After the image is geometrically
calibrated, the homograph between the spots is calculated
according to the parallax of each spot pair. Finally, a mul-
tilayer tracking algorithm and background model are used to
complete the segmentation. The authors in [20] propose an
effective method using infrared images as the fourth channel
of visible light images. This combination gives the visible
light images more feature details, so that the segmentation
accuracy is improved.

C. VISIBLE LIGHT IMAGE SEGMENTATION METHOD
USING DEEP LEARNING
Convolutional neural networks initially achieved great suc-
cess in the field of object detection. In 2015, the proposal of a
fully convolutional network (FCN) pioneered the application
of convolution in the field of image segmentation [21]. FCNs
replace all the last fully connected layers of the network
with convolutional layers so that a 2-dimensional feature
map can be obtained. It then accesses Softmax to obtain the
classification information of each pixel, thereby solving the
problem of segmentation. In 2015, the SegNet model was
published by Badrinarayanan et al. [22]. Based on the seman-
tic segmentation task of FCN, an encoder-decoder symmetric
structure was built to achieve end-to-end pixel-level image
segmentation. The keys to SegNet’s semantic segmentation
network are down-sampling and up-sampling. During the
up-sampling process, the coordinate position of the largest
pixel recorded by the down-sampling is used. Zhao et al. [23]
suggests that many problems occur because FCN cannot
effectively handle the relationship between scenes and global
information. This article proposes a pyramid scene analysis
network PSPNet that can obtain global scenes. It can fuse the
appropriate global features, fuse local and global information
together, and finally embed in the FCN-based prediction
framework. At the same time, an optimization strategy for
moderately supervised losses is proposed, which performs
well on multiple datasets. Compared to FCN, PSPNet, etc.,
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FIGURE 2. The overall structure of FSGNet.

UNet [26] has a total of 4 up-sampling processes and uses a
skip-connect structure with the same step size. It abandons
the design of training and backward propagation directly
on high-level semantic features to ensure that the recovered
feature map incorporates more semantic information. At the
same time, the feature maps of different scales are fused so
that multi-scale prediction and training can be performed.
By up-sampling 4 times, the edge and other information of
the restored image become more refined.

III. MATERIALS AND METHODS
A. THE OVERALL STRUCTURE OF THE NETWORK
Figure 2 provides the global structure of the FSGNet. In the
figure, we clearly indicate the three streams of the data.
In the first data stream, we encode the image on ResNet50.
The blue part of the overall structure of FSGNet represented
the ‘Transmission’. The pink stream part of the Figure 2 is
the feature extraction part of the network. It is also called
the coding process. Through the sub network, we can get
the features of the image. From the graph, the different scale
feature maps can be obtained for the network. The green
flow part in the middle of the graph indicates that the feature
images of different scales are up-sampled and restored to the
original image size, which is the decoding process. The blue
stream sections on the top and right are the ‘Transmission’
section. The sub network performs a series of operations on
the last layer of the coding part, such as multi-receptive field
pooling, feature enhancement and high semantic guidance.
The purpose is to increase the recognition ability and fea-
ture expression ability of the network. Finally, the feature
representation is transmitted to each feature map with differ-
ent scales. Therefore, this article uses the ‘Transmission’ to
express the network meaning of this part.

After the input image undergoes multi-layer convolu-
tion, the resolution continues to decrease, and the num-
ber of channels continues to increase. In the second data
stream, the resulting feature map of the last layer is

dimension-reduced and up-sampled to the same size as the
previous layer. After feature fusion, the up-sampling oper-
ation is continued until the final prediction layer. The last
data stream is the highlight of this article. This includes a
multi-receptive field pooling structure, feature enhancement
module and high semantic guidance structure. Next, we will
focus on the third data stream. Table 1 is the network archi-
tecture in tabular form as well that explains the size of feature
maps with layer input-output filters of each convolutional
layer.

TABLE 1. Network architecture for explains the size of feature maps.

B. MULTI-RECEPTIVE FIELD POOLING
Figure 3 shows the specific structure of multi-receptive field
pooling. The algorithm first extracts the last layer of the basic
network features and uses a 1 × 1 convolution kernel to
reduce the dimension. The input is reduced from 2048 chan-
nels to 512 channels. This step aims to reduce the operat-
ing burden of the network when analyzing multi-receptive
fields and uses refined features to extract objects of dif-
ferent sizes. After the simplified feature map is obtained,
an adaptive pooling kernel is used to capture different
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FIGURE 3. The structure of multi-receptive field pooling module. The
input features will be effectively combined with the features from
different receptive fields.

object sizes. The receptive field is the size of the visual
range that can be perceived. Through pooling layers of dif-
ferent sizes, we can obtain a variety of visual ranges. This
structure based on pyramid pooling has achieved great suc-
cess in visible light images [23]. However, we find that the
multi-receptive field is more effective for far-infrared images.
He et al. [24], [25] tried to use the multi-receptive field model
to solve the far-infrared and visible image super-resolution
task. Super-resolution mainly emphasizes the details of the
image, which can better restore the details of the image.
Therefore, literature [24] designs the multi-receptive field on
the high-resolution detailed feature map, literature [25] inte-
grating these hierarchical features can generate better map-
pings on recovering high-fidelity details at different scales.
However, our image segmentation mainly emphasizes the
image overall characteristics. If we pay too much attention
to details, there will be many misjudgments. Features of
far-infrared images are mainly concentrated on some large
overall structures, and far-infrared devices are not good at
capturing detailed features. Far-infrared image segmentation
pays more attention to semantic features such as contour
and gray value. Therefore, we only add multiple receptive
fields to the feature map of the last layer. According to the
characteristics of far-infrared images, we use global pooling
to get multiple receptive fields, and act on the final output
featuremap to obtain features of different scales semantically.
The design of this study differs from that of others in the
existing literature and is detailed below.

For far-infrared images, due to the expensive acquisition
equipment, most of the currently available dataset resolution
is 640 × 480, while the thermal resolution of the dataset
released in this article is lower, only 160 × 140. The lower
resolution makes the edges of pedestrians and other objects
appear blurred in the image. At the same time, due to the
characteristics of the far-infrared image, the value of the
object pixel is only related to the heat radiation. This causes
some background areas or unrelated categories to be easily
judged as the current category. However, this kind of error
is very easy for humans to judge because humans can obtain
different comparison references according to different visual
ranges. Assuming that there is a blurry pure white area, based

on the available information, we cannot distinguish whether
it belongs to the pedestrian category or another category.
However, if we zoom in on the visual range, we can see other
parts, including the head and limbs. Then, we can easily judge
that it is part of the pedestrian object area. Figure 4 shows
the different visual ranges. This is particularly important for
far-infrared images without texture information and blurred
edges. Due to the low resolution of the far-infrared image,
the last layer of the feature map has a small size, so we use
three pooling layers with sizes of 1, 3, and 5. Through com-
bining them with the last layer of features before processing,
we finally obtain a 2048-dimensional feature vector.

FIGURE 4. The importance of different visual ranges in understanding
object categories. It is difficult to distinguish the category of the object
with a small visual range. As the visual range gradually becomes larger,
the category of the object can be accurately determined based on the
contour and other information.

C. FEATURE ENHANCEMENT MODULE
Multi-receptive fields can obtain multi-scale objects that
solve the problems caused by low resolution and blurring.
Another difficult problem is the situation of temperature
inversion. Under normal circumstances, the temperature of
pedestrians will be higher than the temperature of the back-
ground, so the pixel grey value will also be higher. How-
ever, temperature reversal often occurs. During the summer,
long-term sun exposure can cause the road temperature to rise
sharply. During this time, the temperature of the surrounding
objects will be higher than the temperature of the pedestrians,
which will cause the contrast of the pixel grey value to
decrease. In winter, pedestrians wear warm clothing, such
as down jackets, with only their heads exposed. Therefore,
the temperature of the body will also be low in most cases,
reducing the contrast compared to the background and other
objects. Figure 5 shows the situation that has beenmentioned.
These problems are very simple for human judgment. Human
vision is not only based on the pixel grey value but also
based on contour and position information. For the designed
algorithm, we need to strengthen the network’s ability to
extract common features of far-infrared image objects and
establish effective connections between the different features.

In this article, the global pooling layer is used to obtain
the most response part of the feature map. The two fully
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FIGURE 5. The situation in (a) is that the pedestrian objects are hidden
in the background. Networks which do not have the selection capabilities
of enhanced features can only focus on more obvious feature objects,
as shown in (b). Thanks to the strong expression ability of the feature
enhancement module, it can effectively find the objects hidden in the
background, as shown in (c).

connected layers are mainly used to select channels with rep-
resentative far-infrared features, and train weight values that
can respond to key position information. Finally, the weights
with screening ability are assigned to these feature maps by
multiplication, and the feature values with important expres-
sive ability are enhanced to complete the task of selecting
important features. The filtered features can effectively dis-
tinguish the importance of the foreground and background
features, pay more attention to the position where the object
contour may appear, and ignore some pixels with noisy in
brightness values, thereby improving the accuracy of segmen-
tation.

The model is shown in Figure 6. Based on literature [22],
we introduce the feature enhancement module into our
far-infrared image segmentation task. This module has a
low computational cost and is easy to implement. On this
basis, we modify the designed network. First, the obtained
2048-dimensional multi-receptive field vector is reduced to
512 channels using a 1 × 1 convolution kernel. Then, the
feature map is subjected to global max-pooling, and the result
is converted into a 1-dimensional vector. It is entered into the
128-dimensional fully connected layer. After the Relu acti-
vation function, it is connected to the 512-dimensional fully

FIGURE 6. The structure of feature enhancement module. The effective
channels that are screened out will be multiplied by the input features,
thereby enhancing the ability to express key features.

connected layer and through the Sigmoid activation function.
This step can effectively filter out more representative and
versatile feature channels, such as contours and positions, and
effectively reduces the impact of grayscale color inversion.
Finally, unlike the design in literature [27], we directly up-
sample the obtained expressive channels and multiply them
into the original input. Since the original structure is embed-
ded in the basic feature extraction network, it is presented as a
residual structure. The design presented in this article uses the
original structure, as opposed to the residual structure, for the
screening of general features, so as to exploit its outstanding
selection ability.

D. SEMANTIC GUIDANCE STRUCTURE
Currently, popular semantic segmentation networks all use
encoding-decoding architectures [22], [26]. The basic struc-
ture of the method in this article is also designed in this
way, but using only the classic encoding-decoding archi-
tecture does not perform well with far-infrared images.
Because far-infrared images lack considerable texture and
color information, if only one up-sampled data stream is
used, the semantic extraction ability of the network will be
weakened. In the last two sections, we discussed the design
of our novel far-infrared imagemodules; next, wewill discuss
their integration into the basic network structure.

The commonly used pyramid pooling structure directly
up-samples to the size of the input image after extracting
multiple features, which has little effect on the classification
of visible light images with rich texture information. How-
ever, the far-infrared image has almost no texture informa-
tion. We only rely on the edge and brightness information
for classification and judgement. Therefore, after extracting
the multi-receptive field features and enhancing the module,
the structure we designed is gradually up-sampled to fully
integrate the features of each layer. Once the features are fully
integrated, our structure continues up-sampling. In each layer,
we use the strategy of adding corresponding positions to
avoid an increase in channel numbers. The guidance structure
is shown by the blue data flow in Figure 2. Based on the
original up-sampling structure, each layer has three differ-
ent features for fusion. They are the down-sampling detail
features, conventional up-sampling semantic features, and
multi-receptive field’s high semantic features. This design
can better ease the fusion process between features and avoids
the ’semantic gap’ caused by the large span of space.

E. SUPPLEMENTARY EXPLANATION OF THE NETWORK
STRUCTURE
This article uses a stochastic gradient descent optimizer
(SGD). SGD performs gradient updates on each sample dur-
ing training. For large datasets, there may be similar samples.
If global samples are used, then there will be redundancy
in the calculation of gradients. SGD is updated only once
each time, it has no redundancy, it is faster, and it can
enrich the sample. Although it contains a certain degree
of randomness, from the perspective of our expectations, it is
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FIGURE 7. Some images and labeled samples of the LFPD dataset.

equal to the correct derivative. We chose this optimizer to
verify the network’s ability to extract features and reduce the
impact of other functions on the network. Equation (1) is
used to calculate the gradient of the current parameter where,
ωt is the weight value, f is the derivative operation, and gt is
the derivative result. (2) is used to calculate the gradient of
the current drop, α is the learning rate, and θt is a decreasing
value. (3) is used to calculate the updated parameter, andωt+1
is the new weight value.

gt = ∇f (ωt ) (1)

θt = α · gt (2)

ωt+1 = ωt − θt (3)

This article uses the NLL Loss cost function. Its input is
a log probability vector and an object label. While it does
not calculate the log probability, it is suitable for the case
where the last layer of the network is Log_Softmax. For the
traditional Softmax, the calculation equation is:

Softmax(xi) =
exp(xi)∑
j exp(xj)

(4)

xi is the current category, xi is the all-category, and exp
is the exponential operation. Log_Softmax performs a log-
arithmic operation on the calculation result of Softmax. The
calculation equation is as follows, where alk is the output of
Softmax, the value of yk is 0 or 1. It is 1 when the training
data are in this category; otherwise, it is 0. k is the real class
number of the training sample.

J (W , b, aL , y) = −
∑
k

yk ln aLk (5)

Due to the low resolution of the far-infrared image after
five down-samplings, the final feature map becomes very
small. Therefore, we use dilated convolution in the last con-
volution operation instead of down-sampling, so that a recep-
tive field of the same size can be obtained without chang-
ing the resolution. Dilated convolution uses a hole between

each filter point to expand the receptive field so that the
3 × 3 convolution kernel obtains 5 × 5 convolution kernel
semantic information with the same number of parameters
and computational complexity. It replaces the traditional
down-sampling operation.

F. LOW-RESOLUTION FAR-INFRARED DATASET
To conduct multi-resolution research on far-infrared images
and verify the robustness of the algorithm, this article releases
the low-resolution far-infrared pedestrian dataset (LFPD).
We collected the driving scene by installing a FLIR One
Pro3 far-infrared camera on the rear-view mirror inside a car.
It can measure temperatures between−20◦C and 400◦C. The
images were collected from the video data; each video is
30 minutes, and there are 30 videos in total. We carefully
selected the images that have some useable objects, and a
total of 1000 images were obtained tomake the LFPD dataset.
All videos were taken on the streets at Dalian Maritime
University, Dalian, China, in May 2018. Videos were taken
under generally clear-skies and rainy conditions at both day
and night. The dataset folder form is the same as the public
dataset VOC [28]. The labelImg tool is used to label the
images and automatically generate an.xml file. At the same
time, we use Labelme to annotate images at the pixel level.
The thermal resolution is 160 × 140, and the image size is
640× 480. Currently, only pedestrian categories are used for
object detection and semantic segmentation.Wewill continue
to provide other categories of images and annotation informa-
tion in the future. At present, the dataset is publicly available.
You can send an email to the corresponding author of this
article to obtain the download address. Some marked sample
results are shown in Figure 7.

IV. EXPERIMENTAL RESULTS
A. DATASET
In the experiments in this article, in addition to using the low-
resolution far-infrared images we released for verification,
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FIGURE 8. Some images and labeled samples of the KAIST dataset.

we also used far-infrared segmentation datasets currently
published by other scholars. Now, we briefly introduce them.

The KAIST Multispectral Pedestrian Dataset consists
of 95k color-thermal pairs (640 × 480, 20 Hz) taken from
a vehicle [29]. The developed imaging hardware consists of
a color camera, a thermal camera, and a beam splitter to
capture aligned multispectral (RGB + far-infrared) images.
With this hardware, various regular traffic scenes during
the day and night were captured to consider the changes
in light conditions. In this article, the far-infrared data is
selected for experimental analysis, and the corresponding
segmentation labels disclosed by other scholars are used.
Based on the annotation information of the original data
set, they organized and annotated the KAIST far-infrared
data set for semantic segmentation, and published the seg-
mentation data set in the paper [31]. They only marked
the pedestrian category at the pixel level. Some marked
sample results are shown in the 2nd line of Figure 8. Its
address is as follows. (Address: https://information-fusion-
lab-umass.github.io/Salient-Pedestrian-Detection/).

The ‘Segment Objects in Day And night (SODA)’ dataset
was released by Li et al. (Address: https://drive.google.com/
drive/folders/1ZF2vDk9j69kP5U0zcp-liOBk-atWcw-5?
usp=sharing). There are 2168 annotated images and
5000 pseudo far-infrared images collected by the FLIR
thermal camera. Among them, the resolution of the real
far-infrared images is 640 × 480, which was collected
from scenes of daily life. In our experiments, only the real
far-infrared images in this dataset were used, and the pseudo
far-infrared images were eliminated. The dataset contains a
total of 20 categories, such as person, car, tree, road, and bicy-
cle. This can not only verify the segmentation performance of
the network for far-infrared pedestrians in this article, but also
verify the segmentation performance of the proposed method
for other categories of far-infrared objects. The Labelme tool
was used to annotate the images at the pixel level. Through
training, pixel values are labelled from 1 to 20. The visual
color of the label is the same as that of the VOC segmentation

dataset. The dataset is divided into the training data and test
data using a 1:1 ratio, so the training data have 1168 images
and the test data have 1000 images. Some examples are shown
in Figure 9.

B. EXPERIMENTAL CONFIGURATION
This article uses a Nvidia GTX1080 with an 11 G mem-
ory GPU for the experiment. The CPU model is Intel
i7-7700HQ, the running memory is 8 GB, and the experimen-
tal environment is Ubuntu16.04 + Cuda9.0 + Cudnn7.0.5 +
Pytorch0.4.1. The experimental comparison methods are
all open source code (https://github.com/bodokaiser/piwise).
The initial learning rate of the network is 0.0001, the opti-
mizer uses SGD, the batch size is 2, and each algorithm is
trained with 100 epochs.

In the training process, the first step is to experiment with
the original UNet structure. On this basis, the parameter of the
dilated rate of 1 is used to obtain the semantic guidance struc-
ture. Then, it is up-sampled layer by layer and merged with
the feature map obtained by UNet before. Multi-receptive
field and feature enhancement module are based on semantic
guidance structure. In the second step, the adaptive pooling
layer is used to obtain 1 × 1, 3 × 3 and 5 × 5 feature
maps after dilated operation. Then get the multi-receptive
field features. After up-sampling, fusion them with the orig-
inal features in the channel dimension. Finally, the feature
enhancement module acts on the fused feature map. If there
are no multi-receptive field features, directly apply it to the
feature map after dilated convolution. The number of head
and tail neurons in this module is 512, and the middle is 128.
In the process of training and testing, verify them one by one
according to the abovemethod, and get the final segmentation
result.

C. EVALUATION METRIC
In this article, we use precision, recall, intersection-over-
union (IoU), f-score and mean absolute error (MAE) [30] to
evaluate the pedestrian segmentation results.
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FIGURE 9. Some images and labeled samples of the SODA dataset.

For each pixel, if it is a positive example, the correct
classification is recorded as TP. Otherwise, it will be marked
as FN. When it is a negative case, the proper label will be
recorded as TN, and if it is incorrectly classified as a positive
case, it is recorded as FP. Therefore, the precision and recall
can be calculated using Equations (6) and (7) based on the
above four indicators.

IoU is a concept widely used in object segmentation and
detection. The purpose is to calculate the overlap ratio of the
generated true pixel value and labelled pixel value. We can
also say it is a ratio of their intersection to their union. The
best case is a complete overlap, where the rate is 1. Let the
mask pixel point obtained by the program be W and the
labelled pixel point be E; it is calculated by Equation (8).
In themulti-category test, the IoU of all categories is averaged
to obtain the mIoU.

To comprehensively evaluate the quality of the segmented
images, the f-score index is used, which can measure the
degree of influence between the precision and recall. In this
article, β2 is 1. It is defined as Equation (9).

TheMAE represents the average of the absolute errors, and
the absolute differences of the corresponding position pixels
are summed and then averaged. It can effectively reflect the
actual situation of the prediction error. After normalization to
[0, 1], let S and Z represent the predicted segmented image
and the label image, respectively. TheMAE can be calculated
by Equation (10).

In addition, for multi-category test datasets, we only use
the mIoU and pixel accuracy (PA) indicators for evaluation.
In Equation (11), k represents the number of categories, pii
represents the number of pixels predicted correctly, and pii
represents the total number of pixels.

P(Precision) =
TP

TP+ FP
(6)

R(Recall) =
TP

TP+ FN
(7)

IoU =
area(W ) ∩ area(E)
area(W ) ∪ area(E)

(8)

Fβ =
(1+ β2)Precision× Recall
β2Precision+ Recall

(9)

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|S(i, j) = Z (i, j)| (10)

PA =

∑k
i=0 pii∑k

i=0
∑k

j=0 pij
(11)

D. COMPARISON EXPERIMENT OF SEGMENTATION
Figure 10 shows the training situation of different algorithms
on three datasets. With the increase in epoch, their loss
becomes small, and the FSGNet achieves a low loss level.
The LFPD, KAIST and SODA datasets all reach a loss level
of approximately 0.001. Comparedwith other algorithms, our
algorithm has a good convergence effect. The curve proves
the rationality of the network structure.

In Figure 11, the test results on the two datasets that use
five evaluation metrics are shown by curves. Because these
two datasets only have pedestrian categories, we can use the
above metrics to evaluate them. In LFPD, with increasing
test image number, the indicators are relatively stable and
have a slight downward trend. This shows that the network
structure of this article can be well adapted to low-resolution
images and has a stable test ability compared with that of
the other algorithms. However, in the KAIST dataset, the test
results are relatively low at the beginning. With the increase
in epoch, the indicator value gradually increases and tends to
be stable. After analysis the test images, we found that most
of the images arranged in the front did not contain pedestrian
objects or they contained small objects. Small objects affect
the detection ability of the network. Compared with other
networks, FSGNet obtains a higher detection performance
from the beginning, which proves that it has good adaptability
to the object scale.

Table 2 and Table 3 also prove the above analysis. The
FSGNet achieves the best performance when compared with
the other algorithms. The IoU reaches 70.59% in LFPD and
30.98% in KAIST. Table 4 shows the test results for the
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FIGURE 10. The performance of different algorithm training in three datasets.

TABLE 2. The average test results of different algorithms in the LFPD
dataset.

TABLE 3. The average test results of different algorithms in the KAIST
dataset.

TABLE 4. The average test results of different algorithms in the SODA
dataset (Use IoU and PA).

SODA dataset. Because it is a multi-category dataset, we use
mIoU and PA to prove the segmentation ability of our net-
work. FSGNet achieves the highest score in all categories,
and no zero values are found. The mIoU and PA are 60.67%

and 81.31%, respectively. The data effectively illustrate that
FSGNet is not only be suitable for pedestrian segmentation
of far-infrared images but is also suitable for multi-category
segmentation of far-infrared images.

There are some segmentation images by different algo-
rithms in the three datasets. In Figure 12, FSGNet can adapt
well to the shortcomings of insufficient texture features in
low-resolution images. Especially in the case where pedes-
trians are blocked by clothing, the FSGNet can completely
divide the pedestrian area without many holes. In Figure 13,
the pedestrian object of the test image is small, and the
environment is complex, but our network still segments the
pedestrians very well. It is worth noting that due to the
rough manual annotation of the dataset, the model achieves
relatively low results in the final test. In fact, the final seg-
mentation result is much finer than the marked image. This
also shows that our network has a good generalization ability.
Figure 14 shows the test result in the multi-category dataset.
It can be seen from the figure that FSGNet is very prominent
in its ability to segment image details, and it has good adapt-
ability for different scales and brightness.

From the above three tables, it can be seen that the
methods proposed in this article have improved detection
accuracy compared to UNet, FCN8, PSPNet, and SegNet.
We chose these methods for comparison because in related
work, we have introduced the role of these work in visi-
ble light images. But how do they perform in far infrared
images? Is our model more suitable for far infrared image
segmentation?With these questions, this article chooses these
algorithms for comparison. In the evaluation of pedestrian
segmentation, the precision, recall, IoU, Fscore and MAE
indicators have good advantages. In the multi-category data
set, the mIoU and PA indicators also have strong advantages,
and each category in the data set can also obtain the high-
est segmentation accuracy. This shows that the network we
designed can segment the object in the far infrared image
well.

Figure 12-14 shows the test results of different algorithms
on three data sets. It can be seen from the figure that the
compared several algorithms have a greater loss of pedestrian
details. Especially the parts that are occluded by clothing.
Due to the different brightness values of pedestrians, the anal-
ysis performance of the features is reduced. Our method
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FIGURE 11. Test results of different algorithms in two datasets. (a) is the UNet, (b) is the FCN8, (c) is the PSPNet, (d) is the
SegNet, (e) is FSGNet.

182574 VOLUME 8, 2020



Y. Zang et al.: Far-Infrared Object Segmentation Focus on Transmission of Overall Semantic Information

FIGURE 12. Test image results display of LFPD dataset. (a) is the input image, (b) is the label image, (c) is the UNet, (d) is the FCN8, (e) is the PSPNet,
(f) is the SegNet, (g) is FSGNet.

uses multiple receptive fields and feature enhancement
modules, so that features with more expression capabili-
ties are selected. At the same time, the semantic guidance

structure is used to transmit the obtained feature map with
strong expressive power to the decoding step, which makes
the network more capable of segmenting far infrared images.
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FIGURE 13. Test image results display of KAIST dataset. (a) is the input image, (b) is the label image, (c) is the UNet, (d) is the FCN8, (e) is the PSPNet,
(f) is the SegNet, (g) is FSGNet.
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FIGURE 14. Test image results display of SODA dataset. (a) is the input image, (b) is the label image, (c) is the UNet, (d) is the FCN8, (e) is the PSPNet,
(f) is the SegNet, (g) is FSGNet.

Therefore, our method has a strong semantic extraction
capability for object segmentation in far infrared images. And
for some special cases, our method not only depends on the

brightness information of the object, but also considers its
outline and appearance information, so as to obtain a stronger
segmentation ability.
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TABLE 5. FSGNet ablation experiments on three datasets (Use mIoU).

E. ABLATION STUDY
The last experiment in this article aims to verify the func-
tionality of the module we designed. In Table5, the basic
experimental framework uses ResNet50 to realize an
encoding-decoding network. On this basis, we first add a
semantic guidance structure to the feature map of the last
layer so that the network has a total of three branches. Adding
this structure improves the very small segmentation per-
formance of the network. Our multi-receptive field module
and feature enhancement module are designed based on the
semantic guidance structure, so two different experiments
are designed to verify the effectiveness of the module. From
the test results of the three datasets, we can see that the
multi-receptive field module has a greater impact on the
network segmentation performance than the feature enhance-
ment module. However, all of them have improved the seg-
mentation performance of the IoU. Finally, we add all mod-
ules to the basic network and obtain the best results. The best
mIoU results of the LFPD, KAIST and SODA datasets were
70.59%, 30.98% and 60.67%, respectively. All the above
experiments prove the effectiveness of the modules proposed
in this article, and they have a very important influence on the
segmentation of far-infrared objects.

According to the experimental results, the values of Mean
IoU have increased by 3.29% for LFPD datasets, 2.14% for
KAIST datasets, and 3.70% for SODA datasets after adding
multiscale, respectively. As shown from the experimental
data, the performance has been improved obviously by adding
multiscale.

V. CONCLUSION
In this study, far-infrared images and deep learning tech-
nology are used to segment the objects in the driv-
ing scene. Considering the diversity of the dataset, this

article releases a low-resolution far-infrared pedestrian
dataset. Next, a convolutional neural network algorithm for
far-infrared image segmentation is designed. Based on the
general encoding-decoding structure, a multi-receptive field
module is designed to expand the visual range and reduce
the impact of missing texture features on segmentation. The
feature enhancement module is used to select representative
feature channels, including the contours. It is used to solve
the problem of object temperature reversal and background
similarity. Finally, the semantic guidance structure is used
to help obtain more detailed information between features
of different scales. Our method is tested on three diverse
datasets. The experimental results show that the FSGNet
has stronger segmentation capabilities for far-infrared images
than many popular segmentation networks. It has achieved
the best results in all indicators. In the future, wewill compare
more segmentation methods to make the network structure of
this article more convincing. At the same time, we will also
work to improve the real-time performance of the network.
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